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Abstract

In Alaska, hunting permits are distributed by traditional lottery. The absence o f a preference point 

system means that applicants have little invested in their applications, and there are a variety o f fallback 

hunting opportunities. Not unlike a jackpot-style state lottery, the cost to play is low relative to the 

potential prize winnings. These factors may cause risk-averse or risk-neutral individuals to exhibit a 

preference for positive skewness in their bets. Analysis in this paper is focused on four prevalent game 

species: moose, dall sheep, mountain goat, and bison. Pooled Ordinary Least Squares regression models 

were constructed to predict permit application levels as a function o f various hunt characteristics, 

qualities, and restrictions. Permit descriptions are provided to applicants in a published document called 

the drawing supplement, which is the primary source of data for this study. Additional hunter-reported 

data is obtained from the Alaska Department o f Fish and Game website. A comparison o f calculated 

permit values and private ranch hunting opportunities validates many of the observations drawn from the 

models. Permit values are also used to fit a cubic model o f bettor utility. Even when awarded prizes are 

not monetary, applicants exhibit a preference for positive skewness and aversion from risk that is 

typically associated with gambling.
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1.0 Introduction

The purpose o f this study is to perform an analysis on the Alaska hunting permit lottery through 

two independent methods. The first is a development o f pooled OLS regression models that predict 

application levels for lottery-rationed hunting permits in Alaska. Dependent variables will focus on hunt 

quality and other hunt characteristics, as well as proxies for individual hunting expenditure, and factors 

related to likelihood of obtaining a particular permit. The second is an investigation o f gambling behavior 

among applicants in the lottery. Methods include nonparametric modeling o f expected utility, and fitting a 

cubic model o f applicant utility.

Big game hunting is a popular activity for recreation and as a method o f harvesting food. Hunters 

may participate either through general season or by obtaining specific hunting permits, which limit their 

activities by species, location, and season dates. In Alaska, most hunters pursue moose and caribou as 

important food sources, especially in remote areas of the state. Economic studies in the continental US 

have estimated the demand levels for various hunting permits using traditional econometric modeling 

methods. No similar analyses have been conducted for the State o f Alaska, which offers a large number of 

hunting permits through a lottery system. The distribution method also presents a unique opportunity to 

search for evidence o f applicant behavior that is often associated with gambling

Economists widely recognize the effect of diminishing marginal utility o f wealth on the 

marketplace, which dictates that bettors should avoid unfair bets and maximize expected outcomes. 

Friedman and Savage (1948) noted that bettors should decline bets with negative marginal returns, even 

though it is not observed in the marketplace [1]. Golec and Tamarkin (1998) and Garrett and Sobel 

(1999) conducted research on gambling behavior in the context o f horse racing and state lotteries. They 

too, noted that factors other than expected utility must influence the decision to play unfair bets [2], [3]. 

The value o f entertainment may be a partial explanation, but an observed preference for risk and/or 

skewness is best explained with a cubic model o f bettor utility. The structure o f the Alaska hunting permit 

lottery is unique because it does not use any equity-balancing tools that are common in other states.

Alaska hunting permits are distributed by traditional lottery and the data is publicly available, making it 

possible to evaluate the risk-preference behavior o f participants. Emphasis is placed on differences 

between game species and differences between Alaska resident vs nonresident hunters. Golec and 

Tamarkin (1998) suggested that individuals who place a series o f bets balance their wagers like a 

portfolio, maximizing utility and also preserving their chance to ‘win big’ on riskier bets. This betting
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strategy may be present in the permit lottery, with applicants mixing low-risk moose and bear permits 

with high-risk sheep, goat, and bison permits.

2.0 Background Information on Hunting Permit Distribution

Wildlife management policies differ greatly between states. In Alaska, regulatory agencies must 

rely on a variety o f mechanisms to facilitate the harvest o f big game. The predominate purpose of 

agencies such as the Alaska Department o f Fish and Game (ADFG) is to allocate natural resources for the 

public at sustainable levels and to promote economic prosperity for commercial sectors [4]. Maintaining 

sustainable levels of fish and wildlife generally means restricting harvest through limits, seasons, animal 

size, and gender restrictions. General season hunting is the simplest and most recognizable venue for 

hunters to harvest game. General season tags (nonresident) or harvest tags (resident) are available to 

hunters for purchase, or sometimes at no cost over the counter. Fee levels and the number o f distributed 

tags are determined by state agency or by federal agency in special cases. The number o f tags for an area 

or species is decided based on a wide array o f biological factors. Wildlife biologists’ survey and model 

wildlife populations to choose optimal level o f harvest from year to year. Issuing harvest tags allows 

management agencies to track the number o f hunters. Hunters are also required to report successful 

harvest o f big game animals for general season and permit hunts. This information is compiled and 

published electronically.

In some instances, the demand for big game tags is substantially greater than the supply and a 

different method o f tag distribution is required to ensure equity among participants. The most common 

method is a modified lottery sometimes referred to as a ‘preference point’ system. These systems are 

implemented in many of the continental U.S. states to distribute tags for specific hunting areas or species 

that are highly sought after. Tags are awarded to applicants with the most preference points in descending 

order until all tags have been distributed. Each year that an applicant is unsuccessful in drawing a tag they 

receive a preference point. The system is intended to distribute tags with a greater level of equity than a 

traditional lottery, and applicants who have applied for many years without success are rewarded for their 

persistence.

Tags in high demand are distributed by traditional lottery in Alaska, and are available to both 

residents and nonresidents. However, a separate system is in place to provide hunting opportunities for 

subsistence and personal use resident hunters. The Tier I and Tier II class permits are reserved
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specifically for Alaska residents and are issued when “there is not enough game for a general season and 

the population of animals has historically been an important source o f human food” [4]. Tier I hunting 

permits are provided when the resource is expected to allow harvest for all interested parties. Tier II 

hunting permits are awarded on a scoring basis and provides preference to individuals who have lived in 

Alaska the longest or who depend on the resource for survival and/or heritage. Tier II permits are used for 

game populations where the number o f interested parties greatly exceed the optimal target level. The 

Alaska Board o f Game approves tier I and Tier II allocations. These systems function independently from 

the traditional lottery.

The publicly available hunt supplement1 and reported harvest data2 are sufficient to construct a 

prediction model o f applications to each draw permit. Such a model could be valuable to management 

agencies in estimating the demand for prospective new or existing hunting permits. It may also 

demonstrate which particular hunt qualities explain the preferences o f hunters. Observations such as these 

could improve overall public benefit from the resource, especially considering the large number of 

applicant-restricted and method-of-take restricted permits. Permit demand is directly related to revenue 

through the collection o f application fees. A permit demand model could therefore be used to predict 

future revenue.

Each year, ADFG publishes a draw hunt supplement which lists the permits available for 

application [5]. The supplemental publication provides some information to hunters to aid them in the 

application process. Each hunt has a prescribed species, season, boundary, and other stipulations like 

weapon type or animal gender. Method-of-take restrictions are common and varied in the lottery.

Common method-of-take restrictions include bow only or muzzleloader only take. Other permits are 

restricted by qualities o f the applicant. This includes resident or nonresident only permits, as well as 

permits for youth and disabled veterans. ADFG also publishes harvest statistics like hunt participation and 

success rate online, and hunters can cross reference this data with the hunt supplement. Hunters have near 

perfect information about the quality and participation in permit hunting opportunities, as well as general 

season, Tier I and Tier II hunting opportunities. ‘Perfect knowledge’ implicitly includes travel costs and 

other expenditures related to hunt participation. The models assume the hunter knows how far they will 

need to travel and the approximate value of participating in the hunt.

ADFG received over 190,000 applications in the Nov. 2016 application period. A $5 to $10 

application fee is submitted with each application, depending on the species applied for. After the

1 ADFG drawing supplement http://www.adfg.alaska.gov/index.cfm?adfg=huntlicense.drawsupplements
2 ADFG hunter reported harvest statistics http://www.adfg.alaska.gov/index.cfm?adfg=moosehunting.harvest
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application period has closed, the winners are selected at random and the results are published online. 

Each year the number o f draw permits is adjusted for each hunt based on biological factors. If wildlife 

populations are too low, permit hunts can be eliminated. ADFG may also generate new draw permits if 

game populations or demand levels change dramatically. Applicants can file for up to 3 different hunt 

permits per species, with the exception of moose which can be applied for up to 6 times. Only one permit 

may be obtained for each species, and applicants list their applications in order of preference. An 

amendment to the policy later allowed applicants to apply for the same permit multiple times. This 

amendment took effect in the 2016 application period and affected observations are included in the 

constructed data sets.

3.0 Literature Review

Economic theory has helped to improve policy decisions regarding recreational hunting and 

fishing opportunities. One o f the earliest contributors to environmental and resource economics was 

Krutilla (1975), who formally described option values and existence values. He recognized the rapidly 

growing demand for natural resources. As a public good, recreational hunting opportunities must be 

limited by regulation to prevent over-allocation o f the natural resource [6]. Determining the sustainable 

level o f harvest has traditionally relied on biological science and methods. This style of management is 

effective for developing method-of-take restrictions such as size, gender, and season limits for harvest. 

The benefit o f a method-of-take restriction is that there is no limitation to who can participate. By 

restricting the method-of-take, management agencies reduce the level o f harvest without directly limiting 

participation. Population growth, particularly around urban centers, has rendered method-of take-methods 

practically ineffective. The level o f participation is so great that harvest levels exceed the sustainable level 

even when method-of-take restrictions are in place. In regions where demand for a resource substantially 

exceeds supply, management agencies restrict participation through permit application processes.

The innate problem with public goods is that marginal benefits decline dramatically with use.

This is especially true of a permit lottery, where application fees ($5-$10) are essentially zero compared 

to the utility gained from the harvest o f a big game animal. M umy andHanke (1975) described the issue 

mathematically using a simple cost-benefit analysis to model the choices of individuals. They 

demonstrate that the ‘zero-pricing case’ will always result in over allocation o f the resource [7]. The 

conclusion is dependent on assuming that resource quality is a function o f the level o f resource use, as 

described by Hardin (1968) [8]. After aggregating the resource demand, Mumy and Hanke (1975)

4



illustrate that “the number o f demanded consumption units is always greater than capacity” [7] in the case 

where cost is zero. It is for this reason that access to resources with no cost or very low cost of use must 

be restricted. Fish and wildlife populations are actually far more fragile than the public infrastructure 

projects evaluated by Mumy and Hanke (1975). When the resource is overused it can become irreparably 

damaged, providing further incentive to restrict access.

When hunters travel to hunting areas they incur some cost from traveling. It represents the 

primary cost o f outdoor recreational activities in the form of expenditures on gasoline, automobiles and 

maintenance. Although there is other cost associated with hunting (eg equipment, opportunity costs) 

travel costs can be estimated or measured with some degree o f certainty. Boxall (1994) described the 

modified travel cost method (TCM). He used the modified TCM to model trophy antelope hunting in 

Alberta at eight particular hunting locations. Antelope permits were distributed to hunters through a 

traditional lottery and the hunting season was specific to each permit. The structure o f the lottery system 

was generally similar to the structure o f the Alaska hunting lottery. His model estimated application 

choices using multinomial logit regression. Travel costs in the model were estimated by measuring 

distance from the applicant’s zip code to the prescribed hunting area. A $/Km figure was applied to each 

distance to determine the cost to each hunter. In addition to the travel cost parameter, the model included 

“site characteristics or qualities... and characteristics o f the recreationists themselves” [9]. The model 

combined characteristics o f the hunt and characteristics o f the applicant.

A similar study was conducted by Scrogin Et al (2000) modeled demand for elk hunts in New 

Mexico over a 2 season time period. The focus o f the study was a policy change “intended to increase 

resident access to the hunts” [10] . Using the estimated demand, Scrogin E t al (2000) calculated changes 

in individual recreationist utility levels and net social welfare. Critical assumptions for their model are 

included here.

Assume that (a) applicants are randomly drawn in the lottery, (b) the supply o f  

licenses fo r  each hunt is fixed, (c) an individual can apply fo r  only one license, (d) 

licenses are nontransferable, (e) applicants are risk neutral and seek to maximize the 

expected (net) value ofparticipating, and (f) participants have fu l l  information about the 

characteristics and regulations o f  the various licenses to be issued and the total number 

o f  applicants fo r  each hunt. [10]
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Their model included a TCM price proxy variable very similar to that o f Boxall (1994). The base 

model includes indicator variables for various hunt restrictions, hunt quality, hunt region and unique 

qualities such as opening and closing weeks o f the season. Parts (e) and (f) are especially relevant to the 

analysis presented later in this paper. Accurate estimation o f the permit values depends heavily on the 

knowledge o f the applicant.

Scrogin et al (2000) model derived its methodology from Hellerstein (1993) which described the 

use o f count data and appropriate modeling distributions. Count data is unique in its occurrence and 

method of treatment. He explains, “price variation occurs across individuals, where each individual in the 

sample possesses a unique set o f unobservable factors. At any price, these factors (ceteris paribus) 

determine the quantity each individual consumes,” [11]. In the absence of individual level data there are 

some limitations to inference. Hunters have the opportunity to hunt whenever they want within the 

prescribed permit season. In most instances the hunting period is long enough that hunters may make 

multiple hunting trips. After each decision to hunt “the probability o f choice decreases proportionally, 

[and] this binomial distribution will asymptotically converge to a Poisson distribution,” [11].

Buschena et al (2001) modeled the distribution o f elk permits by a preference point system, with 

particular emphasis on policy implications. Their models controlled for typical hunt characteristics such 

as success rate, animal gender, weapon type, land access, time period o f the hunt, and the likelihood of 

harvesting a trophy animal. They estimated the number o f preference points needed to obtain a hunting 

permit, and used those estimates to calculate marginal permit values. By modeling permit values rather 

than expenditures or number o f hunting trips, they were able to comment on the effect o f changes to the 

structure o f the permitting process. For example, the study was able to compare the permit value of 

unrestricted permits to muzzleloader-only permits and make recommendations on how to increase the net 

public benefit o f harvested animals [12]. This method also creates an opportunity for management 

agencies to increase revenues by maximizing the number o f applicants, though this is typically not an 

agency goal.

The fundamental assumption o f lottery based permit distribution is that applicants are risk-neutral 

wealth maximizers. Nickerson (1990) elaborates on this assumption. He presents the certain value o f an 

application as a function o f income, price, household characteristics, and hunt parameters [13]. He 

assumes a positive marginal expected value when the applicant is drawn and a negative marginal 

expected value when the applicant is not drawn. The justification is intuitive. Nickerson explains;
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"A risk-neutral wealth maximizer is willing to participate in any lottery only i f  the 

expected value o f  the outcome is greater than or equal to zero. The rules allow  

participation in only one drawing and hence the individual will enter the drawing with 

the highest expected value. " [13]

Similarly, the number of applications for a particular permit will continue to increase as long as 

the expected marginal value o f applying is positive. Applicants will also apply to those hunts with the 

largest expected marginal value until the marginal values o f all permits are approximately equal. But 

lotteries involving cash prizes depend on players to purchase tickets when their expected outcome is 

negative. This is what makes the lottery profitable for the owner. Friedman and Savage (1948) noted the 

discrepancy between what traditional economic theory predicts and what is observed in the marketplace. 

The assumption of diminishing marginal utility dictates that for a lottery player, an earned dollar brings 

less utility than a dollar lost. Lottery players should therefore decline unfair bets, but this behavior is not 

seen in the real world [1].

Walther (2002) provides a qualitative explanation o f why risk-neutral or risk-averse individuals 

sometimes accept unfair bets. The most common and intuitive reason is that individuals derive utility 

from the act o f gambling. Walther describes the effect as a change in utility that arises from “the 

resolution o f uncertainty” [14]. In simpler terms, betting can be fun. The individual generates some utility 

as a product of simply playing the game, and experiencing elation or disappointment when the outcome of 

the bet is realized. This effect is well known to the public as the ‘Lottery Dream.’ The probability of 

winning a multi-million dollar lottery jackpot is dismally small, but lottery players derive utility from 

imagining or discussing their plans for the prize money. Walther explains why individuals are willing to 

forgo the cost to play.

‘Small probabilities to win are systematically overvalued. The reason is simple. I f  one loses with "certainty " 

no disappointment effect will arise. On the other hand, elation will be strong, i f  one gets a large gain -

against all odds.’ [14]

The ‘nothing to lose’ explanation may play an important role in hunting permit lotteries. There 

are striking parallels. The low cost o f applying and large number o f fallback hunting opportunities may 

allow applicants to rationalize applying to hunts that do not maximize their expected outcome. Clotfelter 

and Cook (1990) discuss alternative explanations for risk-loving behavior o f lottery players, and the
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demographic distribution of players. They found that low-income players were more strongly motivated 

by potential gains, and high-income players were more motivated by playing ‘for fun’. Typically lottery 

tickets cost around $1, and the expected payout is about half of the cost to play [15]. Utility gains from 

playing the lottery or the ‘dream’ effect must make up a portion o f that difference.

Golec and Tamarkin (1998) explore similar questions in the context o f horseracing. They too 

recognized the value o f  entertainment as a partial explanation to why bettors accept ‘overall negative 

returns’ after a day at the track. They improve upon their analyses with an empirical study o f bets placed. 

They suggest that betters want to maximize their expected outcome while also maintaining a chance to 

win big on a ‘long-shot.’ The tradeoff between negative expected return and skewness can be explained 

by a betting strategy that balances ‘favorites’ and ‘longshots’:

When Gamblers make their bets, they are considering the utility o f an evening’s 

outcome rather than the utility o f a single wager... O f course, they are more 

likely to lose part or all o f their stakes, but the possibility o f a large win is what

lures them. (pg 221) [2]

Garrett and Sobel (1999) expand upon the work o f Golec and Tamarkin (1998) by applying their 

reasoning and methodology to a wider population base. They examined state lottery data for similar 

evidence o f positive skewness preference. They estimate lottery player utility using a cubic utility 

function, and confirm previous findings. At high win probabilities, players tend to behave as risk-averse 

individuals. At low win probabilities, they tend to behave as risk-loving individuals [3]. Garrett and 

Sobel (1999) reiterate the observations o f Golec and Tamarkin (1998) and explain that large jackpot 

prizes seem to ‘entice’ players who are normally risk averse.

4.1 Application Model Data

The drawing supplement is organized primarily by game species, and secondarily by geographic 

location o f the listed hunts. Each hunt can be identified with a standardized hunt ID containing 5 

characters. Figure 1 contains the supplement listing o f a draw moose hunting permit in 2016, DM041 , as 

indicated by the first two digits DM. Hunts are listed by ascending ID, and there are significant gaps in 

the ID numbers. As hunts are altered, added, or removed they are assigned new hunt ID numbers. The ID
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numbers serve an important function in the organization o f the data set, which spans 6 years and 8 

species.

Gam e M anagement 
Unit, A rea

Hunt
No.

Num ber
of

Perm its

Season Dates 
2016 Lega l Moose

Specim ens 
Required (Return 
with permit report)

R eporting 
Requirem ents 
If S uccessfu l

Ad d itiona l Requirem ents and Inform ation

1C, Berners Bay

DM041 up to 5 Sept. 15-Oct. 15 Bull
i r f #

5-inch section 
of lower jaw 

with front teeth

In person or by 
mail to Douglas 
within 10 days 

o f kill

Hunt Area: Unit 1C within the Berners Bay drainages.

Figure 1: Example o f Moose Drawing Supplement Entry [5]

Table 1: Example o f Application Model Data

Hunt Num . Num.
ye a r  n e w  h unt species hunt

Num . A p p s  Perm its

0 if  e ith e r, 1 

if  bu ll, 2 if 

cow , 3 if

0 if  none, 1 if  

b ow , 2 if 

m uzzle, 3 i f  

shotgun, 4 if

antle rless, 4 0 i f  e ith e r, 1 if  yo u th , 5  if  1 2 

if  50inch bu ll res, 2 i f  n on and 3, 6  if  v e t

G M U  sub unit sex R es id ency Restric tions  srate
e xp e c ted  Concaten  

dra w  ated

41 DM041 723

The data set is constructed from the drawing supplement and is used to estimate predictive 

models for the permit lottery. It contains observations for the hunting permits offered from 2011-2016. 

Table 1 contains the application model data as derived from the supplement entry shown in Figure 1 . 

Table 1 also contains the success rate (srate) obtained from ADFG’s online database, and the number of 

received applications which is obtained from the 2017 drawing supplement.

7,13,14,15,20

2016 0 DM 5 1 0 0 80 1 1C

9



Table 2: Summary Statistics o f Application Model Data

Species Observations

Min
Number
Apps

Max
Number
Apps

M ean
Number
Permits

M ean
Success
Rate

M ean Draw  
Probability

M oose 984 0 6267 29.1 39% 18%
Sheep 281 6 3341 10.4 41% 3%
G oat 221 15 1372 18.9 4280% 6%

Bison 34 363 14114 20.4 72% 0%
Elk 71 65 1042 53.9 33% 15%

M usk Ox 13 196 1586 18.1 99% 3%
Black Bear 56 1 266 39.5 40% 90%

Caribou 43 167 13597 146.4 56% 8%

Table 2 contains brief summary statistics for the application model data set. There are natural 

limitations in the abundance o f certain species, and therefore sustainable harvest levels. Regression 

modeling is restricted mainly to moose and Dall sheep permits. Most o f these hunts take place in 

relatively small hunt boundaries and are road accessible from Anchorage or Fairbanks, where most 

applicants reside. Hunting opportunities for these species are competitive and there are a sufficient 

number o f observations for each. For some other species, such as bison, there are only 4-6 observations 

per year. They are generally homogenous in terms o f hunt quality and other parameters, and model 

estimation is less reliable. The large number o f moose and sheep hunts, and their proximity to urban 

centers constrain the variation among the samples and allows the model to isolate the effects of estimated 

parameters. The data includes observations from 2011 to 2016, or 6 application periods [5].

There are some breaks in the data set due to structural changes and publishing gaps.3 The affected 

observations were dropped from the data set. The second main source o f breaks in the data is an inability 

to separate the effect o f restrictions on resident vs nonresident hunters. Approximately 30 moose hunts in

3 In 2014 there was a restructuring of moose hunts in unit 20, where several hunts were split to create permits 
available only to youth. In doing so, ADFG changed the ID numbers of 44 moose hunts from 2014 to 2015. The 
change resulted in a publishing gap the following year and the application levels for those 44 hunts are not known.
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units 21, 24 and 26 allow applications from residents and nonresidents, but there are separate hunting 

restrictions for the applicants.4

4.2 Application Model Methods

The model parameters not drawn from the hunt supplement are hunter reported success rate and 

approximate travel distance to the hunt Game Management Unit (GMU). Hunter reported success rate 

was obtained from the ADFG website harvest statistics. The travel distance term is estimated using a 

combination o f ArcMap analysis tools and Google Maps.5 Many hunters use ATV’s, snow-machines 

(snowmobiles), or boats to access hunting territory further from the highway. The models discussed later 

in the paper do not account for off-road vehicles, but the travel distance terms represent ordinal 

differences. Fairbanks was chosen as the travel distance origin because nearly all road-accessible permit 

hunts are located south o f Fairbanks. Although permit demand is driven by Anchorage residents, a 

distance term implies no directionality. A distance-from-Anchorage term would create ambiguity because 

there are hunt locations both north and south of Anchorage. A summary o f the variables used for analysis 

is presented in Table 3, below.

4 Nonresident hunters are required to take a large bull (minimum 50 inch spread or 4 brow tines) but residents may 
take any bull. The bigbull, bull, resident, and nonresident indicators are all important sources of inference in the 
model but their effect on the dependent variable cannot be isolated in these observations, so they are not included.

5Using ArcMap, The centroid of each game unit and subunit were generated and snapped to the nearest highway. 
The coordinates of the snapped points were exported to Google Maps and used to calculate a highway travel 
distance. A sum of the highway distance and distance from the snapped points to the appropriate GMU centroid 
were combined to form a total travel distance.
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Table 3: Application Model Variable Names and Descriptions

Variable Name Type Description
NumApps Continuous current year number of applications receieved
NumPermits Continuous published maximum number of permits to be distributed
srate Percentage previous year success rate of hunters who went hunting
y2011- 2016 Dichotomous indicator fo r years 2011 through 2016
resident Dichotomous 1 if an Alaska resident
nonresident Dichotomous 1 if not an Alaska resident
bow Dichotomous 1 if bowhunter certification to required
muzzle Dichotomous 1 if muzzleloader certification required
youth Dichotomous 1 if applicant must be 14 years of age or younger
vet Dichotomous 1 if applicant must be a disabled veteran
DFAIR Continuous calculated travel distance from Fairbanks to centroid of permit Game Management Unit
DANCH Continuous calculated travel distance from Anchorage to centroid of permit Game Management Unit
DFAIRsq Continuous squared Fairbanks travel distance
DANCHsq Continuous squared Anchorage travel distance

Moose specific
antlerless Dichotomous 1 if moose must not have antlers
bull Dichotomous 1 if moose must be male
bigbull Dichotomous 1 if moose must be male, w ith antler spread

sheep specific
fullcurl Dichotomous 1 if sheep horns must be full curl
g12, g7, g20 Dichotomous indicator variable fo r Game Management Unit

goat specific
remote Dichotomous 1 if no road access
southeast Dichotomous 1 if hunt Game Management Unit = 1,2,3,4 or 5
punish Dichotomous 1 if hunt punishes hunters who take nanny goat with kids

Travel cost is a significant expense for outdoor recreationists, and should be accounted for in the 

predictive models [16]. In the absence o f a travel cost term, a travel distance variable should be among the 

more significant parameters in the model. Nonresidents have substantially greater travel costs because 

they must first travel to either Anchorage or Fairbanks before traveling to their prescribed hunt area. 

Nonresidents also have greater costs if  they hire a hunting guide and/or pay for accommodations like 

hotel, rental car, etc. A hunting guide is required for nonresident hunters who pursue brown bear, dall 

sheep, or mountain goat. Theory would dictate that the resident and nonresident terms would capture 

these effects. In the absence o f individual level data, these indicator variables are the best method to 

account for travel costs for out of state hunters.

The data contains three sets o f categorical variables. The resident and nonresident indicator 

variable are compared to a baseline where either residents or nonresidents may apply. The remaining two 

variable sets both relate to hunt restrictions. One set contains dummy variables to indicate additional 

restrictions including bow only, muzzleloader only, youth only, and disabled veterans only. These 

restrictions should all limit the number o f prospective applicants and incur a negative effect on the
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dependent variable, apps. The remaining set varies for each species, but relates to animal gender or size 

restrictions. Together, these variables will attempt to capture preferences o f hunters. There is little theory 

to dictate expectations for these terms. However, the baseline is an either sex tag, which allows for the 

greatest flexibility in hunting strategy. Either-sex tags function similarly to antlerless tags, but stipulate 

that hunters may not take a female animal with young.

The draw hunt supplement used to compile the Alaska permit lottery data set does not contain 

individual demographic data or characteristics. This is a critical element of estimating demand 

relationships with count data, and was noted by both Boxall (1994) and Scrogin (2000). Count data for the 

Alaska permit lottery would ideally be modeled with a repeated discrete choice model. The permit 

rationing system modeling by Boxall (1994) and Scrogin (2000) closely resembles the Alaska hunting 

permit lottery. But in the absence o f individual characteristics o f the hunters and demographic 

information about applicants, modeling methods are limited to prediction-type Pooled OLS models. 

Equations 1 through 3 represent the generalized models with quadratic terms included for each o f the 

three modeled species.

Number of Applications Moose Permit P =  P 0 +  P 1XNum.Permits +  P 2XNewHunt +

P3XSRate +  P4XGenSeasSRate +  P5Xy2016 +  P6Xy2015+ P?Xy2014 +  P8Xy2013 +  P9Xy2012 +  Eq. 1
P10XBull +  PnX Antlerless +  P ^X B igB ull +  P^X R esident +  P^XNonResident +  P ^ X bow +

P16XMuzzle +  P nX Y outh  +  P ^ X y e t  +  P 19XDANCH +  P 20XDFAIR +  P21XNumPermitsSQ +

P22XSRateSQ +  P23XDANCHSQ +  P24XDFAIRSQ

Number of Applications Sheep Permit P =  P 0 +  P 1XNum.Permits +  P 2XSRate +

P3XGenSeasSRate +  P 4XDANCH +  P 5XDFAIR +  P6Xy2016+ P?Xy2015 +  P8Xy2014 +  P9Xy2013 +  Eq. 2
P10Xy2012 +  PnX R esident +  P12XNonResident +  PoX FullC url +  P14XAnySheep +  P15X bow +

P16XYouth +  PnXNumPermitsSQ +  P18XSRateSQ +  P 19XDANCHSQ +  P 20XDFAIRSQ +  P21Xg12 

+  P22Xg7 +  P23Xg20
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Number of Applications Goat Permit p =  P 0 +  P 1XNum.Permits +  P 2XNewHunt +

P3XSRate +  P4Xy2016 +  P5Xy2015 +  P6Xy2014+ P?Xy2013 +  P8Xy2012 +  P9XNonResident +  Eq. 3
P10Xpunish +  P 11XDANCH +  P 12XDFAIR +  P 13XNumPermitsSQ +  P14XSRateSQ +

P 15XDANCHSQ +  P 16XDFAIRSQ +  P17XSoutheast +  P18XRemote

4.3 Application Model Results

The travel distance proxy variables have some limitations in the model. The method of 

measurement does not account for travel costs incurred by the hunters and it approximates travel 

distances off the road system. However, the distance terms do capture ordinal preferences, which are 

sufficient for inference. Without individual data it is not possible to comment on individual demand or 

welfare changes in the lottery system.

Preliminary models are heavily influenced by heteroscedasticity in the data. Models for moose, 

sheep, and goat permits all tested positively for heteroscedasticity using the Breusch-Pagan test. Changes 

to the functional form o f the models improved the adjusted R-squared fit o f the model but created 

problems for inference. It is simpler to comment on permit demand in terms o f the number o f applications 

rather than percentage changes in applications. From a management perspective, it is also easier to 

estimate revenue changes for predicted application levels. Instead, the models are estimated with robust 

standard errors.

14



Table 4: Application Models for Moose Permits Using Robust Standard Errors

A l a s k a  H u n t in g  P e r m it  L o t t e r y  -  Moose P e r m it s

B a s i c Q u a d r a t ! c Lind t e d

Huai. P e r a ic ts fi.6 fil***
(1.976)

15. B5 *** 
(1.09fi]

7.610***
11.973!

r .ev  h u n t 5. 764 
(L 3 T .fi)

-55.27
(143.9)

s r  a t e £ .E05L
(1.455)

4.460***
(9.931}

2.270*
{1.0521

GenSe a s S u c e e s s - 9 . 290 
( E . 553)

-1..153
(3.7471

j20L6 23B.6** 
(E 7 .41)

203.9***
(81.60}

263.2** 
1 3=3.56!

y2DL5 3E0.1***
(79.23)

395.3***
(67.211

340.7***
177.301

y2DL4 222.9**
(69.23)

204.4***
(5E.711

194.2**
171.35!

y2013 •3
1-)

•3
(-1

39.24 
155.EE!

y2012 -197.3
(5fi.30)

-92.01
(56.641

-E 4 .21 
151.191

b u l l -39 .43 ' 
(131.0)

-43.74
(113.1}

a n t l e r l e s s 343.4**
( 1 2 1 . 0 )

404.0***
(101.9)

675.1***
(107.01

higb'JLll -351..1
(202 .f i )

-24.00
(170.4I

r e s i d e n t 25B.0*
(133.9)

103 . f i
(125.0}

n o n r e s i d e n t 443.2**
(144.7)

-3 5 2 .3l 
(157.1}

-672.0***
(114.41

bow -377.6**
(L23.3)

- 3 6 3 . 3 * *
(120 .11

-3 3 3  . “3*** 
172.53!

nuiEEle -3 7 B .7* 
(154.1)

-377.5** 
( 14 fi . 11

-415.3**
1134.51

y o u th -4 2 E .4*** 
(106.0)

-30B.2**
(102.11

-333.7***
1E5.3E1

v e t -53E.1**
(L77.4)

-636.3  *** 
(143.91

-597.7*** 
135.51!

EAHCH - 2 . 931*** 
(0.410)

-L.473
(1..1511

DFAIR 0.5 fi7L*
(0.233)

6 .404L *̂
( 1 . 1 1 9 )

10.33***
(1 .0211

HuaiPe rrrd t s s  q -0.0362***
(0.00664)

s r a t e s q -O.09496***
(0.00111)

EfiHCHsq - 0 .  000614 
(0.00170)

DfAIRsq -0.9104***
(0.00203)

-9.0157***
(0.00135!

C o n s t a n t 556.4
(305.4)

-433.3
(311.0}

-1.100.5***
1142.6!

Ob s e r v a t - i a r .s  
A d ju s t e d  P .- s q u a re d

7fi3
0 .5 I3

763
0.602

763 
0 .532

5tsr.ds.rd errors in. parentheses
* p K G . o s ,  * *  p < o . a i ,  * * *  p < 0 . a D i
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The moose permits pooled OLS cross section in Table 4 explains 52% of the variation in 

application levels for 763 observations. The number o f permits offered is highly significant, with each 

additional permit increasing the number o f applications by 6.7. Hunter reported success rate was included 

in the model to serve as a proxy for unobserved hunt qualities relating to specific geographic regions. We 

assume that hunters have perfect knowledge o f the areas they choose to hunt in and are able to compare 

the quality o f the available permits. Success rate is significant and each additional percentage point 

increases the number o f apps received by 2.9. The resident indicator is significant to the 10% level and 

the nonresident indicator is significant to the 5% level. They are compared to a baseline permit where 

either residents or nonresidents may apply. Weapon restrictions decrease the number o f applicants, as do 

youth-only and vet-only permits. Note that the year 2013 indicator is omitted in models that include the 

general season success rate variable. The general season success rate in 2013 and the base year 2013 are 

perfectly correlated.

Travel represents the primary cost component for hunters. The distance terms (distance from 

Anchorage and distance from Fairbanks) are highly significant to the pooled OLS model. The negative 

coefficient o f the ‘distance from Anchorage’ term is consistent with the expectation that permit demand is 

driven by Anchorage residents. As the largest city in Alaska, Anchorage’s residents comprise the largest 

portion of aggregate demand for hunting permits. With 298,000 residents, Anchorage makes up 40% of 

the state’s total population [17]. Because the travel distance terms do not imply directionality, inferences 

from models with the Fairbanks distance and Anchorage distance terms are unreliable. In the Limited 

model, application levels increase by 10.2 apps per mile o f distance away from Fairbanks. The quadratic 

term indicates an inflection point at a distance o f 307 miles from Fairbanks. Anchorage is approximately 

366 miles from Fairbanks by highway. At distances greater than 307 miles from Fairbanks, application 

levels will begin to decrease. The distance roughly corresponds with the length of the Parks Highway 

(323 miles), the primary route for travel between Anchorage/Matsu Valley and Fairbanks. At the relative 

maximum predicted by the Limited model, 3,166 applications will be received for any given moose hunt, 

ceteris paribus. The maximum dependent variable value in the data set is 6,267 applications.

In terms o f animal gender, we can make some interesting inferences. Antlerless moose permits 

receive an additional 343 applications over the baseline. Antlerless moose, although smaller, are more 

common and make better table fare than rutting bulls. For comparison, the large bull permit indicator was 

included. It is not significant to the model, and has a negative coefficient. If  hunters were pursuing trophy 

moose or hunting purely for sport, we would expect a positive and significant coefficient for the ‘bigbull’ 

term. It seems that antlerless permits are preferred to bull or trophy bull permits. This is not surprising 

considering moose are an important source o f food for many Alaskans. The finding is notable compared
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to studies o f lotteries in the lower-48 states where demand for hunting permits is generally driven by 

trophy hunting opportunities for elk, pronghorn antelope, and other species [10].
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Table 5: Application Models for Dall Sheep Permits Using Robust Standard Errors

A la s L a  H u n t in g  Z er n i i t  l o t t e r y  -  E a l l  Sheep  P e m i t s

B a s i c Q u a d r a t ic A l t e r n a t e

JTtrr.. P s r r i t i 1 7 . 4 E - * *
( 5 . 0 4 3 )

8 B. 67  * * * 
(1 3 .1 1 1

I B . 62***  
(1 .7 5 6 1

s  r a t e 0 .1 5 Z  
(G .56.1)

0 . 0 4 5 2
( 2 . 5 1 4 )

G-enf e a s S u c c e  s  s - 3 3 . 1 5
(1 7 . 7 9 )

- 2 1 . 5 2
(1 4 .1 4 1

DA1TCH 0 . 4 4 6
(G.2E41

- 7  .9 .131 
(3 .4 6 2 1

IFAI9. - 0 . 2 5 1  
(G .SEE)

- 2 4 . 2 4 * *
(7 .E 92I

y20.16 E 6 .5 4  
( 7 5 . LE)

3 6 . G3 
(6 6 .7 2 1

y  2 0.15 0
( - )

0
(.1

1 0 9 . 6 l 
( 4 5 . 7 1 )

y  2 0.14 - 6 9 . 7 1
( 9 6 . 9 1 )

- 9 0 . 5 9
(6 9 .6 4 1

y  2 0.13 - 1 7 0 . 1
(9 7 . 5 5 )

- 1 4 7 . 2 *
(6 9 .8 3 1

y  2 0.12 - 6 0 . 3 4
(7 3 . 5 5 )

- 7 1 . 7 2
(6 1 .1 5 1

r e s i d e n t - 7 4 2 . 2 * * *
(1 0 1 . 6 )

- 3 7 8 . 5 '
( 1 8 9 . 7 )

25G.5 * * *  
( 2 9 . 2 5 )

n o n r e s i d e n t - 1 0 2 1 . 9 * * *  
(132 .G)

- 3 0 7 . 7
(2 3 5 .6 1

f u l l c u r l -5 .1 .7 3
(7 5 . 6 3 )

- 1 1 6 . 0
( 1 2 1 . 5 )

-.107 .3 **  
( 3 4 .0 6 ]

a n y sh e  ep 4 4 . 5 2  
( 1 5 4 . Q)

1 9 . 7 0
( 1 7 7 . 5 )

h o v - 4 2 1 . 4 *
(1 5 5 . 7 )

- 7 1 6 . 0 * *
( 2 2 1 . 2 )

- 4 0 0 . 7 * * *
(7 1 .3 51

youth. - 4 E 4 . 4
(2 5 7 . 4 )

- 7 5 3 . 9* 
(3 1 5 .5 1

- 3 7 0 . 2  * 
(1 5 6 .5 1

ETurFeraii t s  sq - 1 . 1 4 0 * * *
(0 .1 9 2 1

s r a t e s q 0 .0 0 0 3 5 8
10.0 2761

DAHCEsq 0 .0 2 0 0 *
(0 .0 0 5 5 3 1

DFAIRsq 0 .0 3 6 1 * *
10.0 1231

giz 2 0 0 3 . 4 * * *  
( 1 5 3 . 6 )

g7 9 6 0 .2 * * *
( 8 0 . 0 4 )

gZO 4 5 1 . 5 * * *
( 1 1 1 . 0 )

C o n s t a n t 2 2 5 9 . B** 
(739 ..1)

5 3 7 7 .4 * * *  
( 1 2 6 2 . G)

.114. 9*** 
(2 5 .9 3 1

O b s e r v a t i o n s  
A d j u s t e d  ^ .-squared

24  Z 
0 . 6 5 5

242
0 . 7 5 4

2E0
0 . 9 6 2

5 tar.da .rd  e r r o r s  i n  p a r e n th e s e s
* p<q.ds, ** p<o.oi, *+* P<a.aoi
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The pooled OLS cross sectional model of dall sheep hunts in Table 5 explains 69.5% of the 

variation in application levels o f 242 observations. Each additional permit offered increases the number of 

received applications by 17.5. The Fairbanks distance term is less appropriate for the dall sheep model. 

Dall sheep live in steep mountainous terrain [18], and many o f the permit hunts can be accessed by 

multiple highway routes. Instead, an alternate set of dummy variables are developed from the ADFG 

designated Game Management Units (GMU). An alternate regional sheep permit model has an R-squared 

value o f 0.86. Sheep hunters exhibit a strong preference for hunts in GMU 12 and 7. An investigation of 

these permits reveals that easy road access to 4 specific hunts may be the motivating factor. Appendix F  

shows the hunt boundary for two particular sheep hunts (DS102 and DS103) in GMU 12, outside o f Tok, 

AK. State highways represent nearly 50% o f the hunt boundary perimeter, and applicants simply prefer 

hunts with the best access. Note that the year 2013 indicator is omitted in models that include the general 

season success rate variable. The general season success rate in 2013 and the base year 2013 are perfectly 

correlated.

An indicator for full-curl restricted hunts in the alternate model is significant to the 5% level and 

decreases the number o f applications by 107. We noted that antlerless moose hunts were preferred to bull 

hunts because it allowed for greater flexibility and likely relates to hunting for food. A similar 

relationship may be present in sheep hunters. Full curl rams are less common, and much harder to 

identify. Permit applicants may prefer an either-sex or any-ram permit to provide greater flexibility while 

hunting. If  a full curl ram is spotted, it can still be harvested within these broader tag categories.

Hunter reported success rate is not statistically significant in the model. The result is interesting 

because it illustrates differences in hunting strategy by species. Dall sheep are small animals compared to 

moose, giving little meat relative to the arduous hunting conditions that must be endured to harvest one. 

Sheep hunters may be motivated more by prestige than by subsistence. This may indicate a higher level of 

competition or risk preference among sheep hunters.
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Table 6: Application Models for Mountain Goat Permits Using Robust Standard Errors

Alaska Hunting Permit. Lottery - Mountain Goat Permits

Basic Quadratic Alternate

Num. Permits 1.461
(2.175)

23.12**
{7.163>

5.551**
(1.930)

new hunt -96.20 
(64.67)

-101 .5 
{95.29)

srate 1.43 6
(0.612)

6.469** 
{2.010)

y.2 016 -21.67 
(63.60)

-45.34
{61.55)

y 2 015 30.98
(93.20)

33.56 
{90.39)

150.4** 
(49.91)

y 2 014 10. 54 
(73.40)

31. 98 
{65.73)

y 2 013 -9.935 
(67.66)

-2.610 
{61.09)

y2012 -0.51-3 
(69.10)

-1 .291 
{64.47)

nonresident -575.2*** 
(76.92)

-396.9**'
{122.4)

-427.0*** 
(33.52)

punish -25.06
(65.30)

-29.39
{100.0)

-179.5***
(35.28)

DANCH -0.734* 
(0.317)

-2 .273 
{2.504)

DFAIP -0.820* 
(0.363)

7 .028** 
{2.401)

NuntPermi t s sq -0-657**
{0.203)

sratesq -0.0728** 
(0.0242)

QANCHsq 0.00694 
{0.00710)

IFAIPsq -0.00942*** 
{0 .00263)

southeast -271.4***
(60.09)

remote -194.0***
(46.71)

Constant 363.1***
(156.9)

-1156.7*
{517.2)

430.1***
(42.25)

■Qbs ervat ion s 
Adjusted P.-squared

130
0.101

130 
0. 312

214
0.233

Standard errors in parentheses
* p< 0.0 5, ** p<0.01, *** p<0.00
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A model o f mountain goat permits in Table 6 explains little o f the variation in applications, but 

provides valuable inference. Adjusted R-squared goodness o f fit ranges from 0.18 to 0.31 for the 

presented models. Similar to sheep permits, hunter reported success rate is not significant in the model. 

Mountain goats and dall sheep live in steep and rocky habitat, and hunting for mountain goat poses many 

of the same challenges. Success rate is often low. Also, note that there are no general season hunting 

opportunities for mountain goats in Alaska. Goat hunters have few substitute opportunities, so hunt 

quality is not relevant compared to other parameters. Applicants accept greater risk in order to pursue a 

rare quarry.

The dummy variable ‘punish’ represents a management tool for either-sex goat permits. A hunter 

may harvest a nanny goat, but the hunter will be prohibited from goat hunting for 5 years if the nanny has 

kids. This interesting stipulation is highly significant in the model. Permits with the punishment receive 

180 fewer applications in the Alternate model. Apparently, hunters are wary o f the possibility o f losing 

their hunting privileges.

5.1 Behavioral Model Data

The behavioral model data is constructed from the results document of the 2016 hunting permit 

lottery. It is used to test for gambling behavior in hunters, their permit bundles, and the tradeoff o f risk 

and expected utility among applicants. Table 7 contains data for three individual applicants, with their 

names removed for anonymity. The data indicates which permit was applied for, whether the applicant 

was drawn, and the applicant state o f residency.

Table 7: Example o f Behavioral Model Data

Year ^  Specier | D g y / N
0

First M idd le  Last Su ffix  C ity  State Zip  Cod°

2017 YM r616 No JU N EAU  AK 99801

2017 DM 871 No B R O O K H AVIN  MS 39601

2017 DC 485 No CHUGIAK AK 99567

An analysis o f risk behavior is conducted on the behavioral data set. Calculations and modeling 

are performed on a 10% sample o f the 2016 permit application results population, comprised of nearly
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160,000 observations [19]. The sample contains information for 3,698 individual applicants. The data 

include the hunt permit ID, applicant name, state code, zip code, and a yes/no field for successful 

applicants. Table 8 and Figure 2 represent the preferences o f applicants in the 10% sample by species.6 

Permit values are estimated for 455 unique permits. 44% of the unique permits are for moose, and 43% of 

the applications in the sample are for moose permits. O f the 3,698 applicants in the sample, 75% applied 

for at least 1 moose permit.

Table 8: Summary Statistics o f the 10% Behavioral Data Sample

Youth (<14 yrs old)
Alaska

Resident
Nonresident

Anchorage
Address

Fairbanks
Address

Count by Applications 203 15996 904 4044 1132

Percentage by Applications 1.20% 94.65% 5.35% 23.93% 6.70%

Count by Applicant 122 3349 369 813 275

Percentage by Applicant 3.30% 90.56% 9.98% 21.98% 7.44%

Moose Sheep Goat Bison Elk Musk Ox
Brown
Bear

Black
Bear

Caribou Count

Count by Applications 7208 2411 1439 1955 617 215 802 93 2160 16901

Percentage by Applications 42.65% 14.27% 8.51% 11.57% 3.65% 1.27% 4.75% 0.55% 12.78% ■ 1
Count by Applicant 2774 1069 743 1563 318 170 388 75 1720 3698

Percentage by Applicant 75.01% 28.91% 20.09% 42.27% 8.60% 4.60% 10.49% 2.03% 46.51% ■ 1

6 Additional summary statistics of the 10% sample can be found in Appendices B and C.
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Figure 2: Relative Participation o f Individuals in the Permit Lottery with Respect to Species

Although a large proportion o f hunters apply for caribou permits, inference from models is 

difficult considering the structure of the permit lottery. Caribou are an important source o f food in many 

rural communities and caribou management is unique. For example, the well-known Nelchina caribou 

herd contains about 40,000 animals at any given time and it represents a critical food source for residents 

of the Copper River Basin [20]. The number o f permits varies substantially each year, based on ADFG 

management goals and the size o f the herd. To further complicate the issue, Nelchina caribou permits are 

distributed by Tier I lottery, draw lottery, and by registration hunts. The complexity o f caribou hunting 

opportunities, and the inability to identify users o f different distribution channels makes caribou permit 

modeling prohibitively difficult.
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5.2 Permit Values Estimation and Validation

A risk-averse/wealth maximizing hunter should only apply if  their expected utility (a factor o f the 

probability o f receiving the permit, the probability o f a successful harvest, and utility gained from playing 

the lottery) is equal to or greater than the application fee. A procedure for generating permit values is 

shown in equation 4. The resulting estimates represent values that a hunter would pay for a permit given 

certainty o f obtaining the permit and harvesting the animal, with no gain in utility from the act o f 

obtaining the permit.

Fapp Vpermit * Pharvest * Pdraw > Vpermit Fapp/(Pharvest*Pdraw ) Eq. 4

Fapp = Application Fee

n Moose,Sheep,Goat,Elk,BrownBear,BlackBear -> $5 

D Bison,MuskOx -> $10 

Pharvest = Hunter Reported Success Rate During 2016 

Pdraw = Expected Permit Draw Probability (draw probability in 2015) 

Vperm it = Permit Value, 100% certainty o f harvest

The expected value o f each permit is then the permit value multiplied by the draw probability. 

Expected utilities are calculated for each permit using the Arrow-Pratt constant relative risk aversion 

utility function, where utility is a function only o f wealth (W) [21].

U(W)=ln(W) Eq. 5

The calculated permit values represent the dollar value an applicant would be willing to pay for a 

hunting permit, given a 100% chance o f being drawn and a 100% chance o f successfully harvesting the 

animal. The permit values do not reflect the cost o f guiding services, land access, or other amenities. 

Calculations are performed using equation 4. The permit values are presented in Figure 3. There is an 

asymptotic relationship between permit value and draw probability. A plot o f expected permit value by 

species is included in Appendix A .
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Permit Values by Species

•  Brown Bear

•  Caribou

•  Elk

•  Goat

•  Bison

•  Black Bear

•  Moose

•  Sheep

•  Musk Ox
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Figure 3: Permit Value over Draw Probability by Species for Behavioral Model Data

Moose and black bear permits make up the majority o f the low value/high probability hunts. 

Permits with a 100% draw probability are designated ‘undersubscribed,’ having fewer applicants than 

number o f available permits. The remaining permits are offered online on a first-come first-serve basis. 

Some moose and sheep hunts relied heavily on imputed values for hunter reported success rate, and a few 

undersubscribed hunts make up the small vertical trend at a draw probability o f 100%. The highest value 

permits are generally composed of bison and sheep hunts. These hunts are extremely competitive. Some 

bison hunts draw as many as 15,000 applicants each year, and successful applicants are prohibited from 

reapplying for 10 years.

American bison hunting opportunities are extremely limited, which provides an opportunity for 

comparison with private hunting ranches around the USA. Private hunting ranches provide the animal, 

land access, guide services, and accommodations to hunters with a 100% guarantee o f successful harvest. 

Their fee schedules are often available online. To compare these rates with the calculated permit values, 

we must compensate for land access fees, guide service costs, and overnight accommodations. One 

Alaska firm, Interior Alaska Guides and Outfitters, offers guided services to bison permit holders for a 

$3,400 fee. Although they do not guarantee their services, they claim a 100% bison harvest success rate 

with their clients. We assume an accommodations cost o f $200/day, and add land trespass fees where

5000 -  

4500 

4000 ^  

3500 -
aj a
.2 3000
(O

Draw Probability
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appropriate. We adjust the permit values and ranch fees to a standard 3 day/2 night hunt, and separate the 

hunts by animal gender and age. The values are listed in Table 9. We find that the adjusted permit values 

align surprisingly well with the private ranch hunting opportunities. In particular, the ‘DI403 bull only’ 

permit differs from the ‘ranch trophy-bull’ mean by only $24 (less than 1%).

Table 9: Comparison o f Adjusted Permit Values and Ranch Hunts for American Bison 7

bull - trophy net cost bull - young net cost
DI403 $ 7,016 DI403 $ 7,016
Oxranch Texas $ 7,500 Brown's Lodge & Hunting Ranch $ 7,000
Brown's Lodge & Hunting Ranch $ 8,000 Bearpaw Outfitters $ 4,250
Bearpaw Outfitters $ 7,250 Jim River Guide Service $ 5,100
Jim River Guide Service $ 6,100 EIA Outdoors $ 6,600
Moutain V iew  Ranch $ 7,700 Mountain V iew  Ranch $ 5,700
Alaska Interior Game Ranch $ 5,400 Alaska Interior Game Ranch $ 4,400
bull - trophy - mean $ 6,995 bull - young - mean $ 5,724

either sex net cost
DI450 $ 8,725 cow net cost
DI454 $ 6,980 DI404 $ 8,447
DI351 $ 6,262 Brown's Lodge & Hunting Ranch $ 6,000
DI352 $ 7,100 Bearpaw Outfitters $ 3,250
High Adventure Ranch $ 4,295 EIA Outdoors $ 5,600
The Bison Ranch $ 3,600 Mountain V iew  Ranch $ 4,700
Rockin 7 Ranch $ 7,150 Alaska Interior Game Ranch $ 3,600
either sex - mean $ 6,302 cow - mean $ 5,266

Summary of Means net cost
Draw Mean $ 7,172
Ranch Hunt - trophy bull - mean $ 6,992
Ranch Hunt - young bull - mean $ 5,508
Ranch Hunt - e ither - mean $ 5,015
Ranch Hunt - cow - mean $ 4,630

Overall Mean $ 5,863

7 Note that hunting permit DI403 specifies only that the animal be a bull, so it is included in the “trophy bull” and 

“young bull” categories for comparison.
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Overall, ranch hunting opportunities range in adjusted cost from $3,250 to $8,000. Adjusted 

permit values range from $6,262 to $8,725. Ranch hunts typically appeal to a ‘trophy hunting’ audience. 

Ranches often promote their lavish accommodations, gourmet meals, fully stocked bar, and the 

unparalleled size o f their animals. Mature bulls are in in high demand and prospective clients are 

encouraged to book their hunt well in advance. Sometimes the hunter will have chosen the exact animal 

they plan to harvest, months prior to the actual hunt. Not surprisingly, private ranch bulls fetch the highest 

price with younger ‘meat’ animals bringing gradually less based on size and gender. We observe that 

‘either sex’ and ‘cow only’ adjusted permit values are notably higher than their ranch-hunt substitutes.

The finding is not surprising, considering the known preference o f Alaskan hunters for high success rates 

and animals that make better table fare. Both o f these are likely true o f ‘either sex’ and ‘cow only’ 

permits. A comparison o f the mean values confirms this observation. We find that the adjusted permit 

value mean is only slightly higher than mean ranch hunt costs, at $7,172. The adjusted permit mean is 

heavily influenced by the value o f ‘either sex’ tags , which are offered in far greater numbers. The 

premium for Alaska bison hunting permits may also be explained by the higher cost o f living in Alaska, 

reflected in higher travel costs, retail good prices, and guide service fees. The analysis of the bison permit 

values provides validity to the calculation method described in equations 4 and 5.

5.3 Non-Parametric Evidence o f Gambling Behaviors

Nickerson (1990) explained that an applicant will apply to the hunt with ‘the highest expected 

value’ [13]. This assumption is not totally appropriate for modeling the Alaska permit lottery. The 

primary issue lies in the structure o f the lottery, which allows applicants to apply for multiple permits 

across 8 different big game species (though only 1 permit may be obtained for each species). Analysis 

must instead be focused on the expected value for a bundle of applications. Another complication arises 

when one considers the myriad o f substitutable hunting opportunities in Alaska. Hunters may be able to 

harvest an animal during the general season, by obtaining a Tier I or Tier II permit, or with assistance o f a 

professional guide. The unique structure o f the distribution system and immense variety o f hunting 

opportunities may not lead to wealth maximization o f lottery applicants; it may instead lead to gambling 

behaviors.

Garrett and Sobel (1999) demonstrated that state lottery players changed their behavior when the 

win odds and top prize varied. The same may be true o f hunting permits in unusually high demand. For 

example, wild bison hunting opportunities are extremely limited. This unique opportunity will attract up
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to 15,000 applicants for each Alaska permit. The estimated permit values are much greater for bison than 

for other species, and the corresponding draw probabilities are small. These “long-shot” type permits 

might entice applicants who normally behave as risk-averse individuals. Hunters may increase the 

likelihood o f being drawn by mixing high and low probability applications in their permit bundle. In a 

state lottery, players may purchase multiple tickets to increase their odds of winning. In the hunting 

permit lottery applicants may apply for up to 3 different permits per species (6 for moose). The key 

difference from a state lottery is that each unique hunting permit application has different win odds and 

expected utility. The cost to play is also low ($10 or less) relative to the potential gains. Hunters stand to 

lose very little, making the lottery seem even more like a betting game.

Non-parametric modeling methods are used to search for evidence o f gambling type behavior in 

the bundle o f Alaskan hunt lottery applications. The Alaska hunting permit lottery differs substantially 

from other hunting permit distribution methods and from typical state lotteries. There is no empirical 

standard for distributions to model the data. In order to fit curves for visualization and for economic 

inference, it is necessary to utilize a kernel density estimation (KDE) technique. However, there are 

natural limitations in the abundance o f certain species and therefore sustainable harvest levels. Due to the 

limited number o f observations in the other game species, KDE is restricted to moose, dall sheep, and 

mountain goats. Hunting opportunities for these species are competitive, and there are a sufficient number 

o f observations for each. For some other species, such as bison, there are only 4-6 observations per year. 

Any model will probably over-fit the data and inference will be limited. There are also some limitations to 

the hunter-reported data (success rate). For instance, a large number o f brown bear permits relied on 

imputed success rates to estimate permit values and a fitted model was not appropriate. Imputed values 

were calculated as an average o f up to five previous years o f reported data, when available.

In addition to the calculated permit values, a variable is generated to reflect the risk associated 

with unique permit bundles. Each permit within a bundle has an associated expected draw probability, as 

published in each year’s supplement. Multiplying the probability o f not winning each permit in the bundle 

results in a cumulative probability o f receiving no permits from the application bundle. This metric, 

probability o f  no permits drawn, reflects the risk o f the entire application, using existing information.

Pno perm its drawn = (1- Pdraw 1) * (1- Pdraw 2) * (1- Pdraw 3) ... *(1- Pdraw x) Eq. 6
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Using the Gaussian distribution and the normal reference bandwidth, plots are created for the 

expected utility bundles given the probability that the applicant obtains no permits.8 This metric is 

intended to reflect the relative risk o f unique permit bundles. An aversion to risk is inferred when the 

distribution is more positively skewed, corresponding to lower levels o f expected utility.

Figure 4: Fitted KDE for Full Application Expected Utility Bundles

In Figure 4 the full nonresident bundles exhibit far less positive skew than the resident only 

bundles. The same is true of the moose permit bundles in Figure 5. In the moose permit bundles the effect 

is actually far more pronounced. The nonresident-only plot appears relatively normal in shape. The 

willingness to accept lower expected utilities in Alaska residents is immediately apparent.

8 The ‘R Project for Statistical Computing’ offers a free software package for download on a variety of operating 
systems. The R function Density is used to fit the generated utility bundles. The from ’ and ‘to ’ options are used to 
limit the curves to the appropriate bounds (0 and 1 for a percentage).
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Figure 5: Fitted KDE for Expected Utility Bundles o f Moose Permits

As shown in Figure 6, the degree o f positive skew is far greater in both sheep and goat permit 

bundles than in moose permit bundles. There are far fewer o f these hunting permits offered, and substitute 

hunting opportunities are limited as well.

Gaussian KDE - Exnecteri Utility of Annlicatinn - Shesn Permits Gaussian KDE - Expected Utility o f Application - Goat Permits

0.0  0.5  1.0 1.5 0 1 2  3

expected utility [eu=ln(w)*drawprobability] expected utility [eu=ln(w)*drawprobability]

Figure 6: Fitted KDE for Expected Utility Bundles o f Sheep and Goat Permits
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Figures 7 through 9 are generated using the risk measure presented in equation 6. A preference 

for risk is inferred when the distribution is more negatively skewed, corresponding to higher probability 

that the applicant will draw none of the permits in their bundle. The differences in the plots o f the full 

application bundle are small. Risk preference does not seem to vary between residents and nonresidents at 

this level.

Gaussian KDE - Probability of No Permits Won - Permit Bundle

probability of no permits won

Figure 7: Fitted KDE - Probability o f Winning None of the Permits in the Full Application Bundle

In Figure 8 a bimodal distribution is again observed in moose permit application bundles. 

Separating the resident and nonresident applications yields some interesting results. Resident moose 

permit bundles are more positively skewed than nonresident moose permit bundles. Resident hunters 

accept higher levels of risk for moose permits in the lottery. The finding can be explained by two factors. 

First, there are more substitute moose hunting opportunities for resident hunters. If  an applicant is 

unsuccessful, they can easily hunt moose during the general season. This provides an opportunity for 

applicants to take an ‘all or nothing’ approach to their application strategy. Since resident hunters have 

little to lose, they are more likely to apply for high value moose hunts with the highest success rates and
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lowest travel costs. Nonresidents have substantially fewer opportunities to hunt moose. If  a nonresident 

hunter plans to take a moose in Alaska, they will need to pay for travel to the state and other costs like 

lodging, guide services, etc. They will likely prefer to maximize their chances o f obtaining a permit, since 

other opportunities are limited.

Gaussian KDE - Probability of No Permits Won ■ M oose Permits

0.0 0.2 0.4 0.6 0.8 1.0

probability o f no permits won

Gaussian KDE - Probability of No Permits Won - Moose Permits Gaussian KDE - Probability of No Permits Won - Moose Permits

probability of no permits won
probability of no permits won

Figure 8: Fitted KDE - Probability o f Winning None of the Permits in the Moose Application Bundle

In Figure 9 the distributions o f sheep and goat permit bundles are strongly skewed. The KDE’s 

for sheep and goat permit bundles are heavily skewed toward the upper bound. Moose are a better source 

of food than either dall sheep or mountain goats. It is likely that sheep and goat hunters seek trophy 

animals, or simply hunt for sport. This may influence the strategy o f the applicant. If  the animal is not 

needed for subsistence, the applicant may accept more risk in order to get a chance at a high value permit.
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Figure 9: Fitted KDE - Probability o f Winning None of the Permits in the Sheep and Goat Application 

Bundle

Bivariate KDE plots are generated with expected utility and probability of no permits drawn as 

the input variables.9 Contour lines on the plot represent the probability density o f the plotted points 

relative to the plot area. The area between any two contour lines represents 2% of the probability mass of 

the plotted points. Figure 10 shows some interesting differences in the application bundles o f residents vs 

nonresidents. Nonresident application bundles are less densely distributed. A greater proportion of 

nonresident hunters apply to low-return, low-risk permits than resident hunters. The differences between 

the plots are striking and conclusive. Nonresident hunters have larger expenses and opportunity costs 

associated with planning a hunting trip to Alaska. It is likely that they prefer to apply to permits with a 

higher level o f certainty that they will obtain at least one permit.

9 The MASS package contains the function kde2d which is used to compute bivariate kernel density estimates in R 
[22].
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Figure 10: Plots o f Bivariate KDE for Full Permit Bundle

Bivariate KDE plots o f the moose permit bundles exhibit a similar relationship. Figure 11 shows 

nonresident application bundles are more evenly distributed over the probability range. A larger 

proportion o f nonresidents prefer application bundles with a probability o f  no permits drawn less than 

40%. There is some overlap between the resident and nonresident bundles in the probability o f  no permits 

drawn range greater than 70%. The observed bimodality in permit bundles may be due to factors outside 

the scope o f this investigation. For example, there is no data on income for permit applicants. Household 

income probably has a significant effect on which hunts an individual can afford to participate in.
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Figure 11: Plots o f Bivariate KDE for Moose Permit Bundle

The nonparametric analyses seem to align with the observations o f Golec and Tamarkin in the 

context o f horserace betting. Applicants balance their application bundle with a mixture o f low 

probability/low return and high probability/high return permit applications. Bivariate plots o f sheep and 

goat permit bundles are included in Appendix D .

5.4 Fitted Cubic Applicant Utility Model

Friedman and Savage (1948) originally hypothesized that the aggregated utility curve o f bettors 

may take a cubic shape, explaining the risk aversion o f some players at higher win probabilities and risk 

loving behavior at lower win probabilities.10 Those players would “behave as if  they calculated and 

compared expected utility and as if  they knew the odds” [1]. Golec and Tamarkin (1998) and Garrett and 

Sobel (1999), used ordinary least squares regression (OLS) to fit a cubic utility function to horse racing

10 A figure of the cubic utility function from Golec and Tamarkin (1998) is included in Appendix E.
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bet payouts and lottery winnings. Golec and Tamarkin (1998) hypothesized that gamblers actually 

optimize the outcome o f a series o f bets over a day, rather than the outcome of singular wagers. Using a 

cubic utility model, Golec and Tamarkin (1998) demonstrate a preference for ‘long-shot’ bets on horses 

with low win probabilities. Risk-neutral or risk averse individuals should prefer betting on ‘favorites’, 

horses with higher win probabilities but lower expected mean returns. They propose that what bettors 

actually prefer is an increase in skewness over an increase in risk. Following their methodology, the 2016 

permit application results data can be fitted with a cubic utility model to test for gambling behavior. 

‘Favorites’ are represented by low risk moose, bear, and elk permit hunts. ‘Long-shots’ are synonymous 

to high risk permits for bison and some dall sheep. The general shape o f the cubic utility model is shown 

in appendix E . The model implies that at low draw probabilities applicants will behave as though they are 

risk loving. The convex portion o f the curve represents the risk loving range where applicants trade utility 

for positive skewness. The concave portion o f the curve represents the risk averse range, where applicants 

favor higher utility and decreased skewness.

First, an odds-ratio is generated for each unique permit by dividing the draw probability o f the of 

the highest payout bet by the draw probability o f the unique permit. In the case o f the hunting permit data, 

the highest valued permit (no adjustments) is a bison hunt (DI454) with a generated permit value of 

$4,725. Variables for squared permit value and cubic permit value are generated to represent the second 

and third moment o f bet returns. The three moment utility model represents coefficients for mean 

expected return, variance, and skewness. If the ‘long shot’ hypothesis holds true for the Alaska permit 

lottery data, we expect positive coefficients for the first and third moment and a negative coefficient for 

the second moment. The hypothesized result is interpreted as a preference for positive returns and 

skewness.

O d d s  R a t i o  ( P o /P g )  =  P 0 +  P 1X h  +  P 2X h 2 +  P3X h3 Eq. 7

E x p e c t e d  s ig n s  f o r  m o m e n t s :

( M e a n  o f  R e t u r n s )  P 1 > 0  

( V a r i a n c e )  P 2 < 0  

( S k e w n e s s )  P 3 > 0
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The regression models in Table 10 confirm the findings in literature. The dependent variables 

take on the expected signs with an inferred preference for positive returns and skewness, and an aversion 

for variance. Note that the magnitudes o f the estimated coefficients are much smaller than anything 

estimated by Golec and Tamarkin (1998) or Garrett and Sobel (1999). This is due to the smaller values of 

the awarded prizes/bet payouts and significantly larger win probabilities, both of which effect the odds 

ratio dependent variable.

Table 10: Fitted Cubic Utility Models for Bettor Utility by Permit Species

Alaska Hunting Permit Lottery - Fitted Cubic Bettor Utility

Odds Ratio All Permits Moose Permits Sheep Permits Goat Permits

Mean of Returns 0.000213***
(5.81)

0.000405***
(7.61)

0.000164 0.000286*** 
(0.49) (2.89)

Variance -4.89e-08* 
(-1.86)

-0.000000471***
(-4.17)

-3.Ole-08 -0.000000186 
(-0.12) (-1.62)

Skewness 9.25e-12**
(2.06)

2.13e-10*** 
(4.19)

1.08e-ll 5.91e-ll 
(0.25) (1.70)

Constant 0.00406
(0.47)

-0.0104*
(-1.81)

0.0310 -0.00650 
(0.27) (-0.37)

Observations 
Adjusted R-squared

278 
0. 637

110
0.781

33 33 
0.467 0.811

t statistics in parentheses 
*  p C O . 1 0 , * *  p < 0 . 0 5 ,  * * *  p < 0 . 0 1

The three moments o f the moose permit utility model are statistically significant to the 1% level. 

Hunters exhibit a strong preference for positive mean of returns and positive skewness in moose permits. 

Unsuccessful applicants can harvest a moose through the general season, but may have to spend more in 

terms o f travel expenses and opportunity costs. This is particularly true of resident hunters. With little to 

lose, hunters apply to moose hunts o f the highest quality and ease o f access. Naturally, these permits are 

highly sought after and are easily over-valued.

None o f the independent variables are statistically significant in the sheep permit model, and only 

mean of returns is significant in the goat permit model. Although the coefficients take on the expected 

sign, skewness is not significant in the cubic utility model including only sheep or goat permits. Sheep
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and goat hunting areas are geographically limited to the Alaska Range and the Brooks Range, 

constraining the variation in travel cost and hunter preferences. Because the hunting opportunities are so 

competitive, there is also little variation in the range o f draw probability. Moose permit draw probabilities 

range from 0.45% to 100%, but goat permit probabilities range from 0.5% to 21.3%. Similarly, Sheep 

permit draw probabilities range from 0.13% to 10.4%. A cubic utility model fails to represent the 

distribution o f sheep and goat permits because the observations represent a small portion o f the draw 

probability range.

6.0 Conclusions and Future Research

The three predictive models generally confirm the findings o f previous hunting permit lottery 

studies. Travel costs represent the primary expenditures o f hunters, and the number o f applications 

decreases as travel distance increases. Restrictions on weapon type or applicant characteristics (age, 

veteran status, state residency, etc.) also decrease application levels by reducing the eligible pool of 

applicants. Hunters are consistent in their preferences with regard to hunt quality, but hunting permit 

demand varies substantially with species and residency o f the applicant. Resident hunters are motivated to 

hunt for food, which influences their permit preferences. Nonresident hunters are more likely to pursue 

‘trophy’ animals, and hunt primarily for sport. Additional information like applicant income could be 

used to search for additional evidence o f what motivates hunters. Improvements could also be made to the 

pooled OLS models by incorporating a variable to account for the season/dates o f the hunting permit. 

However, there is little basis for comparison between permits. The hunt dates span throughout the fall and 

winter, and vary in length. An indicator variable for opening month o f the hunt would be an appropriate 

starting place. Duration o f season may also be useful.

It may be valuable from a policy standpoint to determine what motivates lottery applicants. It 

may be possible to increase lottery revenues and/or public benefit from the lottery. Further research is 

necessary to demonstrate what motivates applicants. One potential solution would be to compare the 

calculated permit values with auctioned permits. Nonprofit organizations may submit requests to the 

Alaska Department of Fish and Game for hunting permits. These permits are auctioned at charity events 

to the highest bidder.

Kernel density estimation is an excellent technique for analysis when data has no known 

empirical distribution and no foundations in literature. In the case of this paper, it proved instrumental in
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generating a variety o f plots for economic inference. Current methods to test for risk-preference behavior 

rely on parametric methods. In this paper, a non-parametric method of analysis for risk-preference 

behavior is based on skewness o f expected utility and the net probability o f a loss. ‘Skewness’ is poorly 

defined in literature, and there are several measures used to quantify it. Future research in this area may 

benefit from testing other characteristics o f a probability density function. Kurtosis, for example, is a 

measure o f lateral density in the probability density function. It is influenced less by the position of the 

mean and median than a skewness coefficient, and may reveal more significant differences in the data 

plots.

In the case of the hunting permit lottery data, analysis may benefit from a boundary-corrected 

KDE. Because the estimated parameter probability o f  no permits drawn is bounded at 0 and 1, it may be 

more appropriate to use a boundary-corrected KDE over a Gaussian KDE. This method may help to 

preserve the relative position o f the mean and median in the data. It may also be helpful to demonstrate 

risk-preference behavior through a third variable. Multivariate KDE functions are available in several R- 

packages. Rather than testing the properties o f distributions, it may be easier to demonstrate a multivariate 

relationship to some other variable that indicates risk-preference. Additional data would have to be 

collected to pursue these avenues.

In general, applicants do not maximize their expected outcomes. Applicants accept lower 

expected returns and higher probabilities that they will obtain no permits. The effect is more pronounced 

in sheep and goat permits than in the unaltered application bundle. The observed differences in individual 

species plots and the full utility bundle plot show some evidence o f the ‘portfolio’ approach to balancing 

return and risk. Where possible, we expect applicants to choose to apply for permits with the greatest 

expected outcome and lowest risk. The work o f Golec and Tamarkin (1998) suggests that when 

individuals are presented with a range o f bets they often choose a combination that maximizes expected 

utility while also preserving their chance to ‘win big’.

Alaska’s permit distribution is unique, primarily because there are so many hunting opportunities 

outside o f the permit lottery. Although other US states distribute hunting permits by lottery, few do so 

without the aid of some equity-balancing tool such as preference points. In the absence of a preference 

point system, applicants stand to lose only their application fee ($5-$10 per application). With very little 

invested in the application process and a large number o f substitute hunting opportunities, it seems likely 

that lottery applicants would exhibit stronger gambling behaviors. The primary evidence o f this comes 

from an observed proclivity for low draw probability/high permit value hunts. When a hunter does not 

draw any permits, they can still harvest moose, sheep, black bear, brown bear, and caribou during the 

general season. The moose pooled cross section revealed a preference for antlerless moose and permits
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with higher success probabilities. For most resident hunters, the primary purpose o f hunting is for 

recreation and for food. Bivariate KDE’s demonstrated that resident hunters accept a higher level o f risk 

than nonresident hunters, probably due to substitute opportunities and lower travel costs. The fitted cubic 

utility models demonstrate that even when the awarded prize has a relatively small value (compared to a 

jackpot type state lottery), participants are risk-averse but prefer a ‘positive skewness o f returns’ [3]. 

Following the methodology of Golec and Tamarkin (1998) and Garrett and Sobel (1999), the analysis 

reveals that bettors behave similarly, even when the awarded prize is not monetary.
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Appendix A: E x p e c t e d  V a l u e  o v e r  D r a w  P r o b a b i l i t y  b y  S p e c i e s  f o r  B e h a v i o r a l  M o d e l  D a t a
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Appendix B: P r o p o r t i o n a l  A p p l i c a t i o n  B r e a k d o w n  o f  1 0 %  B e h a v i o r a l  M o d e l  D a t a  b y  S p e c i e s  

Species Proportions of Application Sample

■ Moose ■ Sheep ■ Goat

■ Bison ■ Elk ■ Musk Ox

■ Brown Bear ■ Black Bear ■ Caribou

Species Proportions of Unique

■ Moose ■ Sheep ■ Goat

■ Bison " Elk " Musk Ox

■ Brown Bear ■ Black Bear ■ Caribou
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Appendix C: L o t t e r y  P a r t i c i p a t i o n  o f  A p p l i c a n t s  b y  S p e c i e s  a n d  F r e q u e n c y  o f  I n d i c a t o r  

V a r i a b l e s

Participation of Applicants by Permit Species

80% -------- 75.01%

70%

60%

50%

40%

30%

20%

10%

0%
Moose

■ Moose ■ Sheep ■ Goat ■ Bison ■ Elk

■ Musk O x " Brown Bear " Black Bear "C a rib o u

Proportional Breakdown of Indicator
Variables - Applications vs Applicants

100% 94.65%

Youth (<14 Alaska Nonresident Anchorage Fairbanks 
yrs old) Resident Address Address

■  Proportion of Perm it Applications ■ Proportion of Applicants
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Bivariate KDE - Sheep Permits

Appendix D: Plots of Bivariate KDE for Sheep and Goat Permit Bundles

probability of no permits won 

Bivariate KDE- Goat Permits

probability of no permits won
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Appendix E: G o l e c  a n d  T a m a r k i n ’ s I l l u s t r a t e d  S h a p e  o f  C u b i c  B e t t o r  U t i l i t y  F u n c t i o n

Utility

High Pg Low Pg

Source: [3] pg 89
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Appendix F: ADFG Dall Sheep Hunt GMU Map
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