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ABSTRACT

The Lattice Based Smoother was introduced by McIntyre and Barry (2017) to estimate a
surface defined over an irregularly-shaped region. In this paper we consider extending their
method to allow for additional covariates and non-continuous responses. We describe our
extension which utilizes the framework of generalized additive models. A simulation study
shows that our method is comparable to the Soap film smoother of Wood et al. (2008),
under a number of different conditions. Finally we illustrate the method’s practical use by

applying it to a real data set.
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1. INTRODUCTION

A main goal in environmental and geospatial studies is to model spatially distributed data as a
function of the geographic location in order to construct a predicted surface. However, an issue
occurs when a function is defined on a region with an irregular boundary. Conventional spatial
smoothing methods, including kernel smoothers, kriging and spline models, lack the ability to ap-
propriately account for complex boundaries. They ignore irregular boundaries such as peninsulas
inside the region, and may smooth across the boundaries if points on either side of the boundary are
close in terms of Euclidean distance. But since such points may be affected by different ecological
processes, smoothing across boundaries might result in inappropriate estimates. This problem is
known as ‘leakage’.

Several statistical tools have been developed to address this problem. Wood et al. (2008)
introduce a method called soap film smoothing. This is a spline estimator that uses two sets of
basis functions, one for the interior region and one for the boundary. Scott-Hayward et al. (2014)
illustrate the Complex Region Spatial Smoother (CReSS), which is based on the geodesic distances
between data locations. This approach was an improvement to the Geodesic Low-Rank Thin Plate
Splines (GLTPS) method of Wang and Ranalli (2007), which also employs geodesic distance, but
allows some leakage depending on the chosen size of the local neighbourhoods around points. McIn-
tyre and Barry (2017) introduced a kernel-based estimator of the spatial function, the Lattice-based
smoother (LLBS), that accounts for an irregular domain. The method is based on a diffusion process
approximated by random walks along a lattice constructed over the region.

The inclusion of covariates, available at the same locations as the response, could lead to im-
proved estimates and provide more information about the behaviour of the response variable. In
this paper we investigate extensions to the LBS model by using the framework of generalized ad-
ditive models (GAM; Hastie and Tibshirani, 1990). Our objectives are to incorporate information
from additional covariates into the LBS model to improve spatial prediction, and to extend these
models to non-normal responses.

This paper is organized as follows. In Section 2 we briefly review the LBS method of McIntyre
and Barry (2017) and also review Hastie and Tibshirani’s (1990) backfitting and local scoring algo-
rithms for fitting GAMs. Section 3 is devoted to the simulation study to illustrate the performance

of the method under different scenarios and compare it to the soap film smoother (SOAP; Wood
1
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et al., 2008). Section 4 presents the application of the method to a real data set on the sediment

phosphorus concentration in Lake Michigan.

2. BACKGROUND

2.1. Lattice-based smoother

Let Y be a response variable and s = (21, 22) be a location. Suppose that these are related by
E:g(sz)+€z i=1...,n

where the function g(s) is a smooth function defined at locations s € . The lattice-based smoother
(McIntyre and Barry 2017) is a kernel regression estimator based on a two-dimensional diffusion
process constrained to stay within €2. The process is approximated by constructing a lattice com-
prised of N nodes within €. A kernel is defined from the distribution of random walks on the
lattice, where walks originate at each observed data location (Barry and Meclntyre 2012). This
kernel is then used to estimate the regression surface.

We describe this process in more detail. Let s; = (x;,y;) denote the location of each node
Jj =1,..., N within the domain 2. Denote nodes where responses Z; are observed by s;,,i = 1, ...,n.
If the location of the observed data doesn’t fall on one of the nodes, it is moved to the nearest
node with a small distortion. Alternatively the grid may be made as dense as needed to capture
all the data positions. Let Qr(s;;s;) be the probability that a random walk of length-k, starting
from the location s; of the observed data, lands on node s;. Then the probability mass function of
the random walks’ positions after k steps, originating at each node of observed data sj,,i =1,...,n

and ending at s; is defined by
1 n
Pr(s) = = 0 Qulssi o0 = 1, N.
i=1
Let A be the area of the whole domain. Then by scaling by area A, we get the kernel density
estimator of the probability density function (Barry and McIntyre 2011)

e
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Then using this kernel function, the Nadaraya-Watson type regression estimator follows from equa-
tion 1, .
i) - B ) S B v,
S Qa2 el
We note that the estimator depends on two important components: the set of transition probabili-

(2)

ties defined for the random walks and the number of steps. The random walk transition is defined
by a Markov chain. First we state the transition probabilities, P(Xy41 = sj| Xk = si), from one
node to the neighbouring one. By neighbor nodes, we mean nodes located in eight directions from
each other (N, S, E, W, NE, NW, SE, SW). We use the following transition probabilities defined
by Barry and McIntyre (2011),

45 :

1-M , t=17
max(q;)
1

P(Xpp1 = 851 Xe = 85) = { M———, i #£ 7,4 and j neighbours
max(q;)
0, i # 4,4 and j not neighbours
where ¢; is a number of neighbors at node s;,¢ = 1,..., N. M is the parameter between 0 and

1 controlling the probability of the random walk transition between nodes. Hence the probability
of moving to a neighboring node is higher at the interior nodes than the probability on the edge.
Therefore the random walks are more likely to remain at the same location on the boundary of the
region at a given step. McIntyre and Barry (2017) show that the estimator in equation (2) can be
computed efficiently by defining transition matrices and using matrix multiplication.

A second important component of the estimator is the number of steps k. This controls the
smoothness of the estimator, similar to a bandwidth parameter. We select the number of steps k

using cross-validation as described in McIntyre and Barry (2017).

2.2. Additive and Generalized Additive Models

Generalized additive models (GAM; Hastie and Tibshirani, 1990) provide a flexible framework
for expanding nonparametric regression models to multiple dimensions and non-normal responses.
First we describe the additive model, which is a generalization of the linear regression model. This is
followed by a description of GAM, which relaxes assumption about the distribution of the response

variable.



For models with multiple predictors, the linear regression model is simple and easy to interpret.
However, the linear relationship between response and each predictor doesn’t always hold. One

way of generalizing this model is to assume

y=g(x1,...,2p) te

where g() is any smooth function. However, there is a dimensionality problem in fitting this model
(Hastie and Tibshirani, 1990). For high dimensional surfaces, i.e. number of predictors, it is hard
to estimate and interpret the surface smoothers. The additive model makes it easier by making the

model additive in predictors,

yi = Bo + g1(@i1) + g2(2s2) + ..+ gp(aip) + 4, i=1,..,n (3)

where ¢1(241), ..., gp(2sp) can be any smooth or linear function. The role of each predictor in the
model is examined separately. The error terms are assumed to be independently and identically
distributed with zero mean and constant variance. Thereby the additive model makes a balance
between fully nonparametric and parametric models by assuming the effect of each regressor is

nonlinear but additive.

2.2.1. Backfitting algorithm

A method that enables estimation in the additive model is called the Backfitting Algorithm (Hastie
and Tibshirani, 1990). It iteratively fits partial residuals on each predictor in turn by removing the

effects of all other predictors. From equation (3) we can write

vi — Bo— > ge(wi) = g5(wis) + &
k#j
The left hand side of the equation defines the new response, yz(j ) = g;(xi;) + ;. Let y(j) =

W,y

, &y = (@15, .., 25)" and let g5 = (§5(215), ..., §5(@ns))" be a vector of the
estimated values of the function g;. We fit a nonparametric regression of y@) on x () to estimate
the function g; and repeat this for all the predictors j = 1,...,p in the model. Let S(z,y) denote
any smoother used to estimate the regression of y on x and let S(mi;w,y) denote its predicted

value at & = x;. The procedure of the backfitting algorithm entails

1. Initial estimate: Gy = ¥; gilxgy) =0fori=1,...,nand j=1,...,p;



2. Compute the new response variable: for j =1,...,p

) =y — o — > gelw)
k#j

3. Update g; by regressing the new outcome y @ on j* predictor and center:
gi(aig) = S(rig @),y D)
1 n
9i(xig) = gs(2sg) — — > gilwy) = 45— 95
i=1

4. Repeat steps 2 and 3 until the change in g; doesn’t exceed some pre-specified threshold for

each 7 =1,...,p.

The final fitted regression function is given by
X P
i =P+ > G5(wiy)
j=1
Also we note that the smoothers used can be any combination of regression estimators including

linear regression, kernel regression, splines or LBS.

2.2.2. Local Scoring algorithm

The generalized additive model can allow a non-normal distribution of the response variable and
a complex variance structure. The backfitting algorithm defined previously can be adapted to fit
these models as well. We illustrate the algorithm for the logistic regression model.

Logistic regression is a type of generalized linear model with binary response 0 and 1. Let
x = (11,22, ... ,:Ep)T be a vector of predictors. Hence given the values of the covariates @, ¥ ~
Bern(p), i.e. the response has a Bernoulli distribution with probability p. Then the conditional
mean is defined by

1= E[Y]x] = p(Y = 1|z) = p(a).

The logistic model equates the conditional mean to a function of predictor variables via the logit

link n,

1= 90n) = ogi(p(a)) o 25— 4 3 g(a)



Then
—exp(Bo+ 37 gi(x5)
1 exp(Bo + XK gilay)

Finally the conditional variance is defined by

p(x)

Var(Ylz) = p(x)(1 —p(x)) = p(1 — p).

The variance of the response is a function of x, that is, it changes as values of predictors change.
Therefore there is a heteroskedasticity issue, which could be resolved by applying iteratively
weighted least squares. Hence in GAM, the model is estimated simply using the weighted backfit-
ting algorithm called local scoring (Hastie and Tibshirani, 1990). The intuition is the same as in
the backfitting method, but local scoring involves repeatedly fitting weighted regression to estimate
functions g1, g2, ..., gp-

The procedure includes two iterative processes, one nested in another. After initializing start-
ing values we define the link function n and compute the probability of an event as given in step
2 below. Then we construct a new response z; and weights w; which will serve as starting values
in the next weighted backfitting iteration. New estimates of functions g; = (§;(@1;), - - ., §;(@n;))T

are obtained by regressing weighted partial residuals wizz(j ) and weights w; on z;;. S can be any
smoother or simple linear regression. This process is continued until g; converges. Then we update
the outer cycle iteration estimates and repeat the whole procedure until it meets the convergence
criterion. We note that these steps are described for estimation with kernel smoothers. Local

scoring algorithm steps entails

1. Set the initial values: By = log(lig) and gj(zy;) =0fori=1,...,nand j=1,...,p.

2. Compute the following: fori=1,...,n

1

N, — 2 0 .. dp, = ——M
77z /80 + Z] g](mz]) ana pg 1 +eXp(—ﬁz)

3. Construct new dependent variable z; and weights w;:

. Yi — D . . :
P — w; = pi(1 —py), 1=1,...,n
v 771 + pz(l _pz) 7 pl( pl)
4. Estimate new p and g;(x;;) for i =1,...,n and j = 1,...,p, iteratively using a weighted

backfitting algorithm with dependent variable and weights estimated in step 3. The steps

for this algorithm are



e Set starting values: fy = z and gj(z;;) =0fori=1,...,nand j=1,...,p

e Define partial residuals

ki
()

and weighted partial residuals w;z;”” with weights defined in step 3.

o Fit a weighted model to estimate the numerator and denominator of kernel estimator
defined in equation 2. Let 2() = (z@, U zfzﬁ)T and w = (w1, ..., wy)". Then
S(:Eij;wj,'wz(j))
S(iEz'j; Zg, w)

Gj(wij) =

e Update the function g; and repeat step 4 until a convergence criterion is reached for

each 7 =1,...,p.

5. Update the functions g;(x;;) in step 1 with new obtained functions g;. Repeat the entire

process until convergence.

Using this algorithm, we incorporate the LBS estimator with additional covariates and nonnormal

responses.

3. SIMULATION STUDIES

We conducted a simulation study to investigate the proposed extensions to models fit with LBS.
Our objective is to illustrate how the method works and compare it with soap film smoothing
proposed by Wood et al. (2008). We focus on introducing additional covariates to the LBS model.
We give an example of modelling with a binary response but do not do a full simulation study for

that case. Implementation of the method is still ongoing.

3.1. Ramsay Horseshoe simulation using backfitting algorithm

Ramsay (2002) introduced a function over a domain with irregular boundaries in a horseshoe-shaped
region (Figure 2(a)). The horseshoe-shaped domain is a good example with a complex domain to
evaluate the smoothing abilities of methods across the boundary. We used this test function to

generate a surface function over the U-shaped domain. Specifically, we added dependence with a
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covariate X according to

1
S/true:2+ZX+g(Z)v (4)

where g(Z) is the Ramsay function at location Z = (z1,22). Then for our simulation study we
performed Monte Carlo replicates of the method. First we generated response variables at ran-
domly sampled locations using the equation (4) above and adding an error term generated from
N(0,02). Then we applied the backfitting algorithm as described in Section 2.2.1, where for the
smooth function S we used a lattice-based smoother and incorporated it with the linear term X.

For the lattice-based smoother (LBS) the distance between grid locations in the constructed
lattice was chosen to be 0.05 units vertically and horizontally. The R package latticeDensity (Barry,
2012) was employed to fit this model. The SOAP was implemented by the R package mgev. We fit
models having 32 interior knots and 40-knot cyclic cubic regression spline as the boundary curve
in correspondence with the papers Wood et al. (2008) and McIntyre and Barry (2017). The gen-
eralized cross validation was used to select the smoothing parameters.

We compared performances of the two estimators under different scenarios. First, we con-
sidered correlation between X and Z = (z1, 22) according to X = p\/27 + 23 + (1 — p)U, where
U ~ Uniform(0, 2). Thus, when p = 0, the covariate X is independent of the location and sim-
ply generated from the uniform distribution, whereas p = 0.35 gives a correlation coefficient 72 of
about 0.60 between X and longitude. Second, we considered two different sample sizes, n= 600 and
n—100. And third, we considered two levels of noise, 0. = 1.36 and ¢. = 2.36, which correspond
to the signal to noise ratio var(yyue)/(var(yegvue) + 02) = 0.75 and 0.5 respectively. To evaluate
the performance of the methods and compare them we made predictions at 987 points inside the
region. We computed mean squared error (MSE) for each simulated dataset and pointwise bias

by
LN
MSE = + > (i —95)°
j=1
Bias(y;) = y; — U; j=1,...,N
The Wilcoxon signed rank test was employed for pairwise comparison of the medians of MSE scores

at 0.05 level of significance. The null hypothesis assumes that there is no significant difference

between medians of two methods. The results are based on the 50 simulated data sets.



FicURE 1. Lattice over the horseshoe domain

()
FicURE 2. (a) Ramsay horseshoe function; (b) Ramsay horseshoe domain with true re-
sponse variable (p = 0) ; (¢) Ramsay horseshoe domain with true response variable
(p=10.35)

The contour map of Ramsay Horseshoe is given in Figure 2 (a) with the function ranging from —4
to 4 and the resulting response variable generated by equation 4 with uncorrelated and correlated
covariates are shown in Figure 2 (b) and (c¢) respectively. The average pointwise bias for LBS and
SOAP with sample size of 600 and dependent and independent covariates showed quite similar
results based on the 50 simulated datasets (Figure 3). However, in both cases of the covariates
LBS has less bias than that for SOAP, especially in the elbow region and on the edge. Figure 4
considers the same model, but with sample size of 100. LBS tends to outperform SOAP in the tips
of upper and lower arms for uncorrelated covariates, but has greater bias in the outer curve. When
the covariates are related with correlation coefficient of 0.6, LBS seems to perform better on the

entire region.
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The natural log of MSE for each sample size, correlation and noise levels is plotted in Figure 5
in terms of the boxplots. SOAP has lower median of MSE score, but larger spread. In general, MSE
scores tend to be lower with larger sample size and smaller noise level. In all cases a Wilcoxon signed
rank test showed that the difference in medians of MSE between LBS and SOAP is significantly
greater than zero.

The pointwise bias plots for the noise level 2.36 are given in Appendix. In spite of the higher
median of MSE score, LBS appears to perform better. SOAP shows the greatest error in the tips
of both arms as well as in the elbow region and near to the outer regions. When the covariates are

correlated LBS seems to outperform SOAP on the entire domain.

Lattice Bias Soap Bias
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FIGURE 3. Average pointwise bias with n=600 and o = 1.36: (a) LBS with > =0 ; (b)
SOAP with 72 = 0; (¢) LBS with 72 = 0.60; (d) SOAP with r? = 0.60
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FIGURE 4. Average pointwise bias with n=100 and o = 1.36: (a) LBS with > = 0 ; (b)
SOAP with 72 = 0; (¢) LBS with 7? = 0.60; (d) SOAP with r? = 0.60
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Method
FiaUre 5. Boxplots of log(MSE) for LBS and SOAP. The first row of the figure illustrates
boxplots for sample size of n=100 with 72 = 0 and 0.6; two noise levels, ¢ = 1.36 and 2.36.
The bottom row shows the same, but with n=600
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3.2. Example using local scoring algorithm

We created a polygon with irregular boundaries and made up a link function of the logistic regression
as defined in section 2.2.2 to relate the response to a non-linear additive component for location. In
addition we included a linear component of an additional covariate from the uniform distribution
with the values between zero and three. Then, the true link function, true probability and binary
response variable were defined over the domain by the following function and visually represented

in Figure 6 (a),

x ~Uniform (0, 3)

n = 0.7x — sin(2z1) cos(3z2) cos(z122)
1

= 14 exp=7

y ~Bern(p)

The simulation was conducted based on n = 400 randomly selected points from the interior polygon,
and responses in terms of 1 were generated according to the above equation. Estimation followed
the local scoring algorithm described in Section 2.2.2. The prediction was made at 16,338 points
on the surface and predicted probabilities are plotted in Figure 6 (b). It captured pretty well the

higher values of p on the bottom right side of the region.

p true Lattice p
[a=] o
o™~ o™~
0| w0 | 10
09
o | - 08
07
06
0| |
o o
05
T T T T T T
05 1.0 15 20 05 1.0 15 20
(a) (b)

Fiaure 6. (a) True values of probability p; (b) Predicted probability
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Predicted Phosphorus
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F1GURE 7. The figure on the left illustrates the lattice used to fit the lattice-based smoother.
Right figure is the map of the Lake Michigan with estimated phosphorus concentration fitted
without depth variable

4. APPLICATION TO LAKE MICHIGAN DATA

We apply the proposed method to estimate the concentration of a certain nutrient, namely
sodium hydroxide extractable phosphorus, in Lake Michigan sediments. The sampling was con-
ducted as part of Lake Michigan Mass Balance Study carried out by U.S. Environmental Protection
Agency (EPA CDX, 2002) through cruising multiple times starting from July 1994 and ending in
May 1996 (Miller et al., 2016). The data were obtained from EPA’s database and include sediment
phosphorus measurements at 117 stations in Lake Michigan along with the water depth where the
samples were collected. There were multiple measurements at some locations, therefore we found
the mean at those stations. The phosphorus concentration ranges from 0.006 to 0.28 mg/g after
taking the mean.

First we employed the lattice-based smoother of Mclntyre and Barry (2017) to model the
phosphorus concentration as a function of its location. The lattice with node space of 0.8 units
was constructed (Figure 7) to estimate the function and prediction was made on a grid of 39,910
points on the surface. It can be observed, for example, that the estimates are not smoothed out
across boundaries on the west and north-east sides of the polygon, where there is a bay creating a

complex boundary (Figure 7).
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The phosphorus concentration appears to increase with depth, suggesting that there is a
potential for depth to improve spatial estimates of phosphorus (Figure 8 (a)). We modelled it as a
linear function of depth and smooth function of location within a generalized additive model con-
text as shown in previous sections. For further prediction of the measurement at other locations,
we obtained the data on the bathymetry of lake Michigan from National Oceanic and Atmospheric
Administration database (NOAA) and randomly sampled 25,000 observations, of which 24,521 ob-
servations were defined inside of the region. Visual representation can be found in Figure 9 (a) and
the resulting estimated values of sediment phosphorus concentrations are mapped in Figure 9 (b)
with the higher values as the lake gets deeper towards the inner side.

In order to estimate the performance of the LBS method, we divided the data into training set
and test set with the fractions 0.75 and 0.25 respectively. Then we fitted the LBS and SOAP models
using the training set and predicted the values of phosphorus at locations and depths contained in
the test set. The difference between the estimated and actual values of phosphorus concentrations
from the test set were computed for both models as well as the MSEs were calculated. Both models
present quite good fit giving fairly small and identical MSE: 0.00159 for L.LBS and 0.00161 for SOAP.
However, the boxplot for the difference shows greater spread for LBS, but possible outliers with

SOAP (Figure 10).

©
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(a) (b)

FicUre 8. (a) Phosphorus concentration vs. Depth; (b) Polygon of Lake Michigan. The
locations of measured phosphorus concentration are given in red dots. Blue dots are the
locations where the predictions are made after fitting the model.
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Lake Michigan Depths Predicted Phosphorus
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FIGURE 9. Map of the Lake Michigan with predicted phosphorus concentration
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FIiGURE 10. Boxplots of the differences between the estimated and actual values of phos-
phorus concentrations using LBS and SOAP

5. CONCLUSION

In this paper we extended the lattice-based smoother in a way to include additional covariates. We
illustrated backfitting and local scoring algorithms, which allow estimation of generalized additive
models.

Simulation studies revealed that this method is comparable with the well-known soap film
smoother, which has already been tested in multiple papers to perform well with complex bound-
aries. Even though the medians of MSE scores were a little bit higher for LBS, the average pointwise

bias seemed to perform better. Especially this was distinct near the edges and inner curves of the
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horseshoe domain, where SOAP showed higher bias. The cases with greater noise level and corre-
lated covariates didn’t reveal any issue. The implementation of the latter required more time to
run. The average pointwise bias showed that the LBS outperformed SOAP on the entire domain
in the cases with the correlated covariates.

Although we illustrated the application of the local scoring algorithm to binary response based
on a simulated data set, the method’s implementation is still ongoing. Furthermore, one of the
future studies could be making the inference from the model such as defining the statistical signif-
icance of predictors, obtaining standard errors, etc. Moreover fitting the model for the data with

different distributions might also be a topic of interest.
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APPENDIX

Lattice Bias Soap Bias
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FIGURE 11. Average pointwise bias with n=600 and o = 2.36: (a) LBS with * =0 ; (b):

Soap with 7% = 0; (¢) LBS with 7? = 0.60; (d) Soap with r? = 0.60
Lattice Bias Soap Bias

05

0.0

05 00 05
-05 00 05

bbb0000
G)AMC)M-F-G)

(c) (d)

FIGURE 12. Average pointwise bias with n=100 and o = 2.36: (a) LBS with v* =0 ; (b):
Soap with 72 = 0; (¢) LBS with 72 = 0.60 ; (d) Soap with 7? = 0.60



