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Abstract

The magnetodiscs of Jupiter and Saturn are characterized by turbulence in the magnetic 

field. Broadband spectra of precipitating electrons at Jupiter suggest that a process is 

underway whereby large scale perturbations undergo a turbulent cascade in the magnetodisc. 

The cascade couples large perturbations to dispersive scales (kinetic and inertial Alfven 

waves). Plasma transport in the rapidly rotating giant magnetospheres is thought to involve 

a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) 

instability. Mass loading from satellites such as Io and Enceladus also cause dispersive wave 

formation in the magnetosphere, which is a source for broadband aurora. This dissertation 

presents a set of hybrid (kinetic ion/fluid electron) plasma simulations of the RT instability 

and the Io flux tube using conditions appropriate for the magnetospheres of Jupiter and 

Saturn. Both the Io torus and the planetary magnetodisc act as resonant cavities for counter 

propagating waves, which creates turbulence. The transmission ratio of wave power from 

the Io torus is 53%, an improvement from previous models (20% transmission), which is 

important to the generation of the Io auroral footprint. The onset of the RT instability begins 

at the ion kinetic scale and cascades to larger wavelengths. Strong guide field reconnection is 

a mechanism for radial transport of plasma in the magnetodisc. Counter propagating waves 

within the RT instability is the origin of turbulence within the magnetodisc.
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Introduction

1.1 Comparative Magnetospheres

All bodies in the solar system are subject to interaction with the solar wind. For plan­

etary bodies that posses an intrinsic dipolar magnetic field, interaction with the solar wind 

results in the formation of a cavity surrounding the body, known as the magnetosphere. 

The planetary magnetic field acts as an obstacle to the flow for the solar wind, which is 

diverted around the magnetosphere. Figure 1.1 illustrates some of the main features of the 

terrestrial magnetosphere. Processes in the planetary interior generate a magnetic field that 

resembles a dipole. Plasma and the interplanetary magnetic field (IMF) in the solar wind is 

deflected by the planetary magnetic field. The boundary separating the solar wind from the 

magnetosphere is called the magnetopause. Solar wind flows are super-Alfvenic and super 

sonic, which combined comprise the fast Alfven mode. This means that the convection ve­

locity of the solar wind relative to the magnetosphere is larger than the Alfven speed (this is 

analogous to the sound speed, the maximum group velocity of waves in a plasma medium). 

The encounter of the solar wind plasma with a blunt obstacle, the magnetosphere, results in 

the formation of the bow shock, where the solar wind plasma is slowed to sub-sonic velocity 

and diverted around magnetosphere. Momentum transfer from solar wind to the magne­

tosphere stretches the midnight sector of the magnetosphere into a tail. The dynamics of 

the terrestrial magnetosphere is modeled using the Dungey cycle [Dungey, 1961]. Magnetic 

reconnection at the dayside magnetopause is the dominant process that couples the solar 

wind momentum to the magnetosphere and ionosphere. Thus the polar regions are open to 

the solar wind. The cycle also drives convection in the ionosphere, and is modeled ideally 

as a large scale two cell process. Finally, the cycle is closed with magnetic reconnection in 

the night side tail region. Shear flow-driven instabilities at the magnetopause are impor­

tant drivers of mass transport in the magnetosphere [Lee et al, 1981; Huba, 1996; Otto and 

Fairfield, 2000; Nykyri and Otto, 2001, 2004], allowing solar wind plasma into the terrestrial

1



Figure 1.1: Diagram of the terrestrial magnetosphere. The magnetosphere is a cavity formed 
as a result of the solar wind interaction with the terrestrial magnetic field. The boundary 
between the magnetic fields of the solar wind and the earth is the magnetopause. Incoming 
solar wind is subject to a shock, known as the bow shock, as the super-Alfvenic flow transi­
tions to a sub-Alfvenic flow and is diverted around the magnetosphere. Momentum transfer 
from the solar wind to the magnetosphere elongates the midnight sector into a structure 
called the magnetotail. Magnetospheric dynamics are driven primarily by the solar wind, as 
it is the main source of plasma for the magnetosphere [Bagenal and Bartlett, 2015].

magnetosphere.

Most magnetospheres, particularly those of Earth and the inner planets, are primarily 

driven by interactions with the solar wind. The outer planets, namely Jupiter and Saturn, are 

primarily driven by mechanics in the inner magnetosphere. This is due to their internal source 

of plasma from active satellites. The giant planet magnetospheres are mostly dominated by 

rapid planetary rotation. Plasma that originates from the deep interior of the magnetosphere, 

Io and Enceladus, is centrifugally confined. However, the centrifugal force from the rapid 

rotation pushes the plasma into a thin structure called the magnetodisc. The magnetic 

field that is frozen-in to the plasma is pushed outward, greatly inflating the size of the

2



Figure 1.2: Diagram of the Jovian magnetosphere. It has similar features to the terrestrial 
magnetosphere, such as a magnetopause and magnetotail. A major difference is Jupiter’s 
internal source of plasma as a result of its active satellites deep in the magnetosphere. 
Jupiter’s rapid rotation acts as a centrifugal force which inflates the magnetosphere. The 
thin dense plasma structure is called the magnetodisc [Bagenal and Bartlett, 2015].

magnetospheres (See Figure 1.2). The giant magnetospheres have a very large range in 

standoff distance due to variations in the solar wind. Tangential stresses from the viscous 

interaction in the solar wind helps drive the transport of plasma from the magnetodisc [Axford 

and Hines, 1961; Delamere and Bagenal, 2010].

If we assume that an Earth-like Dungey cycle is also operating at the giant magneto­

spheres, magnetic reconnection must not only accomplish convection in the ionosphere, but 

also transfer sufficient momentum facilitate sunward convection in the magnetodisc. Brice 

and Ioannidis [1970] use the standard corotation-convection model to illustrate the differ­

ences in magnetospheric flows at both Earth and Jupiter (Figure 1.3). The total potential 

in the sun-planet rest frame is

0 =  P +  vvsw B sw Rp y (1.1)
P

3



where Q is the planet’s angular velocity, B0 is the planet’s surface field strength at the equa­

tor, p and y are the respective radial and dawn-dusk distances in units of planetary radius 

(RP), vsw and Bsw are solar wind parameters, and v is the reconnection potential associated 

with the Dungey cycle. When we compare these potentials for both Earth and Jupiter, we 

find that the boundary of the plasmasphere at Earth lies within the magnetopause, while 

Jupiter’s magnetodisc lies at the magnetopause. Therefore internally generated plasma is a 

significant factor in radial transport at Jupiter, and we need a better model than Dungey 

cycle reconnection at the giant magnetospheres. Vasyliunas [1983] introduces a model for 

radial transport based on reconnection and centrifugal stresses. Rapid rotation compresses 

the magnetodisc and thins it in the magnetotail until reconnection occurs and plasma blobs 

are ejected into the tail. The location of these reconnection events comprise the X  line. If 

dayside reconnection does occur at Jupiter as well, then the closing reconnection occurs on 

the dawn/tail flank and corotational flow returns magnetic flux back to the dayside [Cowley 

et al., 2005] (See Figure 1.4). The influence of magnetic reconnection on plasma transport 

is still being debated. M ozer and Hull [2010] argued that energy transfer from reconnection 

is too small to have influence on magnetospheric transport, while Delamere and Bagenal 

[2010] argued that viscous shear flows at the magnetopause are important mechanisms for 

for momentum and energy transport, necessitating reconnection at some scale [Burkholder 

et al., 2017].

1.2 Jupiter’s Aurorae

Juno observations of Jupiter reveal that the brightest aurora at 400 kV is broadband, 

indicating a large range in precipitating electron energies that map back to the middle 

magnetosphere [Mauk et al., 2017]. UV spectra of the aurora indicates complicated structure 

present near the poles (See Figure 1.5). The large range in frequencies are indicative of a 

turbulent cascade in electron energies whose acceleration processes originate in the middle 

magnetosphere. The more diffuse aurora poleward of the broadband arcs maps to the outer

4
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Figure 1.3: Corotation-convection models for Earth and Jupiter. It assumes sunward con­
vection in the tail [Brice and Ioannidis, 1970]. The plasmapause boundary lies inside of the 
magnetopause boundary for Earth and at the magnetopause boundary for Jupiter.
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e q u a t o r i a l  p l a n e  m e r i d i a n  s u r f a c e

M A G N E T I C  X - L I N E

Figure 1.4: Schematic of the Vasyliunas cycle [Vasyliunas, 1983], showing the local time 
variation of the detachment of plasmoids. Reconnection happens at the magnetic X  line.

Figure 1.5: Ultraviolet auroras images of Jupiter from the Juno UVS instrument. The 
images contain intensities from three spectral ranges, false-colored red, green, and blue, 
providing qualitative information on precipitating electron energies (high, medium and low, 
respectively). Spacecraft trajectory relative to the magnetic field is shown in red [Mauk et al., 
2017]. Here we see structure in the auroral features at each of the poles. The bright emission 
in Figure b near 210° is a result of satellite interactions in the inner magnetosphere. The 
ring arcs map to the middle magnetodisc. The source of the more diffuse emission towards 
the center is debatable, as it is unknown if it is a result of solar wind interaction with 
magnetosphere, or of internal processes.
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magnetosphere, and it is unknown whether solar wind interactions or other internal processes 

are responsible for the structures observed. Finally, the auroral spot and tail observed near 

210° on the right figure is the Io auroral footprint. Observations of the footprint show 

broadband emission in the light spectrum, indicating that turbulence is also a factor in 

propagation of waves from Io to the ionosphere [Hess et al., 2010].

Non-adiabatic heating of the plasma is also observed in-situ in the electron energy spec­

trogram [Saur et al., 2004]. Inverted-V spectra indicates coupling to the ionosphere, similar 

to auroral features found at Earth. At Jupiter however, the electron spectra is more broad­

band than discrete, indicating that auroral processes at Jupiter are substantially different 

from those at Earth Mauk et al. [2017]. Figure 1.6 shows the electron energy spectrum 

from the JEDI instrument on Juno during its first perijove encounter. The majority of the 

electrons have low pitch angles, meaning that electron currents are field-aligned.

1.3 Mass Transport in the Giant Magnetospheres

Transport of the magnetodisc plasma cannot be considered independent of the planetary 

magnetic field. About 500 kg s-1 (Jupiter) and 50 kg kg s-1 (Saturn) of mass are lost to the 

solar wind [Delamere and Bagenal, 2013], but all magnetic flux, that was transported as a 

result of this, must be returned to the inner magnetosphere over the long term. Figure 1.7 

shows the magnetic and mass flux as a function of radial distance at Saturn. The magnetic 

field data from Cassini suggests that there is net mass loss in the middle magnetodisc, 

but there is no net change in magnetic flux levels. Several observations have been made 

regarding flux transport to the magnetotail with magnetic reconnection used as evidence to 

support the Vasyliunas cycle [Russell et al., 1999; Vogt et al., 2010; Hill et al., 2008; Jackman 

et al., 2011]. However, the inferred rate of plasma loss from Jupiter’s tail is insufficient to 

account for all the mass that that must be lost from the magnetosphere, and that small 

scale processes leading to “drizzle” may be the primary loss mechanism [Bagenal, 2007]. 

Kivelson and Southwood [2005] proposed an alternative to the Vasyliunas cycle by showing

7



Figure 1.6: Energetic electron data at Jupiter from JEDI during Juno’s first perijove en­
counter. a) Downward intensity I  versus electron energy E  spectra. b ) Integrated downward 
electron energy flux. c ) Intensity versus energy distributions for electrons within 20° of the 
downward magnetic field direction. d ) Pitch angle distributions of intensities averaged over 
electron energy [Mauk et al., 2017]. The downward energy flux from discreet acceleration is 
less at Jupiter than that caused by broadband or stochastic processes.
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Figure 1.7: Mass transport and magnetic flux circulation rate at Saturn as a function of 
radial distance. The net flux transport is near zero, while there is a net loss of plasma mass 
of about 50 kg s-1 [Neupane et al., 2017].

that temperature anisotropy (Tj| >  T± ) would balloon the magnetodisc and cause it to 

become unstable.

At both Jupiter and Saturn, rapid planetary rotation puts the plasma in the magnetodisc 

in a non-inertial reference frame. In the reference frame of the plasma, there is a centrifugal 

force, or effective gravity, directed radially outward which induces transport. Radial trans­

port through flux tube interchange can be accomplished in a few ways. One way is through 

interchange that is closed at high latitude through ion-neutral collisions in the ionosphere. 

As second is a ballooning instability in the outer magnetodisc where the field bulges out 

and stretches to form a thin current sheet. Magnetic reconnection then releases a plasmoid

9



that is ejected down the tail [Kivelson and Southwood, 2005]. The third way is through 

the interchange of partial flux tubes in the magnetodisc. Theses interchanges are closed by 

double reconnection at mid latitude [Ma et al., 2016]. We will only be focusing on the last 

type of instability in this dissertation.

The density gradient in the magnetodisc is similar to the gravitationally driven Rayleigh- 

Taylor (RT) instability. Rapidly rotating cold, dense plasma is pushed radially outward, 

dragging magnetic flux with it. Conversely, hot, tenuous plasma is transported inward to 

conserve magnetic flux, and reduce the potential energy of the system [Delamere et al., 

2003, 2015]. Flux tubes with cold, dense plasma move radially outward, while flux tubes 

containing hot rarefied plasma are transported inward to conserve magnetic flux. This 

results in “fingers” of dense plasma that are transported outward. Figure 1.8 illustrates the 

formation of the RT surface waves in the equatorial plane. Appendix A  describes the RT 

instability in greater detail.

Cassini magnetometer data of the magnetodisc at L =  15 provides evidence of strong 

magnetic field disturbance in the dusk flank (See Figure 1.9). It is also accompanied by 

strong non-adiabatic heating. The disturbed region shows regular interval swings for all 

three components of the field. The spatial scale of the surface waves can be determined from 

the velocity (~100 km s-1 ) of the plasma convecting past Cassini [Thomsen et al., 2010] 

(See Figure 1.8). Voyager 2 also observed very strong perturbations in the magnetic field at 

Jupiter every time it crossed the equatorial region (See Figure 1.10). A turbulent spectrum 

of waves are present in the magnetodiscs of both Jupiter and Saturn, and are related to the 

generation of broadband aurorae.

1.4 Turbulence in the Magnetodisc

As the plasma is radially transported, it is non-adiabatically heated, requiring an input 

energy of 3-16 TW  at Jupiter and 75-630 GW  at Saturn [Bagenal and Delamere, 2011]. At 

Saturn, Kaminker et al. [2017]; von Papen et al. [2014]; von Papen and Saur [2016] discuss a

10



Figure 1.8: Magnetodisc in the equatorial plane. The density gradient of the magnetodisc 
along the radial direction sets up an unstable condition in the magnetodisc that results 
in surface waves that develop into RT instabilities. The effective gravity is supplied by 
centrifugal force from the magnetosphere's rapid rotation.

Figure 1.9: Cassini magnetometer data shows quiet and disturbed (e.g., many current sheet 
crossings) intervals over time (shown in Days of the terrestrial year 2007). There are wild 
swings in the magnetic field that could correspond to a characteristic length of the instabili­
ties. At L =  15, Xi ~  5000km, and the plasma flow is 100 km s-1 , so separation of the peaks 
is ~  12Xi.

11



Figure 1.10: Magnetic field perturbations observed by Voyager 2. The bottom panel shows 
the instantaneous distance of Voyager 2 from the magnetic equator. The solid triangles de­
note the locations of the observed magnetic equator crossings. The large perturbations in the 
magnetic field at these locations indicate strong wave activity in the magnetodisc [Khurana 
and Kivelson, 1989].

12



x [Rs]

Figure 1.11: Turbulent heating of plasma around Saturn. This polar map of heating rate 
density indicates a local time asymmetry of turbulent processes, with an active region on 
the dayside to dusk sector and a quiet region in the post midnight sector. The color map is 
in units of W  m -3 . Figure from Kaminker et al. [2017].

model for the turbulent heating of plasma that is axially asymmetric. Cassini magnetometer 

data suggest that turbulent heating occurs near the dusk sector of the magnetodisc, while 

the post midnight sector is relatively quiet (See Figure 1.11). More than just internally 

driven transport is taking place, and is likely influenced by solar wind interactions at the 

magnetopause.

Moreover, Figure 1.12 shows the Kolmogorov turbulent cascade of power density in the 

magnetic field in the inertial range (shown in blue). A slight bump in power density occurs 

near the ion gyrofrequency, suggesting that there is a power buildup at ion kinetic scales

13



before the power is dissipated at the kinetic range (shown in red). Furthermore, heating rate 

density changes depending on whether the heating rate is modeled using magnetohydrody- 

namic (MHD) waves in the inertial subrange of the turbulent cascade, or using dispersive, 

kinetic Alfven waves (KAW) in the dissipation range. KAWs provide a larger heating rate 

as a result of turbulence. A possible explanation for this observation is that energy is pref­

erentially injected at ion kinetic scales, resulting in both inverse and forward cascades.

In the inertial range we can characterize the turbulence as a set of vortical flows or eddies 

of different sizes and scales embedded within each other. Each eddy with a given size (d) 

share a characteristic velocity u(d). For the derivation of the Kolmogorov turbulent cascade, 

we make the assumption that there is a steady rate of energy transfer from larger scales scales 

to smaller scales, that a set of eddies with the same characteristic length d have the same

total energy level, and that the rate of energy supply at dmax is the same as the dissipation

of the energy at the inertial scale.

The first parameter is e, energy per unit mass per unit time. The units of e are then

M L 2T -2 2 3 , ,
e ^  — M T  =  L2T (L2)

where L is a unit length, M  is unit mass, and T  is unit time. From the above assumptions,

we can model u , the velocities of the turbulent eddies as only dependent on d and e .

u (d) =  C (ed) 1/3
'L 2 L \11/3 L . .

^  ' T3 ]  ( t )  =  T  (1.3)

C  is a unitless constant, and the 1/3 power comes from dimensional analysis. From this we 

see that higher velocities are associated with larger vortical flows and contain most of the 

kinetic energy of the system. Smaller eddies have smaller speeds, and have less energy, so 

they must continue to dissipate energy down to the dissipation range.

The energy spectrum for turbulent cascade is the distribution of kinetic energy per unit 

mass across the many length scales, described by a wavenumber k, where k =  n/d. The unit

14



Figure 1.12: Calculation of heating rate density from the power spectrum using MHD and 
turbulence models. A strong MHD turbulence model is used to calculate the heating rate 
density in the inertial subrange of the power spectrum [3 x 10-3 Hz, I 5D*]. A strong kinetic 
Alfven wave turbulence model is used to calculate the heating rate density in the kinetic 
dissipation subrange of the power spectrum [1.5 D*, 1 x 10-1 Hz]. Figure from Kaminker 
et al. [2017].
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for k is then 1/L. Kinetic energy per unit mass has dimensions

M L 2 _  L2
T 2M  =  T 2 ( . )

and has some distribution dependent on k :

dE =  E k (k)dk (1.5)

Ek(k) must then have units of L 3/ T 2. From out above assumptions, we can model E k as a

function of some powers of t and k, multiplied by a dimensionless constant Ck:

Ek (k) =  Ck tak* (1.6)

Using dimensional analysis, we can solve for a  and f3.

L3 ( L 2\ “ /  1 \*
T 2 \t 3 j  \ l  1 (1.7)

3 =  2a -
(1.8)

2 =  3a 

a  =  2/3
(1.9)

=  -  5/3

From the system of equations, we discover a unique solution, and power law relationship for 

energy present as a function of k. In a plot of log E k vs. k, the power -5 /3  is manifest as 

a slope (See Figure 1.13). The slope is valid in a set of ranges, from the length scale where 

energy is supplies to the system, down to the length scale where viscous processes dissipate 

the energy. In a tenuous plasma, this occurs at the ion inertial length, A*. Energy from the 

waves is transferred to the ions and results in heating. As such, there is a change in the

16



Figure 1.13: Kolmogorov turbulent cascade. Energy transfers from large scale vortices to 
smaller ones with a slope of -5/3, until the ion inertial scale is reached (marked as the 
dissipation range). From there, the energy is transferred to the ions in the form of heating. 
From Wyatt [2017].

slope of E k at that wavelength. Any failure of the ions to dissipate the energy would lead 

to a buildup at the sub-A* scale, flattening out the curve. For turbulent processes in the 

magnetodisc and the Io flux tube, we expect to see the -5 /3  power law relationship in the 

wave spectrum in the inertial subdomain.

1.5 Waves in the Io Plasma Torus

Figure 1.5 shows an intense spot of auroral activity from the inner magnetosphere that 

maps to Jupiter's volcanically active moon Io, the main source of internal plasma. Auroral 

activity here is also relatively broadband, indicating that the formation of the Io footprint 

and following wake is due to Alfvenic disturbances [Hess et al., 2010; Mauk et al., 2017]. The 

transmission of Alfven waves between Jupiter and Io is an excellent case study because the 

power generated by the interaction can be reasonably estimated. The power of the observed 

aurora can also be measured. We can then make an estimate of the wave power that has 

dissipated and focus on the mechanics of how this is done.

Mass loading at Io perturbs the surrounding magnetic field from corotational velocity (57
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km s-1 ). The motion of Io through the torus and surrounding plasma generates power, which 

is then transmitted along Jupiter’s field lines until it reaches the ionosphere. The estimated 

power input from this interaction is about 1 x 1012 W, with 5 x 1011 W  transmitted to 

each hemisphere. However, only a few 1010 W  of power is actually observed in intensity 

from Io’s auroral footprint in the visual IR, and radio wavelengths [Connerney et al., 2001; 

Queinnec and Zarka, 1998; Hess et al., 2010]. Wright [1987]; Delamere et al. [2003] estimate 

that ~  20% of the 5 x 1011 W  of wave power escapes the torus. The conversion efficiency 

between precipitating electrons and light in the aurora is only 10% [GeRard et al., 2006]. 

This means that the rest of the wave energy must be transferred to the precipitating electrons 

to account for the power observed in the aurora, leaving no room for inefficiency in electron- 

wave coupling.

Figure 1.14 illustrates the Alfven current system in the flux tube. For the picked up 

plasma mass to be brought to full corotation, the current loop must close through the iono­

sphere to transfer momentum. At some point, however, there is “slippage” in the magnetic 

field before the Alfven wave reaches high latitude, preventing full corotation and generating 

a large enough parallel electric field to accelerate electrons. Electrons that escape through 

the loss cone of Jupiter’s magnetic mirror point precipitate and generate aurora (the leading 

auroral spot and secondary spots in the wake). The bent lines on the right figure result 

from the propagation delay of the Alfven waves while in the plasma torus. At the border 

of the torus, the wave is partially transmitted and partially reflected. Once the wave exits 

the torus its velocity increases to near lightspeed. The electron beams from the transmitted 

waves can again escape into the ionosphere to generate aurorae. Multiple reflections in the 

torus result in the secondary auroral spots [Bonfond et al., 2008].

Evidence of superthermal electrons comes from Galileo’s plasma instrument [Frank and 

Paterson , 2000] as a result of ion pickup in the torus [Bagenal and Delamere, 2011] (See 

Figure 1.15). A continuous source of superthermal electrons is required because of losses from 

superthermal electron precipitation, or cooling due to interaction with thermal electrons in
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Figure 1.14: Diagram of the propagation of Alfven waves from Io along Jupiter’s magnetic 
field lines [Bonfond et al., 2008].

the torus. Injection of hot electrons is also present at various radial distances within the 

torus, and they tend to have the same energy spectrum as those generated at Io. Figure 1.15 

shows the injection of hot electrons withing the torus. An Io encounter occurs at ~  1745 

UT, with the same energy spectra of electrons in the torus.

In the torus itself, convecting plasma interacts with the neutral particles in Io’s atmo­

sphere and loads neutral material into the magnetosphere at a rate of 1 ton s-1 , mostly 

sulfur and oxygen [Thomas et al., 2004]. Charge exchange of a torus ion with a neutral 

molecule causes the new pickup ion to become influenced by the background magnetic field 

and start gyrating. Momentum is transferred from the magnetic field to the new ions as 

they are picked up into the flow. This bends the field and induces a perturbation in the 

magnetosphere that propagates as an Alfven wave until it reaches the ionosphere [Neubauer, 

1980; Saur et al., 2004]. Bending of the field line creates a field-aligned current. The closing 

of the current across Io is opposite the motional electric field, so the J ■ E <  0 becomes a 

source for waves (See Figure 1.16). The wave accelerates electrons along the dipole field lines
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Figure 1.15: Energy-time spectrograms for the responses of two of the electron sensors of 
the plasma instrumentation an board the Galileo spacecraft during December 7, 1995 near 
the Io flux tube. The frequent spikes in electron energy are evidence of the superthermal 
electron injections in the torus [Frank and Paterson , 2000].
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and generates aurora [Hess et al., 2007]. In the plasma torus, high densities (modeled by 

Su et al. [2006], see Figure 1.17) and weaker magnetic fields decrease the propagation speed 

of the waves. Chust et al. [2005] showed that Io’s Alfven wing is filamented, suggesting that 

there are waves forming at ion kinetic scales, possibly with broadband characteristics.

At these scales, Alfven waves are dispersive and result in the formation of parallel electric 

fields, which can accelerate electrons. Within the torus, the kinetic Alfven wave is relevant 

when k± is near the ion thermal gyroradius (p*). At higher latitude, filamentation of the wave 

reduces down to the scale of the electron skin depth, and electron inertia becomes important 

in the propagation of the wave (inertial Alfven wave). The KAW is also dependent on 

electron temperature, and has the following dispersion relation:

u 2 =  k2 v2A 1 + k i p ? (  3 + 1 ) (1.10)

The inertial Alfven wave has the following dispersion relation, which only significantly mod­

ifies the non-dispersive Alfven wave when k±Ae ~  1:

.2  =  k  ,jA ( 111)
1 +  k i A2 • ( 1 )

Derivations for these dispersive waves are in Appendix B. Figure 1.17 also shows ki  as 

a function of distance along the Io flux tube, starting from the ionosphere. Large ki  at 

high latitude indicates that electron inertia is significant. Near the torus, the ion thermal 

gyroradius contributes to the KAW.

Wave formation begins with mass loading of plasma as Io passes through the torus. A 

ring beam distribution of pickup ions and perturbation of the local magnetosphere by the 

satellite launch numerous kinds of plasma waves (e.g. shear Alfven, ion cyclotron, whistler, 

and magnetosonic waves). They propagate to the edge of the torus where ~20-25% of the

wave power is transmitted to high latitudes (where they generate aurorae if the electrons are

accelerated into the loss cone of Jupiter’s magnetic mirror) [Wright, 1987; Delamere et al.,
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Figure 1.16: Interaction of the Jovian magnetosphere with Io. The corotating plasma of 
the torus interacts with Io’s atmosphere, resulting in charge exchange through collisions 
of ions with neutral particles. The newly created ions are picked up into the plasma flow 
and brought to corotation due to momentum transfer from the magnetosphere [Bagenal and 
Bartlett, 2015].

2003]. The waves are also partially reflected back into the torus. The wave can be reflected 

and transmitted each time it encounters either the northern or southern boundary of the 

torus, generating secondary auroral spots [Bonfond et al., 2008]. Reflection is dependent 

on the size of the incoming wave and the changing index of refraction within the torus. 

Large Ay waves tend to be reflected (i.e., with respect to the torus gradient scale length), 

while the small filamentary waves tend to be transmitted [Hess et al., 2010]. The KAW scale 

dominates the interactions inside the torus, overcoming any of the inertial electron effects [Su 

et al., 2003]. Outside the torus, ky has increased enough to allow IAWs to have a greater 

significance in the overall wave structure.

Analysis of the Io torus during encounters with the Galileo spacecraft has already con­

firmed the existence of ion cyclotron waves as a result of pickup of O +, S+, and SO+ ions [Hud­

dleston et al., 1997; Crary and Bagenal, 2000]. Figure 1.18 shows example spectra of the 

ion cyclotron waves observed by Galileo. Peak frequencies occur near the expected values of
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Figure 1.17: Background parameters for the gyrofluid model [Su et al., 2006]. Top: Electron 
(solid line), H + (dashed line), and O +  (long-dashed line) densities. Middle: Electron skin 
depth (solid line) and ion acoustic gyroradius (dashed line). Bottom: Perpendicular wave 
number.
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pickup ion species [Blanco-Cano et al., 2001]. Ion cyclotron waves are generated in response 

to the destabilizing of the ring beam velocity distribution of the pickup ions, which makes 

the waves a result of ion kinetic motion.

1.6 Small Scale Wave Investigation

The common theme throughout this thesis is the generation and propagation of disper­

sive waves in the giant magnetospheres. The source of the waves may be from the Io-Jupiter 

interaction, or from transport-related disturbances (e.g., Rayleigh-Taylor instability). Re­

gardless of the source, these waves are introduced into a resonant cavity where wave reflection 

leads to the interaction between counter propagating waves - a key aspect for the genera­

tion of turbulence. The Io plasma torus and the middle magnetodisc are characterized by 

density gradients, as the majority of the plasma is centrifugally confined. The change in 

density acts as the resonant cavity for plasma waves. Figure 1.14 shows partial reflection 

and transmission within the torus as a result of the resonant cavity. Similarly, the formation 

of RT instabilities in the magnetodisc, which is determined by the growth rate (derived in 

Section 5.4):

Y2 =  9k.Y ̂  ( 1.12)
P2 +  Pi Po(Pl +  P2)

is limited by parallel wave lengths in the magnetodisc. The parallel wavelengths are also 

confined to a resonant cavity in the magnetodisc (See Figure 1.19). Parallel propagating 

modes also tend to correlate phase differences in the surface waves that form at different 

heights in the magnetodisc, and the interaction of those counter propagating modes can 

form a turbulent cascade. The interaction of counter propagating waves in the Io torus is 

similar to those also found in a RT instability in the magnetodisc. The RT instability in the 

magnetodisc also has a higher growth rate for large values of k±, or very small wavelengths, 

where formation of the wave begins on ion kinetic scales. From the previous observation of 

waves and turbulence in the magnetodisc, as well as the broadband electron precipitation 

observed in the aurora, we can conclude that ion kinetic scale dispersive waves are important
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Figure 1.18: Spectra of the waves observed by Galileo during the four crossings of the Io 
torus. The thick line is the compressional power computed from the total magnetic field, 
and the thin line is the transverse power calculated from the trace of the spectral matrix 
minus the compressional power. Fourier estimates of the power were added together in bands 
of five frequencies. The arrows show the SO+, SO+ and S+ gyrofrequencies [Blanco-Cano 
et al., 2001].
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to energy and mass transport in the giant magnetospheres, and that turbulence is a possibility 

to account for some of the non-adiabatic heating in the magnetodisc. The investigation 

will focus on modeling the RT instability in two dimensions to study the effects of wave 

coalescence (or inverse turbulent cascade) on growth rates. Then we extend the model to 

three dimensions to capture the effect of ky on wave growth and turbulence. We divide our 

investigation into three sections: simulation of waves propagated in the Io plasma torus, 2D 

RT simulation of the magnetodisc, and 3D RT simulation of the magnetodisc. Our guiding 

questions for the each chapter include:

Io plasma torus:

• How much power from Io-induced waves is transmitted out of the torus, and what are 

their dispersive characteristics?

• Is there evidence of turbulence in the interaction of counter propagating waves in the 

torus?

2D RT instability:

• Does the RT instability exhibit coalescence of surface waves (i.e., does the dominant 

mode cascade to larger wavelengths)?

3D RT instability:

• Is turbulence present in the perpendicular modes of the RT instability?

• Is there evidence of a parallel electric field in the RT instability that is indicative of 

plasma decoupling from the magnetic field?

• Can we estimate k± from the RT growth rate and the size of the resonant cavity and 

compare with observations?

We propose to investigate the radial transport of plasma through the RT instability and the 

propagation of waves in the Io torus using a local hybrid code. The code models individual 

ion motion, and is able to resolve the dissipation range of the turbulent cascade.
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Figure 1.19: Resonant cavity inside of the magnetodisc. The density gradient in the magne­
todisc acts as a resonant cavity for parallel propagating waves. Centrifugal force from the 
planetary rapid rotation acts as an effective gravitational force.

1.7 Hybrid Code

Previous modeling of the Io plasma torus and magnetodisc interaction were attempted 

using MHD models. MHD treats both the electrons and the ions in a single fluid limit and 

therefore lacks a mechanism to resolve wave features that result from individual particle mo­

tion at kinetic scales. It also cannot resolve the turbulent cascade beyond the inertial range. 

An alternative is to use a full particle-in-cell (PIC) model that treats all the plasma particles 

kinetically. This kind of simulation is very computationally expensive, and limits all runs to 

very local scales. As a compromise, we use the hybrid model of plasma simulation originally 

developed by Swift [1996] and Delamere [1998]; Delamere et al. [1999], which models the 

ions as individual particles and electrons as a massless fluid. The hybrid simulations are too 

computationally expensive to use as a global model, but are effective for localized regions 

of the magnetodisc. Three dimensional simulations are still limited to even smaller regions. 

The code maintains the assumptions that the plasma is quasi-neutral and non-radiative.
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Ion motion is updated using the Lorentz force law. The electron flow is evaluated using 

Ampere’s law for currents. Finally, Faraday’s law is used to update the magnetic field to the 

first order. The electric field depends on the generalized Ohm’s law, which is as follows:

m e
E =  —u x B  + J x B  V pe +  vJ +------ -

nq nq nq*
d J
—  -  V  ■ (Ju +  u J) (1.13)

The first term is term in the expression is the motional field, and the second term is the 

Hall term, which scales with the ion inertial length (A* =  c/upi). The the third term is the 

gradient of electron pressure, which is only modeled in the hybrid code when an electron 

temperature introduced. The fourth term is a resistive term based on ion-electron collision. 

The parameter v can be adjusted to alter the effect of diffusion in the hybrid code. The final 

term is the electron inertial term, and is not represented in hybrid code, as the electrons are 

massless in this model. Additional details for the algorithms used in the hybrid code are in 

Appendix C.

We cannot hope to model every single ion in a particular volume. We just need enough 

to integrate particle statistics. As such, each ion has a weight w associated with it that is 

representative of the number of macro ions in its vicinity, so that grid cell density represents 

an accurate ion density:

nmc (1.14)w ppc
nreal

where nppc is the number of particles (ions) in a grid cell and nreal is the modeled number 

density of ions. Adjusting nppc has a large impact on the runtime of the code, as a greater nppc 

means more particles must be simulated, but particle statistics improve. Additional particles 

per cell in select regions of the domain improve resolution in relevant regions. These extra 

particles will constitute a separate ion population that needs to be initialized.

The grid must resolve ion gyromotion to capture ion kinetic physics. A convenient param­

eter is the plasma-^, which represents the ratio of thermal pressure (l/2m invlh)  to magnetic 

pressure (B 2/2p0). Using the definition of f3, we derive a relationship for the ratio of ion
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thermal gyroradius (p* =  m Br) to ion inertial length:

l /2  m nv2th
B 2/2po 

=  minv2h /po
=  B 2

2 2 2 =  m j vthnpoq

=  292B2” !i (1.15)=  p* q npoto
mito 

=  P^pi 
c2

=  p2 
A2

The thermal velocity of the ions are represented on the grid as gyromotion. The spacing of 

grid elements is on the order of Ai, so that ion inertial effects are resolved (grid spacing is 

defined as a multiplier, a, acting on A*). As long as >  a, the grid spacing is less than p* 

as well. In this case, the ions will cross a minimum of one grid cell boundary over the course 

of one gyration. If <  a, ion kinetic effects are below the resolution of the grid cells, and 

the frequency of ions moving across grid cells is lowered. In such a case, updates to the fields 

are not significantly influenced by individual ion gyromotion, and the simulation is reduced 

to modeling the plasma in the limit of Hall-MHD. The two-fluid nature of the hybrid code 

means that Hall physics are are included regardless of grid resolution. The concern is that 

there is sufficient grid resolution to capture ion kinetic effects. (See Figure 1.20).

Another advantage of the hybrid code is that the ion velocity distribution function is 

accurately described. Krall and Trivelpiece [1973] describe the dispersion function for left 

hand circularly polarized modes (e.g., electromagnetic ion cyclotron waves) as

u 2 =  k2c2 +  2nu ^2  upa

dfaO 1 V i  | V i  dfaO 
dv'i I u u dv2 V3 dv±dv\\

0, (1.16)
k\\v\\ — u —

where a  represents each present plasma species. This relationship is dependent on the
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Figure 1.20: Resolved vs. unresolved ion motion. The left figure shows ion gyromotion on a 
fine grid cell. For each completed rotation, the ion crosses at least one grid cell boundary. 
In the right figure, ion motion is not resolved on the grid. As long as f3 >  a, gyromotion is 
resolved on the grid. For f3 <  a, ion kinetics are not resolved on the grid.

distribution functions of the ion species, and is thus dependent on ion kinetics. The dispersion 

function is difficult to solve analytically for general cases of ion distribution. Fortunately, 

the hybrid code self-consistently evolves the ion distribution function with time. As long as 

an unstable distribution (e.g., anisotropic ring beam) is initialized in the hybrid code, EMIC 

waves will be generated and propagate. It is not necessary for the grid to be at any particular 

resolution to produce this effect, as the grid is a representation of spatial scale, and the EMIC 

waves are dependent on the velocity distribution of the ions. Parallel grid resolution is only 

important insofar as we wish to reduce aliasing of the generated waves. Generating EMIC 

waves is even possible for one dimensional simulations, where ion gyromotion is not modeled 

on the grid. Because the ion velocity distribution evolves with each time step in the hybrid 

code, EMIC waves will form if the ions are initialized in a distribution that is susceptible to 

them.

As a test of the hybrid code in one dimension, we compare the dispersion of an Alfvenic 

perturbation in a low f3 plasma. A broad pulse in perpendicular velocity (~  20 A*) results in a
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non-dispersive Alfven wave that propagates in both directions along the field line. If instead 

a narrow pulse is initialized (~  5 A* in width), the Alfven wave is dispersive. The right-hand 

circularly polarized waves (whistlers), which have a high phase velocity, propagate ahead of 

the main Alfven resonance. From these examples we show that the dispersion of the wave is 

a result of resolving the wave at the ion inertial scale (Hall physics). This is in contrast to 

numerical artifacts, which cause dispersion as an inherent limitation of resolving a convecting 

wave on a discrete grid. As a final example, we include the formation of the EMIC waves 

as a result of initializing a population of ions with a ring beam distribution. There is no 

initial velocity perturbation, so there is no transfer of momentum from the magnetic field to 

the ions, and no Alfven wave. The ring beam distribution is unstable, so EMIC waves are 

generated. This is an example of an ion kinetic effect, which would not be present in a fluid 

simulation that does not include an ion distribution function. Throughout this thesis, we 

will highlight the unique kinetic aspects of the hybrid simulations.
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Figure 1.21: Test waves launched in the hybrid simulation. The top panel shows a Alfven 
wave propagating with almost no dispersion, as the velocity perturbation is much greater 
than A*, and thus in the fluid limit. The middle figure is where the Alfven wave was launched 
as a narrow pulse, with a width on the order of A*. The narrow perturbation causes the wave 
to disperse into left and right handed polarized modes, which meet at the Alfven resonance. 
The bottom  panel illustrates the ion cyclotron waves as a result of initializing a ring beam 
distribution of ions.
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Io Plasma Torus

2.1 Introduction

The motion of Io within Jupiter’s magnetosphere and surrounding plasma torus generates 

1012 W  of power transmitted in the form of an Alfven wave to Jupiter’s ionosphere where 

it generates auroral emissions. Observations of Jupiter’s aurorae in visible, UV, and radio 

wavelengths estimate the power of the aurora to be 1010 - 1011 W  [Hess et al., 2010]. Our goal 

is to determine the transmitted power of the Alfven wave into accelerated electrons at small 

wavelengths in the flux tube. Our hypothesis is that the torus, as a resonant cavity, facilitates 

a turbulent cascade that accelerates local electrons. These waves can support parallel electric 

fields when the perpendicular scale length of the wave is on the order of the electron inertial 

length (Ae =  c/upe, the inertial Alfven wave) or the ion gyroradius (p* =  , the kinetic

Alfven wave (KAW )). These waves with extremely small perpendicular scale lengths carry 

energy into the ambient magnetic field and disperse, accelerating electrons by dissipating 

Poynting flux.

Hess et al. [2010] modeled the large and small scale propagation of these waves. They 

discovered that the large-scale Alfven waves must be broken down and and filamented to 

small scales to permit wave transmission through the torus boundary and couple the wave 

to electron inertial lengths at high latitudes. They break up the power transmission profile 

into three distributions: 1. Large-scale, non-dispersive waves, 2. Filamented waves formed 

by plasma turbulence, and 3. Small-scale waves formed by compressional modes at the 

ion inertial length (A* =  c/up*). Within the torus the KAW dissipates energy by acceler­

ating electrons, while the IAW is the primary mechanism for dissipation at high latitude 

(Figure 1.17).

Magnetohydrodynamic (MHD) global Io simulations has been previously attempted (e.g. Ja­

cobsen et al. [2010]. The Jacobsen et al. [2010] MHD model predicts the presence of electron 

beams in Io’s wake, which are then responsible for generating the aurora. Unfortunately,
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Figure 2.1: MHD model for the propagation of dispersive Alfven waves in the Io plasma torus
[Jacobsen et al., 2010]. Alfven waves that originate from Io propagate along the magnetic 
field line until they reach the torus boundary. The waves are then partially transmitted and 
mostly reflected [Jacobsen et al., 2010].

MHD treats both electrons and ions as a fluid and therefore lacks any mechanism to resolve 

wave features at ion kinetic scales, meaning dispersive Alfven waves would not be present in 

such a simulation. See Figure 2.1.

We begin by describing a model for the mass loading rate. We will be modeling the 

interaction of a flux tube of plasma as it encounters an obstacle to flow. This is similar to 

case where a plasma cloud moves through a magnetic field, subject to the frozen-in condition 

(See Figure 2.3). The cloud is considered to be a box with side length L. Starting with the 

MHD momentum equation,

we then focus only on the Maxwell stress of the magnetic field. The Divergence Theorem
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Figure 2.2: 1D mapping of the time evolution of the magnetic field line interacting with 
Io. The dotted lines are spatial representations of the magnetic field at 80 s intervals. The 
contours show normalized momentum. Much of the momentum is contained within the torus 
because of the reflection of Alfven waves at the torus boundary. From Delamere et al. [2003].
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allows us to calculate the force on the box by integrating the magnetic shear stresses over 

the surface of the box. Only the top and bottom sides of the box are subject to the magnetic 

shear.

pv  =  [  ■ da

=  (Txz da)top +  (Txzda) bottom

  +  BxBz ( + l 2\ +  - B xBz { —l "2\ ( )
PO  ̂ ' PO  ̂ '

=  2BxBz L2
Po

Now we let L2 become the area of the interaction region where ions are picked up (A). 

Assuming that the corotational velocity v is constant, we can solve for the change of mass 

with time to get the mass loading rate:

2BxBzA , ,
m  = ------------- (2.3)

Pov

2.2 Hybrid Code Initialization

Initialization of the hybrid code begins by specifying a grid and parameters for the back­

ground plasma that encompasses a flux tube that convects past Io and undergoes mass 

loading. For the one dimensional case, we have the computational resources to model a 

realistically sized flux tube that utilizes a straight magnetic field line through the domain, 

unlike a typical dipole. This is only because we are interested in wave propagation in the 

torus, where the local ambient magnetic field is directed perpendicular to the torus. Differ­

ent stream lines will experience different mass loading rates, depending on the proximity to 

the atmosphere and thermal electron properties [Dols et al., 2008]. The relevant dimension, 

z, runs the length of the flux tube, with the center of the mass loaded region initialized in 

the center of the domain, designated z0. The x  direction corresponds to azimuthal plasma
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Figure 2.3: Convection of a cloud of plasma. A plasma cloud moves through a magnetic field, 
and drags the field lines with it. An Alfven wave is launched from the resulting perturbation. 
The size of the perturbation depends on the ratio of the convection velocity to the Alfven 
velocity.

flow, while y is the radial direction. The z boundary is periodic. The grid is initialized such 

that the space between grid points is dz(z) =  A*(z) so that we have resolution of the ion 

inertial length throughout the domain. Since density varies significantly at the boundaries 

of the plasma torus, the grid spacing is not uniform, but dependent on density. There is 

better resolution inside the Io torus than outside it, to resolve the initial formation of plasma 

waves. Outside the torus, density does not vary, and the grid spacing becomes uniform. The 

initial resolution of the grid in the inner torus because the lower density outside the torus 

increases the wavelengths of the Alfven waves. The magnetic field is initialized to 1700 nT 

along z .

Maximum density inside the torus is 2 x 103 cm-3 . We set the the minimum density out­

side the torus at n0 =  4 cm-3 , making the maximum density five hundred times greater than 

minimum density (H0 =  500). The density gradient is modeled as a Gaussian distribution,
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giving us the following expression for density:

n(z) =  no 1 +  (Ho -  1) exp
(z -  zo)2 

LO (2.4)

where L0 is ~  R j  (This is 2400 Ai for dz0 =  Ai =  24.4 km at z =  z0). We initialize the 

density using a base number of 320 particles per cell (ppc). After a few trial runs, it becomes 

apparent that there are not enough particles at the peak of the torus to maintain good 

particle statistics. The original constant number of particles per cell makes waves generated 

from mass loading too noisy, which disrupts the propagation of the waves through the torus. 

To counter this, we initialize additional particles per cell near z0. Again we use a Gaussian 

distribution for the number of extra particles placed per cell, pextra.

Pextra(z) =  30 exp
(z -  zo)21 

LO (2.5)

Finally, we apply the weighting function to each ion based on its location. The weighting 

function needs to account for the added ions, and adjust the weight of the original ions such 

that the density profile is generated as described in Equation 2.4. The function is just a 

ratio of simulated ions to modeled number of ions, so we get

/ \ Ppc +  Pextra
W(z) =  n(z)LxLy dz(z) ( )

where Lx and Ly are the lengths of each respective domain (these are set to dz0 for the 1D 

case). We then obtain the density profile shown in Figure 2.4. The domain stretches to 50 

R J, far larger than the actual torus. The goal here is not to model the entire flux tube, but 

instead provide space for propagation of fast waves outside of the torus, while slower waves 

are still being generated. Extending the domain prevents interaction of counter propagating 

waves before all the waves have exited the torus.

The maximum value of the f3 based on density, magnetic field strength, and ion tempera-
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Figure 2.4: 1D density profile of the Io plasma torus. The boundary of the simulation extends 
far beyond any realistic model for the edge of the ionosphere. The profile is described using 
a Gaussian distribution.

ture within the simulated torus is 0.011, which decreases even further outside the torus. Such 

a low f3 is not relevant in a 1D model, as perpendicular ion motion is not modeled anyway. 

The value of ion kinetics in the hybrid model comes from the velocity distribution function. 

Recall that the dispersion relation for left-hand circularly polarized waves (Equation 1.16) 

is dependent on the velocity distribution function, which has a pole in the denominator 

(fc||V|| — u — Qi approaches zero for resonance). All of those quantities are represented in the 

hybrid code, so it will generate ion cyclotron waves as long as there is an anisotropic velocity 

distribution, even if perpendicular spatial ion motion is not part of a 1D grid.

Stability of the density gradient must be maintained for the duration of the simulation. 

For this, we implement an effective gravitational force (essentially the centrifugal force) that 

that confines the plasma so that it remains consistent with its initialized density gradient. 

Starting with an expression for pressure balance,

d
—  (nT ) =  gnmi (2.7)
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where T  is the temperature profile, and mi is the mass of the background ions. We wish to 

implement a uniform temperature profile, where the initial thermal velocity of the ions is 40 

km s-1 . The background ions are set to the average ion mass of the torus, 23 amu. With 

those constants, we solve for g .
rp dn(z)

g(z) =  (2.8)
min (z )

Finally, substituting expressions for n (z ) and ^ , we have a final equation for gravity:

g (z )
- 2 T  (Ho -  1) (z -  zo) exp (z-zo)2

L O m n  (1 +  (H o  -  1) exp (z-zo)
L0

(2.9)

Next, the flux tube must be loaded with pickup ions as it convects past Io’s atmosphere. 

The mass loading occurs near the center of the domain. We find an approximate maximum 

value for mass loading based on Maxwell stresses from the loading region, starting with 

Equation 2.3. The maximum value of Bx can be found using the Walen relation

Bx Bz
(2.10)

where v is the convection velocity and va is the Alfven velocity. Solving for Bx, and substi­

tuting va =  , we obtain the maximum mass loading rate for a saturated Alfven wing:

m
ImiHono

VO
Bzdydz (2.11)

Using our known parameters, m  =  0.0079 kg s-1 within the flux tube. We also modulate 

the change in mass loading rate over time so that the convection time is roughly one minute, 

and significant mass loading is limited to about 21 s. This is also done with a Gaussian 

function. Mass loading rate is now time dependent with

m(t)
ImiHono

V o

Bz dydzexp (t -  to)2
T

(2.12)

v va
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where t0 =  4000 dt,dt =  0.08 Q- 1, and t  =  2000 dt ( 21 s. The mass loading occurs at the 

flank of Io where the flows are high and the flux tube is closest to the atmosphere. Based on 

the flow speed and Io’s radius, a Gaussian with t  ~  21 s is reasonable). Two ion species are 

mass loaded in equal proportion: m 1 =  32 amu and m 2 =  64 amu. We simulate the loaded 

ions by adding two particles for each processing unit near z =  zo each time step. Weighting 

each ion is then as follows:
W =  ‘ln vroeessorsmi,2 (2.13)

m dt v y

Each particle is assumed to be stationary with the atmosphere when it is ionized. As 

such, there is no velocity initialization of the ambient ions. Pickup ions are initialized with 

vx =  -5 7  km s-1 , which is the relative velocity of the atmosphere respect to the flux tube.

2.3 One Dimensional Model

Mass loading the central region of the torus creates a perturbation in velocity profile, 

where the new pickup ions are brought into the corotating flow. The pickup region is 

spatially very small, at just 3 Ai along z , making for a very narrow broadband perturbation 

that will break into many frequencies as the wave propagates. There is then a momentum 

transfer from the background magnetic field in an attempt to bring the pickup ions into 

corotation. Perturbations in the velocity and magnetic field travel along in both directions 

along z , against the density gradient of the torus. The torus acts as a partial resonant cavity, 

where high frequencies pass through to higher latitude and the lower frequencies tend to be 

reflected.

Inside the torus, va =  173.5 km s-1 . Using Equation 2.10, we calculate the maximum 

amplitude of the wave at 550 nT. The hybrid simulation produces only a maximum pertur­

bation of 320 nT while in the torus for the current mass loading rate, leaving the Alfven wing 

unsaturated. Figure 2.6 shows the status of the wave after the main Alfven wing has passed 

the edge of the torus, at T  =  2800 Q -1. The main Alfvenic perturbation is situated between 

12 and 13 R J. Ahead of the Alfven wave is the right-hand circularly polarized (RH) mode,
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Figure 2.5: Waves transmitted through the Io plasma torus to higher latitudes, measured in 
units of R j from the mass loaded region. The right hand circularly polarized waves have the 
highest phase velocity and precede the Alfven wing. The left-hand circularly polarized waves 
follow behind the main perturbation. Ion cyclotron waves are generated last, as a result of 
the thermalization of the pickup ions.

which consists of high frequency electron waves that that have a higher propagation speed 

than the non-dispersive Alfven mode. Trailing the perturbation is the left-hand circularly 

polarized (LH) wave mode. Notice how for the RH mode, there is a phase difference between 

Bx and By, where the peaks of Bx lead the peaks of By. In the LH mode, By leads Bx. This 

is indicative of a change in polarization of the waves, from a RH mode to an LH one. The 

interchange occurs at the main Alfven resonance, when the characteristic length scale is of 

the order of A*.

When the pickup ions are first brought into the flow, they begin to gyrate in the xy  

plane, forming a ring beam distribution in velocity space. The combination of a ring beam 

distribution to the ambient Maxwellian distribution creates a total distribution that is double 

peaked, and thus unstable. As the pickup ions are brought into corotation, the transfer of 

momentum shifts the center of the ring beam towards —x. Eventually the instability of 

the velocity distribution function thermalizes the pickup ions, scattering them into a more 

spherical Maxwellian distribution, similar to the ambient ions (See Figure 2.7). The result 

of this destabilization is the generation of additional high-amplitude electromagnetic ion 

cyclotron (EMIC) waves. These waves follow the main Alfven mode (See Figure 2.8). As 

a check, we compare the observed frequencies with the gyrofrequencies of the present ions.
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Figure 2.6: Alfven wave just after exiting the torus. The wave is dispersive, with the 
right-hand circularly polarized wave ahead of the main Alfvenic perturbation, and the left- 
hand circularly polarized waves following, as indicated by the phase difference between the 
separate components of the wave. The Alfven wing is accompanied by a large perturbation 
in convection velocity, which brings the higher altitude plasma below corotation.
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Figure 2.9 shows the Fourier transform of all the ion cyclotron waves after they have exited 

the torus. Peak frequency matches that of the ambient ion species. Peaks are also present 

near the gyrofrequencies of the two mass loaded ion species. Peak power is just below each 

of the expected ion gyrofrequencies. From Equation B.24, the dispersion function indicates 

that the wave frequency only approaches ion gyrofrequency in the limit for large values of 

k. As such, most of the wave power is at a lower value of k, and has a corresponding lower 

frequency.

Next we examine the dispersion of all the generated wave modes by combining the entire 

temporal and spatial domains and preforming a two dimensional Fourier transform, and 

generating a relationship for wave power as a function of frequency and wavenumber. This 

is shown in Figure 2.10. We compare this to some expected wave modes derived from 

dispersion relationships. First we start with the dispersion relationship that is derived in 

Appendix B, using Equation B.24:

112
k j  =  ^2 ±  ^  (2.14)

where (+ ) corresponds to the RH mode, and the (-) for the LH mode. Solving for k, we 

obtain

k  =  1 (±n,A?k2 +  ^ 2 A ? k j  — (2.15)

and include this function for each of the ion species. Included for reference are the maxi­

mum and minimum values for the non-dispersive Alfven wave, the whistler mode, and the 

background ion gyrofrequency. The power spectrum spans most of the k space, but high 

frequency waves are lacking. The primary non-dispersive Alfven wave is present at about 420

km s-1 . Most of the wave power is near the ion resonance for each of the included species.

The whistler mode marks the upper bound of wave power.

Now we consider the amount of wave power that is transmitted through the torus based on
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Figure 2.7: Ion velocity distribution with time. Background ions are initialized with a 
Maxwellian velocity distribution. They are represented in blue and flattened against the 
bottom panel. Ions that are picked up through charge exchange have an initial ring beam 
distribution of ~57 km s-1 . This distribution is unstable and thermalizes into a Maxwellian 
distribution with the background ions. The second figure shows the widening of the distribu­
tion as more pickup ions are added. The ring beam is offset until momentum is transferred 
from the magnetic field to the pickup ions.
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Figure 2.8: The ion cyclotron waves following the main Alfven wave. There is a phase 
difference between Bx and By, indicating that the wave is left-hand circularly polarized.

Ion Cyclotron wave power at 1 R
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Figure 2.9: Frequency range of wave power in the torus after the passing of the main Alfven 
wave. Each of the present Ion species is indicated with its corresponding gyrofrequency. 
Majority of the wave power is just below each of the expected frequencies.
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Figure 2.10: Kinetic Alfven wave dispersion for parallel propagating waves. The red lines 
represent the upper and lower bounds for the non-dispersive Alfven wave, based on minimum 
and maximum density. The white lines are the ion cyclotron frequencies of the two pickup 
ion species. Finally, the whistler mode is represented in yellow.
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mass loading rate. We use the integrated Poynting flux described by the following equation:

P (z ,t )  =  [  vx (z ,t!)B y(z ,t ')B zdt' (2.16)
J 0

Most of the wave power is carried by the main Alfven perturbation. As the wave front 

passes through a region, the integrated Poynting flux increases. Reflected waves decrease 

the integrated Poynting flux as the reverse of the wavefront is added to the total sum of 

flux. For this, we consider three mass loading scenarios: low, medium and high, representing 

changes in the the flux tube’s interaction with Io’s atmosphere. Increased proximity to the 

atmosphere can be modeled as an increase the cross sectional area of the interaction (dydz), 

which has a linear effect on the mass loading rate. For each of these we modify m  to account 

for different mass loading targets. The medium case is unchanged. For the low case we 

use a scalar multiple of a half, while the high case uses a multiple of four. As expected, 

higher mass loading rates generate more power which propagates to higher latitude. Power 

transmission is limited by reflection along the torus density gradient. For all cases, the ratio 

of transmitted power to generated power is about 0.53. Since the time scale for mass loading 

is constant in all cases, the wavelength of the Alfvenic perturbation is the same in each 

simulation. We then expect that each case would have similar transmission coefficients.

2.4 Two Dimensional Model

We now expand our model to two dimensions. The one dimensional model can only 

accommodate variations along the flux tube, or parallel to the magnetic field. We are 

interested in modeling KAWs in the torus, so we need to include variation in at least one 

direction perpendicular to the magnetic field.

Adapting the initialization to the two dimensional case requires a few modifications. We 

keep the plasma parameters the same, but change the scale of the simulation by changing 

nz to 401, and reducing the particles per cell to 50. No density gradient is introduced,
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Figure 2.11: Alfven wave power transmission in the Io plasma torus. Only ~53% of the 
original Alfven power spectrum escapes the torus. The rest remains in the resonant cavity. 
The integrated Poynting flux drops off at 35 R j , which is the leading edge of the Alfven
wave.
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negating the need for a balancing gravitational force, grid stretching, or individual particle 

weighting. A few test cases are run without mass loading ions, but produce waves by 

initializing perturbations in bulk ion momentum. In these cases, the bulk velocity of the ions 

is initialized to 57 km s-1 along x, while the perturbation represents a decrease in momentum 

due to subcorotation of mass loaded plasma within the torus. Velocity perturbations are 

modeled using Gaussian or sinusoidal initializations.

With the two dimensional model we expand the y dimension. Instead of modeling the 

entire flux tube, we start by using a few test cases. The first simulation is set up by 

applying a Gaussian perturbation to vx with an amplitude of 57 km s-1 and a width of just 

2 A*, instead of applying the mass loading routine. This simplification is just an ad-hoc 

perturbation to promote wave formation and is not self-consistent with mass loading from 

pickup ions. In the MHD limit (where the velocity perturbation is much greater than A*), 

such a perturbation would have no large scale effect on ion density. In this case, where A* is 

resolved, ion inertia is relevant. Plasma-,5 is the same as in the 1D simulation (5  =  0.011). 

The Alfven wave front causes a polarization current, prompting ions on the wave front to 

drift off their initial field lines. The collective motion of the ions sets up a density gradient 

along the wave front. The Alfven wave is also no longer limited to propagating along z, 

and now has a k± component. Figure 2.12 shows the evolution of the Alfven wave in By. 

The oblique fast mode runs through the periodic boundaries and interacts with its counter 

propagating counterpart, which begins the filamentation of the waves.

2.5 2D Turbulent Wave Interaction

To further investigate wave propagation and turbulence at the ion kinetic scale, we ini­

tialize a 2D domain with large bulk velocity perturbations at the ion inertial scale in near 

proximity to each other. We accomplish this by abandoning the torus model and setting 

the domain to a uniform density (n =  m,iH0n0) with a grid resolution of 0.1 A*. Velocity 

perturbation is not localized, but instead filled with a large sinusoidal pattern in y and z ,
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Figure 2.12: 2D Alfven wave propagation in By,Bx , and density in the yz  plane. A velocity 
perturbation that is on the order of A* launches Alfven waves that propagate along z. The 
wavefront causes ions to gyrate from their initial position and create a density gradient.
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reminiscent of an “eggbox” (See Figure 2.13). The peaks of the sinusoid are separated by 

7 A*, and have a maximum amplitude of 200 km s-1 . The electron temperature is set to 

100 eV. 5  is still 0.011, but with the fine grid resolution, p* is barely resolved on the grid 

(\/5 =  0.1049 >  a =  0.1). The multiple velocity perturbations are analogous to placing 

a bunch of Io satellites in close proximity so that there is immediate interaction of counter 

propagating waves. Just like the 2D torus model, density separation is exhibited on the grid 

after about 30 Q -1 due to ion motion that is not captured in MHD (See Figure 2.13).

As a contrast, we also conduct the same simulation near the MHD approximation by 

changing the peak separation to 50 A* and increasing the grid spacing to compensate. The 

MHD limit case does not exhibit density separation, suggesting that the density separation 

is an ion inertial effect (Hall MHD).

Contrasting the dispersion relationships for each, we see that in the MHD scale simu­

lation, wave power is correlated with the non-dispersive Alfven wave (u/k =  vA). The ion 

inertial scale simulation has no discernible power in the main Alfven mode, but a faint signa­

ture for the KAW. Most of the wave power is concentrated at the wavenumber of the initial 

velocity perturbation and its multiples (Figure 2.14). The KAW is comparatively weak for 

the chosen 5  parameter.

When we take a fast Fourier transform of Bx along x  at z =  28 A*, we obtain a relationship 

of wave amplitude compared to k± (See Figure 2.15). The result is a Kolmogorov profile for 

perpendicular wavenumber. Energy is transported into shorter wavelengths until it reaches 

A*. High grid resolution allows more dissipation beyond this scale. One initially surprising 

aspect is that there is almost no transfer of energy from the waves to the ions to accomplish 

heating via ion Landau damping. Field energy and particle energy are both conserved 

throughout the simulation. Plasma-5 is too low for the turbulent cascade to dissipate energy 

into the ions. Greater heating requires a larger ion gyroradius, such that k±p* ~  1. Landau 

damping becomes more significant when 5  ~  1 [Lin et al., 2010; Johnson and Cheng, 2001].

To verify the ion heating, we jettison the Io-like plasma conditions by decreasing B0 to
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Figure 2.13: Eggbox velocity perturbation. The left figure shows the bulk velocity distribu­
tion, while the right figure corresponds to density perturbations within the domain at 37.5 
Q -1. The scale of the velocity perturbation is on the order of A*. In the fluid limit, the 
density profile is uniform.
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Figure 2.14: Dispersion relations at the fluid and kinetic scale. The left figure shows the 
wavepower is focused in the primary dispersionless Alfven wave, with no kinetic effects. On 
the right, more wavepower is concentrated in the kinetic Alfven wave. The strong vertical 
signal is the size of the initial perturbed wavelength.
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Figure 2.15: Evidence of turbulence from the frequency analysis due to the interaction of 
counter propagating waves. The red line has a slope of -5/3. The knee occurs at A*. The 
remainder of the plot has a slope of -7/3.

100 nT and increasing the ion thermal velocity such that /3 = 1 .  These parameters are more 

applicable to conditions in Jupiter’s middle magnetosphere. Figure 2.16 plots the normalized 

ion energy over time. After the initial transitory period, there is a rapid gain of ion energy 

relative to wave energy. After about 60Q -1, ion heating rate slows. Near the end of the 

simulation, the normalized energy peaks above one, indicating that there is a small increase 

in overall energy within the domain. We attribute this to the propagation of small numerical 

errors, so a small percentage loss or gain of total energy is not unusual.

2.6 Conclusion

The hybrid simulation of wave propagation along the Io flux tube is unique in the fact 

that it self-consistently models momentum transfer between pickup ions and the ambient 

magnetized plasma. All previous attempts relied on providing a perturbation in velocity, 

or modeling a conducting obstacle to plasma flow [Wright, 1987; Delamere et al., 2003; 

Jacobsen et al., 2010]. The hybrid simulation is more realistic in its treatment of momentum 

transfer by inserting individual ions into a plasma flow which are then influenced by the
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Figure 2.16: Ion heating over time for the “eggbox” domain with plasma-,5 ~  1. The energy 
is normalized to the total energy present in the initialized domain. Energy in the domain is 
shared between waves and particles.

ambient electric and magnetic field. Momentum transfer from the ambient plasma is what 

restores corotation. It also models ion kinetic effects as a result of accurately evolving the 

ion distribution function (generation of EMIC waves).

From the one dimensional study, we have the Poynting flux generated within a flux tube 

to be 5 x 10-5 - 3 x 10-4 W  m -2 , which varies based on the mass loading rate. About 53% 

of the generated power escapes the torus as part of the Alfven wave, which is greater than 

earlier attempts to estimate wave power transmission by Wright [1987] and Delamere et al. 

[2003]. This is independent of the mass loading rate. Instead, the transmission ratio is more 

dependent on the size of the Alfvenic perturbation, which is determined by the interaction 

time between the Io and the convecting flux tube. Flows around Io are incompressible, so 

the interaction time of each streamline is roughly the same [Dols et al., 2008]. Figure 2.17 

shows the streamlines around Io and the changes in relative flow velocity.

Hess et al. [2010] calculate the a reflection coefficient for a continuous density transition
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Figure 2.17: Incompressible plasma flows around Io. The colored upper half refers to the 
color scale on the left and shows the relative speed of the plasma flow. The bottom half 
shows a number of modeled stream lines. The dotted line is the trajectory of the Galileo 
spacecraft. Streamlines closer to Io have faster flows, but have to be diverted around Io. 
Each streamline has the same interaction time on average [Dols et al., 2008].

where the length scale (L0) is larger than the Alfven wave (Ay). This is applicable to the 1D 

torus simulation with a Gaussian distribution in density. The reflection coefficient is given 

by

R  =  ^  )  , (2.17)
Lo \Ui +  U2/

where u1t2 are the indices of refraction (c/vA) at the peak of the torus and outside the torus 

respectively. Inside the torus, we measure Ay to be ~  0 .5 R j, and vA1 =  173.5 km s-1 , 

vA2 =  3880.6 km s-1 . The calculated reflection coefficient is then R  =  0.46, making the 

transmission coefficient 0.54. Our result for Poynting flux transmission in the torus corre­

sponds with this prediction.

The increased Poynting flux transmission over previous results (from ~  20% to 53%) is 

also important to the power budget of the Io-Jupiter interaction. The power input from 

the interaction (1012 W ) is dissipated before reaching the ionosphere (1010 W  of power in 

Io’s auroral footprint). With a low transmission ratio in the 20% range, most of the wave 

power at high latitude had to be entirely used for electron acceleration (Recall that only
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10% of electron energy is converted to light in the ionosphere, and the rest is dissipated 

through ionospheric heating. The power budget demands that all the wave energy be used 

to accelerate electrons). An increase in power transmission reduces the needed efficiency for 

transferring wave power to precipitating electrons via inertial Alfven waves.

The 1D model also shows the presence of right and left hand circularly polarized modes 

in the waves transmitted out of the torus. These are generally only present when the pertur­

bation to the torus approaches A*. However, the Alfvenic perturbation is much larger than 

Ai in the torus. These waves must be because A* is changing rapidly along the field as a 

consequence of the torus density gradient. The circularly polarized modes are not present 

near the peak of the torus, soon after being generated. Instead, dispersion of the wave occurs 

near the edge and outside of the torus.

The slower EMIC waves present will be affected by the Alfven wave that is reflected back 

into the torus. The initial EMIC waves have an amplitude of 50 nT, a significant fraction of 

the Alfven wave (~  100 nT). The interaction of the EMIC waves and counter propagating 

Alfven wave could contribute to turbulence within Io’s wake and/or pitch angle scattering 

of trapped electrons.

The 2D eggbox simulation is set up to promote counter propagating waves at the ion 

inertial and ion kinetic scales. Counter propagating waves produces a turbulent cascade of 

wavelengths in the perpendicular components of the magnetic field. At Io, counter propa­

gating waves are set up by a resonant cavity as a result of the density gradient in the plasma 

torus. Also, 5  is very small, so we do not see any turbulent heating of the ions. Only when 

5  approaches unity does ion Landau damping occur, because the phase velocity of the wave 

is comparable to the thermal velocity of the ions (Recall that 5  =  vth/v2A, so when 5  ~  1, 

then va ~  vth).

Io’s primary auroral footprint does not appear to involve counter propagating waves. 

However, Jacobsen et al. [2010] showed that non-linear Alfven waves tend to reflect back on 

themselves within the torus, contributing to turbulence. We must address the limitations
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of modeling turbulent cascade in just one or two dimensions. The electric field update 

subroutine is dependent on a double cross product of the k vector with the electric field. 

Without both components of k±, we have a poor understanding of the turbulent waves within 

the simulated domain. To resolve this, further study will focus on modeling a flux tube in 

3D initialized with counter propagating waves.
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2D Rayleigh-Taylor Instability

3.1 Introduction

The investigation of the Rayleigh-Taylor (RT) instability is for modeling radial transport 

of plasma in the giant magnetospheres. The instability generates Alfven waves that propa­

gate to higher latitudes, similar to Io's interaction with Jupiter's magnetosphere. The initial 

growth of the RT instability includes scale lengths that are shorter than the ion inertial 

length, A*. Huba and Winske [1998] previously compared the linear theory for the Hall MHD 

and hybrid cases. Conventional MHD theory is a fluid approximation that is restricted to 

systems where the length scale of grid resolution (L) is much greater than A* and the finite 

ion Larmor radius (p* =  vth/C*). In the regime where L <  p*, the ion Larmor radius effects 

become significant, but can still be incorporated into the MHD model where ion and electron 

currents are treated separately (Hall effect). Roberts and Taylor [1962] discuss how these 

effects have a stabilizing effect on the RT instability, inhibiting growth. Figure 3.1 illustrates 

the divergence of growth rates for each of these MHD effects based on linear theory. For 

low mode number (m), where wavelengths are larger, The corrected growth rates closely 

match the conventional growth rate. Only for very high mode numbers, or large k±, does 

the conventional growth rate diverge from MHD theory.

Huba and Winske [1998] also compare the MHD cases to the hybrid model by examining 

the RT instability at higher resolution, where L <  A*. Hybrid simulations show the devel­

opment of electric fields that cause E x B  drifts in the plasma that are not present in the 

MHD case. The corrections made for the ion Larmor radius are also invalid at this scale, 

further necessitating a kinetic ion approach. The hybrid simulations are much noisier than 

the fluid cases (See Figure 3.2), and have developing turbulence that was not well resolved 

at very short wavelengths.

In this chapter we compare various hybrid simulations of the RT instability in 2D. In 

particular, we are interested in how seeded surface waves affect the growth rate of instability
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Figure 3.1: Growth of the Rayleigh-Taylor instability as a function of mode number m  for 
conventional, Hall, and finite ion Larmor radius MHD (FLR) [Huba and Winske, 1998].
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Figure 3.2: RT density change comparison: MHD vs. hybrid. The normalized density at 
the center of the boundary layer versus time for the fluid and hybrid simulations. The fluid 
case has a well behaved surface wave, while the hybrid case is less stable. Stochastic ion 
motion diverges from the ideal case and can cause larger density fluctuations in the hybrid 
simulation. Pressure balance is maintained for the duration of the simulation in 2D [Huba 
and Winske, 1998].
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and how that compares with the predicted conventional growth rate from Equation 1.12. 

We need to confirm that growth rates in 2D match the linear theory before considering the 

3D case, which includes parallel propagating modes. In addition, we seek to compare the 

evolution of mode number for cases with a seeded perturbation at the interface boundary, 

along with simulations where stochastic ion motion self-seeds the initial surface wave at the 

shortest resolved wavelength on the grid.

3.2 Hybrid Code Initialization

One challenging aspect of modeling the RT instability in the hybrid code is maintaining 

pressure balance. The ions have to be initialized with a density gradient and tempera­

ture profile so that the density transition region does not drift during the formation of the 

instability. The equation for equilibrium is given by

d_
dz

By (Z)2
p(z) +  yv 72^q

+  p(z)g  =  0 (3.1)

where p (z ) is the pressure profile (p(z) can be expressed as n (z )T (z)), B y(z) is the out- 

of-plane magnetic field component, p (z ) is the mass density profile, and g is the effective 

gravitational force (i.e., the centrifugal force in the non-inertial rest frame of the plasma 

in the magnetodisc). Huba and Winske [1998] maintain pressure balance by prescribing 

n(z), T (z), and g, and then calculating a gradient profile in By. In the local region of 

the magnetosphere that we will be simulating, the pressure balance is not maintained by a 

magnetic field gradient, so we will not be achieving pressure balance in the same fashion. 

Initializing a single population of ions requires a numerical integration to self-consistently 

solve for T  and n such that the gradients in each satisfy the equilibrium condition. All 

the attempts to initialize the ions in such a way suffered from stability issues. Our solution 

involved initializing two ion populations, one with constant density and varying temperature, 

and the other vice versa. This better matches the conditions in the magnetodisc, where a hot
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ion population is present. The dual ion population creates favorable equilibrium conditions 

for the onset of the RT instability in 2D, but creates issues with late runtimes in 3D. The 

full consequences of this approach are not fully understood and merit additional study.

We begin initialization of the RT hybrid code by specifying the coordinate system and 

boundary conditions. As shown in Figure A.1, p1 and p2 are differentiated along the z axis. 

The force of gravity acts along z . The y axis is out of plane, and the x  axis runs along the 

boundary between pi and p2. Since y is out of plane, its corresponding boundary condition 

is necessarily periodic. Any ion that exceeds the limits of the y coordinate is returned at 

the opposite side of the domain with the exact same velocity to preserve momentum. The 

x  axis is also periodic. The size of the x  domain (Lx) will limit the number of possible RT 

wave modes, as well as the maximum size of the m  = 1  wave mode.

The most complicated boundary is at the limits of the z axis. The density gradient 

presents a discontinuity should we attempt to make that boundary periodic as well. Instead, 

ions that cross the upper and lower boundaries are reintroduced somewhere at the exact same 

boundary they crossed. The ions are reinitialized with the same vx and vy with which they 

exited, but a reversed vz, so they will move back into the domain. Their new x  coordinate 

is randomized to maintain uniformity at the boundary. This boundary condition also tends 

to be reflecting with Neumann boundary conditions.

We attempt to replicate plasma conditions similar to the giant magnetodiscs. There is a 

trade off here, however. Attempting to reproduce the exact conditions would be too great 

a strain for computing resources. The limiting factor is comes from the growth rate, which 

is dependent on the effective gravity and density gradient. Too small a growth rate would 

take too long to replicate in a reasonable time. The best way to overcome this is to attempt 

to create a density gradient that has a much smaller length scale than the magnetodisc, and 

then adjust the temperature such that plasma-^ is similar to that found in the magnetodisc. 

To start off, we set the background magnetic field out of plane at 5 nT, with no in plane 

components. The minimum plasma density is set to 0.05 cm-3 . The Atwood ratio ( )  is
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set to 0.5 for sufficient growth, so pi =  3p2. The grid resolution is uniform and set to 0.5 A*, 

where A * is the minimum value of the ion inertial length in the domain (This is c / u p* in the 

p 1 side of the domain, as c / u p* increases with decreasing density. The ion inertial length is 

therefore always resolved on the grid). The dimensions of the the simulation are n x =  109 

and n z =  459. 60 particles per cell is sufficient for particle statistics and to avoid violating 

the Courant condition with the chosen time step d t  =  0.02 Q -1.

Due to our boundary condition at z , the gravity component cannot be uniform across z , 

lest ions on the boundary get trapped near the edges of the domain and we create a discon­

tinuity. Instead, gravity must be kept uniform at the interface of p 1 and p2, and gradually 

decreased to zero near the boundary. To accomplish this, the gravity profile consists of two 

hyperbolic tangents as given by the following equation where g Q is the maximum gravity, 

0 . 2 v 2h/ A i , z Q is the location of the RT boundary, L Q is a length scale for the gravity transition 

region set to 15 A *, and L 1 is the displacement of the transition region from the center of the 

domain (55 A*). See Figure 3.3 for the resulting profile.

g (z) =  go
, i / z — z0 +  L 1 4 , 1 ( z — zQ — L 1tanh     — tanh (3.2)

L o J V Lq

We now construct the density and temperature profiles to satisfy the equilibrium con­

dition. To do this, we initialize two ion populations, one with a fixed density, n2 =  c o n s t ,  

and the other with a fixed temperature, v 1th =  c o n s t .  The following equation is for the z 

dependent gradient in n 1, where n 2 is set to the minimum plasma density:

n1(z) =  n2 1 — tanh ( z r z °  
L q

(3.3)

This places the density gradient in the center of the domain and gives n 1 a maximum value 

of 2n2. The addition of n 1 and n 2 is the total density profile (shown in Figure 3.3), and 

maintains the the needed mass density ratio (p1 =  3p2). The n 1 population is set to have a 

constant thermal velocity of v th =  50 km s-1 . The challenge now is to derive an expression
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Figure 3.3: Initial parameters for the 2D RT instability. The density gradient is modeled 
using a hyperbolic tangent (See Eq. 3.3). The gravity profile is uniform across the domain, 
except at the z boundaries. It is also modeled using hyperbolic tangents (see Equation 3.2). 
The thermal velocity profile is derived from the the other two profiles (See Equation 3.10) 
so as to maintain pressure balance. This results in a profile that is monotonically increasing.
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for the thermal velocity of the n2 population. We start with Equation 3.1 and substitute 

some expressions. To simplify, the magnetic field does not vary with z, so we can leave it 

out. Let p(z) =  nT  and p (z ) =  m n(z). This leaves us with

d ( T )—  (n l ) =  nmg 
dz

(3.4)

Another substitution is made using the definition of thermal velocity (2nmv2 =  nT ) and the 

two ion populations, so that we obtain an equation for force balance:

d (1  2 1 2\ , ,
—  I 2 nim v1 +  2 n2mv2j  =  (ni +  n2) mg (3.5)

From this we derive an expression for v2.

2 dn1 dv22 
v i—  +  n2 d z  =  2 (ni +  n2) g

dv2
dz

dv2 =

v2 dni nn i +  n2
n2 dz

+  2-
n2

v2 dni nn i +  n2
n2 dz

+  2-
n2

dz

' n i(z ') +  n2
v2(z) — v^(0) =  — —  f  dni +  2 [  ( niK~ J ' '"2 I g(z')dz' 

n2 Jo Jo \

v2 (z)
v2 f

v2( 0 ) -----  ̂[n i (z) — n i (0)] +  2n2 o

n2

z fn i(z ')  +  n2 

n2 ,
g(z ')dz'

i/2

(3.6)

(3.7)

(3.8)

(3.9) 

(3.10)

The thermal velocity for the constant density population is now a function of the density 

gradient, gravity function, and some initial thermal velocity (set to the minimum thermal 

velocity v ^ ) .  The integral here does not have an analytic solution for the chosen density 

and gravity functions, but can be found numerically by summing over the density gradient 

times gravity across the grid. The resulting temperature profile is shown in Figure 3.3. Ion 

velocities are then initialized using vth and Equation C.4. The resulting pressure gradient is

z
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shown in Figure 3.4.

Figure 3.4: Initialized pressure profile along z. As z increases, plasma pressure must increase 
to balance the weight of the plasma on top of it. Noise is introduced due to the random 
initialization of the ion velocities (See Eq. C.4).

To maintain a standard number of ions in each grid cell, and reduce the number of 

simulated ions, we adjust the weight function w for each ion in the n\ population, rather 

than just tripling the number of ions in their part of the domain. This results in a z dependent 

weighting function:
N, , ,

(3.11)w total
LXLy LZ n l (z)

where Ntotal is the total number of ions, and Lx, Ly , and Lz are the lengths of each respective 

domain.

With these initialization parameters, we can construct a profile of the plasma-0 along z,
2

based on the ratio of the pressure to the magnetic field strength (0 =  B V h , see Figure 3.5). 

Plasma-0 is also equivalent to p2/X2 (Equation 1.15), so pi ~  3.4 Xi at z =  zo. In the high 

density section of the domain, the plasma is cool and 0 <  1, so the grid spacing is greater 

than the ion gyroradius, and ion kinetic effects are not resolved. For z >  75Xi , plasma 

pressure is increased enough such that 0 >  1, and ion gyromotion is fully resolved. The 

boundary interface is 110Xi <  z <  120Xi , where 0 >  10, so ion kinetic motion is reflected on
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Figure 3.5: Plasma-0 profile of the 2D RT instability across z based on the ratio of the 
plasma pressure (f  p ivth) to the magnetic pressure (B 2/y0) averaged across x. The grid 
resolution is 0.5 Xi, so where \[0 >  0.5, the ion gyroradius is also resolved. For z >  75Xi , 0  
is large enough to resolve ion gyromotion, which is important near the interface boundary.

the grid in the most important region of the simulation.

In contrast to a fluid simulation, there is no need to initialize a surface wave into the 

density gradient boundary. Unstable equilibrium is automatically disrupted by the random 

initialization of ion location and velocities. Self-seeded runs, however, require a longer run­

time, as it can take a while for a coherent surface wave to register on the grid. In order 

to investigate and compare the the behavior of the instability at specific wave modes, it is 

necessary to seed the perturbation with a specific wavelength. This is done by adjusting the 

ion velocity initialization near the density gradient boundary. Starting with the initialization 

of a Maxwellian distribution (see Equation C.4), we add another term that is x  dependent:

v (x ,z )  =  v th (z )^ -  ln (r i)cos(^ r2) +  vth(z) cos / cosh2 ^ (3.12)

where m  is the selected wave mode, L 1 is a length scale set to 4 Xi, and r1t2 are random 

numbers between zero and one (stochastic ion initialization). The hyperbolic cosine keeps 

the perturbation near the relevant region to allow for variation along y.
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3.3 Growth Rates

D e n s ity  P ro f i le ,  T  =2 Q?1 D e n s ity  P ro f i le ,  T  =32 Si)1

Figure 3.6: Density profile of a self-seeding RT instability. Small surface waves begin at the 
size of the grid cells. The beginning of the simulation has a high m  number. Later the waves 
coalesce into an m  =  2 mode that fills the domain. Growth rate depends on the density 
gradient, gravity, wave number, and the in-plane magnetic field, as given by Equation 1.12.

Examination of the self-seeded run proceeds. In Figure 3.6 we plot the density gradient 

of the instability as a surface plot. The minimum size of the surface waves begins at the 

scale of the grid (about 0.5 A*), resulting in a high initial number of wave modes (high m  

number). We can compare the rate of growth with the linear theory using Equation 1.12, 

simplified for the 2D case. There are no wave modes parallel to the magnetic field, so we 

can eliminate the second term. We can also substitute k± with mn/Lx. Equation 1.12 is
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thus simplified to

Y =  ^  (3 ,3 )

where A  is the Atwood ratio. The higher m  is an indicator of a higher growth rate. With 

time the waves coalesce into larger structures until the m  = 1  mode is reached.

Figure 3.7 also illustrates the same growth and coalescence. Here we examine the growth 

and transport with mixing ratios. Each ion is tagged with a zero if z <  z0 and a one if z >  z0. 

Mixing in each grid cell is determined by the average value of the of all the ions interior to it. 

Ion gyromotion results in automatic mixing near the interface boundary. However, transport 

only occurs through growth of the instability.

In contrast, we examine the growth and and transport of simulations with specific wave 

modes, ranging from m =  1 to m =  12. Figure 3.8 shows the same examination of the mixing 

ratio, but with an m  =  3 mode. The initial velocity perturbation results an immediate 

formation of a surface wave that forms much more rapidly than the unseeded case. One 

benefit of this approach is that growth rate can be more directly compared to the m  number, 

as there is no coalescence of the surface wave for the seeded runs. As can be seen in the 

figure, growth of the instability has substantially slowed at about half the runtime. After 

that, we mostly see diffusion of the finger structures. It could be that the physical finger 

structures are larger than the domain and are still coalescing.

We analyze the growth rate by comparing the rate of change of bulk vz on the grid. We 

do this by finding the maximum value of vz on the grid within 100 grid cells of the interface 

boundary. We limit the range of investigation to reduce the incidence of noise from side 

of the domain that has warmer plasma. The low density combined with the hotter plasma 

increases the amount of fluctuation of v on the grid when compared to the other side with 

cooler, denser plasma. The growth rate is the coefficient for the real part for the plane wave 

solution, i.e.

vz(x, t) =  vz(x) exp [—i (u +  %y ) t] . (3.14)
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Figure 3.7: Growth of a self-seeded RT instability by mixing ratio. Each ion is tagged with 
a one or zero depending on which side of the boundary it is on during initialization. Each 
frame shows the weight of mixing for each grid cell depending on the number of each tagged 
ion in the cell. Each frame is separated by 8 Q -1 .
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Figure 3.8: Growth of a seeded m  =  3 RT instability by mixing ratio. Each ion is tagged 
with a one or zero depending on which side of the boundary it is on during initialization. 
Each frame shows the weight of mixing for each grid cells depending on the number of each 
tagged ion in the cell. For seeded runs, there is no coalescence. Each frame is separated by 
8 G -1.
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Figure 3.9: Growth rate of the RT instability for the unseeded case. Growth rate is found 
using the maximum bulk vz on the grid near the boundary layer. The slope of the natural 
logarithm of vz is equivalent to the growth rate.

Y can then be estimated by fitting a slope to the natural logarithm of the change of vz with 

time, which we then normalize to the ion gyrofrequency. Figure 3.9 shows an example of a 

linear fit for the unseeded RT instability, which has no observable growth until ~  25 G -1.

In Figure 3.10 we plot the growth rates obtained from seeded simulation runs as a function 

of mode number and compare it to the theoretical growth rate obtained from Equation 3.13. 

The growth rates are significantly less than the ion gyrofrequency. For high m  numbers, the 

results are in good agreement with the linear theory, though they show consistently lower 

numbers. This is due to the fact that the Equation 3.13 describes an upper limit to the 

growth rate, and neglects that other factors, such as numerical diffusion, can hamper the 

growth rate.

RT growth rate, q =0.0064067Sh

Time (Hi1)
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Figure 3.10: Comparison of growth rates based on wave number. The blue line represents 
the analytical prediction based on Equation 3.13.

3.4 Dispersion Analysis

Wave mode coalescence and dispersion can also be analyzed through frequency analysis. 

For each seeded simulation we conduct a spatial fast Fourier transform of the various quan­

tities along x  at z =  z0 (the interface boundary). Pressure balance is maintained across the 

boundary, so there is little motion of the interaction region. We repeat the Fourier transform 

for each output time step so that we see the evolution of the wave modes with time.

Figure 3.11 plots the power spectrum of the density profile versus time for the seeded 

runs. They correlate very well with what was observed before in Figure 3.8: that there is 

no coalescence of the waves into lower modes, and wave power remains concentrated in the 

seeded wave mode. This also remains true for analysis of other quantities, including mixing 

ratios and temperature. One interesting artifact, however, is that there are harmonics present 

at multiples of the initial wave mode.

Wave analysis for the self-seeded run is shown in Figure 3.12. Before 10 Q -1, there is

75



m = 2 m=3

10 15 20 25 30 35 40

m =6

0.12

0.1

0.08 r

0.06

0.04

0.02

10 15 20 25 30 35 40

m = 9

0.07

0.06

0.05

0.04

0.03

0.02

0.01

10 15 20 25 30 35 40

Figure 3.11: Dispersion of specific wave modes. A spatial Fourier transform is applied across 
the density boundary interface. It is repeated each time step to get the change in m  over 
time.
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Figure 3.12: Wave mode coalescence. For an unseeded simulation, wave power is distributed 
across the spectrum. At about T  =  80 G -1, most of the wave power is in the m  =  6 mode. 
By T  =  100 G -1, the m =  2 mode is dominant.

no wave formation across the boundary, and all we see is noise. After about 20 G -1, the 

wave formation reaches the grid scale, and wave power begins to register. Power is evenly 

distributed between many wave modes. After ~  60 G -1, wave power decreases in the higher 

modes as the small waves coalesce. After 80 G -1, wave power settles at the m =  6 mode. 

By 100 G -1, the instability has finally coalesced into the m =  2 mode.

3.5 Conclusion

Growth rates for seeded runs match well with the theory for maximum growth rate for 

the RT instability for high m  numbers. The growth rate does not account for k\\, as the 

magnetic field is initialized out of plane. One way to include the k • B  term from the growth 

rate equation would be to initialize an in-plane component to the magnetic field. This 

would have the effect of stabilizing the surface waves. However, since we are interested in 

propagation along the magnetic field line, we will need to expand the simulation to three 

dimensions. This will also capture both components of k±, which is important when modeling
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turbulence at ion kinetic scales.

It is also interesting to discover that the seeded runs have very little change in m  with 

time, compared to the self-seeded case where wave modes coalesce. This is also a problem 

in fluid simulations of the RT instability, which requires a perturbation at the interface 

boundary, and do not exhibit changes in m  number. In the self-seeded run, there is a 

change in observed wavenumbers because mixing is better promoted by vth with no extra vz 

perturbation. It is also interesting to consider that the coalescence is an inverse turbulent 

cascade, where energy is injected at small wavelengths, and is then transferred to larger 

wavelengths. Slower growing modes (with a small k^) with larger amplitude eventually 

envelop the smaller surface waves (large k^), completing the inverse cascade. In addition, 

nothing limits the growth of larger wavelengths except for the size of the simulation domain. 

No matter our choice for the size of the x  domain, the instability will eventually cascade 

to an m  = 1  mode. The large perturbations in the magnetic field in Saturn’s magnetodisc 

(Figure 1.9) have wavelengths that are ~10 A*, so there is a limiting factor to the size of k±. 

We will need to investigate in 3D in order to include a limiting k\\ term in the growth rate.

Figure 1.12 shows the power density spectrum vs. frequency at Saturn. The lower figure 

shows that there is a larger heating rate density in the dissipation range of the turbulent 

cascade than in the inertial range. The power spectrum shows a small bump in power density 

at the ion gyrofrequency. Perhaps energy is being injected at the ion kinetic scale, and then 

transferred to both larger and smaller wavelengths in a turbulent cascade. The hybrid 

simulation shows that this is plausible for the RT instability. Since Saturn’s magnetodisc is 

also susceptible to the RT instability, it is not necessary that transport is initiated at large 

scale and then cascade to small scale. Instead, surface waves at small scale can cascade to 

large wavelengths to facilitate transport.
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3D Rayleigh-Taylor Instability

4.1 Introduction

Located in the inner magnetospheres of Jupiter and Saturn are the primary sources of 

plasma for the magnetodiscs: Io and Enceladus. The ionization of Io’s atmosphere produces a 

ton per second of plasma that spreads out into the magnetosphere [Delamere et al., 2003]. As 

the plasma convects away from Jupiter, conservation of angular momentum would normally 

make it rotate more slowly, except that it is coupled to the Jovian flywheel by the planet’s 

strong magnetic field. The outward-moving magnetospheric plasma stretches the magnetic 

field and bends it backwards. The resulting J x B  force creates an electrical current that 

flows along the magnetic field to keep the the plasma corotating with the planet. At some 

point, usually about L =  20 for Jupiter, the stresses of keeping the plasma corotating 

becomes too much: there is insufficient electrical conductivity in the ionosphere to complete 

the necessary currents. Slippage of the magnetic field at high latitudes provide the parallel 

electric field necessary to accelerate superthermal electrons enough that they precipitate into 

the atmosphere. The resulting aurora is therefore a signature of the magnetosphere’s failure 

to keep the plasmadisc in strict corotation (See Figure 4.1). At Saturn, only ~50 kg s-1 of 

plasma is transported radially outward [Achilleos et al., 2014; Fleshman et al., 2013]. IR 

and UV aurora in Saturn’s lower latitudes have been shown to correspond to this plasma 

motion [Stallard et al., 2008; Grodent et al., 2010]. The source of auroral emissions is still 

disputed, however, in the case of the giant magnetospheres. It is an open question whether 

Jupiter has an open magnetosphere, and if the solar wind is the source for more poleward 

emission. At Earth, solar wind is the primary driver of magnetospheric transport and auroral 

activity, but since Jupiter is driven more by internal plasma sources, sources for polar auroral 

emissions are unclear.

Earlier attempts to model the global transport of plasma have been attempted. These 

have primarily consisted of magnetohydrodynamic (MHD) and multi-fluid simulations. MHD
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Spin axis Im p ed an ce

Figure 4.1: Illustration of Jupiter magnetosphere-ionosphere coupling [Cowley and Bunce, 
2001].

models require a set of inner boundary conditions to represent ionospheric conductance and 

set up a mass loading rate [Chane et al., 2011; Kidder et al., 2009; Winglee et al., 2013]. 

Liu and Hill [2012] use the Rice Convection Model to simulate radial transport of plasma 

(Figure 4.2). This approach also requires a model for the magnetic field and ionospheric 

conductance, but requires conservation of the first and second adiabatic invariants, and 

relies on equipotential magnetic fields.

Ma et al. [2016] examine a local region of the magnetodisc extended to higher latitudes 

using a 3D MHD model, including evidence that RT instabilities in the magnetodisc cause 

a twist in the magnetic field lines at high latitude. Anti-parallel in-plane components of the 

magnetic field are brought together and reconnect, decoupling plasma from the magneto­

sphere, illustrating the importance of a parallel electric field (See Figure 4.3). This is very 

different from models where entire flux tubes are interchanged and close in the ionosphere 

(e.g., the Rice Convection model). This allows transport without a large change in field 

configuration.

Caudal [1986] uses a self-consistent axisymmetric model for Jupiter’s rapidly rotating 

magnetosphere in which both the pressure gradient and the centrifugal force balance the 

Lorentz force. Using empirical plasma profiles from Thomsen et al. [2010], Ma [2018] applied
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Figure 4.2: Global MHD simulation of Saturn’s inner magnetosphere using the Rice Convec­
tion Model. Plasma pressure acts in the same direction of the centrifugal force and drives 
radial plasma convection [Liu and Hill, 2012].

the model to the conditions present at Saturn (See Figure 4.4). As expected, the flux tube 

entropy increases with radial distance, indicating stability of the magnetodisc. Flux tube 

interchange can change the local profile. In the limiting case that interchange involves the 

entire flux tube, higher entropy would be transported inward, leading to instability. Ma 

[2018] showed that this destabilizing feedback can be resolved by magnetic reconnection 

somewhere along the field line, preserving a stable flux tube entropy profile (i.e. partial flux 

tube interchange).

All the global models are limited in detail as a result of scale and limited computational 

resources. Fluid models are limited in that they do not resolve individual ion motion, 

where adiabatic invariants may not be conserved, or ion drifts are not present on the grid. 

Turbulent heating at ion scales are also not resolved. We present a more local simulation of 

the magnetodisc using the hybrid code in an attempt to clarify the effect of ion scale motion 

on the formation of the RT instability and any inverse turbulent cascade. To include the 

effects of all perpendicular and parallel propagating wave modes, we model the formation
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Figure 4.3: MHD RT instability. At large scales, RT instabilities causes magnetic field lines 
to twist at higher latitude, where magnetic reconnection takes place, decoupling the plasma 
from the magnetodisc [Ma et al., 2016].

of the RT instability in three dimensions. Only a small section of the middle magnetodisc 

is modeled (at Saturn, this would correspond to L =  15). The density scale height of the 

torus acts as a resonant cavity, trapping the majority of parallel propagating waves within 

the simulation domain. Figure 1.19 illustrates the modeled section of the magnetosphere.

4.2 Hybrid Code Initialization

Initialization of the 3D hybrid simulation is based off of the earlier code setup detailed 

in section 3.2. The x z  domain remains the same, with nx =  109 and nz =  459. We now add 

in a domain of y to eliminate an ignorable direction and allow for the propagation of waves 

parallel to the magnetic field (ny =  87). Ion gyromotion remains limited to the xz  plane, 

and motion along y is primarily thermal, lessening the need for the same resolution in y . 

Instead it is best to maximize the value of Ly so that the k\\ is minimized initially, and there
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Figure 4.4: Specific and flux tube entropy at Saturn. Equilibrium configuration of Saturn’s 
magnetodisc following the Caudal model using profile of plasma density from Thomsen et al. 
[2010]. The magnetic field lines are shown in black, and the color scale represents the flux 
tube entropy at the appropriate radial distance and latitude.

Figure 4.5: 3D RT simulated domain with fixed field lines. The simulated region of the 
magnetodisc is shown in Figure 1.8, which acts as a resonant cavity. Magnetic field lines are 
fixed at the top and bottom by boundaries. A surface wave is seeded at the center of the 
domain (y =  y0 =  Ly/2 ). Growth of the instability bends the magnetic field lines.
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is sufficient time for the instability to form and grow before any wave reflection from the 

boundary becomes significant. We will be examining two different scenarios: one where the 

boundary conditions at y are reflective, and one where y has periodic boundary conditions. 

Grid spacing along y is set to 1.5 Xi (recall that Xi is the minimum value of c/upi in the 

domain). 60 ions are initialized per cell, and the weighting function from Equation 3.11 is 

still applied to them.

Since the goal is to set up a resonant cavity in the first scenario, the y boundaries are 

set to be reflective. Therefore, the value of the electric field is set to zero (i.e. infinitely 

conducting) in the grid cells at the boundary. The derivative of the electric field is set also 

set to zero in the two grid cells adjacent to the boundary. Parallel propagating waves can 

cause surface waves to form at the y boundary, unless the ions are treated more aggressively. 

The objective here is to prevent any plasma or momentum transfer at the y boundary, and 

thus prevent the formation of surface waves there. Individual ion velocities near the boundary 

are reset to their initial thermal gyromotion using a Monte Carlo selection technique. Each 

time step a random number r, where 0 <  r <  1 is generated for each ion. If r is less than 

the following Maxwellian relationship, the ion’s velocity is reset to its initial value.

in bulk velocity and the formation of surface waves. Ions further from the y boundary have

unaffected by the boundary conditions.

For seeded perturbations, the surface wave is restricted to the center of the y domain 

(y =  yo =  Ly/2 ). Ions near the interface boundary are set similar to Equation 3.12, modified

r <  exp

(4.1)
r <  exp

This means that ions in the boundary grid cells are certain to be reset, which prevents changes

a lower chance of having their velocity reset, and ions near the center of the domain are
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to confine the perturbation in y :

cos f 2nmx\

V{X’ Z) =  ^ ^  ^ ( - ' )  cosh2 ( )  ^ h *  ( « )  <4'2)

Recall that this is the initialization for individual ions with a modification to a Maxwellian 

distribution. The first term represents the initialization of the Maxwellian (where r1,2 are 

randomly generated numbers from zero to one to model stochastic ion initialization), and 

the second term provides a surface wave perturbation near the boundary interface.

Profiles of n, g and vth are the same as the 2D case. We only change the ambient magnetic 

field strength from 5 nT to 20 nT, which helps promote stability in the initial formation of 

the surface wave, but lowers the maximum value of plasma-,5. Maintaining pressure balance 

for the duration of the simulation is difficult for runs with a seeded perturbation. One 

such difficulty is maintaining resolution of ion motion along z . The grid scaling is meant to 

primarily resolve ion motion near the interface boundary, and is sufficient for the temperature 

of the ions in that area (p* ~  1.4A* at z =  z0, see Table 4.1 for initialization parameters). 

However, near the z =  0 boundary ions are too cold to resolve some of the gyromotion, and 

we could be missing some balancing current. Figure 4.6 shows a profile of the plasma-5 at 

y =  y0, where a transition occurs from 5 <  1 to 5 >  1. Additionally, fast bulk velocities and 

an increase in the in-plane magnetic field near y =  y0 ,z  =  z0 create additional currents that 

can disrupt pressure balance.

Figure 4.7 shows the evolution of the thermal pressure of the domain. A sudden increase 

in pressure forms at the interface boundary at T  =  15 H -1. The discontinuity increases 

throughout the rest of the run. A result of this is stagnant growth of the instability by T 

=  50 H -1. Followed is a severe collapse in density on the p1 side of the instability, leaving 

behind dense plasmoids near where the interface boundary used to be.

Comparison of the pressure with scaled values for density and temperature are shown in 

Figure 4.8. Here the density collapse is made more apparent, combined with density peaks
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Figure 4.6: Plasma-,5 profile of the 3D RT instability at y =  y0, averaged across x. The grid 
spacing is 0.5 A*, so for the region where <  0.5, the grid resolution is less than p*. As a 
result, ion motion near the transition region of 5  =  0.25 is not fully resolved. Past z =  75A*, 
5  is large enough to fully resolve the ion gyromotion.

near z =  z0. We would instead expect that average pressure, temperature, and density 

profiles remain relatively unchanged from their initial states. It is clear that results past 

the initial growth phase are tainted by this pressure catastrophe. As such, we will limit our 

investigation of these simulations to their early growth stages and initial wave propagation.

It is unclear to us why pressure balance is so easily disrupted. The 2D RT simulations did 

not have this issue, so the imbalance is a 3D effect. Test cases where velocity perturbations 

are not seeded on the boundary are not subject to the density collapse, but are also too 

stable for plasma transport. Varying initial parameters such as the density gradient and g0 

does not resolve the issue. We suggest that it may be a combination of gravity and initial 

velocity perturbation. Prior test runs produced a bulk vz that causes plasma to build up 

near the area where gravity is deactivated on the low 5 side of the simulation. Velocity 

perturbation of the ions might have been too great relative to stochastic motion, and caused 

an imbalance near the gravity transition region. The choice of a dual ion population is also 

likely to be a factor. Only a fraction of the ions have a thermal velocity that contribute to 

the pressure required for balance.

The second scenario we will investigate involves simplifying the y boundary to be periodic.
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Figure 4.7: Pressure evolution of the 3D RT instability. Initially, the entire domain is in 
pressure balance. Growth of the instability and bending of the background magnetic field 
can cause an increase of pressure at the interface boundary. This disruption of the pressure 
balance shifts the boundary in the positive z direction. See Figure 4.8 for a comparison with 
other macro scale quantities.
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Figure 4.8: Pressure comparison with temperature and density. Change in the pressure 
profile near the interface boundary is associated with density depletion and thermalization. 
Mixing of the plasma smooths out the temperature profile, while a loss of pressure on the 
z <  z0 side of the boundary causes a density depletion. Plasma accumulates near the 
boundary where pressure is greatest.

This eliminates the reflection, and allows motion of the magnetic field lines at the boundary. 

The size of the domain, Ly, still limits the size of the fundamental k\\ mode. In this scenario, 

we will not be seeding a perturbation into the ion velocities, and instead let the instability 

form through a stochastic process. This is illustrated in Figure 4.9.

The self-seeding run require more modification in order to run in a reasonable time. 

Using the same parameters as in section 3.2 would take weeks to run before the formation 

of any appreciable RT instability. Therefore, we modify some of the parameters to increase 

the growth rate. First we increase the density gradient by setting p\ =  6p2 (an increase 

in the Atwood ratio from 2 to |), and increase the effective gravity (g0 =  O&v^JXi). A 

corresponding change in the thermal velocity profile based on Equation 3.10 is required to 

maintain pressure balance. Finally, we increase the ion-electron collision frequency, which 

has the effect of increasing magnetic diffusion so that the magnetic field lines will not bend 

too much. This is represented in the hybrid code with the parameter vinit, which is the 

coefficient of the resistive term in the generalized Ohm’s law (vJ, see Equation 1.13). The 

nominal value of vinit is 0.002 Qi for all previous simulations, but is increased to 0.01 Qi for
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Figure 4.9: 3D RT simulated domain with periodicity along the vertical axis. The simulated 
region of the magnetodisc is shown in Figure 1.8. The top and bottom boundaries are 
periodic. Stochastic ion motion provides the onset of the surface waves. Increased magnetic 
diffusion prevents the field lines from bending very much.
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Table 4.1: RT simulation parameters

Simulation Xi (km) Pi (Xi) 9o (v2th/Xi) Pt (cm-3 ) Pi (Pt) By (nT) vinit (^i)
2D RT 2348 3.4 0.2 0.05 3 5 0.002
3D RT, seeded 2348 1.4 0.2 0.05 3 20 0.002
3D RT, self-seeded 1660 3.6 0.8 0.05 6 20 0.01

Plasma-/? profile
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Figure 4.10: Plasma-,5 profile of the 3D RT instability with periodicity along y. 5  >  1 at 
the boundary interface so ion kinetic motion is resolved on the grid.

the self-seeded run. We no longer have direct comparison with the 2D RT instability, but 

runtime has been reduced to 26 hours. The plasma-5 profile is shown in Figure 4.10. The 

increase in the Atwood ratio has also increased 5  so that ion kinetics have similar resolution 

to the 2D RT instability (pi ~  3.6 Xi at z =  z0, so ion gyromotion is resolved in the relevant 

region of the domain). Table 4.1 shows a comparison of the parameters used in all of the 2D 

and 3D RT simulations.

4.3 Simulations with Seeded Wave Modes

Growth rates are limited by the second term in Equation 1.12, which includes k • B, 

indicating that parallel propagating waves inhibit growth. We simplify this term to k\\By, and 

substitute k\\ =  m yn/Ly, where m y is the parallel wave mode. We will limit our assumption
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to the my =  1 case. That leaves us the expression for the maximum growth rate:

Y \
m gnA 2n2By

Lx HoLy (pi +  P2) (4.3)

Increasing Lx or density decreases the effect of the parallel wave mode, while increasing the 

background magnetic field suppresses growth of the instability. Figure 4.11 shows the growth 

of the instability for the m  = 3  case. Plasma-,5 >  1 in this region, so convection is driven 

by free-energy in the system (i.e gravitational potential). The magnetic field lines become 

twisted with the motion of the plasma, and a parallel wave mode is transported from y =  y0 

towards the y boundaries.

We analyze the growth rate of the 3D seeded runs similar to 2D case, using the change in 

ln vz. Plasma motion is occurs primarily in the y =  y0 plane, so we confine our sampling of vz 

to within three grid cells of that plane. We also limit the sampling to before 50 Q -1 to avoid 

including effects from the later pressure collapse. Conducting the simulation for all wave 

modes between m  = 1  to m  = 1 2 ,  we compare the resulting growth rates with the expected 

values from Equation 4.3. This is shown in Figure 4.12. Like the 2D case, we have close 

agreement with the linear theory. Growth rates are slightly less than the predicted values 

for m  <  10. More unexpected is the large increase of the growth rate for m >  10. It is likely 

that this is just statistical noise, but it could also be due to the decreased influence of k\\ for 

large values of m . Since the growth rate is faster, the surface waves form and deform the 

magnetic field (i.e. magnetic tension) before there is any effective propagation of the wave 

to the fixed resistive boundary. Alternatively, shorter wavelengths might imply that some 

magnetic decoupling is taking place due to ion inertial effects (at m  = 1 1 ,  k± ~  2n/5A*), 

reducing the effectiveness of magnetic tension.
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Figure 4.11: Formation of the m  = 3  wave mode in 3D. Only the span Ly/2 <  y <  Ly is 
shown. The magnetic field is modeled as black lines. As seen in the lowest panel, there is a 
density increase near the boundary. Growth of the instability creates a wave in the magnetic 
field that propagates along y and creates an effective k\ . The magnitude of k\ is limited by
Ly.
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Figure 4.12: 3D RT growth rate comparison. The blue line represents the analytical predic­
tion based on Equation 4.3.
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4.4 Self-seeded Simulations

Self seeded runs have a much slower growth rate than the simulations with an initial 

perturbation. Formation of the instability depends on the stochastic motion of the ions 

near the boundary. As there is no initial bulk flow, and a strong initial magnetic field, the 

earliest surface waves do not manifest on the grid until about T =  10 Q -1. The initial mode 

structure is constructed of short wavelengths. In addition, the transition region, or width 

of the mixing layer, increases with time. However, the initial short wavelength peaks do 

not expand into the transition region, but are rather subsumed by coalescence. Late in the 

simulation, larger wave modes are present, but ion-scale structure remains. Finally, there is 

a slight drift in the interface boundary in the + z  direction. The initial pressure balance is 

sufficient at the start of the simulation, as the interface boundary remains stable until the 

formation of the surface wave. Only at about T  =  26 Q -1 does the pressure balance fail 

enough to move the boundary. Fortunately, this does not result any further disruption of 

density or velocity distribution, but will make it more difficult to conduct a wave analysis 

later. Figure 4.13 shows the evolution of the instability.

Variation of the instability along y comes from phase differences in the initial formation 

of the surface waves. The surface waves that initially form at y =  y0 are greatly separated 

from the surface waves that form at the y boundary, with the only mediation through parallel 

propagating waves. Very small parallel wave modes are one factor inhibiting the growth of 

the initial waves, due to magnetic tension between adjacent grid cells. The earliest surface 

waves (large k^) have little correlation in phase. This is best illustrated in Figure 4.14. 

An isosurface representing the interface boundary (indicating where the mixing ratio is 0.5) 

is included to show variation along y . The left figure shows the structure of the interface 

boundary at an early point in wave formation. The boundary is thin, but there is significant 

variation along y . The right figure shows the isosurface after coalescence into larger wave 

modes, and the increase of size of the transition region. Here the phase difference between 

the layers has been reduced, and the surface waves have become better correlated, making
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Figure 4.14: Phase alignment in the RT instability. The red isosurface represents the inter­
face boundary where the mixing ratio is 0.5. Variations in phase produce detailed structure 
in the interface boundary. Later, after propagation of the parallel waves in the magnetic 
field, the m  number decreases, and the phases of the waves become more aligned.

the instability essentially 2D.

The finger-like structures that form have widths that are on the order of A*. Since 5  ~  13, 

the ion gyroradius, p*, is ~  3.6 A*. This makes the the width of the structures near p* as well. 

The boundary layer separating the fingers is likewise very thin, less than p*. Ion gyromotion 

then becomes a relevant mechanism for transport across the boundary separating the fingers. 

The transport of ions in this manner is similar to hybrid simulations of the Kelvin-Helmholtz 

instability [Cowee et al., 2009]. Ion gyration across the thin boundary is a component of 

“superdiffusion” of plasma.

Wave mode analysis is conducted by performing a spatial Fourier transform of density 

at the interface boundary at y =  y0, similar to the analysis conducted in section 3.4. The 

transform is repeated for each time step to find the change in wave numbers with time. 

One challenge is that interface boundary is moving in the + z  direction, so the location of 

the transform has to move with it. For this reason we conducted the transform at three 

locations, offset from z =  z0. These are at z =  115 A*, 120 A*, and 125 A*. One advantage of
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this approach is that we can more easily characterize the motion of the boundary. Prior to 

the boundary crossing each of these locations, there will not be any appreciable wave power. 

Figure 4.15 shows the Fourier transforms for each of these locations.

Like the 2D results (see Figure 3.12), there is no initial preferred wave mode. At z =  

115 Xi, there are no identifiable modes until T  =  30 Q -1, but by then results are unreliable 

because the interface boundary has moved. All that is left is evidence of the tips of the 

surface waves. z =  120 Xi shows wave power starting at T =  22 Q -1, with m  =  8 and 

m  = 1 4  modes. This coalesces into modes between m  = 5  and m  = 1 0  before moving on. 

Finally, at z =  125 Xi, the dominant modes are m  =  5,10.

Lastly, we look for the formation of any electric field parallel to the magnetic field in the 

domain, as a result of small scale magnetic reconnection. E\\ can be induced by increasing 

the diffusion parameter (vinit) to 0.01 Qi , as we did earlier to reduce problems with pressure 

balance. Alternatively, we can add in a electron temperature of 100 eV, which creates an 

electron pressure gradient for kinetic Alfven waves. Both of these approaches add an extra 

term to the electric field update. There is no significant change in the magnitude of E\\ using 

either of these approaches.

Figure 4.16 shows the locations where E\\ >  8.30 x 10-5 Vm-1 . These "blobs" are on the 

order of Xi, only a few grid cells wide. Twisting of the magnetic field from growth of the 

instability causes slippage of the field in these locations. This allows plasma to escape from its 

originating field line. We see evidence in each of the three layers representing density, where 

a number of plasmoid "blobs" have broken from spiked fingers, and have been transported 

along z .

4.5 Conclusion

Hybrid simulation gives us the advantage of looking at the ion kinetic scale effects of 

plasma motion in the RT instability. One effect is an inverse turbulent cascade, where energy 

injection at small scales cascades to large scales, and leads to the growth of larger surface
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Figure 4.15: Wave power coalescence in density over time. We examine the fast Fourier 
transform at three different values of z , because of motion of the interface boundary. Similar 
to the 2D case, wavepower is not focused into any specific m  number until coalescence. From 
the last panel we see that most of the wavepower is in the m  =  2 and m  =  4 modes by the 
end of the simulation.
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Figure 4.16: Regions of parallel electric field. The blue regions represent areas where E\\ >  

8.30 x 10-5 Vm-1 at the ion inertial scale. This strong guide field reconnection allows diffu­
sion of the magnetic field, detaching small plasmoids. Thus plasma becomes unfrozen from 
its initial field lines and is transported radially outward.
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Figure 4.17: RT 3D magnetic field profile across x  at y  =  y 0 , z  =  z 0. The profile can be 
compared to the time series magnetometer data from Saturn (see Figure 1.9). The distance 
between peaks is ~  5A*, similar in size to the structures at Saturn.

waves. Stochastic ion motion is the source of the original surface waves in the instability for 

the unseeded case. The evolution of the instability includes growth of finger-like structures 

on the order of A*. The thickness of the resulting current sheets is also on near A*.

Just as with the 2D RT simulation, larger k ±  has larger growth rates than smaller k ±  

in the seeded runs of the 3D RT instability. Growth rates are lowered by the inclusion of 

k||, which is representative of magnetic tension, which acts as a stabilizing force since we 

are not considering the case of the ballooning instability. However, if we could run the 

simulation with the frozen field lines at the y  boundary for a longer duration, we might 

witness collapsing flux tubes. Figure 4.17 shows variation in the magnetic field, including 

B y at y  =  y 0 , z  =  z 0 across the x  axis for T  =  50 Q -1.

Fourier analysis of the perpendicular waves along x  through the boundary layer reveals the 

presence of a turbulent cascade for the self-seeded case. The Kolmogorov relationship holds 

for wavelengths within the inertial range of wavelengths. The grid resolution was insufficient 

to probe the dissipation range, below A*. This is consistent with the detailed structure that is 

observed in Figures 4.13 and 4.16. Turbulent waves can then propagate to higher latitudes, 

until the narrowing of the channel makes the electron inertial length relevant. Fragmentation
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of the waves at this scale involves inertial Alfven waves that accelerate electrons into the loss 

cone and generate the observed broadband aurora. Conducting the same Fourier analysis 

for the parallel modes (a spatial sampling along y  through the center of the boundary layer) 

shows that k\\ is not turbulent. The slope is -1, not -5/3, which is consistent with pink noise. 

Figure 4.18 details the Fourier analysis.

The turbulence observed is a result of counter propagating waves along the magnetic 

field. The formation of surface waves in the unseeded simulation has an initial phase that 

varies along y . The motion of the plasma launches counter propagating parallel waves that 

interact and create turbulence in the perpendicular components of the magnetic field. This 

is similar to the formation of turbulence in the 2D eggbox simulation from Chapter 2. The 

counter propagating waves in the eggbox are forced through velocity perturbations, while 

the 3D RT turbulence is driven naturally through the formation of surface waves.

Next we examine evidence of radial plasma transport. One evidence is the increase of 

mixing of ions across the interface boundary. Figure 4.19 shows the increase of grid cells that 

have a mixture of tagged ions that originate from both sides of the instability. Each time 

step an algorithm takes a summation of all grid cells that have a mixing ratio between 0.25 

and 0.75 (i.e. a grid cell with more than a quarter of its ions that originate from the opposite 

side). This quantity is then normalized to the initial sum of cells that have mixed ions (the 

cells near the boundary layer are initialized with ions from both sides of the discontinuity). 

The number of mixed cells increases by a factor of five by T  =  47 Q -1. The mixing ratio 

also exhibits oscillation, with a period of 2n Q -1, the ion gyroperiod. Individual ions are 

transported across the interface boundary as part of their gyromotion. Return gyromotion 

briefly reduces the mixing of the plasma. This is evidence of plasma transport, but is 

insufficient to demonstrate decoupling of the plasma from the magnetic field. However, the 

presence of parallel electric fields and spatially isolated high density regions is indicative 

of transport of small plasmmoids through strong guide field reconnection. The width of 

the finger structures is near p*, so ion gyromotion also becomes a mechanism of diffusive
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Figure 4.18: Fourier analysis of the perpendicular and parallel wave modes in the self-seeded 
RT instability. The red lines on each plot represent the fitted slope. For k ± ,  the slope is 
-5/3, the expected value for the turbulent cascade. For k\\, the slope is -1, which is consistent 
with pink noise.
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Figure 4.19: Change in mixing ratio over time by grid cell. The sum of grid cells that have 
more than a quarter of their interior ions originate from the opposite side of the density 
discontinuity is plotted against time. Mixing increases by a factor of 5 by the end of the 
simulation. The oscillation is a consequence of ion gyromotion.

transport.

We now compare the simulation results to magnetometer data from Saturn. Figure 4.17 

shows the components of the magnetic field. The major peaks (or current sheet crossings) 

are separated by ~  1.4 x 104 km, or 5 A*. The corotational plasma flow is about 100 km s-1 , 

making the current sheet crossings roughly 6.0 x 104 km. Plasma conditions (from T h o m s e n  

e t  a l . [2010]) are such that A* is ~5000 km, and the typical distance between current sheet 

crossings is 12 A*. Large scale surface waves form at the same order of magnitude as at 

Saturn.

If we assume that the instability growth rate stagnates at some point in the equatorial re­

gion, the size of the perpendicular wavelengths can be estimated using Equation 4.3. Setting 

Y to zero, we obtain a relationship for the two terms in the equation:

g A 2nB2

LX L 2jlQ (Pl +  P2)
(4.4)
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Solving for L y, the length of the cavity, we obtain

_ g A L y ^0 (pi +  py)
L x =  2nBy (45)

which we can solve using known parameters at Saturn, at L  =  15. The fundamental mode L y 

is estimated to be about 8 R S (the width of the magnetodisc), and g  can be estimated using 

the centrifugal force at L  =  15 ( g  =  v y / r ) .  Mass density is roughly 6.3 x 10-yi kg m-3 at 

L  =  15, and the Atwood ratio is 3/5 based on the density at L  =  14 [ T h o m s e n  e t  a l . ,  2010]. 

The dipolar field strength is 6 nT. From this, we estimate the wavelength to be ~  2.4 x 106 

km. This is same order as the size of the waves estimated from the Cassini magnetometer 

data (Figure 1.9).
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Conclusion

The magnetodisc at Jupiter and Saturn is characterized by turbulence in the magnetic 

field. Broadband spectra of precipitating electrons at Jupiter suggest that a process is un­

derway whereby large scale perturbations undergo a turbulent cascade. The cascade couples 

large perturbations to dispersive scales (the kinetic and inertial Alfven wave). Hybrid simu­

lations of wave propagation in the giant magnetospheres help us understand the Io-Jupiter 

interaction and transport related physics. In the plasma torus and throughout the magne­

tosphere, the propagation of Alfven waves carries power to Jupiter’s ionosphere to generate 

aurorae. The reflection of waves within the torus/magnetodisc contributes to turbulence 

via the interaction of counter propagating waves. The centrifugal force from rapid rotation 

induces the onset of a centrifugally-driven flux tube interchange instability (akin to the RT 

instability) in the magnetodisc, which is the origin of turbulence within the magnetodisc. 

Turbulence is one possible explanation for the observed non-adiabatic heating of the mag- 

netodisc.

We will return the discussion to our guiding questions outlined in the introduction and 

how they enhance our current knowledge of magnetosphere dynamics.

5.1 Power Transmission in the Io Plasma Torus

• How much power from Io-induced waves is transmitted out of the torus, and what are 

their dispersive characteristics?

Wave power transmission (53%) is much higher than previous models (~20% ) [ W r i g h t , 1987; 

D e l a m e r e  e t  a l . ,  2003]. This increases the available power transmitted to higher latitude. 

This means that more energy is available to couple directly to the ionosphere. In the previous 

limit (20% transmission), nearly all of the wave power was required to generate the observed 

radiated power (only 10% of electron energy is converted into light in the aurora, with the rest 

being dissipated in the ionosphere, meaning that all the wave energy had to go into electron

105



acceleration to account for the power observed in the Io aurora). The power transmitted 

from the torus is 0.3-1.5 x 10-4 W  m -y , depending on the mass loading rate. More mass 

loading increases the total power transmitted out of the torus, but does not increase the 

ratio transmitted power to reflected power.

The hybrid code self-consistently evolves the state of the ion distribution function, which 

enables us to resolve ion inertial and and some ion kinetic effects within the torus, which 

is a more realistic description of the Io-Jupiter interaction than previous models [Wright, 

1987; Delamere et al., 2003; Jacobsen et al., 2010]. Pickup ions in the hybrid simulation 

are modeled, rather than just an initial perturbation in flow, or fluid interaction with a 

conducting obstacle. The momentum transfer rate coupled with the mass loading time scale 

determines the size of the original Alfvenic perturbation. The pickup ions have an initial ring 

beam distribution that is scattered into a thermal Maxwellian distribution. This results in 

the propagation of slow EMIC waves through the torus. The interaction of reflected Alfven 

waves and EMIC waves could be a contributor to turbulence in Io’s wake and/or pitch angle 

scattering of electrons. Turbulence is not observed in the 1D torus model, because there is 

no inclusion of perpendicular wavelengths. Further investigation requires 2D, or even 3D 

simulation to include the influence of k±.

The 1D torus model includes the characteristics of waves escaping the plasma torus. 

We have previously identified the right-hand and left-hand circularly polarized waves modes 

near the Alfven resonance. Ion cyclotron waves follow from pickup ion thermalization. The 

KAW mode is inconsequential within the torus with respect to ion heating and electron 

acceleration. It may not be necessary to accelerate the electrons within the torus (without 

E \ ) if large scale perturbations in the torus map to the electron inertial scale at high latitude. 

The inertial Alfven wave would then be responsible for the majority of electron acceleration.

• Is there evidence of turbulence in the interaction of counter propagating waves?

The purpose of the 2D eggbox simulation was to investigate wave propagation at the ion 

kinetic scale, and include a k± term to allow for the formation of KAWs. The first eggbox
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simulation had a very low f3 parameter, which is similar to the plasma conditions within the 

Io torus. The low f3 prevented the KAWs from heating the ions, due to the relationship /3 

has between the Alfven speed and the sound speed:

=  n k s T  =  2n k s T  n op  =  2yp 1 = 2  C  

P  =  B 2/ (2no ) =  p  B 2 Y P  va Y v A ( . )

When /3 ~  1, the Alfven speed is comparable to the sound speed, and the KAWs can interact 

with the ions. For f3 <  1, there are too few ions to resonantly interact with the wave. We 

expect that the majority of auroral electron acceleration happens at high latitudes as a 

consequence of the inertial Alfven wave (rather than the KAW), which cannot be addressed 

by the hybrid simulation. The frequency spectrum of the perpendicular component of the 

magnetic field shows a Kolmogorov cascade, which is characteristic of turbulence.

5.2 The Turbulent Cascade in the Magnetodisc

• Is turbulence present in the perpendicular modes of the RT instability?

Increasing the value of f3 in the eggbox simulation to unity improves the effect of ion Landau 

damping (ion Landau damping is effective when v th ~  va). The interaction here is similar to 

the self-seeding 3D RT simulation because of the counter propagating waves. In the initial 

stages of the RT simulation, the formation of surface waves is due to stochastic ion motion. 

As a result, phase differences arise between the surface waves parallel to the magnetic field. 

Parallel propagating waves result from the perpendicular ion motion. In the eggbox, the 

turbulent cascade transfers energy to smaller wavelengths. The 3D RT simulation instead 

shows evidence of an inverse turbulent cascade, where wave energy is transferred to larger 

wavelengths as a result of coalescence. Presumably there is a forward cascade as well to the 

dissipation scale, but we do not have the resolution to observe it. The eggbox, however, has 

high enough resolution to address ion heating. In the future we would like to run the RT 

simulation at high enough resolution to observe heating.
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Evidence of heating Saturn’s magnetodisc comes from Cassini magnetometer data [ K a m i n k e r  

e t  a l . ,  2017], but the source of non-adiabatic heating is still unknown. The 3D hybrid sim­

ulation shows that a turbulent cascade is present in the magnetodisc, while the eggbox 

simulation suggests that when the cascade reaches the ion kinetic scale, ion heating takes 

place. Thus turbulence could be one source of heating for ions in the middle magnetosphere 

at Saturn.

• Does the RT instability exhibit coalescence of surface waves (i.e., does the dominant 

mode cascade to larger wavelengths)?

• Can we estimate k ±  from the RT growth rate and the size of the resonant cavity and 

compare with observations?

Both the 2D and 3D RT simulations with seeded surface waves show consistency with 

linear theory of the RT growth rate. The fastest growing modes have higher m  numbers.

In the self-seeded simulations, small scale waves (at the ion kinetic scale) are manifested 

first. The slower growing modes have larger wavelengths, but eventually envelop the smaller 

wavelength modes, completing the inverse turbulent cascade of wave energy larger scales. In 

the 2D simulation, the waves eventually coalesce into a mode with small m  number. This is 

because there is no limitation on the minimum k ± .  In 3D, the k\\ mode is introduced, which 

limits the size of k ± ,  based on Equation 4.4 (Assume the growth rate goes to zero when 

the k • B  term is large enough to constrain the maximum value of k ± ) .  The magnetic field 

perturbations from the RT surface waves are on the order of several A*, similar in size to the 

large perturbations in Saturn’s magnetodisc (the disturbed magnetic field in Figure 1.9).

5.3 Radial Transport in the Magnetodisc

• Is there evidence of a parallel electric field in the RT instability that is indicative of 

plasma decoupling from the magnetic field?

The unseeded 3D RT simulation shows evidence of radial transport of plasma through ion
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mixing. The formation of finger-like structures is the result of wave mode coalescence. The 

width of the resulting current sheets are on the order of A* and p*. The transport of plasma 

also occurs via ion gyromotion across the current sheet. This kinetic mode of transport 

never goes away during the inverse cascade because the thickness of the boundary remains 

at the ion kinetic scale, and is a mechanism of diffusion. We also have evidence of the radial 

transport as blobs detach from the finger structures. Strong guide field reconnection could 

facilitate this, as evidenced by patches of increased parallel electric field.

5.4 Future Studies

The hybrid code can only model so far in the Io flux tube as a consequence of discounting 

electron inertia. Once the Alfven waves reach the boundary of the plasma torus, a sharp 

decrease in the density profile increases the wave speed to near luminal, and electron inertia 

becomes relevant. For future study, we propose to use the Gyrofluid Kinetic Electron (GKE) 

model [ D a m i a n o  e t  a l . ,  2007, 2015] to simulate the behavior of the waves at high latitudes. 

In this region, electron inertial effects dominate and the GKE code is effective at describing 

the propagation characteristics of these waves and the resulting coupling to electrons.

The GKE model, set up in dipolar coordinates, has seen extensive application in the 

study of electron energization by Alfven waves in the terrestrial magnetosphere at the L  = 1 0  

field line. It models the electron motion along the magnetic field line as drift-kinetic while 

ions are treated with a kinetic fluid closure based on a solution of a linear gyrokinetic 

equation [ C h e n g  a n d  J o h n s o n ,  1999]. It is a self-consistent model that can describe the 

dispersion of Alfven waves at the scales of the electron inertial ( A e =  c / u pe =  ^ m e / ^ 0 n e y ) 

and is therefore effective in describing the propagation of inertial Alfven waves at higher 

latitudes and the generation of the parallel electric fields within these waves to couple wave 

energy to electron energization. The waves identified in the 1D torus model can be used 

to set up boundary conditions for the GKE model just outside the torus. Time dependent 

variation of the magnetic field at the equatorial boundary can reproduce the same waves in
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the GKE domain.

The turbulent cascade for counter propagating Alfven waves is also poorly understood in 

the hybrid code. The 2D eggbox is limited by only one direction for k ± .  From the Vlasov 

theory of plasma waves, dispersion depends on both components of k ±  [ K r a l l  a n d  T r i v e l p i e c e ,

where n a , q a , and f a are the the densities, charges, and distribution functions of all present 

plasma species, and L  is the Landau contour. Of note is the k x k x E 1 term, which arises

The dispersion relationship is then dependent on the allowed wave modes in k ± ,  which are 

incomplete without a 3D model. We therefore propose an additional study using the hybrid 

code in three dimensions.

In the first case, we would expand the setup for the 2D eggbox, with about 30 particles

to be 0.1 Ai to capture the dissipation range. Lastly, we need to decide the size of the 

domain such that the endeavor is computationally feasible. We can reserve compute time 

on the Chinook cluster for about 240 processing units for 48 hours. Completion within that 

time frame limits each processor to pushing less than one million ions, not including the 

time it takes to update the field grid. With these limitations, we can simulate a domain of 

n x =  n y =  151 grid cells in the perpendicular domain and n z =  231 for the parallel domain. 

k ± max is therefore limited to n /15  A*, and k nmax to n / 2 3  A*.

Our investigation only included very local sections of the magnetodisc, ignoring global 

dynamics. To fully understand radial transport of through flux tube interchange, it is nec­

essary to consider the global entropy profile of the magnetodisc. Flux tube entropy must 

increase with radial distance to maintain long term stability of the magnetodisc. The inter­

change motion moves high entropy flux tubes deeper into magnetosphere, which creates an 

unstable state. Further consideration of radial transport will need to address this problem.

1973]:

(5.2)

from combining two curl operations from Ampere’s law and the magnetic induction equation.

per cell. Ion temperature is initialized such that plasma-,5 >  1. The grid scale would need
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Figure 5.1: Plasma transport at a viscous boundary. On the left, the interface between 
the magnetosheath flow and magnetodisc circulation is sheared and viscous, making the 
boundary Kelvin-Helmholtz unstable. The right figure is a 3D hybrid simulation of the KH 
instability with Saturn-like input parameters and a small magnetic shear.

A further investigation of radial transport will include the interaction of the magnetodisc 

with the magnetopause. Solar wind interaction with the magnetopause introduces a viscous 

boundary between magnetosheath plasma and the magnetodisc, as well as opposing shear 

flows (See Figure 5.1). The resulting tangential drag makes the boundary Kelvin-Helmholtz 

(KH) unstable. Adaptation of the 3D RT simulation can produce a similar simulation that 

includes this shear flows. Using this, we can investigate the ion kinetic scale features of a 

localized section of the magnetopause that might contribute to the asymmetric heating of 

the day-side magnetodisc. Turbulent heating as a result of RT and KH instability likely 

occurs at the scales necessary for small scale reconnection [ B u r k h o l d e r  e t  a l . ,  2017].
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Appendix A: Derivation of the Growth Rate of the Rayleigh-Taylor Instability

The Rayleigh-Taylor (RT) instability is characterized by a plane boundary between two 

fluids under the influence of a gravitational field. It is driven by situating the heavier fluid on 

top of the lighter fluid, which is a higher potential energy state in an unstable equilibrium. 

The equilibrium condition is described by the equation

d_

d z
P  ( z )  +

B y (Z )2 
2no

+  p  ( z )  g  =  0. (A.1)

Any perturbation would lead an unstable state where the heavier fluid would tend to sink 

while the lighter fluid attempts to rise. We can apply this instability to a plasma system 

where heavy or dense plasma rests atop a light/tenuous plasma under the influence of gravity 

or some non-inertial reference frame. We define the coordinate system in an x z  plane where 

gravity is along —z, as well as the stratified density gradient. The primary magnetic field is 

out of plane (y). We limit any components of B  to the x  and y  components. See Figure A.1 

for a diagram. We derive the governing equation and growth rate for the RT instability

Figure A.1: Diagram of a Rayleigh-Taylor instability. The magnetic filed is out of the plane 
(y), while gravity acts along —z. The instability is driven by the higher energy state of a 
heavy/dense plasma on top of a light/tenuous plasma.

from the MHD equations, and assume incompressible flows [ C h a n d r a s e k h a r , 1961]. We also 

assume that all variations of the equilibrium state are along z , and that the perturbed
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quantities are plane waves of the form

u 1(x, z, t ) =  u 1(z) exp[ikx +  qt]. (A.2)

We start with using the following equation for momentum with gravity:

d u
p—  =  —pu ■ V u  — V p +  J x B  — pg (A.3)

then linearize each of the MHD equations:

^  =  — u r Vpo — uo ■ Vp1 — p^V'-tuT— poV ' t f i ' 0 
dt

du1 0 _  _
po ^ ~  =  — p l uo V u O  — pou1-Vuo — pouo-Vu1 

dt

— V p 1 +------(V  x B 1 ) xB o-+------ (V  x Bo) x B 1 — p1 g (A.4)
no no

dB
- t  =  V x  (u 1 x B o ) +  V x  (uoB 1 )

dp1  =  — u1-Vpo — uo-Vp1 — YP1V ' O o '— YPoV ' - ' T 0 
dt

Now add in the substitutions for the plane wave analysis, which simplifies to the following:

qp1 =  — u 1z dz po — ikuoxp1

poqu1 =  — pmz dz UxX — ikpouo x u 1 — V p 1 +  —  (V  x B 1 ) xB o — p1gz
n1 (A.5)

qB 1 =  V x  (u 1x B o) +  V x  (uox B 1)

qp1 =  — u1z dzpo — ikuoxp 1
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[(V  x B i) x B o]x =  ( dzB ix — dxBiz) Boz — ( dxBiy — dyBix) Boy

=  ( dzB ix — ikB iz) B0z — ikB iyB0y 

[ (v  x B i ) x B 0]y =  ( dxB iy — dyB ix) B0x — ( dyB iz — dzB iy) B0z (A .6)

=  ikB iy B0x +  dz B iy B0z 

[ (v  x B i ) x B 0]z =  dzB iyB0y — ( dzB ix — ikB iz) B0x

The components of qB i from the induction equation are

qBix =  — dz ( UizB 0x — u ixB0z — u0xB iz)

qBiy =  — dz ( uiyB0z — u izB0y) — ik ( uixB0y — u iyB0x +  U0xB iy) (A .7)

qBiz = ik ( uizB0x — u ixB0z — u0xB iz) .

From incompressibility and V  • B i =  0 we have

Expanding the J x B  term for each component we get:

(A.8)
ikuix +  dz u iz =0 

ikBix +  dz Biz =0

Now we go back to our assumption that Bz =  0 and expand the p0qui and qB i terms.

p0 quix =  — p0uiz dz u0x — ikp0 u0xuix — ik p i  ikB0y Biy
P0

p0quiy =  — ikp0u0xiiy +------ ikB0xBiy
P0

p0 quiz =  — ikp0u0xuiz — dzPi

+ [B0ydzB iy — B0x ( dzB ix — ikB iz)] — pig (A .9)
P0

qBix =  — dz ( uizB0x — u0xB iz) 

qBiy =  — ik ( uiy B0x +  u0xB iy 

qBiz ik ( uizB0x u0xB iz)
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(A.10)
po (q +  ikuox) u1y ikBoxB 1y

no

( q +  ikuox) B 1y iku1yB ox

which, when solving for q , yields

(  B 2 \ 2
q =  —ikuox ±  — . (A.11)

nopo

The growth rate does not depend on perturbations of the y components. Continuing with 

the x  and z components, eliminating all y dependencies:

poqu1x =  — po u1z dz uox — ikpouox u1x — ikp1

po1 u1z =  — ikpouoxu1z — dzp 1 -------B ox ( 0zB 1x — ikB 1z) — p1g
no (A.12)

qB1x =  — dz (u1z Box — uoxB 1z)

qB 1z =  ik (u — 1zBox — uoxBu )

We can add an additional simplification by assuming that there is no initial shear flow along 

x (uox =  0).

qp1 =  — u1z dz po 

poqu1x =  — ikp1

poqu1z =  — dzp 1 -------Box ( dzB 1x — ikB 1z) — p1g
n1 (A.13)

qB1x Boxdz u1z Boxiku1x

qB1z Boxiku1z

0 =  iku1x +  dz u1z

Putting the y  components of u 1 y  and B 1y  together we get two equations
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We are interested in flows along z, so by making the various substitutions into the z com­

ponent of the momentum equation we get:

„ p0quix B0x (  rv B0xikuix i B0xikuiz\ u iz dz p0
p0quiz =  — dz  ------------- dz--------------------- ik -------------- +  g -----------

—ik H0 \ q q J q
p0qdz u iz B0x (  rv B0xdz u iz B0xikuiz\ u iz dz p0 /A

=  — dz ---- 77772------------ \dz  +  ik   +  g   (A .14)— (ik) io  \ q q )  q
k2 B2 /  n nk2

k p0uiz =  dz (p0dzuiz) + 2 ~  (d1uiz — k2ui^j + 2~ (dzp0) u iz
q2 io  v J q2

From these we get the governing equation:

k2 B2 / n  nk2
dz ( p0dzuiz) + 2 ~  {d2zu iz — k2uiz) — k2p0uiz =  y  ( dzp0) uiz (A .15)

q2 io  v J q2

Now we solve for the growth rate by integrating this equation over the discontinuity in p , 

from — t to +t.

k2 B2 r£ r£ nk2k B0y 2 2 2 gk
j  d z ( p 0d z u iz ) d z  +  - 2—  f  ( d 2zu iz — k 2u iz ) d z  — k 2 f  p ou u d z  =  — 0—  f  ( d z p o) u u d z

J —£ q  f i o —£ —£ q  —£

(A.16)

Simplify each term individually using the surface wave approximation, u iz =  a  exp (—k|z|). 

For the first term we get:

J  d z ( p o d z u iz ) d z  =  [pod z u iz ]—£ =  — p o2k a e ~ k£ — p oik a e —k£ (A.17)

Second term:

J  ( d 2u iz  — k 2u i z ) d z  =  J  d 2z u i z d z  — k 2 J  u i z d z

=  [dz u iz ]-£ — k2

=  — 2 a k e —k£ — k 2 (  2a — 2a e 
k k

u i z d z  +  £ u i z d z

—k£ =  —2a k

(A.18)
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Third term:

/ € po re
pou1z dz =  pou1z dz +  pou1z dz

-e J-e Jo
p o 1 a  ( 1  — e-ke) — ( e - k e  — 1 ) (A.19)

k v k
=  po1a . po2a f  p o1a  . po2a \ -ke
=  ~ k ~  +  ~ k ~  V ~ k ~  +  ~ k ) e

Right side term:

J  ( d z p o) u 1z d z  =  [u1z po]—e — J  p o d z u 1z d z

=  (po2 — po1 )ae ke — [po1 a ( 1  — e  ke) +  p o2a ( e  k  — 1)] (A .20)

=  (p o2 -  p o1 ) a

Combining all the terms:

k 2 B 2
— ka(po1 +  p o2) e ~ ke +  - 2 — -  (—2ka)

q 2 n o

j 2 f  p o1a  . po2a f p  o1a . p o2a \ - ke\ g k<2 , \
"  k  { —  +  I T  " h r  +  ~ t )  e  > =  — ̂ ^ (p”2 — po1)a

Now let e —>• 0:

(A.21)

k 2 B 2 g k 2
—ka(po2 +  po1 ) +— 2— y (—2ka) = ------ — (po2 — po1 )a (A.22)

q  n o q

and solve for q .

q 2 =  gkp2— pi  — 2(ky By )\  (A.23)
p2 +  p 1 no(p1 +  p2)

Growth rate is dependent on the wavenumber k  as well as the the severity of the density

gradient. Large k^ increase the growth rate of the instability, while parallel wavelengths 

suppress growth. The ratio , known as the Atwood number, increases growth.
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Appendix B: Derivation of the Dispersion Relationship for Alfven Waves

To find the dispersion relationship for Alfven waves in plasma conditions similar to those 

in the giant magnetospheres, we model the plasma as fluid waves with two species: electrons, 

and ions (subscript s will denote a single species). We start with continuity and momentum 

equations, and close with Maxwell’s equations to get the following system:

dns „  ,
—  +  V  (nus) =  0

m snl ^  +  us-V u J  =  — Vps +  qsn (E +  us x B )
V d  J (B.J)

^  ^  1 d E .V  x B  — — —  =  none (u* — ue) 
c2 dt

^  ^  d B
V  x E +  —  =  0 

dt

A very important aspect of dispersive Alfven waves is parallel electric fields. We will intro­

duce the parallel electric field as a combination of scalar and vector potentials:

d A
E =  —V 0  — d L  z (B.2)

where the perpendicular magnetic perturbation is B^ =  V A z (x,y)  x z. We do not assume 

perturbations in the parallel component of B  due to the low plasma-5 assumption. We then 

separate the components of the electric field:

E ^ =  V x 5
E  e t  d A z (R 3)Eli — — —— —

d z  d t
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From Maxwell’s equations we derive an expression for the current in terms of the vector 

potential:

^  d A z 
J  =  V ±

d z  (B.4)
i0 J\\ =  — V l A z

For very extremely low f3 plasmas (where f3 ^  m e/ m i) ,  electron inertial effects dominate. 

Electron acceleration along the field line is a response to the parallel electric field. We will 

assume that the parallel current is carried by the electrons, such that J\\ =  n q eu e\\, and that 

the perpendicular current is carried by polarization drift (J^ =  n q sut =  Êx ). We then

obtain

1 m e

1 -

i 0 n q  — e  

1 t om e
2 V ii o t o  n q e ,

( 1 — 4  v i '
pe

1 — A2 V

m e dJ\\ 

n q e d t  

tt-,2 d A zV2 — z V± d t

d A z

d t

d A z

d t

d A z

d t- L  1

' 3 $  +  d A z

Kd z  

d A z

d t

d t

(B.5)

where Ae is the electron skin depth. Now combine the earlier equations:

T n m i  dEj_
J± =  n q s Ui

B02 dt

E ± =  — V ± $  (B .6)

dAz
J  =  V±-

d z
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which leads to

_1_ d A z 
n o d z  

d A z
V

d z

n m * d t

B  X d t

1 ^  d t  
— ^  V  ±~~

v A

(B.7)

d t

For the polarization drift, we can substitute the full derivative of t  with dpt =  +  u E  ■ V t .

V ±
A

d z

d A z
d z

— - 2  V ±
v a

— - 2  V ±
v  A

1 d t  

v A  d t

d t  , \ i
—  +  (uE ■ V ± ) t

d t  
d t  ~

0 (B.8)

Taking a time derivative of Equation B.5 yields

1 — AeV i
d 2 Az

d t 2

d t

d z
(B.9)

which is combined with Equation B.8 to get the equation for the inertial Alfven wave:

1 "  A2V i ' 8(2
d 2A z 2 S 2A Z

=  v A~ z 2 (B.10)

If we then assume plane wave solutions, we can solve for the dispersion relation:

u 2 =
k 2v A2

1 +  -1  A2

Dispersion from the main Alfven wave ( u / k  =  vA), only occurs for low 5  plasmas (5 < 

m e / m * )  and where k ±  is very large [ S t i x , 1992; S w a n s o n , 1989]. These plasma conditions are 

not met in the magnetodisc or equatorial regions of the magnetospheres of the giant planets, 

so they have little influence in electron acceleration near where the waves are generated. 

Instead, they become relevant at high latitude, where the plasma is more rarefied, and
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wavelengths are shortened due to the turbulent cascade and convergence of magnetic field 

lines.

To find the dispersion relationship for Alfven waves in the magnetodisc, we consider the 

limiting case in a low f3 plasma, but f3 is still larger than the electron to ion mass ratio. We 

also assume that the Alfven speed is much slower than the electron thermal speed, and that 

the effect of electron inertia is negligible. Any arising parallel electric fields are a result of 

electron pressure gradients. The parallel electric field is then

jp T e d n e i  __ 2 2 d n ei  (T2 oA
E  =  — e n ^  =  —e i o p - v ^ - ^  <B -12)

where T e is electron temperature, and p s is the ion acoustic gyroradius ( p s =  c s / Q i , and c s 

is the sound speed (Te/m i) i/2). We combine it with Equation B.3 to get

2 2 d n ei  d A z d $
W a —  =  - g t  +  d z  <B -13)

With the continuity equation (ddto +  V  ■ ( n 0 ue) =  0) and the expression for parallel current 

above (Equation B.4), we obtain

d n ei 1 d  „ 2
- n r  +  —  7T V I a zo t  e i 0 o z

+  V 2 Az =  0. (B.14)

Combining the above two equations yields

02A z d 2 dAz 2 2 2 d2A z
S p  — d z 1'* S T  +  VA p*V l  ̂  =  0 . (B .15)

We again assume plane wave solutions and get the following dispersion relationship:

u  =  -\\Va / 1 +  k±p2) / (B.16)

It is often more useful to consider the dispersion relationship in terms of electron and ion
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temperature. H a s e g a w a  [1976]; L y s a k  a n d  L o t k o  [1996] derive the dispersion relationship 

from the dielectric tensor and get

(B.17)

which is relevant for when plasma-5 >  m e / m * .  Kinetic Alfven waves have a larger phase

velocity with a greater electron temperature. Also, a larger k  is responsible for dispersion 

from the non-dispersive Alfven wave.

To find the dispersion relationship for a small (~  A *) parallel propagating Alfvenic per­

turbation in a cold incompressible plasma, we need to add the Hall term to the magnetic 

induction induction equation (for the generalized Ohm’s law, we use the following terms: 

E =  — u x B  +  — J x B ). We assume that B  =  BoZ and k =  kZ. First, linearize the MHDnq y u ’

equations to obtain

p  =  Po +  Pi

u =  u i
(B.18)

B  — BoZ +  B i 
d u i V  x B i

x BoZ

Assume plane wave solutions, and we obtain the following for the last equation:

i k  x B i ^
iu u i =  B o  x z

n opo
(B.19)

Then solve for Ui :

(B.20)

Now take Faraday’s law with the Hall term

(B.21)
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and linearize it to obtain component solutions:

—lu B  i =  —
( i k 2 B 20 k 2 B ()

 - B \ x + -------  B i J  x  +
\ l oP ou  /lo n g  ) \

( k2Bo D i k 2 B 2
B i x

—lu B  i =  —
lk2v2„,2 

a

u -Bix +
k2 n ,c2

u,
Biv x  +

lo  n g  

k 2 Q , c 2

l o  P q u
B iv) y

lk2i)2 D lk vn D B ix ------------ B
(B.22)

pi u pi u iv x

where vA is the Alfven velocity, upi is the plasma frequency, and Qi is the ion gyrofrequency. 

We now introduce a parameter Xi =  — , the ion inertial length, which is a characteristic
wpi

length for ion kinetic scales. We can rewrite the above equation in matrix form to get

/
— l u  + ik2vA

— k 2Q i X'2 — l u  +

k 2t t iX 2
ik2v

\ f ~  \
B 1x

\B iV J
(B.23)

Solving the matrix (det M  =  0), we find that

4u  

k4 2vn
u 2

k 2
+  v

u  \
2 2

k )
v A

(  u  >
\ k )

a x 2) 2 u 2

M )  u 2

v\ ±  HiX2u

(B.24)

From this we see the dispersion from the main Alfven wave, with (+ ) being associated with 

the faster whistler mode, and (-) with the slower ion whistler mode. The whistler mode is 

right hand circularly polarized and the ion whistler mode is left hand circularly polarized. 

The change in polarization happens at u / k  =  vA, the Alfven resonance [S t i x , 1992].

w 02A

2

2
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The electric fields in the hybrid code are determined from a simplification of Ohm’s law 

(or electron momentum equation with no inertia), given by

E =  —ueXB — v  (ue — ui) (C A )

where v  is a resistive ion-electron collision term, r  is the electron to ion mass ratio, and ue 

and ui are the electron and ion velocities respectively. Electron flow speed is calculated from 

Ampere’s law:
V  x B iue =  u i ---------------  (C.2)

w n

where w  is the ion weighting parameter and n  is the local density. Individual ion motion is 

determined by the Lorenz force law to get an equation of motion:

dv-
A A  =  E +  v  X B . (C.3)

The time stepping scheme is accomplished in two primary parts. Motion of the ions are 

updated in one time step, while all the fluid and field quantities are updated on a subcyle 5 t  

that is a tenth of a normal time step (d t ). Figure C.1 is a flowchart that shows the update 

of the ions and fields.

Ion velocities are generally initialized with a Maxwellian distribution whose width de­

pends on temperature, or thermal velocity of the ions. An easy model for a two-dimensional 

initial Maxwellian is given by

Vi =  V fh2J  — ln (ri)cos(n r2) (C.4)

where v i is a component of ion velocity, v th is the thermal velocity of the ions, and r i , r 2 

are random numbers between 0 and 1. This equation is extended to the three-dimensional

Appendix C: Hybrid Code Algorithms
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P a r t i c l e U p d a t e

n-3/2 n-1 n-1/2 n n+1/2 n+1 n+3/2

up up , |--V-- dt

I________________ I /  : UP \
ProvisionalExtrapolation

F l u i d & F i e l d U p d a t e
m-3/2 m-1 m-1/2 m m+1/2 m+1 111+3/2

uf E,

B E

I-*   b
PredictorStep , - ' '

B  >  E ^

I----------- i--------  ̂ b
CorrectorStep

Figure C.1: The time stepping algorithm. A summary of the time stepping algorithm showing 
the temporal relationship between particle, fluid and field variables. The particle positions 
(densities) at the half time step, n+1 /2 , are used to update the fluid and field quantities (on 
the subcycle time step) from time level n  to n  +  1. The subcle time step, S t , is d t /10. From 
D e l a m e r e  [1998].
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case as well. The update to the ion motion must be made so that energy of the particle is 

conserved. A normal first-order approximation for ion motion using a routine such as the 

Euler method results in ion heating, as the gyroradius gradually increases. Second-order 

schemes reduce the error enough for the ion motion to be stable for a longer period, but 

still results in heating. Instead, we use an update algorithm proposed in B o r i s  [1970] that 

calculates half time step velocity updates so that the guiding center of the ion gyromotion is 

followed, and the ions maintain their temperature indefinitely. We introduce new variables

v±  =  v n± 2 T  A t En (C.5)

where

v n =  1 (v+ +  v - ).

Substitute this into the discretized form of the Lorentz force equation to get

v n+1/2  v n—1/2 -7m I , Tn w onE n +  v n x B n. (C.6)
A t

where the factor g / m  is included in the electric and magnetic field: E ^  mE . This leads to

(v + +  A t E n) — (v -  — A t E n) =  A tEn +  A t(v n x B n) (C.7)

v + =  v -  +  A t (v + +  v - ) x B n (C.8)

We need to get an explicit expression for v +, that is not dependent on E . Manipulating the 

equation, we get a value for v +:

A t2
v -  +  A t(v -  x B ) +  —  (v -  ■ B )B  (C.9)

(B 2)nA t 2 
1 +  -— -A— v + = (B 2)nA t 2 

1 ,
[ 4 J — 4
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Using v +, we can now solve for the advanced time step:

(C .1 0 )

Defining v±  eliminates the electric field, so that the ion motion is done in the rest frame 

of the plasma. Ion motion is just a rotation in that frame. This allows resolution of the 

ion gyromotion and avoids heating the ions from propagating numerical errors [ B i r d s a l  l  a n d  

L a n g d o n , 1985].

The technique for performing vector operations on a field grid is described in Y e e  [1966] 

and S w i f t  [1996], and shown in Figure C.2. The main difficulty is enforcing the non­

divergence of the magnetic field (V  ■ B  =  0) on the grid. To overcome this, two cells 

are modeled: the main cell and the dual cell. The main cell is at the grid point ( i , j , k )  

and the center of the dual cell is at the main cell corner (i +  2 , j  +  | , k  +  2 ). The electric 

field components are defined on the main cell faces, and the magnetic field components are 

defined on the main cell edges (or dual cell faces). All other vector quantities are defined 

on the main cell faces. We can then advance the magnetic field update by applying Stoke’s 

theorem to Faraday’s law
f  d  B  r

f ^ r - d A  =  / E - dl . ( a n )

Field equations must be interpolated to the dual cell grid points and then the appropriate 

curl operations can be performed to maintain closure of the field equations. This only works 

if the magnetic field is initialized such that there is no divergence.

Finally, the particle-in-cell algorithm must interpolate the values of field quantities from 

the grid points to the ions. In reverse, ion motion must be aggregated and integrated to 

determine the their macroscale statistical properties onto the grid [ P o t t e r , 1977]. Figure C.3 

illustrates the interpolation of grid properties to an ion at point P . The eight nearest grid 

points are used for the interpolation. The weighting of each grid point is just the ratio of 

the subvolume of the opposite corner of the cell to the whole volume of the cell.

v n+i/2 =  v+ +  —  E'
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Figure C.2: The coordinate dual cell. The coordinate cell showing the relationship between 
the main and dual cells, and the components of the electric and magnetic fields. The dot­
ted line illustrates the line integral used for the advancement of B y [ Y e e ,  1966]. Figure 
by D e l a m e r e  [1998].

Figure C.3: Particle-in-cell weighting. An illustration of the particle-in-cell weighting al­
gorithm for interpolating fluid and field quantities to the particle positions and particle 
densities of the grid positions. The normalized weight for each grid point is the subvolume 
of the opposite corner of the cell divided by the cell volume [ D e l a m e r e ,  1998].
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Appendix D: Updates to the Hybrid Code

Following are a number of major improvements made from an inherited version of the 

hybrid code. Creation of the hybrid code was based off of a template from the SWAP version 

of the code, designed to model the response of New Horizon’s SWAP instrument in Pluto’s 

environment. The following segments of code that contain parts of subroutines omit the 

specification section for brevity.

The first major adjustment is the complete rewriting of the code syntax from Fortran70 to 

Fortran90. The main reason for doing so is an update to bring the code into alignment with 

current programming best practices. Some examples include proper looping and branching 

(elimination of the g o t o  command, implementing blocking of code, and optimizing for parallel 

processing), eliminating global variables in favor of improving the scope of variable arrays, 

and rigorous specification sections to prevent memory loss. The greatest advantage gained 

here is modularization of the code, making modification of the code for specific applications 

easier. For example, all particle initialization routines are now contained within one module. 

Any new scenario can be loaded by specifying a new routine within the module, and passing 

it to the main program. Boundary conditions are also modularized, allowing users to easily 

choose between a few different options from the input file, instead of having to block out many 

sections of code across many files to have the same effect. Adding new boundary conditions 

would require major revisions to one file only. One major remaining weakness that we would 

like to see improved is the the ability to easily change the parallelization scheme. Currently 

the code only supports parallelization of particle updates. Domain decomposition of the grid 

is a useful feature that is not available in this version. Any domain decomposition has to 

rely on an earlier and less stable version of the code.

Particle initialization through random number generation is an important component to 

obtain good particle statistics. The PGI Fortran compiler on the Pacman cluster did not use 

separate seeds for each processor, essentially negating parallelization. The following code
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was added to use two levels of seeding to ensure that each processor is generating separate 

sequences of numbers.

s u b r o u t i n e  s e e d _ m p i ( m y _ r a n k )  
c a l l  r a n d o m _ s e e d ( s i z e =n)  
a l l o c a t e ( s e e d ( n ) )
!  F i r s t  c h e c k  t o  s e e  i f  OS p r o v i d e s  a random number 
o p e n ( n e w u n i t = u n , f i l e = " / d e v / u r a n d o m" ,  a c c e s s = " s t r e a m " ,  & 
f o r m = " u n f o r m a t t e d " ,  a c t i o n  = " r e a d " ,  s t a t u s  = " o l d " , i o s t a t ) 
i f ( i s t a t  == 0)  t he n  

r e a d ( un)  s e e d  
c l o s e ( un)

e l s e  !  F a l l b a c k  t o  u s i n g  t i me  and r a n k .  
c a l l  s y s t e m _ c l o c k ( t )  
i f ( t  == 0)  t he n

c a l l  d a t e _ a n d _ t i m e ( v a l u e s = d t )
t  = d t ( 1 )  * 3 6 5 _ i n t 6 4  * 24 * 60 * 60 * 1000 &

+ dt  ( 2 )  * 31 _ i n t 6 4  * 24 * 60 * 60 * 1000 &
+ dt  ( 3 )  * 2 4 _ i n t 6 4  * 60 * 60 * 1000 &
+ dt  ( 5)  * 60 * 60 * 1000 &
+ d t ( 6)  * 60 * 1000 + d t ( 7 )  * 1000 &
+ dt  ( 8)  

end i f
!  Use rank f  o r  l ow b i t s  and t i me  f  o r  h i g h  b i t s  

i f ( b i t _ s i z e ( m y _ r a n k )  <= b i t _ s i z e ( t ) )  t he n
t  = my_rank + i s h f t ( t ,  b i t _ s i z e ( m y _ r a n k ) )  

e l s e
t  = i e o r ( t ,  i n t ( m y _ r a n k , k i n d ( t ) ) )  

end i f
!  Here we ' r e  u s i n g  a bad RNG t o  s e e d  t h e  b e t t e r  o n e .  

do i  =1 , n
s e e d  ( i )  = l c g ( t )  

end do 
end i f
c a l l  r a n d o m _ s e e d ( p u t = s e e d )

The parameter b e t a _ p  was added to particle initialization, which represents individual 

particle weights. Before, all ions had the same weighting. Individual particle weights per­

mit variation in density without having to introduce additional ions. Each subroutine call 

that requires aggregation of ions to calculate momenta and density on the grid require this 

parameter. Shown is a part of the ion initialization from the 3D RT simulation.
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! From p a r t _ i n i t . f 9 0
b e t a _ p ( l )  = r e a l ( N i _ t o t * r a t i o * p r o c n u m ) / v o l /  &

( n p _ b o t t  o m * ( ( 1 . 0 - t a n h ( ( x p ( l , 3 ) - q z ( n z / 2 ) ) / L o ) ) / 2 . 0 )  )

This subroutine calculates an electron gradient pressure on the grid dependent on a 

temperature difference between ions and electrons. It adds another term to the electric field 

update, and allows the modeling of superthermal electrons.

s u b r o u t i n e  g e t _ g r a d P
etemp = e t e m p 0 * 1 1 6 0 4 . 5 0 5  ! eV t o  K e l v i n
do i  =2 , nx -1 

do j = 2 , n y -1 
do k=2 , nz - 1

n p 1 = 0 . 5 * ( n p ( i  + 1 , j  , k )  + n p ( i , j  , k ) )
gdnp = ( n p ( i + 1 , j , k ) - n p ( i , j , k ) ) / d x _ g r i d ( i )  
a0 = k b o l t z * e t e m p / ( m i o n * n p 1 ) 
g n p f ( i , j  , k  , 1 )  = a0* g dnp

n p 1 = 0 . 5 * ( n p ( i , j + 1 , k ) + n p ( i , j  , k ) )
gdnp = ( n p ( i , j + 1 , k ) - n p ( i , j , k ) ) / d y _ g r i d ( j )
a0 = k b o l t z * e t e m p / ( m i o n * n p 1 ) 
g n p f ( i , j  , k  , 2 )  = a0* g dnp

n p 1 = 0 . 5 * ( n p ( i , j , k + 1 ) + n p ( i , j , k ) )
gdnp = ( n p ( i , j , k + 1 ) - n p ( i , j , k ) ) / d z _ g r i d ( k )  
a0 = k b o l t z * e t e m p / ( m i o n * n p 1 ) 
g n p f ( i , j  , k  , 3 )  = a0* g dnp  

enddo  
enddo  

enddo
end s u b r o u t i n e  g e t _ g r a d P  

! From s u b r o u t i n e  g e t _ E
g r a d P m f ( 1 )  = 0 . 5 * ( g r a d P ( i , j  , k , 1 )  + g r a d P ( i + 1 , j  , k , 1 ) )
gradPmf  ( 2)  = 0 . 5 * ( g r a d P ( i , j  , k , 2 )  + g r a d P ( i , j + 1 , k , 2 ) )
gradPmf  ( 3)  = 0 . 5 * ( g r a d P ( i , j  , k , 3 )  + g r a d P ( i , j  , k + 1 , 3 ) )
do m =1 , 2

E ( i , j , k , m )  = c ( i , j , k , m )  -  g r ad Pmf ( m)  
enddo

Boundary conditions are no longer limited to being periodic. These few routines keep 

the x  and y  field boundaries periodic, but change the condition on z. Ions that leave the z
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domain are reinitialized randomly in x  and y, but remain near the z boundary. v z is also 

reversed.

! From s u b r o u t i n e  p e r i o d i c _ x y  
do i  =1 , nx 

do k=1 , nz 
do m=1 , 3

b ( i , 1 , k , m )  = b ( i , n y - 1 , k , m )
b ( i , n y , k , m )  = b ( i , 2 , k , m )  

enddo  
enddo 

enddo

! Z d i r e c t i o n  i s  n o t  p e r i o d i c  
do i  =1 , nx 

do j  =1 , ny 
do m=1 , 3

b ( i , j , n z , m )  = b ( i  , j  , n z - 1  , m) 
b ( i , j , 1 ,m) = b ( i , j , 2 , m )  

enddo  
enddo 

enddo

! From s u b r o u t i n e  p a r t i c l e _ b o u n d a r y  
! P a r t i c l e s  t h a t  e x c e e d  z - d o m a i n  ar e  r e i n s e r t e d  
do l =1  , N i _ t o t

i f  ( x p ( l , 3 )  . l e . q z ( 1 ) )  t he n
v p ( l  , 3 )  = - v p ( l , 3 )
xp ( l  , 1 )  = qx ( 1 )  + ( 1 . 0  -  p a d _ r a n f  ( ) ) * (  q x ( n x - 1 ) - q x  ( 1 ) )
xp ( l  , 2 )  = qy ( 1 )  + ( 1 . 0 - p a d _ r a n f  ( ) ) * (  q y ( n y - 1 ) - q y ( 1 ) )
x p ( l , 3 )  = qz ( 1 )  + ( qz ( 1 )  -  x p ( l , 3 ) )  

e l s e  i f  ( x p ( l , 3 )  . g e . q z ( n z ) )  t h e n
v p ( l  , 3 )  = - v p ( l , 3 )
xp ( l  , 1 )  = qx ( 1 )  + ( 1 . 0  -  p a d _ r a n f  ( ) ) * (  q x ( n x - 1 ) - q x  ( 1 ) )
x p ( l  , 2 )  = qy ( 1 )  + ( 1 . 0 - p a d _ r a n f  ( ) ) * ( q y ( n y - 1 ) - qy ( 1 ) )
x p ( l , 3 )  = q z ( n z ) - ( x p ( l  , 3 )  -  q z ( n z ) )  

e n d i f  
enddo

An array representing a gravitational field has been added to the particle initialization. 

More accurately, it can be used to model any external force that does not have time de­

pendence. The g r a v  array is initialized in units of acceleration (km s-2 ), and added as a
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component of the electric field update.

! From p a r t i c l e  i n i t i a l i z a t i o n  r o u t i n e .  
do i  =1 , nx 

do j  =1 , ny
g r a v ( i , j  , : )  = - g r a v 0 * ( t  a n h ( ( q z ( : ) - q z ( n z / 2 )  &

-  1 2 0 * d e l z ) / ( 3 0 * d e l z ) )  -  &
t a n h ( ( q z ( : ) - q z ( n z / 2 ) + 1 2 0 * d e l z ) / ( 3 0 * d e l z ) ) )  

enddo 
enddo
! f r o m g e t _ E
E ( i , j , k , 3 )  = c ( i , j , k , 3 )  + g r a v c ( i , j , k )

Each time step it is necessary to sort each ion into its respective grid cell so that the fields 

can be updated. The most computationally intensive subroutines are g e t _ E  and g e t _ E p , 

which rely on this sorting. The subroutine was improved by replacing the linear search 

algorithm with a binary search algorithm. The time spent on the search routine is improved 

from O ( n )  to O(log n). Only the algorithm for the search in the x  domain is shown.

! From s u b r o u t i n e  g e t  _ p i n d e x  
i =1
h i  = nx 
do

mid = ( i + h i  ) / 2
i f  ( x p ( l , 1 )  . l t . q x ( m i d ) )  t he n

h i  = mi d 
e l s e  

i  = mi d 
e n d i f
i f  ( i  + 1 . ge . h i )  e x i t

enddo
i j k p ( l , 1 ) = i

The following routine adds mass loading to the chemical interactions module. It directly 

adds additional components to the x p ,  v p , and weighting arrays each time step which adds 

additional ions to the domain. The bottom  loop calculates the momentum and energy added 

by each particle so that the simulation can keep track of the total energy and momentum in 

the domain. After that, the density and bulk velocity on the grid are recalculated.

s u b r o u t i n e  M a s s _ l o a d _ I o ( m _ t s t e p )
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! Mass l o a d  I o  w i t h  i o n s  
m_pu1 =m1
! Mass l o a d i n g  s c a l e d  i n  t i me
i f  ( ( m _ t s t e p  . g t . 20)  . a n d .  ( m _ t s t e p  . l t . 6 0 0 0 ) )  t h e n

s c a 1  = e x p ( - r e a l ( m _ t s t e p - 4 0 0 0 ) * * 2 / 2 0 0 0 . 0 * * 2 )
! Rat e  d e p e n d e n t  on i n t e r a c t i o n  c r o s s  s e c t  i o n  
mdot = s c a 1 * s q r t ( m i o n * n f _ i n i t * a m p / m u 0 / 1 e 9 ) *  & 

b 0 _ i n i t * d x * d y * 1 e 6  
dNi  = 2
i f  ( my_r ank  . e q . 0)  t h e n

w r i t e  ( * , * )  ' mdot  u ( k g / s ) , u dNi  . . .  ' , mdot , dN i
e n d i f
c a l c u l a t e  w e i g h t i n g  p a r a m e t e r  b e t a _ p  
b e t a _ p u _ o v e r _ m  = p r o c n u m * r e a l ( d N i ) * amu/ ( m d o t * d t ) 
i f  ( Ni _max -  N i _ t o t  . g t . dNi )  t he n  

l 1  = N i _ t o t  + 1 
do l =  l 1 , l 1 +  d N i -1

b e t a _ p ( l )  = b e t a _ p u _ o v e r _ m * m _ p u 1
m_ar r  ( l  ) = m_pu1 * amu
m rat ( l )  = i o n _ a m u /  m_pu1
t h e t a 2  = p a d _ r a n f ( ) * 2 * P I
! I n i t i a l i z e  a r i n g  beam d i s t r i b u t i o n
v p ( l , 1 )  = v s w * c o s ( t h e t a 2 )
v p ( l , 2 )  = v s w * s i n ( t h e t a 2 )
vp ( l  , 3 )  = 0 . 0
! I n i t  i a l i z e  i o n  p o s i t i o n
xp ( l  , 1) = qx ( 1 )  + ( 1 . 0 - p a d _ r a n f  ( ) ) * ( q x ( n x - 1 ) - q x  ( 1 ) )
x p ( l  , 2 )  = q y ( 1 )  + ( 1 . 0 - p a d _ r a n f  ( ) ) * ( q y ( n y - 1 ) - q y ( 1 ) )  
f l g = 0
do w h i l e  ( f l g  . e q . 0)

x p ( l , 3 )  = q z ( n z / 2 - 1 0 0 )  + ( 1 . 0 - p a d _ r a n f  ( ) )  & 
* ( q z ( n z / 2 + 1 0 0 ) - q z ( n z / 2 - 1 0 0 ) )  

r a n d 1 = p a d _ r a n f ()
i f  ( exp ( - ( x p ( l , 3 ) - q z ( n z / 2 ) ) * * 2 /  &

( 1 0 * d z _ g r i d ( n z / 2 ) * * 2 ) )  . g t . r a n d 1 )  t he n
f l g  = 1 

e n d i f  
enddo  
f l g = 0
! f i n d  i o n  g r i d  c e l l  
c a l l  g e t _ p i n d e x  ( i  , j  , k , l )
! Add i o n  e n e r g y  and momentum t o  g l o b a l  c o u n t e r  
do m=1 ,3

v p 1 ( l , m )  = v p ( l , m )
i n p u t _ E  = i n p u t _ E  + 0 . 5 * m _ a r r ( l ) *  &
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( v p ( l , m ) *  k m _ t o _ m ) * * 2 / ( b e t a * b e t a _ p ( l ) )  
i n p u t _ p ( m )  = i n p u t _ p ( m )  + m _ a r r ( l ) * v p ( l , m ) /  & 

( b e t a * b e t a _ p ( l ) )  
enddo  

enddo
c a l l  MPI_BARRIER(MPI_COMM_WORLD, i e r r )
N i _ t o t  = N i _ t o t  + dNi 
c a l l  g e t _ i n t e r p _ w e i g h t s  ( )  
c a l l  u p d a t e _ n p  ( )  
c a l l  u p d a t e _ u p ( v p )  
e n d i f  

e n d i f  
e n d i f

end s u b r o u t i n e  M a s s _ l o a d _ I o

This routine keeps track of the number of particles in each cell across all processors. It 

is a good diagnostic to see if the initialized density profile is unstable, or parts of the grid 

are under-resolved. It is only useful when the number of particles per cell is non-uniform, 

and as such is normally disabled except for test runs.

s u b r o u t i n e  c o u n t _ p p c ()
! Count  t he  num ber o f  p a r t i c l e s  i n  e a c h  c e l l  

c o u n t  = n x * n y * n z  
p p c p p _ c o u n t ( :  , :  , : ) = 0 . 0  
do l =1,  N i _ t o t  

i = i j k p ( l , 1 )  
j  = i j k p  ( l  , 2 )  
k= i j k p ( l  , 3 )
p p c p p _ c o u n t  ( i  , j  , k )  = p p c p p _ c o u n t  ( i  , j  , k )  + 1 . 0  

enddo
! Add up a l l  o f  t he  p a r t i c l e s  a c r o s s  p r o c e s s i n g  u n i t s  

c a l l  MPI_BARRIER(MPI_COMM_WORLD , i e r r )
c a l l  MPI _ ALLREDUCE( p pc p p _ c o unt ( : , : , : ) , r e c v b u f  , c o unt  , & 

MPI_REAL, MPI_SUM, MPI_COMM_WORLD, i e r r )  
p p c p p _ c o u n t ( : , : , : )  = r e s h a p e ( r e c v b u f  , ( / n x , n y , n z / ) )
! W r i t e  d a t a
i f  ( my_ r ank  . e q . 0)  t he n

open ( 4 1 1 , f i l e  = t r i m ( o u t _ d i r ) / / ' c . p p c . d a t '  , & 
s t a t u s  = ' u n k n o wn ' , f o r m = ' unf  o r m a t t e d ' )  

w r i t e ( 4 1 1 )  j 
w r i t e ( 4 1 1 )  p p c p p _ c o u n t  
c l o s e ( 411 )  

e n d i f
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The supercomputing clusters have a walltime limit of 48 hours. If we need to run some­

thing longer than that, it is useful to have something that saves the progress of the simulation 

before it closes so that it can be restarted. This is also useful if we are not sure how long to 

run the simulation. These lines add restart ability by writing all the variables and arrays to 

disk. It also removes the restriction on the max default of 16 processing units. Now up to 

one hundred processing units can be used.

w r i t e ( f i l e n u m  , ' ( I 2 ) ' )  my_rank
! Check f o r  r e s t a r t  f l a g
i f  ( my_r ank  . e q . 0)  w r i t e ( * , * )  ' r e s t a r t u s t a t u s  . . .  ' ,  r e s t a r t
i f  ( ( r e s t a r t )  . a n d .  ( m s t a r t _ n  . g t . 0 ) )  t he n
w r i t e  (* , *)  ' o p e n i n g u  r e s t a r u  v a r s  . . . . '
open ( 2 1 0 , f i l e  = t r i m ( o u t _ d i r ) / / ' r e s t a r t . v a r s ' , s t a t u s  = ' u n k n o wn ' , & 

f o r m = ' unf  o r m a t t e d ' )
w r i t e  ( * , * )  ' r e a d i n g  u r e s t a r t  u v a r s ............... '
r e a d ( 2 1 0 )  b1 , b 1 2 , b1p2 , b t , btmf  , b t c , n p , np3 , & 

up , a j  , nu ,E , t emp_p , mnp , b e t a  , Evp , Euf , &
EB1 , EB1x , EB1y , EB1z ,EE , EeP , &
i n p u t _ E e P , i n p u t _ E b , p r e v _ E t o t , b n d r y _ E f l u x , g r a v , & 
i n p u t _ c h e x , i n p u t _ b i l l  
w r i t e ( * , * )  ' r e s t a r t i n g u h y b r i d u . . . . '

o p e n ( 2 1 1 , f i l e  = t r i m ( o u t _ d i r ) / / ' r e s t a r t . p a r t ' / / t r i m ( f  i l e n u m )  , & 
s t a t u s  = ' u n k n o wn ' , f o r m = ' unf  o r m a t t e d ' )  

r e a d ( 2 1 1 )  vp , vp1 , v p l u s  , vmi nus  , x p , E p , i n p u t _ E , N i _ t o t  , i j k p  , & 
i n p u t _ p , m r a t , m _ a r r , b e t a _ p  

c l o s e ( 210 )  
c l o s e  ( 211 )

Variables are only outputted in an interval specified by the input file. For high resolution 

data for a Fourier transform, we need field data every time step. These few lines bypass the 

normal loop that outputs data and instead performs the output every time-step for the field 

at a specified grid point.

open ( 4 0 1 ,  f i l e  = t r i m ( o u t _ d i r ) / / ' f f t . d a t ' , s t a t u s = ' u n k n o wn ' , & 
f o r m = ' unf  o r m a t t e d ' )

w r i t e ( 4 0 1 )  d t , n t , omega_p
w r i t e ( 4 0 1 )  b 1 ( 2 , 2 , l o c , 1 ) ,  b 1 ( 2 , 2 , l o c  , 2 ) ,  b 1 ( 2 , 2 , l o c  , 3 )

end s u b r o u t in e  co u n t  _p p c
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Though we can output output velocity and particle distributions for everything in the 

grid, saving that data is hazardous to disk storage if we want to see the evolution of the 

distributions in time. This subroutine keeps the velocity distribution calculation in-house by 

outputting the reduced data to disk. The following subroutine specifically limits its search 

to velocities <  ±  80 km s-1 . We separate them into two ion populations: the initial ions 

and the mass loaded ions.

s u b r o u t i n e  g e t _ v _ d i s t ( )
! Se t  bounds  f o r  v e l o c i t y  ( k m / s )
v x b = - 8 0
vxe  =80
v y b = - 8 0
vye  =80
vz b  = - 80
v z e  =80
c o u n t  = ( - v x b + v x e + 1 ) * ( - v y b + v y e + 1 )
a l l o c a t e ( r e c v b u f ( c o u n t ) )
v d i s t _ i n i t  ( :  , : ) = 0
v d i s t _ a d d  ( :  , : )  = 0
v p p _ i n i t ( : , : )  = 0
v p p _ a d d ( : , : )  = 0
! S o r t  i o n s  i n t o  v e l o c i t y  b i n s
do l = 1 , N i _ i n i t

i  = f l o o r ( v p ( l  , 1 ) )  
j  = f l o o r ( v p ( l  , 2 ) )  
i f  ( ( i  . l t . v x b ) . or

c yc  l  e
( i  . g t . v x e ) ) t he n

e n d i f
i f  ( ( j  . l t . v y b )  . o r .  ( j  . g t . v y e )  ) t he n  

c yc  l  e 
e n d i f
v d i s t _ i n i t ( i , j ) = v d i s t _ i n i t ( i , j ) + 1

enddo
do l =  N i _ i n i t + 1 ,  N i _ t o t  

i = f l o o r ( v p ( l , 1 ) )
j  = f l o o r ( v p ( l  , 2 ) )  
i f  ( ( i  . l t . v x b ) 

c y c l e  
e n d i f  
i f  ( ( j  

c y c l e

o r .  ( i  . g t . v x e )  ) t he n

l t . v y b )  . o r .  ( j  . g t . v y e )  ) t he n
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e n d i f
v d i s t _ a d d ( i , j )  = v d i s t _ a d d ( i  , j )  + 1 

enddo
do l =  1,  N i _ i n i t

m= f l o o r ( s q r t ( ( v p ( l , 1 ) ) * * 2  + v p ( l  , 2 ) * * 2 ) )  
k = f l o o r ( v p ( l  , 3 ) )
i f  ( (m . l t . v x b )  . o r .  ( i  . g t . v x e )  ) t he n  

c y c l e  
e n d i f
i f  ( (k . l t . v y b )  . o r .  ( j  . g t . v y e )  ) t he n

c y c l e  
e n d i f
v p p _ i n i t ( m , k )  = v p p _ i n i t ( m , k )  + 1 

enddo
do l =  N i _ i n i t + 1 ,  N i _ t o t

m= f l o o r ( s q r t ( ( v p ( l , 1 ) ) * * 2  + v p ( l , 2 ) * * 2 ) )  
k = f l o o r ( v p ( l  , 3 ) )
i f  ( (m . l t . v x b )  . o r .  ( i  . g t . v x e )  ) t he n

c y c l e  
e n d i f
i f  ( (k . l t . v y b )  . o r .  ( j  . g t . v y e )  ) t he n

c y c l e  
e n d i f
v p p _ a d d ( m , k )  = v p p _ a d d ( m , k )  + 1 

enddo

! Add up t he  c o u n t s  f r o m a l l  o f  t he  p r o c e s s i n g  u n i t s  
c a l l  MPI_BARRIER(MPI_COMM_WORLD, ierr)  
c a l l  M P I _ A L L R E D U C E ( v d i s t _ i n i t ( : , : ) , r e c v b u f  , c o unt  , & 

MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, i e r r )  
v d i s t _ i n i t ( : , : )  = r e s h a p e ( r e c v b u f , ( / ( - v x b + v x e + 1 ) , &

( - v y b + v y e + 1 ) / ) )

c a l l  MPI_BARRIER(MPI_COMM_WORLD, ierr)  
c a l l  MPI _ ALLREDUCE( v d i s t _ a d d ( : , : ) , r e c v b u f  , c o unt  , & 

MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, i e r r )  
v d i s t _ a d d ( : , : )  = r e s h a p e ( r e c v b u f  , ( / ( - v x b + v x e + 1 ) , &

( - v y b + v y e + 1 ) / ) )

c a l l  MPI_BARRIER(MPI_COMM_WORLD, ierr)  
c a l l  MPI _ ALL REDUCE( v p p _ i n i t ( : , : ) , r e c v b u f  , c o u nt  , & 

MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, i e r r )  
v p p _ i n i t ( :  , : )  = r e s h a p e ( r e c v b u f  , ( / ( - v x b  + vxe  + 1) , &

( - v y b + v y e + 1 ) / ) )
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c a l l  MPI_BARRIER(MPI_COMM_WORLD, ierr)
c a l l  MPI_ALLREDUCE( vpp_add( : , : ) , r e c v b u f  , c o unt  , &

MPI_INTEGER, MPI_SUM, MPI_COMM_WORLD, i e r r )  
v p p _ a d d ( : , : )  = r e s h a p e ( r e c v b u f , ( / ( - v x b + v x e + 1 ) , &

( - v y b + v y e  +1 ) / )  ) 
d e a l l o c a t e  ( r e c v b u f  ) 

end s u b r o u t i n e  g e t _ v _ d i s t

This subroutine is added to the grid initialization to allow grid stretching. It maintains 

the grid spacing at A* assuming that the density profile is Gaussian.

s u b r o u t i n e  g r i d _ g a u s s i a n ()  
rk = n z / 2  
r j  = n y / 2  
r i  = n x / 2  

! Unst  r e t  c he d  g r i d s  
do j  =1 , ny

q y ( j )  = j * d y
d y _ g r i d ( j )  = dy

enddo
do i  = 1 , nx 

qx ( i )  = i  * dx 
d x _ g r i d  ( i )  = dx

enddo 
! S t r e t c h  z 

qz ( nz  / 2 )  = 0
do k = r k + 1 , nz

! g r i d  c e l l  i s  s i z e d  by t h e  c u r r e n t  Lambda_i  
q z ( k )  = q z ( k - 1 )  + z s f * 3 e 8 / 1 e 3 * s q r t ( 8 . 8 5 e - 1 2 * m i o n / ( q * q *  & 

( n f _ i n i t / 1 e 9 + n f _ i n i t / 1 e 9 * ( a m p - 1 . 0 ) *  & 
e x p ( - ( q z ( k - 1 ) / ( g r a d * d e l z ) ) * * 2 ) ) ) )  

enddo
do k = 1 , rk - 1

i nd  = rk -  k 
q z ( i n d )  = - q z ( r k + k )  

enddo
z p l u s  = q z ( n z - 1 )  
do k=1 , nz

q z ( k )  = q z ( k )  + z p l u s  
enddo
do k=1 , nz -1

d z _ g r i d ( k )  = q z ( k + 1 ) - q z ( k )  
enddo
d z _ g r i d ( n z )  = d z _ g r i d ( n z - 1 )
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d z _ c e l l ( 1 )  = d z _ g r i d ( 1 )  
d z _ c e l l ( n z )  = d z _ g r i d ( n z )  
z r a t  ( 1 )  = 0.  5 
z r a t ( n z )  = 0 . 5  
do k = 2 , n z -1

d z _ c e l l ( k )  = ( ( q z ( k + 1 )  + q z ( k ) ) / 2 . 0 )  -  &
( ( q z ( k )  + q z ( k - 1 ) ) / 2 . 0 )  

z p l u s  = ( q z ( k + 1 )  + q z ( k ) ) / 2 . 0
z mi nus  = ( q z ( k )  + q z ( k - 1 ) ) / 2 . 0  
z r a t ( k )  = ( q z ( k )  -  z m i n u s ) / ( z p l u s  -  z mi n u s )

enddo
d x _ c e l l ( 1 )  = d x _ g r i d ( 1 )  
d x _ c e l l ( n x )  = d x _ g r i d ( n x )  
x r a t  ( 1 )  = 0.  5 
x r a t ( n x )  = 0 . 5  
do i  =2 , nx - 1

d x _ c e l l ( i )  = ( ( q x ( i + 1 )  + q x ( i ) ) / 2 . 0 )  -  &
( ( qx ( i  ) + q x ( i - 1 ) ) / 2 . 0 )  

x p l u s  = ( q x ( i + 1 )  + q x ( i ) ) / 2 . 0
xmi nus  = ( q x ( i )  + q x ( i - 1 ) ) / 2 . 0  
x r a t ( i )  = ( q x ( i )  -  x m i n u s ) / ( x p l u s  -  x mi nu s )  

enddo
d y _ c e l l ( 1 )  = d y _ g r i d ( 1 )  
d y _ c e l l ( n y )  = d y _ g r i d ( n y )  
y r a t  ( 1 )  = 0.  5 
y r a t ( n y )  = 0 . 5  
do j  =2 , ny -1

d y _ c e l l ( j )  = ( ( q y ( j  +1)  + q y ( j ) ) / 2 . 0 )  -  &
( ( q y ( j )  + q y ( j - 1 ) ) / 2 . 0 )  

y p l u s  = ( q y ( j  +1)  + q y ( j ) ) / 2 . 0  
ymi nus  = ( q y ( j )  + q y ( j - 1 ) ) / 2 . 0  
y r a t ( j )  = ( q y ( j )  -  y m i n u s ) / ( y p l u s  -  y mi nu s )  

enddo
end s u b r o u t i n e  g r i d _ g a u s s i a n
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