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Abstract
This thesis describes an efficient optimization method for predicting the maximum lifting 

weight considering dynamic joint strength in symmetric box lifting using a skeletal model. 

Dynamic joint strength is modeled as a three-dimensional function of joint angle and joint angular 

velocity based on experimentally obtained joint strength data. The function is further formulated 

as the joint torque limit constraint in an inverse dynamics optimization formulation to predict the 

lifting motion. In the proposed optimization formulation, external load is treated as design 

variables along with joint angle profiles, which are represented by control points of B-spline 

curves. By using this new formulation, dynamic lifting motion and strategy can be predicted for a 

symmetric maximum weight box lifting task with given initial and final box locations. Results 

show that incorporating dynamic strength is critical in predicting the lifting motion in extreme 

lifting conditions. The prediction outputs in joint space are incorporated in OpenSim software to 

find out muscles force and activity during the movement. Electromyography data are collected 

for a regular weight lifting to validate the integration process between the predictive model (joint 

model) and OpenSim model (muscle model). The proposed algorithm and analysis method based 

on motion prediction and OpenSim can be further developed as a useful ergonomic tool to protect 

workers from injury in manual material handling.
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Chapter 1 Introduction

1.1 Motivation and Objectives

Manual material handling, particularly lifting, poses a risk to many workers and is considered 

a major cause of work-related low back pain and impairment. The National Institute of 

Occupational Safety and Health (NIOSH) lifting equation is a well-known tool for injury 

prediction in box lifting. However, the NIOSH lifting equation only considers static lifting 

conditions and thus is not accurate for a specific subject’s dynamic motion generation and injury 

control. Lifting is a dynamic activity, and therefore joint torque and forces must be calculated 

through dynamic calculations, not merely static ones.

The primary objective of this study is to predict maximum weight during lifting for a human 

skeletal model considering dynamic joint strength and analyze the muscles for that particular 

motion in OpenSim (muscle model) to find out risky or heavily loaded muscles. EMG data are 

used to validate this integration process. The ultimate goal is to develop a subject-specific 

ergonomic tool to protect workers from injury for symmetric lifting tasks.

1.2 Background

1.2.1 Lifting Simulation

For the last few decades, researchers have mainly used three methods to analyze lifting: 

the physiological approach, psychophysical approach, and biomechanical approach. The 

physiological approach is related to human metabolism, heart rate, oxygen consumption, intake 

energy, and energy expenditure. Using this methodology, safe and tolerable work periods have
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been determined. Mathematical models exist to predict motion and maximum lifting weight based 

on oxygen uptake ((Aberg, Elgstrand, Magnus, & Lindholm, 1967; Asfour, 1980; Frederik, 1959) 

or energy cost (Asfour, 1980) in the case of manual lifting.

The psychophysical approach, a branch of psychology, is based on human feeling, physical 

stimuli, and sensory response. The maximum lifting weight is related to the following 

psychophysical factors: (1) excessive fatigue or discomfort (Switzer, 1962), (2) width of the box 

(McConville, 1992), (3) speed of work (V. Ciriello, S. Snook, A. Buck, & P. Wilkinson, 1990; 

Snook & Ciriello, 1974), (4) frequency of work (Knipfer, 1974; A. Pinder & M. Boocock, 2014; 

Pinder, 1997), and (5) a combination of lifting heights, frequency, and box size (M. Ayoub & 

Dempsey, 1999; M. M. Ayoub, 1989). Some psychophysical models that predict the maximum 

lifting weight consider the effect of lifting height, use of bag instead of box, or task and operator 

variables (M. M. Ayoub, 1989; Osgood, 1980; Pytel & Kamon, 1981).

For all the above-mentioned approaches, however, it is difficult to predict human motion. 

Researchers had to use human subjects for every experiment, and it is risky to use human subjects 

to determine the maximum weight-lifting motion.

Compared with the experimental method of using human subjects to assess problems 

during lifting, biomechanical models can provide relatively new alternative technologies that allow 

direct testing and subject-specific results. In general, there are two major categories of lifting 

prediction using biomechanical models: optimization-based approaches and index-based 

approaches. Optimization-based approaches are further divided into static posture prediction for 

lifting (Dysart & Woldstad, 1996; Kothiyal, Mazumdar, & Noone, 1992; Noone & Mazumdar, 

1992) and dynamic lifting motion prediction (Arisumi, Chardonnet, Kheddar, & Yokoi, 2007; M. 

Ayoub, 1992; Huang, Sheth, & Granata, 2005; Lee, 1988; Song, Qu, & Chen, 2016; Yujiang
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Xiang, Jasbir S Arora, & Karim Abdel-Malek, 2012; Xiang, Arora, Rahmatalla, et al., 2010). In 

the index-based approaches, the lifting strategy was quantified by defining certain indexes 

(Burgess-Limerick & Abernethy, 1997a; Freivalds, Chaffin, Garg, & Lee, 1984; Zhang, 

Nussbaum, & Chaffin, 2000). For example, Burgess-Limerick and Abernethy (Burgess-Limerick 

& Abernethy, 1997b) used the index as the ratio of knee flexion to the sum of ankle, hip, and 

lumbar spine flexion to quantify the static starting posture. The relatively large value index was 

for squat lifting; a small value was for stoop lifting.

Many strategies could be chosen to suit the lifting task, depending on anthropometry, lifting 

weight, and object position and shape. Dynamic motion optimization has a better chance of 

predicting the different strategies. Lifting motion prediction is essentially an optimal control 

problem. The motion is generated using certain optimization principles with given boundary 

conditions. The direct optimization method transfers the optimal control problem into a nonlinear 

programming (NLP) problem (Xiang, Arora, & Abdel-Malek, 2010). The NLP formulation has 

three basic elements, the design variables, an objective function, and constraints. A key element 

in NLP formulation is the equations of motion (EOM), which impose the law of physics for the 

biomechanical system. There are three basic ways to incorporate the EOM in the optimization 

formulation: forward dynamics optimization (Shourijeh & McPhee, 2014; Darryl G Thelen & 

Frank C Anderson, 2006), inverse dynamics optimization (Farahani, Andersen, de Zee, & 

Rasmussen, 2016; Fregly, Reinbolt, Rooney, Mitchell, & Chmielewski, 2007; Ren, Jones, & 

Howard, 2007; Xiang, Arora, Rahmatalla, & Abdel-Malek, 2009; Xiang, Arora, Rahmatalla, et al., 

2010), and optimization with direct collocation (Ackermann & Van den Bogert, 2010; Arora & 

Wang, 2005). The latter two formulations are computationally efficient because numerical 

integration is not required during the optimization process. However, forward dynamics
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optimization gives more accurate mechanical system response because the numerical integration 

requires a much smaller time step length compared with the time grid points where the EOM and 

constraints are evaluated during the optimization process.

Although researchers are diligently exploring different types of cost functions for human 

motion predictions, constraints are also critical in predicting accurate human motions. Some 

physical constraints, such as joint angle limits and joint torque limits, must be enforced throughout 

the motion. For joint torque limits, there are static strength (constant torque limit) and dynamic 

strength (torque limit as a function of time). Many simulations reported in the literature used static 

strength for approximation (Ackermann & Van den Bogert, 2010; Davoudabadi Farahani, 

Andersen, de Zee, & Rasmussen, 2015; Fregly et al., 2007; Ren et al., 2007; Song et al., 2016; 

Xiang, Arora, Rahmatalla, & Abdel-Malek, 2009; Xiang, Arora, Rahmatalla, et al., 2010). 

Dynamic joint strength has been experimentally tested and reported in the literature (Cahalan, 

Johnson, Liu, & Chao, 1989; Frey-Law et al., 2012; Sara J Hussain & Laura Frey-Law, 2016; 

Kumar, 1996; Looft, 2014), but only a few have been used in simulation to predict more accurate 

human motion, such as reported in Farizeh and Sadigh (Farizeh & Sadigh, 2017) who studied a 

fast-walking problem. The literature shows that lifting frequency (kg/min), particularly a higher 

frequency, has an impact on joint strength as well as on prediction of maximum acceptable weights 

(V. M. Ciriello, S. H. Snook, A. C. Buck, & P. L. Wilkinson, 1990; Pinder, 1997; A. D. J. Pinder 

& M. G. Boocock, 2014). Therefore, it is important to use dynamic strength instead of static 

strength for motion prediction under extreme conditions.

1.2.2 Muscle modelling

Muscle is a complex part of human body and modelling it relates to a lot of parameters like 

muscle forces, muscle lengths, tendon strains, neural excitations and activations etc. It is extremely
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difficult to measure these neuromuscular quantities for many muscles which are related to various 

movements. Since biological muscles are very complex, a lot of assumptions and simplifications 

are made for developing the mathematical model of muscle, such as Zajac (Zajac, 1989) assumed 

that muscle fibers are of equal, straight, parallel and coplanar. There are mainly two types of 

muscle model: one is cross bridge model (Eisenberg, Hill, & Chen, 1980; Haselgrove & Huxley, 

1973; Zahalak & Ma, 1990) and another one is Hill-type model (Marcelo Epstein 1998; Winters 

& Stark, 1987; Zajac, 1989). Cross bridge models are not considered for many muscles and a lot 

of parameters are difficult to measure. Hill type models are extensively used to simulate muscle 

driven simulations (Anderson & Pandy, 2001; Arnold & Delp, 2011; Selbie & Caldwell, 1996; 

Van der Krogt, Delp, & Schwartz, 2012; Zajac, Neptune, & Kautz, 2002, 2003). The software 

OpenSim is extensively used in Biomechanics field to analyse muscle activities. This software is 

based on the Thelen muscle model (Thelen, 2003; D. G. Thelen & F. C. Anderson, 2006) and 

Millard muscle model (M. Millard, T. Uchida, A. Seth, & S. L. Delp, 2013) which are also Hill 

type muscle models.

Muscle consist of a lot of fasciculus (or fascicle) which are actually a bundle of skeletal 

muscle fibers surrounded by connective tissues. The inner layer of muscle belly and outer layer of 

fascicle is called epimysium. Every fascicle consists of fibers. The inner layer of fascicles and 

outer layer of fibers are called endomysium. Fibers consists of myofibril at microscopic level 

(Figure 1.1)
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Figure 1. 1 Muscle Physiology (Stovall, 2013)

Inside Sarcomere there are Z-bands which are consists of actin and myosin (Figure 1.2). When

actin and myosin react with each other, myosin contracts. Normally, they cannot react with each

other because there is a protein layer on actin called troponin which resists actin to react with

myosin. Also, the ends of myosin are connected with Z-band of sarcomere. When central nervous

system (CNS) sends signal to activate a muscle, the Ca+ concentration increases nearby the muscles

actin and myosin. Then Troponin reacts with Ca+. As a result, myosin gets some space to react

with actin and contracts. When myosin tries to contract, it ultimately pulls both side of Z-bands as

well as sarcomere inward. Because of this contraction in every sarcomere of a muscle the whole

muscle contracts and moves a particular segment of body.
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A-band

l-band H-band l-band

Figure 1. 2 Ratcheting mechanism of actin and myosin (Delsys, 2018; Willms, 2012)

Based on muscle physiology, Hill gave a muscle model which consists of three parts as shown in 

Figure 1.3. First, contractile elements represent the energy output from the ratcheting mechanism 

of actin and myosin. The tendon and connective tissues are represented by two elastic elements. 

One is series elastic elements (SEE) and another one is passive or parallel elastic elements.

pM

Figure 1. 3 Hill muscle model (Hill, 1949)
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1.3 Overview of thesis and specific contribution

This thesis is organized as follows: In Chapter 2, a 2D skeletal model that has 10 degrees of 

freedom is built based on DH method. Coordinate systems and equations of motion are expressed 

in this chapter. The constraints for optimization are discussed in Chapter 3. New optimization 

formulation is proposed considering external force and time grid as design variables. Also, the 

dynamic joint strengths are considered as constraints which help us to predict maximum lifting 

weight.

In Chapter 4, the simulation results for maximum weight lifting are discussed.

In Chapter 5, the predictive model results in joint space will be inserted in OpenSim software 

to find out risky or heavily loaded muscles for that particular motion.

In Chapter 6 , we collect electromyography (EMG) data from muscles to validate the 

integration process between the prediction model and OpenSim muscle model in chapter 5.

Finally, the thesis ends with chapter 7 having conclusions and plan of future research.

The research contributions of this work are summarized as follows:

(1) A new methodology had been developed to predict the maximum lifting weight and motion 

by considering dynamic joint strength for symmetric lifting tasks using a skeletal model. 

The simulation CPU time was close to real time.

(2) The proposed dynamic optimization method was able to predict novel dynamic lifting 

strategies for maximum weight lifting based on given inputs such as box location and 

subject’s strength. The maximum weight lifting can activate major joint dynamic strength. 

This depends on the predicted lifting strategy for the given task.
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(3) Based on the prediction, muscle model was analyzed in OpenSim for lifting motion to find 

out risky or heavily loaded muscles for extreme loading condition.

(4) To validate this integration, electromyography (EMG) data were collected and analyzed 

for those muscles.
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Chapter 2 Human Modelling, Kinematics, and Dynamics
Two-dimensional (2D) models of the human body are widely used in biomechanics to simulate 

and analyze human movement because of computational simplicity. As left and right side joints 

angles are considered symmetric in 2D models, only symmetric motion can be simulated. A 2D 

skeletal model with ten degrees of freedom (DOF) defined in the joint space is used to simulate a 

symmetric lifting motion as shown in Figure 2.1. Among the ten DOF, three DOF are used for 

global translation (GT1 and GT2) and global rotation (GR1) and seven (Q4 to Q10)) for the body 

joints. The global DOF are composed of two translational (prismatic) joints and one rotational 

(revolute) joint. The anthropometric data for the skeletal model representing a 50th percentile male 

are generated using GEBOD® software. Link lengths, masses and moments of inertia are shown 

in Table 2.1.

Table 2. 1 Link length, mass, and moment of inertia

Link name Link length (m) Link mass (kg) Moment of inertia, Iz z  (kgm 2)
Link 1 (L1) 0.435 20.84 0.8933
Link 2 (L2) 0.259 3.80 0.1346
Link 3 (L3) 0.247 3.68 0.0814
Link 4 (L4) 0.383 28.04 2.0281
Link 5 (L5) 0.395 7.48 0.6348
Link 6  (L6 ) 0.090 1.40 0.0319
Link 7 (L7) 0 . 1 0 0 0.46 0.0006
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Figure 2. 1 The 2D lifting skeletal model

Figure 2.2 depicts how the global DOF are set up in the Denavit-Hartenberg (DH) method 

(Denavit, 1955). Each degree of freedom is given in the local z-direction in both the translational 

joint and the rotational joint. For revolute joint (GR1), the direction of rotation is the z-axis 

according to the right-hand rule. On the other hand, for prismatic joints (GT1 and GT2), the
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direction of the movement will be linear towards z-axis. So, 6  and d are the joints variables for 

revolute and prismatic joint respectively. It is noted that the global rotation joint (z3), spine joint 

(z4), and hip joint (z7) coincide at the same location. The positive directions for all the local 

rotation joints (z3  ~  z10) are clockwise in global Y-Z plane.

Table 2. 2 Joint angle symbols and names

Symbol Coordinate name Symbol Coordinate name
Zl Global translation joint coordinate ^ 6 Elbow joint coordinate
Z2 Global translation joint coordinate z? Hip joint coordinate
Z3 Global rotation joint coordinate ZS Knee joint coordinate
Z4 Spine joint coordinate z 9 Ankle joint coordinate
Z5 Arm joint coordinate z 10 Subtalar joint coordinate

There are two branches in the body frame with respect to the global coordinate branch (parent): 

the spine-arm branch and leg branch. In the spine-arm branch, two arms are represented as a single 

branch since only 2D symmetric lifting is studied. The arm branch includes upper arm and lower 

arm. In the leg branch, two legs are combined as a single branch including thigh, tibia and foot.

y

Translational jo in t L

-------->

GT1

y

GT2

Rotational jo in t

y

x

GR1

z

z

z

Figure 2. 2 Global degrees of freedom 
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The DH parameters are described in Table 2.2, where 6 represents a rotation about local z-axis, 

d represents the translational distance on local z-axis, a represents the translational distance on 

local x-axis, and a  represents the rotation on local x-axis. The motion sequence is 6 , d, a, and a.

Table 2. 3 DH table for 2D human model

DOF e d a a Segment
GT1 n 0 0 ^ / 2 global

translationGT2 ^ / 2 L 1+L2 0 — ^ / 2

GR1 (to leg) 0 0 0 0 global
rotationGR1 (to spine) 0 0 0 0

Q1 — ^ / 2 0 L 1 0 spine
Q2 n 0 L2 0 arm
Q3 0 0 L3 0

Q4 ^ / 2 0 L4 0

legQ5 0 0 L5 0

Q6 — ^ / 2 0 L6 0

Q7 0 0 L7 0

The kinematics and dynamics are calculated using DH-based recursive Lagrangian approach 

(Hollerbach, 1980; Toogood, 1989; Xiang, Arora, & Abdel-Malek, 2008). The equation of motions 

are expressed in Eq. (2.1) -  Eq.(2.5), where the first term in the torque expression Eq. (2.1) is the 

inertia and Coriolis torque, the second term is the torque due to gravity load, the third term is the 

torque due to external force, and the fourth term represents the torque due to the external moment.

= t r (dAiD‘) - g T t Ei — fT t T ' -  g Ta ' - ‘z» (2 1 )

Dt = IjCT + Tj+1 Dj+ 1  (2 .2 )

Ej =  miTi + Tj+iEj+i (2.3)

Fj =  rk&ik + Tj+iFj+ 1  (2 .4)

G; =  +  Gj+i (2.5)
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where tr(-) is the trace of a matrix, Aj and Cj are the recursive kinematics position and acceleration 

matrices respectively, q  is the joint angle, I is the inertia matrix for link i, Dj is the recursive 

inertia and Coriolis matrix, g is the gravity vector, fn i is the mass of link i, Tj is the center of mass 

of link i, ffc =  [ 0  / fcy / fcz 0 ]T is the external force applied on link k, r fc is the position of the 

external force in the local frame k, h fc =  [bx 0  0  0 ]T is the external moment applied on link

k, Tj is the link transformation matrix, z 0  =  [ 0  0  1  0 ]T is for a revolute joint, z 0  =

[0 0 0 0]T is for a prismatic joint, finally, 5jfc is Kronecker delta. Although, it is a 2D model,

4x1 matrices are taken to make it homogenous. The detail derivations of Aj and Cj are described 

in Toogood (Toogood, 1989) and Xiang (Xiang et al., 2008).
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Chapter 3 Optimization Formulation
Optimization helps to find out the best solution for the redundant design and motion planning 

problems. The optimal solution is obtained by minimizing or maximizing certain human 

performance measures based on the equations of motion (EOM) and given constraints. Some 

constraints are commonly used for all types of tasks, such as joint angle limits and joint torque 

limits. We will discuss those in basic optimization formulation. Then, we will discuss anew 

optimization formulation for maximum weight lifting motion prediction.

3.1 Basic optimization formulation

The lifting motion prediction is formulated as an optimization problem in Equation (3.1): find 

the optimal control points P of joint angle profiles for the lifting motion to minimize a human 

performance m easure,/(P), subject to physical constraints gj as follows:

Sub. gj <  0, i = 1, ...,n

where, n  is the total number of constraints.

Objective function

In a previous study, the dynamics effort was used as an objective function for the lifting motion 

which is defined as time integration of all joint torque squared (Yujiang Xiang, Jasbir S. Arora, & 

Karim Abdel-Malek, 2012; Xiang, Arora, Rahmatalla, et al., 2010).

Find: P
min: / (P ) (3.1)

/ i ( P )  =  zr=4O/J0Tn2 (P) d t (3.2)

where T is the total lifting time; n d o /  is the number of DOF. Note that the joint torque for each

global DOF is zero for a balanced lifting motion.

17



Constraints

The general constraints for a 2D symmetric lifting motion include:

(1) Joint angle limits

qL <  q(t) <  q y (3.3)

where qL is the lower joint angle limit and q y upper limit.

(2) Joint torque limits

<  x(t) <  (3.4)

where tl is the lower joint torque limit and upper limit.

(3) Feet contacting positions

P(feet,t) =  P/eet (3.5)

where Py?eet is the specified feet contact position on the level ground.

(4) Balance condition

P(ZM P,t)G FSR (3.6)

where zero moment point (ZMP) position is inside the foot support region (FSR).

(5) Collision avoidance

d (t) > r i  +  r 2  (3.7)

where d is the calculated distance between the hand and the circle center on body segment 

representing the body thickness, r i is half of the box width and r 2  is the radius of the circle. There 

are a total of seven circles filled into body segments: two for spine and five for leg.

(6 ) Initial and final hand positions

P (h a n d ,t=  0 ,7 )  =  PLnd(t =  0 ,7 )  (3.8)

Where, Pjfand is the specified hand position at initial and final times.

(7) Initial and final velocities

18



q (t  =  0 , T) =  0 (3.9)

where the initial and final lifting motions are static.

All these constraints are described in detail in Xiang (Xiang, Arora, Rahmatalla, et al., 2010). 

The joint angle limits and static joint torque limits are given in Appendix A1 and A2. The following 

sections will introduce the new optimization formulation including new design variables (lifting 

weight and time), new objective function (maximum lifting weight), and new constraint (dynamic 

strength) in detail.

3.2 New optimization formulation

We will consider external force and time grids as design variables and optimize those in the 

optimization formulation. Also, we will discuss the procedure to apply dynamic joint strength in 

our predictive model.

3.2.1 External force as design variable

In a previous formulation, the external forces are given as constant, i.e., ffc and h fc are constant 

values in Equations (2.1-2.5). In this study, these external forces could be treated as unknowns 

(design variables) in the optimization formulation. Therefore, the joint torques from the EOM are 

not only the function of joint angle control points P, but also the independent external forces. The 

sensitivity of joint torque with respect to external force should be derived for gradient-based 

optimization. Without loss of generality, an active external load along vertical direction / fcy is 

treated as a design variable. / fcy affects the joint torques in two ways: explicit effect ( r f ) from the 

EOM, and implicit effect ( r f )  from passive ground reaction forces (GRF). The direct 

differentiation of r f  with respect to / fcy can be obtained from Equation (2.1) directly as:

(3.10)
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However, the external force, GRF, also depends on / fcy passively due to balance condition. For 

inverse dynamics formulation, the GRF is calculated from global joint torques using an active- 

passive balance algorithm (Xiang, Arora, Rahmatalla, & Abdel-Malek, 2009) as shown in Figure

3.1 Therefore, f GRF = [0, /yGRF(Ti~ 3 ), /zGRF(t i~ 3 ), 0]T is a function of r ° ~ 3  (active global

joint torques). Then the sensitivity of joint torque t~ with respect to / fcy due to GRF is calculated 

using chain rule as:

3/fey 3 /GFF dr° ~ 3  d /fcy ' d /GKF dr° ~ 3  d /fc.
GRF a,.o

^ - - [ 0  1  0  0 ] f ^ i F£
'y

dr~
d/z, f e * = [ 0  0  1  0 ] ^ F ,  

where the term ^ — involves ZMP location. Refer to Xiang et al. (Xiang, Arora, Rahmatalla, &

(3.11)

(3.12)

(3.13)

d t:
gff

Abdel-Malek, 2009) for detailed calculations. The term *~ 3 is obtained from Equation (3.10).
d /fey

Finally the sensitivity of joint torque with respect to the active external load / fcy is the summation 

of Equations (3.10) and (3.11):

dr; _  3t° dr~
3/fey d/fcy d/fcy (3.14)

Figure 3. 1 GRF active-passive feedback flowchart

~3
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By treating external forces as design variables in the optimization formulation, we can define 

W  =  —/y as the weight of a box applied downward on hand (/y is negative). The new objective 

function to maximize the lifting weight is defined as:

/ 2 (P ,W ) =  — W  (3.15)

Note that the negative sign is to convert a maximization problem into a minimization problem.

3.2.2 Time grid points as design variables

The optimization problem is formulated as a nonlinear programming (NLP) using cubic B- 

spline discretization. Thus a joint angle profile q (t) is parameterized as follows:

fc (t,P ) =  l4 = i ty ( t ) p iy (3.16)

Where Ny(t) are the basis functions, t = {tQ, ..., ts} is the knot vector (time grid), and Pjy =

(pj0, ..., pjm } is the vector of control points for the i th joint angle profile and m + 1 is the number 

of control points.

The gradients of state variables with respect to the kth knot variable are derived as:

5  =  2 4 = 1 ^  (3 1 7 )

^  =  £ 4 = 1 ^ 1  (3 1 8 )

^ = z j = n i £ %  (3.i9)

Thus, the joint torque gradient with respect to the kth knot variable is derived as:

dTj _  yndof f dTi dgy . 3t; 3qy dT; 3qy\
3tfe f = 1  \3^y3tfc 3qy3tfc 3qy 3tfc/  ( . )

where the sensitivity of joint torque with respect to state variables are obtained from the reference 

(Xiang et al. 2009b), in which GRF feedback loop in Figure 3.1 is used to calculate joint torque.
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3.2.3 Dynamic joint strength

In literature (Frey-Law et al., 2012; Sara J Hussain & Laura Frey-Law, 2016; Looft, 2014; 

Stockdale, 2011), the dynamic isokinetic and isometric strengths of ankle, knee, hip, spine, 

shoulder, and elbow were tested using experiments through a normal range of motion. The peak 

torque for a given joint position and angular velocity was measured. These data can be used to 

model joint dynamic strength surface as a function of joint angle and angular velocity. In this 

section, a surrogate model is developed from the experimental data. The logistic equations are used 

to model the peak torque as a function of both joint angle and angular velocity, and the coefficients 

of the logistic function are obtained from Gauss least square regressions. The corresponding peak 

torque-angle-velocity relationship is given as:

4g- (?-c3)/c4 4g- 0 -C6)/C7 4g- (?-c3)/c4 4g- (y-c6)/c7
”̂peak '̂i +  "̂ 2  [i+g-(q-C3)/C4] 2 +  "̂ 5  [i+g- 0’-C6)/C7] 2 +  "̂ 8  [i+g- (?-c3)/c4] 2 [i+g- (v-c6)/c7]2 (3.21)

where ci ~ c 8  are regression equation coefficients, e is the exponential function, q is the joint angle, 

and v is the joint angular velocity. The coefficients in Equation (3.21) are scaled mean values, and 

along with the coefficients covariance (CV) determined with each curve fit. Therefore, a specific 

percentile strength can be determined as follows:

T%eak =  P * CV * Tpeak +  Tpeak (3 22)

where p is the percentile.

This surrogate model is then used to develop the joint dynamic strength constraints for lifting 

motion optimization. Since joint torque value has both positive and negative directions, the torque 

peak value in Equation (3.21) needs to be developed separately in each direction to obtain rpeak 

(negative) and Tpeak (positive). Finally, the joint torque constraint is imposed as:

0 < i iEWS55  1  ( 3  23)
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In this study, the dynamic strengths are modeled for ankle, knee, hip, spine, shoulder, and 

elbow joints. The experimental data are obtained from the literature (Frey-Law et al., 2012; Sara 

J. Hussain & Laura Frey-Law, 2016; Looft, 2014; Stockdale, 2011). Considering external force 

and time grid as design variables and adding a dynamic joint strength constraint will help us to 

predict the maximum weight, the optimal time duration, and the lifting motion simultaneously. We 

will discuss this in the next chapter.
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Chapter 4 Maximum Weight Prediction
Maximum lifting weight is a vital factor for manual material handling. NIOSH has some lifting 

equations based on static joint strength. In real life, however, human joint strength is dynamic. 

Maximum lifting weight can be predicted from dynamic strength based motion prediction model. 

The total lifting time duration is uniformly discretized into twelve segments. There are total 52 

design variables ( 50 control points + 1 for W  + 1 for T) and 511 nonlinear constraints for the 

symmetric lifting motion optimization. The SQP-based optimizer, SNOPT (Gill, Murray, & 

Saunders, 2002), is used to solve the optimization problem. This dynamic joint strength based 

formulation is very efficient (Ackermann & Van den Bogert, 2010; Fregly et al., 2007; Ren et al., 

2007).

In this section, we predict the maximum lifting weight, time duration, and lifting motion by 

considering the dynamic strength constraints. The maximum weight objective function Eq. (3.15) 

is used in the optimization formulation with the given initial and final box locations. We simulate 

a lifting that moves a box from the initial location (y 1  =  0.2 m, z 1  =  0.35 m) to the final location 

(y2  =  1.0 m, z2  =  0.46 m). Note that y  is the vertical height measured from hand to ground, and 

z is the horizontal distance measured from hand to ankle. The dynamic strengths of all joints are 

considered in the optimization. The initial and final postures are also optimized along with the 

lifting motion. The initial guess for design variables are P =  0, W  =  50 N, T =  1.0 s; the optimal 

solutions are W  =  493.68 N, T =  0.708 s. The joint torque profiles for the maximum weight 

lifting are illustrated in Figure 4.1. The stick diagram of the predicted maximum weight lifting 

motion is depicted in Figure 4.2. The optimal solution is obtained in 5.86 seconds CPU time.
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Figure 4. 1 Joint torque profiles for the maximum weight lifting: (a) ankle, (b) knee, (c) hip, (d)
elbow, (e) shoulder, and (f) spine
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Figure 4. 2 Snapshots of the maximum weight lifting motion 

From the simulation results we can see that the ankle, elbow, shoulder, and spine dynamic

strength are activated. The knee and hip torques are close to their static strength limits and the

dynamic strengths are not activated. From Figure 4.2, we can see that for the maximum weight

lifting, knee is not fully used with less flexion. This means the box weight is mainly carried by the

upper limb and limited by its dynamic strength. This strategy also depends on the given initial and

final box locations.

To find out the maximum lifting weight, the algorithm predicts back lifting strategy with little 

ankle movement for the given strength and box locations in Figure 4.2. This strategy seems 

contradictory to real-world ergonomic experience: for heavy objects, people use squat lifting and 

for lightweight objects, they use back lifting, and squat lifting may lift more weight. The back 

lifting strategy for maximum weight lifting is predicted in this study because the box is initially
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placed far from the body. This results in a large torque on ankle joint at initial posture when lifting

a heavy box. For further illustration, we plot the ankle joint dynamic strength curve with zero

velocity, which corresponds to static initial condition shown in Figure 4.3.

Dynamic Ankle Strength Curve W ith Zero Angular Velocity
150

J  100
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Figure 4. 3 Ankle extension strength with zero velocity for the maximum weight lifting 

The graph in this figure shows that the ankle is strongest at around zero degrees,

demonstrating that if  people use the squat lifting strategy to lift a heavy object positioned far from

the body, they may fall over because of weaker ankle strength at a flexion angle (squat). It is seen

in Figure 4.1 that many joint dynamic strengths are activated except for hip and knee joints. This

depends on the predicted lifting strategy: the upper limb is fully activated to move the heavy object

to the destination, but the lower limb is not fully used due to the weaker ankle joint. Initially, the

ankle joint has to find an optimal angle to take the heavy weight statically because lifting is

constrained to be static at initial and final time locations. In this case, the ankle joint angle is very

small, around zero value. It appears that the given box location greatly affects the predicted

maximum lifting weight. If the box’s initial distance is closer to the body, the torque generated by

the box on the ankle is small. The ankle and knee are able to flex to facilitate a squatting heavy­
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weight-lifting motion, which might lift more weight using knee and hip joints. An ideal 

formulation is to treat the initial and final box distances as additional design variables in the 

optimization formulation to predict the maximum weight-lifting strategy. Therefore, it is critical 

to consider the dynamic strength in predicting the maximum lifting weight since heavy objects 

could easily activate dynamic strength.
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Chapter 5 OpenSim Simulation for Maximum Weight Lifting

5.1 OpenSim

OpenSim is an open source software application for visualizing musculoskeletal structures and 

simulating movements of human and animals. The application includes various tools to compute 

inverse kinematics and dynamics, residual reduction algorithm to eliminate tracking error, 

computed muscle control to analyze muscles, methods to create simulation from motion capture 

and optimization to estimate muscle and joint forces. OpenSim 3.0 is based on 3 muscle models. 

Those are the Thelen 2003 Muscle model (Thelen, 2003; Thelen, Anderson, & Delp, 2003), 

Millard 2012 Equilibrium model, and Millard 2012 Acceleration model (Matthew Millard, 

Thomas Uchida, Ajay Seth, & Scott L. Delp, 2013).

5.2 OpenSim simulation and processing

An existing generic model of OpenSim will be used to visualize human movement. Before 

that, anthropometry of the simulation model and OpenSim model should be same. Scaling is very 

important before inserting data in computed muscle control (CMC) because the solutions are very 

sensitive to the accuracy of the scaling step. To do the scaling, the Scale Tool in OpenSim is used 

to match the anthropometry of generic OpenSim model with our simulation model.

To insert experimental data in OpenSim directly from laboratory, marker points, scaling, 

inverse kinematics (IK) and residual reduction algorithm (RRA) are used. In contrast, from our 

predictive simulation model, the state variables ( q, q, q), joint torque (t), ground reaction forces 

(GRF) and external forces (Fex) are available and can be inserted to OpenSim directly. By inserting 

these parameters, muscle excitation, activation and forces can be found using computed muscle 

control algorithm.
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Computed muscle control (CMC) is based on Thelen’s work (Darryl G Thelen & Frank C 

Anderson, 2006) for generating muscle actuated simulations of human movements. It can compute 

muscle excitation level (full excitation is 1 and no excitation is 0) which ultimately derive the 

generalized coordinates such as joint angles towards a desired trajectory. Computed muscle control 

needs three steps to calculate muscle force, activation, and excitation.

1. Compute desired acceleration

2. Static optimization

3. Forwards Dynamics

Figure 5. 1 Computed muscle control (CMC) flow chart 

The first step of CMC is to compute desired accelerations ( q f es(t  + T)) based on

Proportion-Derivative (PD) control. This will derive generalized coordinates (qj) and speeds (qj)
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towards our simulaiton based kinematics (q jtm and qytm). and are feedback gains that carry

the current position error ( e q) and velocity ( e q) error. So, from Figure 5.1, it can be written

q f s( t  +  r )  =  q f m( t +  r )  +  M < ifm(t) -  q / t ) ]  +  M < ) f " ( t )  -  «y(0] (5.1)

If we consider,

q jtm(t) — qy(t) =  ey and  q jtm(t) — qy(t) =  ey, (5.2)

Then Eq. (5.1) will be:

qdes(t  +  r )  =  qy™(t +  r )  +  ey. +  kpey. (5 .3 )

To track our simulation coordinates ( qytm) in OpenSim, based on the tracking errors (ey & ey-) 

and simulated acceleration ( qytm) at time t, the desired joint angle accelerations (<7 yes) can be 

computed at time ( t  +  r )  using Eq. (5.3), where Tis a short interval (F is typically 0.001s). In next 

step, from the desired accelerations q[jles( t  +  r ) ,  desired torque (xdes) can be found which work 

as the input for static optimization. Static optimization is used to find out the desired muscle 

fo rcefdes. Static optimization distributes net joint torque into muscle tendon forces at instant time. 

Static optimization computes muscle forces to minimize the cost function J which reduce muscle 

activations (Thelen 2006). Muscle tendon lengths were used in muscle activation and contraction 

dynamics to estimate the lower (fm,min) and upper (fm,max) bound of muscle tendon forces at time 

(t + T). Then the desired muscle force fmes is used to calculate the muscle excitations (u) as a root- 

finding problem through muscle excitation and contraction dynamics. The range of muscle 

excitation is 0  (no excitation) < u < 1 (full excitation).

The next step of computed muscle control is forward dynamics. Muscle excitation, which we
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obtained from the desired muscle tendon forces, will be used in forward dynamics to drive the 

simulation model using one step numerical integration. Therefore, we can get the state variables 

(q and q) which will be used in the PD control feedbacks in the first step.

Finally, from this feedback based computed muscle control algorithm, desired muscle 

force f  , muscle excitations (u), and activation a  can all be retrieved from the simulation. 

Meanwhile, the musculoskeletal model of OpenSim can show the simulation movements.

5.3 Data processing

To generate the simulation in OpenSim, it needs either marker trajectories or joint angle 

profiles, and ground reaction forces, external loads, and centers of pressure data. OpenSim accepts 

3 types of data as its input: Maker or Track Row Column (.trc) files, Motion (.mot) files, and 

Storage (.sto) files. Marker trajectories have to be specified in .trc files. Ground reaction force 

(GRF) and center of pressure data have to be specified in .sto or .mot files. Joint angles have to be 

specified in .sto or .mot files. To input experimental EMG data in OpenSim, it has to be imported 

using .sto or .mot files.

To insert data from our predictive model to OpenSim, we will use .mot (motion) file format 

which was created by the developers of SIMM (Software for Interactive Musculoskeletal 

Modeling). The .mot file consists of two parts: The motion header and the data. The first line of 

motion header is the name, second line is number of rows (nRows) and third line is number of 

columns (nColumns).

The data taken from real life, for every set of coordinates (x, y and z) are relative to some 

coordinate system. This coordinate system is called Laboratory coordinate system or Laboratory 

coordinates. Normally, laboratory coordinate system is fixed to earth. Before putting any value
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from laboratory coordinate system to OpenSim, all coordinates (x, y and z) have to be transformed 

to the particular model coordinate system of OpenSim.

Mathematical Predictive model OpenSim (Rajagopal) model

Figure 5. 2 Comparison of coordinates (x, y and z) between Mathematical Predictive model and
OpenSim model

For both predictive simulation model and OpenSim model, the center of the coordinate 

system is halfway between its feet. But, from Figure 5.2 it can be seen that in predictive model, 

the x-axis points to the left of the model, the y-axis points upward and z-axis points forward from 

the model. In the OpenSim Raja Gopal Model, the y- axis points upward like the predictive model, 

but instead of z-axis, x-axis points forward and z-axis points towards left. So, the variables need 

to be modified for z-axis and x-axis before inserting its value in OpenSim.

5.4 Post processing and analysis

After interfacing predictive model with OpenSim musculoskeletal model, we will get the 

exact movement like we did in our previous chapter. But, this time we can observe various muscle- 

tendon length, force, torque, total fiber force, active fiber-force, and passive fiber force.

35



Figure 5. 3 Human body simulation in OpenSim (Side view)

Figure 5. 4 Human body simulation in OpenSim (Isometric view)
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During lifting of an object, we extend the knee and hip joints. Also, we can see from Figures 5.3 

and 5.4 that the initial ground reaction force was little bit high, then it decreases and finally 

increases again. It needs high torque initially to lift the weight. It also needs extra torque to 

decelerate the hand as well as the weight, which leads to high ground reaction force at the end. 

Also, the direction of the ground reaction force changes continuously to balance the body.

Right leg joint angles vs coordinates (Normalized)
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Figure 5. 5 Right leg joint angles vs coordinates 

The abbreviation of the muscles name are given below-

Table 5. 1 Muscles name in short-form

bfsh r bicep femoris
gaslat r gastrocnemius lateralis
gasmed r gastrocnemius medialis
grac r gracilis
recfem r rectus femoris
sart r sartorius
vasint r vastus intermedius
, vaslat r vastus lateralis
vasmed r vastus medialis
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If we analyze the lower body joint angles, we can see from Figure 5.5 that hip, knee and 

ankle joint vary a lot, and hip joint remain almost constant after some time. But, knee and ankle 

joint angle were changed till the end to keep the body stable.

Leg muscle moment vs coordinates
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Figure 5. 6 Right leg muscles moment vs coordinates

vastus muscles moment vs coordinates
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Figure 5. 7 Vastus muscles moment vs. coordinates
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We can observe important leg muscles from Figures 5.6 and 5.7 that indicate bicep femoris 

(short head), gracilis, sartorius, and vastus are the main contributing muscles for the initial 

moment. From Figure 5.6, we can see that these are thigh muscles near the femur.

Figure 5. 8 Leg muscles (Bermosa, 2010; Dooley, 2018; "Muscle Contraction and
Locomotion,")
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If we analyze the normalized fiber length, we can see from Figure 5.9 that there is a significant 

change of fiber length for vastus, bicep femoris short head, gracilis, and sartorius.

Normalized fiber length vs time
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Figure 5. 9 Normalized fiber length vs time for leg muscle 

We can analyze the passive fiber force of leg muscles which is responsible for the elasticity

of those muscles. We can see that at the beginning of lifting weight, vastus muscles are giving

significant amount of force to stand straight. On the other hand, whole time bicep femoris short

head is giving maximum passive fiber force.
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Figure 5.10 Active fiber force vs coordinates for leg muscle 

Passive fiber force vs coordinates
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Figure 5. 11 Passive fiber force vs coordinates for leg muscle 

If we observe the fiber force in Figure 5.10 and Figure 5.11, it can be seen that mainly

passive forces are the main source of motion. Ratcheting mechanism of actin and myosin head is

the source of active energy. On the other hand, fiber and connective tissues of a muscle like

Epimysium, Perimysium, Endomysium etc. are the main source of passive muscle fiber force.

From Figure 5.11 it can be seen that the connective tissue of vastus and later bicep femoris short
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head are giving maximum passive force. During the lifting of an extreme heavy load, there is a 

probability for vastus and bicep femoris muscles to be overloaded and get injured. Bicep femoris 

is a part of hamstring. It is very common for hamstring to get injured during lifting. That’s why 

we will measure electromyography data for the important leg muscles we have discussed here; 

specially vastus and bicep femoris for a regular weight lifting, which will be discussed in the next 

chapter.

5.5 Results and comparison

Using OpenSim, we can not only obtain muscle forces, but also decide which muscles need 

to be focused on and analyzed for a particular motion. Based on this information we can set our 

EMG sensors to analyze those muscles instead of analyze all the muscles around the limb for a 

particular motion. But, for some muscles like rectus femoris, it is not possible to take EMG data 

as it is an internal muscle of thigh, which is close to the femur. Also, OpenSim cannot predict a 

motion. If we can develop a predictive model including muscle activation and contraction 

dynamics, it can help us to analyze those internal muscles.
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Chapter 6 Validation of Electromyography

6.1 Electromyography

Electromyography (EMG) is a technique to collect muscle response using biomedical 

instruments. EMG data represent muscle response or electrical activity produced by skeletal 

muscles. Electromyography data are collected using tiny devices called electrodes to transmit or 

detect electrical signals from muscle. EMG data help us to diagnosis neuromuscular disorders like 

carpal tunnel syndrome, pinched nerve, radiculopathy, muscle diseases, muscular dystrophy etc. 

Also, it shows a way to train up a particular disordered muscle by observing and analyzing its 

feedback. In this chapter, we will use EMG data to analysis leg muscles during lifting various 

weight and try to find out which are the sensitive muscles for lifting weight.

6.2 Experimental setup

Two healthy human subjects with no chronic pain and age range from 24 to 26 participated 

in this experiment. During all trials, we used six surface electromyography bipolar electrodes 

(Figure 6.1). We used Trigno Wireless System, Delsys Inc. for our study. The EMG signals were 

recorded from six leg muscles: vastus medialis, vastus lateralis, vastus, rectus femoris, bicep 

femoris, gastrocnemius medial head and gastrocnemius lateral head. The EMG signal sampling 

rate is 2000 samples/sec. Given that the analog signals have a bandwidth of 20 to 450 Hz, such a 

sampling rate is sufficient to avoid aliasing per the Nyquist theorem.(Jakobsen, Sundstrup, 

Andersen, Aagaard, & Andersen, 2013). The dimension of the probes is 27 x 37 x 15 mm. The 

common mode rejection ratio (CMRR) was higher than 80 dB.
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Ine rtia l S ensing  A xes EM G  E lec trodes

Figure 6. 1 Trigno Wireless 4-channel sensor

6.3 Procedure

EMG data collection and filtering are done by six steps. These steps are followed for all 

type of weight. The steps are:

Step 1 (Cleaning): Shaving of the hair on skin where the electrode was placed were performed if 

necessary. The skin area was cleaned with 70% isopropyl alcohol to remove oil or surface residue.

Step 2 (Attaching sensors): To reduce EMG signal cross-talk between muscles, the electrodes were 

positioned within the border of the muscles and in parallel arrangement to the muscle fibers 

(Ekstrom, Donatelli, & Carp, 2007). Trigno EMG sensors employ 4 silver-bar contacts for 

detecting the EMG signal at the skin surface. To obtain the maximum signal amplitude, it is 

important to place those bars perpendicular to the muscle finer direction like in Figure 6.3. The 

sensor is placed in the center of the muscle belly and away from tendons or edges of the muscle.
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Figure 6. 2 Sensor’s arrow with the direction of underlying muscle fibers 

Specially designed hype-allergenic adhesive interfaces are used to promote a high quality electrical

connection between the sensor bars and the skin ("TRIGNO Wireless System User’s Guide,"

2014).

The EMG sensors were place on the right leg of each subject. We placed the sensors on 

vastus medialis, rectus femoris, vastus lateralis, bicep femoris, gastrocnemius medial head and 

gastrocnemius lateral head. We took the EMG data from these muscle groups during lifting various 

loads.
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Figure 6. 3 EMG sensor positions

Here, EMG1 represents vastus medialis, EMG2 represents rectus femoris, EMG3 represents vastus 

lateralis, EMG4 represents bicep femoris, EMG5 represents gastrocnemius medial head and EMG 

6 represents gastrocnemius lateral head.

Step 3 (MVC): Maximum Voluntary Contraction (MVC) or Maximum Voluntary Isometric

Contraction (MVIC) is needed to normalize the data later. When joints angle is changed during

muscle contraction, it is called Isokinetic contraction. On the other hand, when joints angle is kept

fixed, it is called Isometric Contraction. Each subject participated in several testing sessions of the

same protocol to reduce the noise of data. The best data among three were taken. Before taking

any data, each subject will perform a short warm up. After that, each subject performed maximal

voluntary isometric contraction task on a chair which were used to normalize other data (Figure

6.2). For vastus lateralis, vastus medialis and rectus femoris the leg will be extended to 45-degree

and a person gave opposite force on the leg to get the maximum contraction (Simenz, Garceau,

Lutsch, Suchomel, & Ebben, 2012). Bicep femoris was measure at 60-degree knee flexion and a
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person will similarly oppose his leg to get maximum contraction of the muscle (Simenz et al., 

2012).

Figure 6. 4 Flow diagram of EMG data collection and filtering 

Step 4 (Raw data): Subjects repetitively lift a weight from floor to a chest level height like the

simulation in OpenSim. The weights were varied from no load, 5 lbs., 15 lbs. and 20 lbs. After

each complete lift, the subject took 20 second rest.

Step 5 (Filtering): Comparing each muscle’s data with the maximum voluntary contraction of that 

muscle gives us the percentage of muscle utilization. This is called amplitude analysis. At first, a 

root mean square (RMS) is performed on the input raw data. For this, we took the RMS window 

length 0.125 second and RMS window overlap 0.0625 second. The longer the window length, the 

system will take more value to calculate each RMS. As a result, more averaging will take place
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and it will be less responsive but more accurate. After that, it normalizes the RMS data against 

another series which were taken at Step 3. Normalization helps to compare various kinds of data 

range at a same platform from 0 to 1.

6.4 Data acquisition

Data are collected from six EMG sensors from leg muscles (Figure 6.5). The range of raw 

data is from micro volts to millivolts.
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Figure 6. 5 Raw EMG data

6.5 Results and conclusion

During the course of lifting, activity of quadriceps muscles i.e. vastus medialis, rectus 

femoris and vastus laterals increased as the subject started to lift. These muscles are from anterior
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side of thigh. Muscle activity of posterior side i.e. bicep femoris, gastrocnemius medial and lateral 

head increased just before the time of standing straight. Amplitude of the EMG signal spike 

increased as the lifted load increased.

From the filtered data in Figure 6.6, it can be seen that quadriceps muscles, in particular 

the vastus medialis and vastus lateralis muscle groups, are highly activated. For a couple of 

seconds, vastus medialis and vastus lateralis are activated about 80% and 45%, respectively. This 

means these two muscles are over-utilizing for a limited time. Muscles can be activated more than 

100% for only few seconds. If these two muscles are utilized over 100% for long time, there is a 

high chance to be harmed. Gastrocnemius medial head and gastrocnemius lateral head muscles are 

also activated for about 40% and 30%, respectively. However, these two lower leg muscles were 

activated later to balance the body at the standing position.

The output of OpenSim and EMG data are quite similar. From the OpenSim simulations, 

we also found out that the muscle fiber forces from vastus lateralis and vastus medialis were high. 

Although we instructed the subject to use the strategy of max weightlifting for a regular weight, 

the distance and height also have a significant effect on lifting. That’s why although we found 

similar results, we cannot compare them directly in this case.
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Figure 6. 6 Amplitude analysis of right leg muscle comparison for no load (red line), 10 lb
(blue line) and 20 lb (green line)
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Currently, the analysis of EMG data is very helpful for medical and biomechanics 

investigation. Biofeedback applications like training of specific muscles or ergonomic assessments 

are widely dependent on EMG data, although the relationship between force and surface EMG is 

not yet well understood (Delsys, 2018). Some authors proved that for various muscles EMG 

signals are directly proportional to muscle strength for isometric or isotonic contractions with 

constant speed, but other authors claimed that the relationship is non-linear (Kuriki et al., 2012). 

Some authors concluded that for isometric contraction, if  the motor units independently activated, 

the amplitude of the signal is proportional to the square root of the force generated (Kuriki et al., 

2012). The EMG signal from a sensor is a composite signal from all the muscles underlying the 

skin. Factors that prevent to conclude to a decision about the relation between electromyography 

data and muscle force are cross-talk between muscles, variations of the placement of electrodes on 

muscle belly and the difference between the motion generated by the subject during experiments.

Although there are arguments about the exact relation between the EMG data and force, 

there is a qualitative relationship between them (Delsys, 2018) . That’s why EMG analysis is 

widely used for variety of clinical and biomedical applications, i.e. identifying the neuromuscular 

disorder, studying the tool for kinesiology, or controlling the signal for prosthetic devices.
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Chapter 7 Conclusion and Future Work

7.1 Conclusion

In this thesis, an efficient optimization method is developed to predict the maximum lifting 

weight considering dynamic joint strength. Dynamic joint strength is modeled as a three­

dimensional function of joint angle and velocity based on experimental data. In this prediction, the 

Denavit-Hartenberg (DH) method is used to express the kinematics of mechanics joints. The 

logistic equations are used to model the peak torque as a function of both joint angle and angular 

velocity, and the coefficients of the logistic function are obtained from Gauss least square 

regressions. The optimization problem is formulated as a nonlinear programming (NLP) using 

cubic B-spline discretization. Also, the dynamic joint strengths are considered as constraints which 

help us to predict the maximum lifting weight. In the proposed optimization, the external load is 

treated as design variables. By using this new formulation, dynamic lifting motion and strategy 

can be predicted for a symmetric maximum weight box lifting task with given initial and final box 

locations. The prediction outputs in joint space are integrated with OpenSim software to analyze 

muscle force and activity. Computed muscle control (CMC) is used to analyze muscle activity in 

OpenSim. We transferred joint angles, center of pressure and ground reaction forces from our 

predictive model to OpenSim. Using OpenSim, we can not only obtain muscle forces, but also 

decide which muscles need to be focused and analyzed for a particular motion. After that, we used 

EMG sensors to analyze leg muscles for a regular weight box lifting. We found some similarities 

between OpenSim simulations and EMG experiments, such as that Vastus muscles are highly 

activated. We were unable to compare these two directly, as our predictive and OpenSim models 

are for maximum weight, whereas EMG data were collected for a regular 20 lb weight. We can 

predict lifting strategy and maximum lifting weight using our predictive model. On the other hand,
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using OpenSim and EMG data we can analyze muscle activity to find out sensitive muscles for 

lifting weight.

7.2 Future Work

1. The proposed predictive model is joint strength-based skeleton simulation. The muscle 

strength and activities are not calculated in this model. A predictive model based on both joint 

angles and muscle excitation-contraction dynamics will be more accurate and realistic. For this 

purpose, a 3D musculoskeletal model for dynamic lifting prediction with dynamic joint strength 

will be developed.

2. The EMG data collected in this research will be compared to the OpenSim simulation 

data directly. To do that, a subject’s lifting motion using our predictive model will be simulated. 

Then transfer the predictive simulation results into OpenSim to obtain muscle activity information. 

Finally, these muscle activities from OpenSim will be compared to the EMG data. Therefore, it 

can validate our analysis loop of the predictive model, OpenSim, and the experimental EMG. The 

goal is to develop a robust simulation and analysis tool for lifting. This tool can also predict the 

lifting motion and muscle forces consider dynamic joint strength.
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Appendix
Table A 1. Joint angle limits

Joint name Lower limit Upper limit
Global translation 1 (forward) 
(m)

-5.0 5.0

Global translation 2 (upward) 
(m)

-5.0 5.0

Global rotation (deg) 0.0 0.0
Spine (deg) 0.0 90.0
Shoulder (deg) -180.0 90.0
Elbow (deg) -150.0 0.0
Hip (deg) -100.0 90.0
Knee (deg) 0.0 120.0
Ankle (deg) -20.0 80.0
Metatarsal (deg) -60.0 0.0

Table A 2. Static joint torque limits (Nm)

Joint name Lower limit Upper limit
Global translation 1 (forward) -500.0 500.0
Global translation 2 (upward) -500.0 500.0
Global rotation -500.0 500.0
Spine -400.0 400.0
Shoulder -184.0 126.0
Elbow -117.4 120.6
Hip -334.0 408.0
Knee -518.2 206.4
Ankle -75.4 170.6
Metatarsal -140.0 140.0

Note that the arm and leg strength are doubled because arms and legs are modeled as single 

branches.
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