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A b s t r a c t

The Lattice Based Smoother was introduced by McIntyre and Barry (2017) to estimate a 

surface defined over an irregularly-shaped region. In this paper we consider extending their 

m ethod to allow for additional covariates and non-continuous responses. We describe our 

extension which utilizes the framework of generalized additive models. A simulation study 

shows th a t our m ethod is comparable to the Soap film smoother of Wood et al. (2008), 

under a number of different conditions. Finally we illustrate the m ethod’s practical use by 

applying it to a real data  set.
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1 . I n t r o d u c t i o n

A m ain goal in environm ental and  geospatial stud ies is to  m odel spa tia lly  d is trib u ted  d a ta  as a 

function  of th e  geographic location in order to  co n stru c t a p red ic ted  surface. However, an  issue 

occurs w hen a function  is defined on a region w ith  an  irregular boundary . C onventional spatia l 

sm ooth ing  m ethods, including kernel sm oothers, krig ing and  spline m odels, lack th e  ab ility  to  ap

p ro p ria te ly  account for com plex boundaries. T hey  ignore irregu lar boundaries such as peninsulas 

inside th e  region, and  m ay sm ooth  across th e  boundaries if poin ts on e ith er side of th e  bo u n d ary  are 

close in te rm s of E uclidean  d istance. B u t since such poin ts m ay be affected by different ecological 

processes, sm ooth ing  across boundaries m ight resu lt in in ap p ro p ria te  estim ates. T his problem  is 

know n as ‘leakage’.

Several s ta tis tica l tools have been developed to  address th is  problem . W ood et al. (2008) 

in troduce a m ethod  called soap film sm oothing. T his is a spline estim ato r th a t  uses tw o sets of 

basis functions, one for th e  in terio r region and  one for th e  boundary . Scott-H ayw ard  e t al. (2014) 

illu s tra te  th e  C om plex R egion S patial Sm oother (CReSS), w hich is based on th e  geodesic d istances 

betw een d a ta  locations. T his approach  was an  im provem ent to  th e  Geodesic Low -R ank T h in  P la te  

Splines (G L TPS) m ethod  of W ang and  R analli (2007), w hich also em ploys geodesic d istance, b u t 

allows som e leakage depending  on th e  chosen size of th e  local neighbourhoods around  poin ts. M cIn

ty re  and  B arry  (2017) in troduced  a kernel-based es tim a to r of th e  sp a tia l function , th e  L attice-based  

sm oother (LBS), th a t  accounts for an  irregu lar dom ain. T he m ethod  is based on a diffusion process 

app rox im ated  by random  walks along a la ttice  co n stru c ted  over th e  region.

T he inclusion of covariates, available a t th e  sam e locations as th e  response, could lead to  im 

proved estim ates and  provide m ore in form ation  ab o u t th e  behav iour of th e  response variable. In  

th is  p ap e r we investigate extensions to  th e  LBS m odel by using th e  fram ew ork of generalized ad 

ditive m odels (GAM ; H astie  and  T ibsh iran i, 1990). O ur objectives are to  inco rporate  inform ation  

from  add itional covariates in to  th e  LBS m odel to  im prove sp a tia l pred ic tion , and  to  ex tend  these 

m odels to  non-norm al responses.

T his p ap e r is organized as follows. In  Section 2 we briefly review th e  LBS m ethod  of M cIntyre 

and  B arry  (2017) and  also review H astie  and  T ib sh iran i’s (1990) backfitting  and local scoring algo

rithm s for fittin g  GAM s. Section 3 is devoted to  th e  sim ulation  stu d y  to  illu s tra te  th e  perform ance

of th e  m ethod  u nder different scenarios and  com pare it to  th e  soap film sm oother (SO A P; W ood
1



et al., 2008). Section 4 presents th e  app lica tion  of th e  m ethod  to  a real d a ta  set on th e  sedim ent 

phosphorus concen tra tion  in Lake M ichigan.
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2. B a c k g r o u n d

2.1. L a t t i c e - b a s e d  s m o o th e r

L et Y  be a response variable and  s =  ( z1, z 2) be a location. Suppose th a t  these are re la ted  by

(M cIntyre and  B arry  2017) is a kernel regression e s tim a to r based on a tw o-dim ensional diffusion 

process constra ined  to  stay  w ith in  Q. T he process is app rox im ated  by co n stru c tin g  a la ttice  com 

prised of N  nodes w ith in  Q. A kernel is defined from  th e  d is trib u tio n  of random  walks on th e  

la ttice , w here walks o rig inate  a t each observed d a ta  location  (B arry  and  M cIntyre 2012). This 

kernel is th en  used to  es tim ate  th e  regression surface.

We describe th is  process in m ore detail. L et Sj =  ( x j , y j ) deno te  th e  location  of each node 

j  =  1 ,..., N  w ith in  th e  dom ain  Q. D enote nodes w here responses Z j are observed by Sji , i  =  1 ,..., n. 

If th e  location  of th e  observed d a ta  d o esn ’t  fall on one of th e  nodes, it is moved to  th e  nearest 

node w ith  a sm all d isto rtion . A lterna tive ly  th e  grid m ay be m ade as dense as needed to  cap tu re  

all th e  d a ta  positions. L et Q k ( s j ; s j ) be th e  p robab ility  th a t  a random  walk of length-k, s ta rtin g  

from  th e  location  s j of th e  observed d a ta , lands on node S j. T h en  th e  p robab ility  m ass function  of 

th e  random  w alks’ positions a fte r k steps, o rig inating  a t each node of observed d a ta  Sj i , i =  1 ,..., n  

and  ending  a t Sj  is defined by

L et A be th e  area  of th e  whole dom ain. T hen  by scaling by area  A,  we get th e  kernel density  

es tim ato r of th e  p robab ility  density  function  (B arry  and  M cIntyre 2011)

Y  =  g (s j) +  ej i =  1 , . . . ,  n

w here th e  function  g(s)  is a sm ooth  function  defined a t locations s e  Q. T he la ttice-based  sm oother

j=i

(1 )

j= i



T hen  using th is  kernel function, th e  N adaraya-W atson  ty p e  regression es tim a to r follows from  equa

tion  1,
1 N

=  n  n= i ZjQk (Sj; Sji > =  g = i ZjQk ( s j ; Sji) (2)

j  I N  E -=i Qk(Sj ; Sji ) & 1 Q k<Sj; Sji> '

We no te  th a t  th e  es tim a to r depends on tw o im p o rtan t com ponents: th e  set of tran s itio n  p robab ili

ties defined for th e  random  walks and  th e  num ber of steps. T he random  walk tran s itio n  is defined 

by a M arkov chain. F irs t we s ta te  th e  tran s itio n  probabilities, P ( X k+1 =  Sj \X k =  s j ), from  one 

node to  th e  neighbouring one. B y neighbor nodes, we m ean nodes located in eight d irections from  

each o th er (N, S, E, W , N E, N W , SE, SW ). We use th e  following tran s itio n  probabilities defined 

by B arry  and  M cIntyre (2011),

^1 -  M ----- j —- , i =  j
m ax (q j)

P  (X k+1 =  s j \X k =  s i ) =  < M ---- 1 —-, i =  j, i and  j neighbours
m ax (q j)

0, i =  j ,  i and  j  no t neighbours

w here qj is a num ber of neighbors a t node s j , i =  1 , . . . ,  N . M  is th e  p a ram ete r betw een 0 and 

1 controlling  th e  p robab ility  of th e  random  walk tran s itio n  betw een nodes. Hence th e  p robab ility  

of m oving to  a neighboring node is h igher a t th e  in terio r nodes th a n  th e  p robab ility  on th e  edge. 

Therefore th e  random  walks are m ore likely to  rem ain  a t th e  sam e location  on th e  b o u n d ary  of th e  

region a t a given step . M cIntyre and  B arry  (2017) show th a t  th e  es tim a to r in equ a tio n  (2) can  be 

com puted  efficiently by defining tran s itio n  m atrices and  using m a trix  m ultip lication .

A second im p o rtan t com ponent of th e  es tim a to r is th e  num ber of steps k. T his controls th e  

sm oothness of th e  estim ato r, sim ilar to  a ban d w id th  param eter. We select th e  num ber of steps k 

using cross-validation  as described in M cIntyre and  B arry  (2017).

2.2. A d d i t iv e  a n d  G e n e r a l iz e d  A d d i t iv e  M o d e ls

G eneralized add itive m odels (GAM ; H astie  and  T ibsh iran i, 1990) provide a flexible fram ew ork 

for expand ing  n o n p aram etric  regression m odels to  m ultip le dim ensions and  non-norm al responses. 

F irs t we describe th e  additive m odel, w hich is a generaliza tion  of th e  linear regression m odel. T his is 

followed by a descrip tion  of GAM , w hich relaxes assum ption  ab o u t th e  d is trib u tio n  of th e  response 

variable.

3



For m odels w ith  m ultip le  pred ic tors, th e  linear regression m odel is sim ple and  easy to  in te rp re t. 

However, th e  linear re la tionsh ip  betw een response and  each p red ic to r d o esn ’t  always hold. One 

way of generalizing th is  m odel is to  assum e

y =  g (x 1 , . . . ,x p )  +  e

w here g() is any sm ooth  function. However, th e re  is a d im ensionality  problem  in fittin g  th is  m odel 

(H astie and  T ibsh iran i, 1990). For high dim ensional surfaces, i.e. num ber of pred ic tors, it is hard  

to  es tim ate  and  in te rp re t th e  surface sm oothers. T he add itive m odel m akes it easier by m aking th e  

m odel add itive in pred ic tors,

yj =  Po +  g 1 (x j1) +  g2(x i2) +  ... +  gp(xjp) +  £j, i =  1 ,..., n  (3)

w here g 1(x j1), ...,g p (x jp) can  be any sm ooth  or linear function. T he role of each p red ic to r in th e  

m odel is exam ined separately . T he erro r te rm s are assum ed to  be independen tly  and  identically  

d is trib u ted  w ith  zero m ean and  co n stan t variance. T hereby  th e  add itive m odel m akes a balance 

betw een fully n o n p aram etric  and  p aram etric  m odels by assum ing th e  effect of each regressor is 

nonlinear b u t additive.

2.2.1. Backfitting  algorithm

A m ethod  th a t  enables estim atio n  in th e  add itive m odel is called th e  B ackfitting  A lgorithm  (H astie

and  T ibsh iran i, 1990). I t ite ra tively  fits p a rtia l residuals on each p red ic to r in tu rn  by rem oving th e

effects of all o th e r pred ic tors. From  equ a tio n  (3) we can  w rite

y j — — ^ ^  gk (xik) =  gj  (x i j ) +  £i
k=j

T he left han d  side of th e  equation  defines th e  new response, y (j) =  g j(x jj ) +  £j . L et y (j) =  

(yj ) , . . .  ,y ij ) )T , x ( j)  =  (x 1j  , . . . , x „ j  )T and let g j  =  (gj ( x 1j ) , . . . ,  gj (x,nj  ))T be a vector of th e  

e s tim ated  values of th e  function  g j . We fit a n o n p aram etric  regression of y (j) on x j ) to  es tim ate  

th e  function  gj and  rep ea t th is  for all th e  p red ic tors j  =  1, ... ,p  in th e  m odel. L et S ( x , y )  denote 

any sm oother used to  es tim ate  th e  regression of y  on x  and  let S>(xj ; x , y )  deno te  its  pred ic ted  

value a t x  =  x j . T h e  p rocedure of th e  backfitting  algo rithm  entails

1. In itia l estim ate: j30 =  y; g j(x jj ) =  0 for i =  1 , . . . , n  and j  =  1 , . . .  ,p;

4
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2. C om pute  th e  new response variable: for j  =  1 , . . .  , p

y j  =  yi -  go -  gk (xjk)
k=j

3. U p d a te  gj  by regressing th e  new outcom e y (j) on j p r e d i c t o r  and  center:

gj  (x i j ) =  S (x i j ; x ( j ) , y (j))

1 n
gj  (x i j ) =  gj  (x ij ) — “7 gj  (x ij ) =  gj  — gj

i=1

4. R ep ea t steps 2 and  3 un til th e  change in g j d oesn ’t  exceed some pre-specified th resho ld  for 

each j  =  1 , . . .  ,p.

T he final fitted  regression function  is given by

p
yj =  A) +  ^  gj  (x i j ) 

j=1

Also we no te  th a t  th e  sm oothers used can  be any com bination  of regression estim ato rs including 

linear regression, kernel regression, splines or LBS.

2.2.2. Local Scoring algorithm

T he generalized add itive m odel can  allow a non-norm al d is trib u tio n  of th e  response variable and 

a com plex variance s tru c tu re . T he backfitting  a lgorithm  defined previously can  be ad ap ted  to  fit 

these m odels as well. We illu s tra te  th e  a lgorithm  for th e  logistic regression model.

Logistic regression is a ty p e  of generalized linear m odel w ith  b in ary  response 0 and  1. Let 

x  =  (x 1 , x 2, . . .  , x p)T be a vector of pred ic tors. Hence given th e  values of th e  covariates x , Y  ~  

B ern(p), i.e. th e  response has a B ernoulli d is trib u tio n  w ith  p robab ility  p. T hen  th e  conditional 

m ean is defined by

p  =  E  [Y\x] =  p (Y  =  1\x) =  p (x ) .

T he logistic m odel equates th e  conditional m ean to  a function  of p red ic to r variables v ia th e  logit 

link n,
p (x ) p

n =  g (p ) =  logit(p (x )) =  log 1 -p ? (x ) =  go +  Y l  g j (x j )
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T hen
exp (g0 +  E p  g j (xj ))

p (x ) =
1 +  exp (go +  E p gj (x j ) ) -

F inally  th e  conditional variance is defined by

V ar(Y \x ) =  p (x )(1  — p (x ))  =  p(1  — p).

T he variance of th e  response is a function  of x, th a t  is, it changes as values of pred ic to rs change. 

Therefore th ere  is a heteroskedasticity  issue, w hich could be resolved by apply ing  itera tively  

w eighted least squares. Hence in GAM , th e  m odel is es tim ated  sim ply using th e  w eighted backfit

tin g  a lgorithm  called local scoring (H astie and  T ibsh iran i, 1990). T he in tu itio n  is th e  sam e as in 

th e  backfitting  m ethod , b u t local scoring involves repeated ly  fitting  weighted regression to  es tim ate  

functions g 1, g2, ..., gp .

T he procedure includes tw o ite ra tiv e  processes, one nested  in ano ther. A fter in itializing  s ta r t 

ing values we define th e  link function  n and  com pute  th e  p robab ility  of an  event as given in step  

2 below. T hen  we co n stru c t a new response zj and  w eights wj w hich will serve as s ta rtin g  values

in th e  nex t w eighted backfitting  ite ra tion . New estim ates of functions g j  =  (g j (x1j ) , . . .  ,g j(x nj ) ) T

( j)are ob ta ined  by regressing w eighted p a rtia l residuals wj zj and  weights wj on x jj . S  can  be any 

sm oother or sim ple linear regression. T his process is continued  un til g j  converges. T hen  we u p d a te  

th e  o u te r cycle ite ra tio n  estim ates and  rep eat th e  w hole procedure un til it m eets th e  convergence 

criterion . We no te  th a t  these steps are described for estim atio n  w ith  kernel sm oothers. Local 

scoring algo rithm  steps entails

A y1. Set th e  in itia l values: / 0 =  log(- -=) and  g j(x jj ) =  0 for i =  1 , . . . , n  and j  =  1 , . . .  ,p.
1 — y

2. C om pute  th e  following: for i =  1 , . . . ,  n  

A =  /0  +  E  j g j (x jj) and  pj 1. j 1 +  ex p (—%)

3. C o n stru c t new dependen t variable zj and  w eights wj :

yj -  p  j
Zj =  A +  ^  t t , Wj =  pj(1 -  p j), i =  1 , . . . ,  n

p  j(1 -  p  j)

4. E s tim a te  new / 0 and  g j(x jj ) for i =  1 , . . . , n  and j  =  1 , . . .  ,p,  itera tively  using a w eighted 

backfitting  a lgorithm  w ith  dependen t variable and  w eights es tim ated  in step  3. T he steps 

for th is a lgorithm  are



•  Set s ta rtin g  values: (30 = z  and  g j (X j ) =  0 for i =  1 , . . .  , n  and  j  = 1 , . . . , p

•  Define p a rtia l residuals

z (j) =  Zi -  00 - 2̂ 9k(xik)  i =  1 , . . . ,  n; j  =  1 , . . . , p
k=j

(j)and w eighted p a rtia l residuals w izi w ith  w eights defined in step  3.

•  F it  a w eighted m odel to  es tim ate  th e  n u m era to r and  d enom inato r of kernel estim ato r 

defined in equation  2. L et z (j) =  (z(j) , . . . ,  z ij ) )T and  w  =  ( w i , . . . ,  w n )T . T hen

(Xij) =  S  ( x >; * j - w  j
j j  S ( x ij ; X j , w )

•  U p d a te  th e  function  g j  and  rep ea t step  4 un til a convergence crite rion  is reached for 

each j  =  1 , . . .  ,p.

5. U p d a te  th e  functions g j(x ij ) in step  1 w ith  new ob tained  functions g j . R ep ea t th e  en tire  

process until convergence.

Using th is  algorithm , we inco rporate  th e  LBS estim ato r w ith  add itiona l covariates and  nonnorm al 

responses.

3. S im u l a t io n  s t u d ie s

We conducted  a sim ulation s tu d y  to  investigate th e  proposed extensions to  m odels fit w ith  LBS. 

O ur objective is to  illu s tra te  how th e  m ethod  works and  com pare it w ith  soap film sm oothing 

proposed by W ood et al. (2008). We focus on in troducing  add itional covariates to  th e  LBS m odel. 

We give an  exam ple of m odelling w ith  a b inary  response b u t do no t do a full sim ulation  s tu d y  for 

th a t  case. Im p lem en ta tion  of th e  m ethod  is still ongoing.

3.1. R a m s a y  H o r s e s h o e  s im u la t io n  u s in g  b a c k f i t t in g  a lg o r i th m

R am say (2002) in troduced  a function  over a dom ain  w ith  irregu lar boundaries in a horseshoe-shaped 

region (F igure 2(a)). T he horseshoe-shaped dom ain  is a good exam ple w ith  a com plex dom ain  to  

evaluate  th e  sm ooth ing  abilities of m ethods across th e  boundary . We used th is  te s t function  to  

generate  a surface function  over th e  U -shaped  dom ain. Specifically, we added  dependence w ith  a

7



covariate X  according to

Ftrue =  2 +  ^ X  +  g (Z ), (4)

w here g (Z ) is th e  R am say function  a t location Z  =  (z1,z 2). T hen  for our sim ulation  s tu d y  we 

perform ed M onte C arlo  rep licates of th e  m ethod . F irs t we generated  response variables a t ra n 

dom ly sam pled locations using th e  equa tion  (4) above and  adding  an  erro r te rm  generated  from  

N (0 , 0^ ) . T hen  we applied  th e  backfitting  a lgorithm  as described in Section 2.2.1, w here for th e  

sm ooth  function  S  we used a la ttice-based  sm oother and  inco rpora ted  it w ith  th e  linear te rm  X .

For th e  la ttice-based  sm oother (LBS) th e  d istance betw een grid locations in th e  construc ted  

la ttice  was chosen to  be 0.05 u n its  vertically  and  horizontally. T he R  package la tticeD ensity  (Barry, 

2012) was em ployed to  fit th is  m odel. T he SO AP was im plem ented by th e  R  package mgcv. We fit 

m odels having 32 in terio r knots and  40-knot cyclic cubic regression spline as th e  b o u n d ary  curve 

in correspondence w ith  th e  papers W ood et al. (2008) and  M cIntyre and  B arry  (2017). T he gen

eralized cross validation  was used to  select th e  sm ooth ing  param eters.

We com pared  perform ances of th e  tw o estim ato rs u nder different scenarios. F irs t, we con

sidered corre la tion  betw een X  and  Z  =  (z1,z 2) according to  X  =  p^ /z2  +  z |  +  (1 -  p )U , w here 

U ~  U niform (0, 2). T hus, w hen p =  0, th e  covariate X  is independen t of th e  location and  sim 

ply generated  from  th e  uniform  d is trib u tio n , w hereas p =  0.35 gives a corre la tion  coefficient r 2 of 

ab o u t 0.60 betw een X and  longitude. Second, we considered tw o different sam ple sizes, n =  600 and 

n=100 . A nd th ird , we considered two levels of noise, =  1.36 and  =  2.36, which correspond 

to  th e  signal to  noise ra tio  var(y true)/(v a r(y true) +  o^) =  0.75 and  0.5 respectively. To evaluate  

th e  perform ance of th e  m ethods and  com pare th em  we m ade pred ic tions a t 987 po in ts inside th e  

region. We com puted  m ean squared  erro r (M SE) for each sim ulated  d a ta se t and  pointw ise bias 

by
1 N

m s e  =  -  y j)2
N  j=1

B ias(yj ) =  y j -  yj  j  =  1 , . . . , N

T he W ilcoxon signed ran k  te s t was em ployed for pairw ise com parison of th e  m edians of M SE scores 

a t 0.05 level of significance. T he null hypothesis assum es th a t  th e re  is no significant difference 

betw een m edians of tw o m ethods. T he resu lts are based on th e  50 sim ulated  d a ta  sets.

8
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F igure 1. Lattice over the horseshoe domain

F ig u re  2. (a) Ramsay horseshoe function; (b) Ramsay horseshoe domain with true re
sponse variable (p =  0) ; (c) Ramsay horseshoe domain with true response variable 
(p =  0.35)

T he con tour m ap of R am say  H orseshoe is given in F igure 2 (a) w ith  th e  function  ranging  from  —4 

to  4 and  th e  resu lting  response variable generated  by equation  4 w ith  uncorre la ted  and  correlated  

covariates are shown in F igure 2 (b) and  (c) respectively. T he average pointw ise bias for LBS and 

SOA P w ith  sam ple size of 600 and  dependen t and  independen t covariates showed q u ite  sim ilar 

resu lts based on th e  50 sim ulated  d a ta se ts  (F igure 3). However, in b o th  cases of th e  covariates 

LBS has less bias th a n  th a t  for SOAP, especially in th e  elbow region and  on th e  edge. F igure 4 

considers th e  sam e m odel, b u t w ith  sam ple size of 100. LBS ten d s to  ou tperfo rm  SOAP in th e  tips 

of u p p er and  lower arm s for uncorre la ted  covariates, b u t has g rea te r bias in th e  o u te r curve. W hen 

th e  covariates are re la ted  w ith  co rre la tion  coefficient of 0.6, LBS seems to  perform  b e tte r  on th e  

en tire  region.



T he n a tu ra l log of M SE for each sam ple size, co rrelation  and  noise levels is p lo tted  in F igu re  5 

in term s of th e  boxplots. SOAP has lower m edian of M SE score, b u t larger spread. In  general, M SE 

scores ten d  to  be lower w ith  larger sam ple size and  sm aller noise level. In  all cases a W ilcoxon signed 

ran k  te s t showed th a t  th e  difference in m edians of M SE betw een LBS and  SO A P is significantly 

g rea te r th a n  zero.

T he pointw ise bias plo ts for th e  noise level 2.36 are given in A ppendix . In  sp ite  of th e  higher 

m edian  of M SE score, LBS ap p ears to  perform  b e tte r . SO A P shows th e  g rea tes t erro r in th e  tips 

of b o th  arm s as well as in th e  elbow region and  near to  th e  o u te r regions. W hen th e  covariates are 

corre la ted  LBS seems to  ou tperfo rm  SO AP on th e  en tire  dom ain.
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F ig u re  3. Average pointwise bias with n=600 and a  =  1.36: (a) LBS with r 2 =  0 ; (b) 
SOAP with r 2 =  0; (c) LBS with r 2 =  0.60; (d) SOAP with r 2 =  0.60
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(C) (d)

F ig u re  4. Average pointwise bias with n=100 and a  =  1.36: (a) LBS with r 2 =  0 ; (b) 
SOAP with r 2 =  0; (c) LBS with r 2 =  0.60; (d) SOAP with r 2 =  0.60

Method

F ig u re  5. Boxplots of log(MSE) for LBS and SOAP. The first row of the figure illustrates 
boxplots for sample size of n=100 with r 2 = 0  and 0.6; two noise levels, a  =  1.36 and 2.36. 
The bottom  row shows the same, but with n=600
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3.2. E x a m p le  u s in g  lo c a l  s c o r in g  a lg o r i th m

We crea ted  a polygon w ith  irregular boundaries and  m ade up a link function  of th e  logistic regression 

as defined in section 2.2.2 to  re la te  th e  response to  a non-linear add itive com ponent for location. In  

ad d ition  we included a linear com ponent of an  add itional covariate from  th e  uniform  d is trib u tio n  

w ith  th e  values betw een zero and  th ree . T hen , th e  tru e  link function, tru e  p robab ility  and b inary  

response variable were defined over th e  dom ain  by th e  following function  and  visually  represented 

in F igure 6 (a),

x  ^U n ifo rm  (0, 3) 

n =  0.7x — sin (2z1) cos(3z2) cos(z1z2)

1
P = 1 +  exp-n

y  ^ B ern(P)

T he sim ulation  was conducted  based on n  =  400 random ly  selected poin ts from  th e  in terio r polygon, 

and  responses in te rm s of n were generated  according to  th e  above equation . E stim a tio n  followed 

th e  local scoring a lgorithm  described in Section 2.2.2. T he p red ic tion  was m ade a t 16,338 points 

on th e  surface and  p red ic ted  probabilities are p lo tted  in F igure 6 (b). I t cap tu red  p re tty  well th e  

higher values of p  on th e  b o tto m  righ t side of th e  region.

(a) (b)

F igure  6. (a) True values of probability p; (b) Predicted probability
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Predicted Phosphorus

88.0 - 87.0 - 86.0 - 85.0

longitude

F igure 7. The figure on the left illustrates the lattice used to fit the lattice-based smoother.
Right figure is the map of the Lake Michigan with estimated phosphorus concentration fitted 
without depth variable

4. A p p l ic a t io n  t o  L a k e  M ic h ig a n  data

We app ly  th e  proposed m ethod  to  es tim ate  th e  co ncen tra tion  of a ce rta in  n u trien t, nam ely 

sodium  hydroxide ex trac tab le  phosphorus, in Lake M ichigan sedim ents. T he sam pling was con

du cted  as p a r t of Lake M ichigan M ass B alance S tudy  carried  o u t by U.S. E nv ironm ental P ro tec tio n  

Agency (EPA  CDX, 2002) th ro u g h  cruising m ultip le  tim es s ta rtin g  from  Ju ly  1994 and  ending in 

M ay 1996 (M iller e t al., 2016). T he d a ta  were ob ta in ed  from  E P A ’s d a tab ase  and  include sedim ent 

phosphorus m easurem ents a t 117 sta tio n s in Lake M ichigan along w ith  th e  w ater d ep th  w here th e  

sam ples were collected. T here  were m ultip le m easurem ents a t some locations, therefore we found 

th e  m ean a t those  sta tions. T he phosphorus co ncen tra tion  ranges from  0.006 to  0.28 m g /g  after 

tak in g  th e  m ean.

F irs t we em ployed th e  la ttice-based  sm oother of M cIntyre and  B arry  (2017) to  m odel th e  

phosphorus co ncen tra tion  as a function  of its  location. T he la ttice  w ith  node space of 0.8 un its 

was co n stru c ted  (F igure 7) to  es tim ate  th e  function  and  p red ic tion  was m ade on a grid of 39,910 

poin ts on th e  surface. I t  can  be observed, for exam ple, th a t  th e  estim ates are no t sm oothed  ou t 

across boundaries on th e  west and  n o rth -east sides of th e  polygon, w here th e re  is a bay c rea tin g  a 

com plex b o u n d ary  (F igure 7).



T he phosphorus concen tra tion  appears to  increase w ith  d ep th , suggesting th a t  th e re  is a 

p o ten tia l for d ep th  to  im prove sp a tia l estim ates of phosphorus (F igure 8 (a)). We m odelled it as a 

linear function  of d ep th  and  sm ooth  function  of location  w ith in  a generalized additive m odel con

te x t as shown in previous sections. For fu rth e r p red ic tion  of th e  m easurem ent a t o th er locations, 

we ob ta ined  th e  d a ta  on th e  b a th y m etry  of lake M ichigan from  N atio n al O ceanic and  A tm ospheric 

A d m in is tra tio n  d a tab ase  (NOAA) and  random ly  sam pled 25,000 observations, of w hich 24,521 ob

servations were defined inside of th e  region. V isual rep resen ta tion  can  be found in F igure 9 (a) and 

th e  resu lting  es tim ated  values of sedim ent phosphorus concen tra tions are  m apped  in F igure 9 (b) 

w ith  th e  h igher values as th e  lake gets deeper tow ards th e  inner side.

In  order to  estim ate  th e  perform ance of th e  LBS m ethod , we divided th e  d a ta  in to  tra in in g  set 

and  te s t set w ith  th e  fractions 0.75 and  0.25 respectively. T hen  we fitted  th e  LBS and  SO A P m odels 

using th e  tra in in g  set and  p red ic ted  th e  values of phosphorus a t locations and  dep th s contained  in 

th e  te s t set. T he difference betw een th e  es tim ated  and  ac tua l values of phosphorus concen trations 

from  th e  te s t set were com puted  for b o th  m odels as well as th e  M SEs were calcu lated . B o th  m odels 

present q u ite  good fit giving fairly  sm all and  identical M SE: 0.00159 for LBS and  0.00161 for SOAP. 

However, th e  boxplot for th e  difference shows g rea te r spread  for LBS, b u t possible ou tliers w ith  

SOA P (F igure 10).
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(a) (b)

F igure 8. (a) Phosphorus concentration vs. Depth; (b) Polygon of Lake Michigan. The 
locations of measured phosphorus concentration are given in red dots. Blue dots are the 
locations where the predictions are made after fitting the model.
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Lake Michigan Depths Predicted Phosphorus
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(a) <b)

F igure 9. Map of the Lake Michigan with predicted phosphorus concentration

F igure 10. Boxplots of the differences between the estimated and actual values of phos
phorus concentrations using LBS and SOAP

5. C o n c l u sio n

In  th is  p ap er we ex tended  th e  la ttice-based  sm oother in a way to  include add itiona l covariates. We 

illu stra ted  backfitting  and  local scoring algorithm s, which allow estim atio n  of generalized additive 

m odels.

S im ulation  studies revealed th a t  th is  m ethod  is com parable w ith  th e  well-know n soap film 

sm oother, w hich has a lready  been te s ted  in m ultip le  papers to  perform  well w ith  com plex b o u n d 

aries. E ven th o u g h  th e  m edians of M SE scores were a little  b it h igher for LBS, th e  average pointw ise 

bias seemed to  perform  b e tte r . E specially  th is  was d is tin c t near th e  edges and  inner curves of th e



horseshoe dom ain, w here SO A P showed higher bias. T he cases w ith  g rea te r noise level and  corre

la ted  covariates d id n ’t  reveal any issue. T he im p lem entation  of th e  la tte r  required  m ore tim e to  

run. T he average pointw ise bias showed th a t  th e  LBS ou tperfo rm ed  SO AP on th e  en tire  dom ain 

in th e  cases w ith  th e  corre la ted  covariates.

A lthough we illu s tra ted  th e  app lica tion  of th e  local scoring a lgorithm  to  b in ary  response based 

on a sim ulated  d a ta  set, th e  m e th o d ’s im p lem en tation  is still ongoing. F u rtherm ore , one of th e  

fu tu re  stud ies could be m aking th e  inference from  th e  m odel such as defining th e  s ta tis tica l signif

icance of pred ic tors, o b ta in ing  s tan d a rd  errors, etc. M oreover fittin g  th e  m odel for th e  d a ta  w ith  

different d istrib u tio n s  m ight also be a top ic of in terest.
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A p p e n d ix

Lattice Bias Soap Bias
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F igure 11. Average pointwise bias with n=600 and a  =  2.36: (a) LBS with r 2 =  0 ; (b): 
Soap with r 2 =  0; (c) LBS with r 2 =  0.60; (d) Soap with r 2 =  0.60

F ig u re  12. Average pointwise bias with n=100 and a  =  2.36: (a) LBS with r 2 =  0 ; (b): 
Soap with r 2 =  0; (c) LBS with r 2 =  0.60 ; (d) Soap with r 2 =  0.60


