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A bstract:

Treelines have been the focus o f intense research for nearly a hundred years, also 

because they represent one of the most visible boundaries between two ecological 

systems. In recent years however, treelines have been studied, because changes in 

forest ecosystems due to global change, e.g. treeline movement, are expected to 

manifest first in these areas.

This dissertation focuses on the elevational and latitudinal treelines bordering the 

boreal forest of interior Alaska. After development of a conceptional m odel o f  ecotones 

as three-dimensional spaces between ecosystems, we offer a historical perspective on 

treeline research and its broader impact in the Brooks Range, Alaska.

Dendrochronological analysis o f >1500 white spruce (Picea glauca (Moench 

[Voss])) at 13 treeline sites in Alaska revealed both positive and negative growth 

responses to climate warming, challenging the widespread assumption that northern 

treeline trees grow better with wanning climate. Hot Julys decreased growth o f -40%  

of white spruce at treeline in Alaska, whereas warm springs enhanced growth of others. 

Growth increases and decreases appear at temperature thresholds, which have occurred 

more frequently in the late 20th century.

Based on these relationships between tree-growth and climate as well as using 

landscape characteristics, we modeled future tree-growth and distribution in two 

National Parks in Alaska and extrapolated the results into the 2131 century using climate 

scenarios from five General Circulation Models. In Gates of the Arctic National Park,
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our results indicate enhanced growth at low elevation, whereas other areas w ill see 

changes in  forest structure (dieback o f tree-islands, infilling o f existing stands). In 

Denali National Park, our results indicate possible dieback o f white spruce at low 

elevations and treeline advance and infilling at high elevations. This will affect the road 

corridor with a forest increase of about 50% along the road, which will decrease the 

possibility for wildlife viewing. Surprisingly, aspect did not affect tree grow th - climate 

relationships.

W ithout accounting for opposite growth responses under warming conditions, 

temperature thresholds, as well as meso-scale changes in forest distribution, climate 

reconstructions based on ring-width will miscalibrate past climate, and biogeochemical 

and dynamic vegetation models will overestimate carbon uptake and treeline advance 

under future warming scenarios.
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General Introduction:

Treelines have long been the focus o f intense research (Griggs, 1934: Krebs and 

Barry, 1970; Wardle, 1971; Troll, 1973; Tranquillini, 1979; Elliot -Fisk, 1983), for a 

summary see Koerner (1998) or Sveinbjoemsson (2000). Treeline advances and 

retreats as a result o f climate fluctuations have been documented over time scales 

ranging from thousands of years (MacDonald et al., 1993; Kremenetski et a!., 1998) to  

20th century warming, in Alaska (Suarez et al., 1999; Lloyd and Fastie, 2003), Canada 

(Lavoie et al., 1994; Szeicz et al., 1995; Lescop-Sinclair and Payette, 1995) and 

Scandinavia (Kullman 1993 and 1996). Like climate factors, disturbances can influence 

position o f arctic and alpine treelines, e.g. fire induced shifts in position (Arsenault and 

Payette, 1992 and 1997; Landhaeusser and Wein, 1993).

Especially in the high latitudes, where warming is expected to be o f  greatest 

magnitude (Overpeck et a l, 1997; Serreze et al., 2000), large-scale models assume 

linear correlation between changing climatic conditions (e.g. warming) and 

subsequently advance of the northern treeline (Elliot-Fisk, 1983; Pielke and  Vidale, 

1995). However, northern treelines might not react very fast to climate warming 

(Lavoie and Payette, 1996), or might be relicts o f warmer periods and not reflect 

current climatic conditions (Weisberg and Baker, 1995). Spatially explicit models 

incorporating topographic influences (Rupp et al., 2001) produce an expansion of 

boreal forest onto the North slope of Alaska only after thousands of years, because the 

Brooks Range serves as a barrier.
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Position of northern treeline and the extent o f the boreal forest are important 

drivers o f  the global climate system through albedo (Foley et a l ,  1994) and the 

potential to store carbon (Fan et a l, 1998; Liski et a l ,  2003). Summer temperature 

(July 10°C isotherm, Daubenmire, 1954; Holtmeier, 1974) has historically been 

reported as the main factor controlling treeline position, while Koerner (1998) recently 

proposed that soil temperatures of the root zone provide a far better explanation than 

generalized air temperatures. However, the limiting factor for tree growth m ay have 

shifted to moisture supply within the boreal forest (Barber et a l, 2000) and parts of the  

forest-tundra ecotone in Alaska (Jacoby and D ’Arrigo, 1995). Briffa et al. (1998) 

reported a decrease in sensitivity o f radial growth and late wood density o f  high latitude 

trees to temperature since the mid 20th century.

The current literature at the time I began my Ph.D. could be summarized as 

follows: Models projected that further warming will enhance tree-growth and will lead 

to an expansion of forest into tundra, basically assuming that a new steady state 

between climate and vegetation would be reached. These generalized results were not 

supported by site studies, however, and the general assumption that temperature was 

the limiting factor for tree growth began to be questioned (Barber et al., 2000). Within 

that framework I began planning my dissertation research.

Initial ideas:

At first, my goal was to use a combination o f methods to study the tree- 

environment interactions at treeline in the Brooks and Alaska Range: 1) Microclimatic
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measurements along elevational gradients including northern and southern aspects to 

investigate the combination of environmental factors, e.g. climatic or topographic at 

plot and landscape scale and 2) use dendrochronological methods to investigate past 

growth o f  these trees. This combination promised a powerful approach to combine 

measurements in space (1) and time (2).

I faced th e  following challenges:

1) Microclimatic instrumentation is cost intensive. During the first year, I w as not able 

to fully instrument all sites. In the following years, however, I established tw o 

transects, one in the Alaska Range and one in the Brooks Range. To this d ay  cost- 

effective data loggers are operating at both transects.

2) However, due to the harsh climate and logistical challenges, not all loggers have 

been operational at all times. Especially rain gauges were prone to animal disturbance 

and nearly all sites suffered some data loss. The concept o f decentralized logging units 

(many small loggers instead o f one central logger) has proven successful, since we 

never suffered complete data loss. Especially buried loggers (soil temperature and 

moisture) performed well. The Brooks Range site (Nutirwik Creek) has been  chosen b y  

Bonanza Creek LTER as the northern treeline site. A fully operative w eather station 

has been installed in 2002.

3) Field-work in Alaska is logistically difficult. During the first field season I worked 

alone, which I do not recommend for a project o f this scale. In 2001 and 2 0 0 2 ,1 had 

help from two and one field assistant respectively and their help made it possible to
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assemble a tree core data set from remote locations in both mountain ranges, while 

maintaining an intensive sampling protocol o f microclimatic site conditions.

4) The extrapolation of plot based measurements (e.g. soil temperature) in to  space is o f  

crucial importance, and widely used in ecological field studies. The validity o f 

extrapolated results, however, is uncertain and seldom tested. One goal o f th is study 

was to use "landscape ecological complex analysis", which basically com bines long

term plot measurements (loggers) with short-term spatial measurements o f  the same 

variable (Mosimann, 1984; Leser 1997). Given the complexity and logistical challenge, 

the study is still ongoing and well beyond the scope o f this Ph.D. thesis.

5) One o f the biggest challenges was to adjust the project to the results, w hich began to  

surface after the first two years o f research; Temperature was not the only limiting 

factor for tree-growth at treeline, rather temperature seemed to control parts o f  the 

populations at treeline, parts were not responsive to changes in temperature at all, and 

parts of the populations were controlled by what appeared to be temperature induced 

drought stress. This finding in itself was puzzling and I refocused my project to test the  

validity o f our results.

By refocusing the research to obtain broad spatial coverage o f treeline 

populations, I was no longer able to work intensely at one site. In addition, initial 

examination of the environmental gradient data did not show any consistent correlation 

with the tree growth response and our goal o f testing the combination of different 

microclimatic factors on tree-growth was put on the backbumer, since it seemed far 

more subtle and complex than previously estimated. Therefore the final version of th is
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thesis is the product of an evolving scientific process (as every thesis) and covers 

research areas which I formerly did not imagine.

Thesis outline:

Treelines are boundaries. To develop a better understanding o f the underlying 

theory and to look at an ecological boundary from a theoretical point o f view , Chapter 

1 gives an overview of the wide field o f ecotone research. Ecotones are the  zones of 

transition, the boundaries, between different ecological systems. In Chapter 1 ,1 

develop a conceptual model describing possible ecosystem trajectories o f ecotones in a 

theoretical space-time continuum.

After laying the theoretical foundation, Chapter 2 uses the rediscovery of a 

treeline research site in the Brooks Range to offer a historical perspective and to argue 

that research can have far wider consequences than results. In this case, B ob Marshall 

wrote extensively about his work and travel, which ultimately lead to the establishment 

o f Gates o f the Arctic National Park, an eight million-acre wilderness in th e  central 

Brooks Range.

Chapter 3 reports the unexpected finding o f three distinct population-wide 

responses o f treeline white spruce to warming, positive with warmer temperatures, 

negative or non significant. We develop temperature threshold values above which the  

significant effects take place.

In Chapter 4, we use the results of Chapter 3 to build a spatially explicit model, 

which projects landscape wide changes in forest structure (such as infilling and
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dieback) and tree distribution under five global circulation models in two National 

Parks in Alaska.

Chapter 5 applies the general results of this study to the theoretical m odel 

developed in Chapter 1 and summarizes the major findings and achievements.
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3 Chapter 1

Landscape boundaries, ecotones 

- There is always something between something -

Published as: Wilmking, M. and Beierkuhnlein, K., 2002. Landscape boundaries, 

Ecotones, Chapter 2.5. pp 84-93, in O. Bastian, U. Steinhardt (eds.). Development and  

Perspectives in Landscape Ecology - conceptions, methods, application -. Kluwer.
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There is always something between something:

Boundaries are everywhere. The human eye and mind differentiate and 

compartmentalize the world around us, the environment, into units: Rooms, chairs, 

trees, and mountains. If you have a discrete object, there has to be an end and a 

beginning to it, its boundary. The skin is the boundary for our bodies for example. It 

seems a two dimensional surface, but when we start changing scale, like u se  a 

microscope, the two dimensions dissolve into a space with three dimensions: hairs, 

pores, parts of skin etc. Two fundam ental concepts of boundaries emerge:

-  every boundary is in reality a boundary space, a three-dimensional body  with 

boundaries of its own, and

-  boundaries are scale- and observer-dependent.

For some microbes, our skin is the environment they live in, for us th e  skin is the  

transition to our environment. The necessity for formulating boundaries derives itself 

partly from the "hierarchy principle" (Blumenstein et al. 2000). But those boundaries 

are analytical in nature and in reality divide a continuous universe. Nevertheless it is 

practical to delineate subsystems within our universe, simply because our imagination 

is not able to handle such complexity. The well-known parable o f the watchmakers 

(Simon 1962 in Wu 1999) explains heuristically the need for using systems, 

subsystems and therefore the boundary concept: Two watchmakers, Hora and Tempus, 

were making equally fine watches, each consisting of 1,000 parts. Both w ere frequently 

interrupted by customers' phone calls, at which time they had to stop working, thus th e
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unfinished watch at hand fell apart. Hora took the hierarchical approach b y  having his 

watch bu ilt with modules that were further composed by submodules, w hile Tempus 

assembled his watch directly from the parts. Eventually, Hora became a rich  man, but 

Tempus went bankrupt. Simple probability calculations reveal that, suppose the 

probability of an interruption occurring while a part is being added to an assembly is

0.01. Hora makes 111 times as many complete assemblies per watch as Tempus.

If we use this boundary concept in landscape studies, we arrive at the concept o f  

the ecotone. Ecotones divide units (homogeneous areas in the scale they a re  observed), 

they are often shown as a line on a map, e.g. the coastline on a globe. Clements (in 

Hansen et al. 1992) first mentioned the term "ecotone" in 1905. He observed that 

boundary zones between plant communities could combine characteristics o f  both 

adjacent communities as well as generate individual features o f the transition zone. T he 

roots o f the term are Greek, "oikos" meaning household and "tonos" m eaning tension. 

Until the emergence of the "patch dynamics theory", however, the tenn "ecotone" w as 

unused. It became evident only recently, that ecotones in their function as transition 

zones actually define patches in the landscape.

A widely accepted definition of the term ecotone is as follows (Holland 1988): 

"Zone of transition between adjacent ecological systems, having a set of characteristics 

uniquely defined by space and time scales and by the strength o f the interactions 

between adjacent ecological systems."

Keeping in mind that an ecotone can vary in size and in ecological functioning it 

can be expressed in other terms as: "Ecotones can be viewed as zones w here spatial o r
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temporal rates of change in ecological structure or function are rapid relative to rates 

across the landscape as a whole" (Hansen et al. 1992),

Boundaries can be smooth or sharp, curvilinear or straight (Forman 1995), 

Straight boundaries and edges are mostly related to human activities and a re  likely to 

be anthropogenic. Modem agriculture and infrastructure tends to create straight and 

sharp linear boundaries. Curvilinear boundaries are more organic and often related to 

natural landscape elements, such as rivers. Most boundaries show spatial arrangements 

at different scales. They are organized in different fractal dimensions (Figure 2.5-1).

Van Leeuwen (1970) defined the extremes of boundaries as "limes convergens'’ 

(sharp edge) and "limes divergens" (smooth gradient). Although being addressed 

initially to plant communities, these terms were adapted to landscape elem ents of 

higher levels of organization. Perhaps due to the decline o f Latin language in natural 

sciences, the tenns ecocline (for "limes divergens") and ecotone (for "limes 

convergens") became more successful. Initially, these terms were introduced by 

Westhoff (1974) to describe limits o f plant communities.
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Figure 1 . 1 In landscapes different types of boundaries exist showing variability at 

different fractal dimensions. This is reflected in straight (A), curvilinear (B ) or 

modified at multiple fractal dimensions (C).

Van der Maarel (1976, 1990) suggested that a gradual transition should be called 

"ecocline", while the term "ecotone" should be reserved for a sharp transition, an all-or- 

nothing scenario. So far, some studies have tested this theoretical concept (e.g. Backeus

1993), but the general definition o f ecotone as mentioned above in conjunction with the 

scale dependency seem to have lead to the usage o f ecotone for both scenarios. To 

clarify the concept o f ecotones in relation to other concepts in ecology, H ansen and D i 

Castri (1992) differentiated the several terms (Table 1.1).

Table 1.1: Terminology for change in space and time

change in space gradual ecocline

abrupt ecotone

change in time progressive ecological succession

sudden, nonlinear, chaotic ecotone
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Ecotones in theory:

Figure 1.2 shows four ecosystems and their journey through time and  space. Each 

ecosystem can be perceived as a bail rolling along its trajectory towards an  unknown 

attractor. It has its particular place on the earth's surface (or ocean depth fo r that 

matter). Each ecosystem is controlled by different factors, their interactions as well as 

their changes through time. These are called "controlling factors" (Haken and  

Wunderlin 1991). In Figure 1.2, the array of controlling factors is symbolized by jacks, 

lifting the space/time continuum, providing possible trajectories and ultim ately 

"channeling" each ecosystem on its way through time and space.

Ecosystem I is running up on a threshold in time, the controlling factors no longer 

support this particular ecosystem on that particular spot in space. We could imagine a 

warming climate in northern latitudes leading to an invasion of tundra by trees. The 

ecosystem 1, arctic tundra, is slowly replaced by another type of ecosystem, let's say 

boreal forest, ecosystem II. The arctic tundra, before a stable ecosystem on our space

time surface and therefore symbolized as a ball, is entering a tem poral ecotone stage. 

The controlling factors no longer allow the existence o f pure arctic tundra on  this spot. 

In terms o f general systems theory, the arctic tundra is moving through the stage of 

"critical slowing down" towards instability. This instability is symbolized b y  the ridge, 

the "threshold in time". From there, chance and the new controlling parameters will 

determine which new system will establish itself and where it is moving. T h is newly 

established system is truly unique and unparalleled. It might to a wide degree be nearly 

similar to ecosystems we can encounter in other places on the earth. But w ith  a look on
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the time-space continuum, we can see that this point/ecosystem in time has its special 

and unique history. To what degree the history o f this point will impact the future can 

only be guessed.

Figure 1.2: Four ecosystems on their journey through time and space. They are 

following their trajectories, guided by an energetic “landscape”. Controlling factors are 

symbolized by jacks, lifting the time-space continuum, creating the conditions in which 

ecosystems and their ecotones evolve, exist and perish.

Let us now focus our attention on ecosystem II. It is confined by an array of 

controlling parameters or environmental factors. They are symbolized by the  ridges 

between ecosystem II and ecosystems I and III. These ridges are transition zones
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between tw o adjacent ecosystems, ecotones. They are themselves unstable and need 

input (energy, matter, information) from both sides/ecosystems to exist. A s we can see, 

time changes the position of the ecotone In space. To stick with our image from the 

beginning, we could imagine shifting biomes due to climate change. The ecotones or 

transition zones between them shift accordingly. As ecosystem II moves a long its 

trajectory, it encounters a rising ridge, an emerging control parameter. As example w e 

could think of the control parameter "human land use". Ecosystem II can n o  longer 

exist where additional energy input through intensive agriculture changes the  

environmental variables. The new and emerging ecotone might be the transition zone 

between forest and fields. Ecosystems III and IV are moving along their trajectories, 

uninterrupted by unexpected, chaotic events or strange attractors. Ecosystem III might 

be recovering from a disturbance, staggering along. The curvy trajectory symbolizes 

resilience. The system is pushed and reacts with sideways motion, but does not go 

"over the edge". It remains stable in its setting.

Ecotones in reality:

The recognition of a transition zone between two ecological systems by Clements 

(1905, in Hansen et al. 1992) could be called the beginning o f ecotone research. 

Obviously the recognition focussed on the spatial aspect o f ecological system s and the ir 

boundaries within a given area. Later on, after development o f the theoretical 

foundations (which is still ongoing), the concept was used not only in spatial but also
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temporal terms (e.g. Delcourt and Delcourt 1992). Keeping in mind that every 

boundary and its classification is scale dependent, we can identify ecotones where

-  a steep environmental gradient exists, that directly affects ecosystem function, 

structure and composition. Example: Boundary between forest and fields in 

anthropogenic landscapes, and

-  nonlinear response to a gradual change o f environmental variables is found, the 

"threshold effect" or the effect of cumulative impact. For example a pH change 

below 5.5 in the soil leads to mobility o f Al3̂  -ions with toxic effects on  many 

plants as well as to ground water contamination (Blume 1990).

Ecotones as the boundaries between different ecological systems can emerge on a 

variety o f scales. Just as the ecosystem itself can vary in spatial extent as w ell as 

occupy different levels in the spatial hierarchy, its boundaries, the ecotones can be 

found on different hierarchical levels. Gosz (1993) proposed an "ecotone hierarchy" 

ranging from the biome ecotone (the biome transition area) to the plant ecotone (Table 

1.2.). Examples of studies covering the whole range o f scales in ecotone research are 

Bretschko (1995), Kieft et al. (1998), Neilson (1993). The hierarchy is closely linked to 

probable constraints or controlling factors, which at the biome level are macroclimate 

and its variation through major topographic structure (Figure 1.3.). The finer the scale 

and therefore the hierarchical level of the ecotone, the more controlling factors 

influence the ecotone. In addition to the number of controlling factors, their kind and 

type change with each hierarchical level. At the lower end of the hierarchy, the plant
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ecotone level, macroclimate and the major topography are constant, but the  

differentiation between different ecotones is rather controlled by factors such as 

microclimate, soil fauna, soil hydrologic regime etc. At increased finer scales the 

possible combination of controlling factors is much higher than at the coarser levels, 

simply because it is influenced by all factors above it in the hierarchy! The biome 

ecotone (a large scale phenomenon) may be a result o f two or three controlling factors 

(in our perspective). The landscape ecotone, however, is already influenced by the 

biome it is located in, therefore by its controlling factors, PLUS additional factors on 

the landscape level. Macroclimate and topography are influencing the landscape 

ecotone as well as e.g. soil distribution, geomorphic structure and mesoclimate.

The highly differentiated site conditions o f ecotones cause special combinations 

of species and communities, a high richness in species is usual, but ecotones can also 

display less biodiversity than the neighboring ecosystems (Neilson et al. 1992). But 

ecotones often act as barriers in ecosystems (Blumenstein et al. 2000). They are 

always areas of discontinuity. This discontinuity explains in part the emergence of 

structure as part of feedback loops. Once a boundary is manifested, gradients will 

control the flow of energy, matter and information across it. The different strength o f  

gradients leads to increased differences in the two systems bounding the gradient. In 

the soil for example, differences in the redox potential o f a water saturated sediment 

layer can lead to different felling o f Fe- and Mn-molecules. This is an important 

prerequisite for the development o f rosty patches and concretions in the oxidized layer 

of a gleyic soil (Scheffer and Schachtschabel 1992).
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Table 1.2.: Ecotone hierarchy, based on Gosz (1993)

ecotone 

hierarchy 

focussed on 

ecology

proposed hierarchy 

focussed on integral 

ecological landscape 

units

controlling factors 

(each ecotone is influenced b y  

controlling factors of its own level and in 

addition by every controlling factor 

above its level)

Macro

scale

land-ocean ecotone 

(global)

distribution of continents on earth 

surface

biome ecotone ecozonal ecotones macroclimate, major topography

Meso-

scale

landscape

ecotone

landscape ecotone mesoclimate, geomorphic processes, soil 

characteristics

patch ecotone top ecotones microclimate, microtopography, soil/soil 

moisture variation, species interactions

Micro

scale

population 

ecotone, 

plant pattern

interspecies interactions, intraspecies 

interactions, physiological controls, 

population genetics

plant ecotone soil fauna, soil flora, soil chemistry
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Figure 1.3.: The forest steppe zone in Asia is a broad ecotone between the steppes in 

the south and the zone of compact forests (taiga) in the north. Due to extrem e climatic 

conditions, and supported by human activities (timber cutting, grazing), in  the northern 

Mongolian mountains mainly northern slopes are covered by forests, w hile dry 

southern slopes are dominated by grass and herb steppe ecosystems (Photo: O. Bastian 

1994)

The ecotone concept can be applied to both spatial and temporal investigations. I f  

we could directly observe one particular spot on the earth's surface through time, we 

would always see change under way and never perceive a stable state of th is  one spot 

for very long. Through thousands or even millions of years our spot might change from
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being part o f the ocean to a shallow lake to a steppe type ecosystem. We w ould  maybe 

see a cooling of temperatures, a change in species composition, the advancement of the  

ice shields, their retreat and the recolonization o f our spot starting with gravelly soils, 

the first lichens arriving, mosses, brushes etc. until we might see a forest. Through 

some o f our observation we could identify an ecosystem in a quasi stable state, 

meaning that the controlling factors and their "answer by nature", the ecosystem at that 

time, are in equilibrium. A lot o f scientific research has focussed on these "stable 

states" and only lately has attention been given to the dynamic and change o f  these 

systems. These times of increased change, maybe even catastrophic in nature, are 

ecotones in time.

Delineation of ecotones:

Methods for ecotone detection include spatial analysis (GIS and rem ote sensing) 

for the detection of patterns in space (Fortin et al. 2000) and statistical methods 

applicable to both spatial and temporal datasets. Fortin et al. (2000) also include 

modeling as detection methods for ecotones by formulating and predicting interactions 

in multivariate datasets. In general, ecotone detection is the ability to determine spatial 

or temporal change (Johnson et al. 1992).

For an overview o f statistical methods concerning detection o f patches in 

landscapes and therefore ecotones as their boundaries see Fortin et al. (2000), Johnston 

et al. (1992) and Turner et al. (1991). Some detection mechanisms include: GIS 

functions (e.g. pattern recognition, optimal corridor location, fractal dimension),
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"moving (split) window" technique, especially suited for transect data, "wombling" 

(lattice, triangulation, categorical), essentially a two dimensional form of th e  moving 

split-window technique. Once ecotones are detected they can be measured for width, 

verticality, evenness and curvilinearity (total length divided by straight line length) or 

sinuosity (length of ecotone per unit area using fractal dimension. Table 1.3.).
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Table 1.3.: Overview of statistical methods available for detection, measurement and 

characterization of ecotones (from Fortin et al . 2000)

ecotone

attribute

data type

grid data (raster

format, e.g. in GIS)

transect data sparse data, unevenly 

distributed

detection edge detection 

algorithms and kernels

magnitude of first 

difference

irregular edge detection

location thresholding of edge 

operations

maximum of first 

difference

functional criteria

width goodness of fit for 

location statistics

magnitude of first 

difference

magnitude of first difference

evenness dispersion of width along 

boundary

dispersion of width along 

boundary

sinuosity or 

Curvilinearity

length of boundary as a 

function of grid 

precision; fractal 

dimension

length of boundary as a 

function of grid precision; 

fractal dimension

coherence and 

significance

boundary statistics 

overlap statistics 

(different between 

boundaries in vegetation, 

soil, etc.)

coincidence of 

limits more often 

than by random 

chance

boundary statistics overlap 

statistics (different between 

boundaries in vegetation, soil, 

etc.)
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Ecotones and change:

Ecotones are often described as "early warning stations" for a change in structure 

and composition of the adjacent ecosystems (Alien and Breashears 1998). Meaning th a t 

if  controlling factors are changing (e.g. mean annual temperature increases under 

global warming scenarios), the change and effects o f that change can first b e  detected 

in the boundary zone, the ecotone. This is based on the assumption that the limiting 

factor delineating the spatial extend of that ecosystem at that time continues to be the 

limiting factor after the change took place. This is not always the case and studies not 

supporting this view are documented (Neilson 1993).

Let us look at one example, the treeline-ecotone in in terior A laska: During the 

last decades, the Arctic and Subarctic are experiencing warmer temperatures both in 

summer and winter (Juday et al. 1998) and global change is heavily impacting high 

latitude ecosystems. One of the most visible natural ecotones is the treeline-ecotone, 

dividing in our case the boreal forests and the arctic or alpine tundra. Fundamental 

interest in the question o f possible treeline movement under global change is fueled b y  

the question of carbon uptake of the boreal forest ("sink-source question"), albedo 

changes and other feedback loops between boreal forest and global climate (Foley et al.

1994). This treeline is generally thought to be correlated with the July 10°C isotherm 

(Daubenmire 1954). The limiting factor for tree growth is therefore believed to be 

temperature. Under global change scenarios, the vegetation zones will eventually adapt 

to higher mean annual temperatures and changes summer and winter conditions 

(Chapin et al. 1995). This logical reasoning is based on the assumption that temperature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-27  -

will still be the limiting factor for tree growth under changed conditions. However, new  

findings suggest, that the limiting factor for tree growth and establishment may have 

shifted to moisture supply within the boreal forest and at least parts of the forest-tundra 

ecotone in Alaska (Jacoby and D'Arrigo 1995). Briffa et al. (1998) reported a decreased 

sensitivity o f radial growth of high latitude trees to temperature since the m id  2Qlh 

century. This would have a major impact on the forest-tundra distribution in interior 

Alaska. Two scenarios are most likely:

1. The forest will expand into tundra with increased summer air temperatures, 

providing a higher CCb uptake and a negative feedback to the greenhouse effect (ou r 

"limiting factor stays the same scenario")

2. Under increased summer air temperatures the limiting factor o f  tree growth 

will shift to moisture supply, possibly leading the ecosystem trajectory towards 

higher fire frequency, massive die-back of white spruce due to moisture stress and 

slow change into aspen parkland, resulting in another positive feedback loop with 

less CO2 uptake and increased greenhouse effect.

These scenarios make clear that completely different outcomes are possible due 

to a small change in the ecosystem trajectory. There is no real way of sure prediction. 

Predictions based on linear causal chains might just be lucky hits, if  nothing 

fundamentally changes within the ecosystems in question. As outlined above, this is n o t 

always (actually seldom, Briggs and Peat, 1993) the case. Going back to Figure 1.2. w e 

can now ask, if  the boreal forest ecosystem faces the destiny of ecosystem I, running
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against a  threshold in time and subjected to fundamental changes in internal structure, 

or ecosystem III, shaken, but still on its way through time, adapting by spatial change 

and shifts in biome location.

As a careful first conclusion we might say that:

-  Small and slow shifts in controlling factors lead to a gradual spatial sh ift of the 

ecosystems involved as long as the limiting factor is not changing. The change can 

be first detected in the ecotone areas.

-  Catastrophic events, nonlinear responses and change in limiting factor can lead to  

different ecosystem trajectories, change is not first detected in the ecotones.

-  If the monitoring interest is focussed on ecotones in time, the core areas of biomes 

might provide a more suitable homogeneous background for detection o f  change, 

e.g. regional drought-stress (Neilson 1993).
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‘C hapter 2

An E arly  Treeline Experim ent by a W ilderness Advocate - Bob M arshall's  

Legacy in the Brooks Range, Alaska

'in Print as: Wilmking, M. and Ibendorf, J. An Early Treeline Experiment by a 

Wilderness Advocate - Bob Marshall's Legacy in the Brooks Range, Alaska. Arctic.
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Abstract:

In 1939, the wilderness advocate and conservationist Robert Marshall spent the 

last summer of his life in the Brooks Range, Alaska. He believed that present 

environmental conditions did not cause the position of the northern treeline, but that 

trees simply had not had enough time after the last glaciation to fully occupy their 

potential distribution. He started a treeline experiment by sowing white spruce seeds in 

Barrenland Creek, 5 km north o f the treeline o f his day. Apparently the seeds Marshall 

sowed had either did not germinate or germinated seedlings did not survive, because 

there was no sign of them, when in 1968 Sam Wright planted the same p lo t with 100 

four-year old spruce seedlings. To our knowledge nobody had visited the p lo t until 

were able to locate it in 2001. We found two seedlings alive o f the 100 planted in 1968 

and a note from Sam Wright, who had revisited the plot in 1989, and found five 

seedlings alive at that time. The plot itself is undisturbed and still has three o f Bob 

Marshall's original site markers. Although the experiment lacks detailed information to  

be of great scientific value, we believe that the site is o f historic significance for the 

National Park Service in Gates o f the Arctic National Park, Alaska.
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Introduction:

Current debate

Treelines have been the focus of intense research for a long time (Griggs, 1934; 

Krebs and  Barry, 1970; Elliot -Fisk, 1983). Treeline advances and retreats as a result o f  

climate fluctuations have been documented over time scales ranging from thousands o f  

years (MacDonald et al., 1993) to 20th century warming (Suarez et a l, 1999, Lloyd et 

al., 2002).

Especially in the high latitudes, where warming is expected to be o f  greatest 

magnitude (Overpeck et al., 1997, Serreze et al., 2000), large-scale m odels assume 

linear correlation between changing climatic conditions (e.g. warming) and 

subsequently advance of the northern treeline (Elliot-Fisk, 1983; Pielke and Vidale,

1995). However, northern treelines might not react very fast to climate warming 

(Lavoie and Payette, 1996), or might be relicts o f warmer periods and not reflect 

current climatic conditions (Weisberg and Baker, 1995). Spatially explicit models 

incorporating topographic influences (Rupp et al., 2001) produce an expansion of 

boreal forest onto the North slope of Alaska only after thousands o f years, because the 

Brooks Range serves as a barrier.

Position of northern treeline and the extent o f the boreal forest are important 

drivers of the global climate system through albedo (Foley et al., 1994} and the 

potential to store carbon (Fan et al., 1998; Liski et a l, 2003). Summer temperature 

(July 10°C isotherm, Daubenmire, 1954; Holtmeier, 1974) has historically been 

reported as the main factor controlling treeline position, while Koerner (1998) recently
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proposed that soil temperatures o f the root zone provide a far better explanation than 

generalized air temperatures. However, the limiting factor for tree growth m ay  have 

shifted to moisture supply within the boreal forest (Barber et al., 2000) and parts of the 

forest-tundra ecotone in Alaska (Jacoby and D ’Arrigo, 1995). Briffa et al. (1998) 

reported a decrease in sensitivity of radial growth and late wood density o f  high latitude 

trees to temperature since the mid 20th century.

Alaska's northern treeline consists mostly o f white spruce (Picea g lauca  

(Moench(Voss))). Tests have shown that white spruce seeds can sprout and seedlings 

can survive on upland tundra sites when transplanted by humans (Hobbie and Chapin, 

1998). A more important limitation on the movements of white spruce into tundra is the  

ability to disperse seeds and Cooper (1986) concluded that white spruce seeds can be 

dispersed over kilometers, rather than shorter distances as reported earlier (Zasada,

1971; Viereck and Schandelmeier, 1980). Fastie (1995) documented spruce migration 

rates of 300-400 m/year in Glacier Bay on newly deglaciated terrain and Lloyd et al. 

(2003) calculated a migration rate of 100 m/year for spruce invading tundra on the 

northwestern treeline in Alaska. After deglaciation, white spruce arrived in  the Brooks 

Range somewhere between 8500 and 6000 BC. (Edwards et al., 1985) and new 

dispersal theories using dispersal kernels (Clark et al., 1998) indicate that in  fact the 

slow rate o f  climate warming may have effectively hindered population spread. Other 

factors influencing population spread are not only seed dispersal, but also the 

mechanism of germination and establishment. Survivorship of sowed w hite spruce 

seeds in tundra is less than 20% after four years (Hobbie and Chapin, 1998).
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Transplanted seedlings, however, showed over 90% of survivorship in shrub and 

tussock tundra after four years (Hobbie and Chapin, 1998).

Bob Marshall's theory of treeline advance

As early as the 1930s, the forester Bob Marshall was working on this issue in the  

Upper Koyukuk country o f northern Alaska in the Brooks Range. His theory was that 

trees did not have enough time after the last glaciation to occupy their potential growth 

range. In his view, the seed dispersal mechanism prevented a fast advance o f  white 

spruce into tundra. He calculated the advancement rate of the northern treeline at 1 

km/150 years (Marshall, 1956). This was, as we now know, a substantial 

underestimation. To test his hypothesis, Marshall sowed white spruce seeds north of 

treeline in three separate watersheds (Grizzly Creek, Barrenland Creek and Kinorrutin 

Creek). In this paper we present the rediscovery o f one of his plots, Barrenland Creek, 

in 2001.

A short sketch of Bob M arshall's life:

The man later known as a great conservationist and wilderness advocate, Bob 

Marshall, was bom in 1901 as a son of an activist father, the lawyer Louis Marshall. 

From his father he inherited the urge to stand for what he believed in, be it civil rights 

or wilderness protection (for a comprehensive tale of Bob Marshall's life, see Glover, 

1986). Marshall grew up hiking in the Adirondaks, where he developed a special sense 

for untamed places and the desire to keep them unspoiled. He chose forestry as a
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profession. In 1930 he came to Alaska for the first time and spent a winter in  Wiseman, 

a small community on the southern slope o f the Brooks Range. His book "Arctic 

Village" w as the result of his stay. Back on the East Coast in 1931, he began  to write 

about wilderness issues, deforestation and conservation. In 1933 he becam e director o f  

the division of forestry in the Bureau o f Indian affairs. In 1935, Marshall w as among 

the principal founders of The Wilderness Society, others included Aldo Leopold and 

Benton MacKaye, who later helped establish the Appalachian Trail.

A visionary in the truest sense o f  the word, Marsha ll set an unprecedented course 

fo r  wilderness preservation in the United States that few  have surpassed. H is  ideas and  

dreams continue to be realized long after his death at the young age o f  38 in  1939... he  

was among the f ir s t  to suggest that large tracts o f  Alaska be preserved, shaped the U.S. 

Forest Service's policy on wilderness designation and management, and w ro te  

passionately on a ll aspects o f conservation and preservation (The W ilderness Society, 

2003).

After his first trip in 1930 he returned to Alaska three times until his early death 

in 1939. His legacy in the Brooks Range includes the mapping of more than 30 000 

km2 of wilderness, the book "Arctic Village", which he wrote after living in  Wiseman 

for about a year and "Arctic Wilderness", a book edited by his brother George 

(Kauffmann, 1992). But perhaps an even more important legacy of his w as the naming 

of two mountains, Frigid Crags and Boreal Mountain: The mountains became more and  

more precipitous until f in a lly  they culminated in the Gates o f  the Arctic (Marshall, 

1956:14) He went on to write that: Alaska is unique among a ll recreationa l areas
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belonging to the United States because Alaska is yet largely a wilderness. In  the name 

o f a balanced use o f  American resources, le t’s keep northern Alaska largely a. 

wilderness.

The impact of Bob M arshall' writing:

This call for preservation started a long conservation effort in Alaska. It could b e  

argued that the pure name "The Gates of the Arctic" has instilled a sense o f  adventure, 

of wilderness and freedom into thousands of readers and conservationists. A ll the 

efforts to recognize these values culminated in the establishment and nam ing of the 

second biggest National Park in the United States: Gates of the Arctic N ational Park 

and Preserve. Kaufmann (1992:69) stated: Bob M arsha ll is to the Brooks Range what 

Henry Thoreau is to the Maine woods and John M u ir to the Sierra Nevada. Gates o f  

the Arctic was awarded National Monument status on December 1, 1978 an d  became a 

National Park and Preserve on December 2, 1980. Bob Marshall's dream o f  keeping 

northern Alaska largely a wilderness was at least partly realized.

The Barrenland plot - p a rt of Bob M arshall's legacy in the Brooks R ange:

In 1939 Bob Marshall spend his last summer in the wilderness o f the Brooks 

Range in northern Alaska. Already in earlier years he had tried to substantiate his 

theories about the lack o f time after glaciation for treeline advance, but his attempts had  

failed. In 1930 he had sowed spruce seeds on two plots in Grizzly Creek, twelve m iles 

north of treeline of his time (Marshall, 1956). Returning in 1937 he discovered, that the
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seeds had not sprouted. He wrote: Well, the seeds had not developed, my experiment 

was a complete, dismal failure on both plots. (Marshall, 1956:123).

However, in 1939, while mapping and exploring the upper Koyukuk area, he 

repeated his early treeline experiment by sowing seeds o f white spruce {Picea glauca) 

about 5 km north of current treeline on two 3x3 m plots in Barrenland Creek. He wrote 

in his journal: We stopped fo r  lunch on the edge offoam ing white w ater...It was 

fascinating in its barrenness so we called it  Barrenland Creek. A fter lunch I  repeated 

the experiment I  had tried with negative results nine years before - the experiment to 

test my theory that lack o f  time, not unfavorable climatic conditions had prevented the  

progress o f  the northern timberline... (Marshall, 1956:154). One plot consisted of 

mineral soil after removal of the vegetation, on the other Marshall sowed th e  seeds in to  

undisturbed tundra.

Marshall died four months after this trip (Glover, 1986), and the site was not 

revisited until Sam Wright and his wife searched for the plot in 1968. On the  5th of 

August, 1968 Sam wrote: By seven p.m., rimm ing up Barrenland Creek's north side, we  

looked down on the tree planting site where Bob Marshall's stakes s till marked his p lo t  

after 29 years o f  arctic freeze and break-up... (Wright, 1988:157).

No trees had grown, so Wright planted 100 four-year old white spruce seedlings, 

provided by Les Viereck from a seed stock that was collected and grown in  Fairbanks 

(Viereck, pers. com, April 2001).
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Rediscovery in 2001:

Our research group found no evidence that anyone had revisited the plots after 

1968. Attempts to contact Sam Wright failed at first. After two unsuccessful attempts 

to find the plot in 2000 and early 2001, we were able to locate the site in August 2001 

and found two seedlings still alive. We also found a note that Wright had returned in 

1989 and found five trees alive and one dead. However, we found no trace o f  any dead 

trees. In 2001 our research group could find only one o f the plots Marshall had 

established in Barrenland Creek, the other probably washed away. The plot is situated 

at 67°59.920 N and 150°33.815 W on the north side of Barrenland Creek near the 

continental divide on top of the Brooks Range (Fig. 2.1), approximately 5 km  north o f  

current treeline and 200 m higher in elevation (1050 m a.s.L). The nearest treeline is 

situated the valley of the North Fork o f the Koyukuk River on north and south facing 

slopes (Fig. 2.1). White spruce at the North Fork treeline reach 760 m elevation on 

north facing slopes and 850 m on south facing slopes. Preliminary age data (Wilmking, 

unpublished data) suggests establishment before 1700, indicating little or no  movement 

during at least the last 300 years. Barrenland Creek runs west - east in a U-shaped 

valley completely surrounded by mountains with large gravel slides on either flank.

The plot occupies 3x3 m on a floodplain north o f Barrenland Creek, shortly before the  

creek enters its canyon. As of the summer o f 2001, the four comers were marked w ith 

stone piles and three of the four still had Bob Marshall's original willow sticks 

protruding 50-80 cm above the ground. In one o f the stone piles an old peanut can he ld  

a note from Sam Wright, reporting that he had found five spruce trees alive in 1989.
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The soil is stony and shallow and probably underlain by permafrost. The tw o  spruce 

trees alive in 2001 are 30 cm in height (Fig. 2.2). They looked healthy and showed 

recent grow th on their tips. An interesting side-note is the fact that Les V iereck planted 

siblings o f  the seedlings he gave to Sam Wright in 1968 at the University o f  Alaska 

Fairbanks. In 2001 they measured about 9 m in height (Viereck, pers. com ., Sept 2001).

Natural white spruce seedlings have been reported naturally several kilometers 

beyond the last cone bearing trees (Cooper, 1986). However, during our search for the 

Marshall plot we scanned the entire valley of Barrenland Creek and did no t find any 

evidence o f  other white spruce trees or seedlings. These two seedlings are growing in 

an environment that probably has not seen trees for thousands of years. There are 

several possible explanations for the outcome of Bob Marshall's experiment. We do 

not know how many seeds he sowed on each plot, but Nienstaedt and Zasada (1990) 

reported white spruce seed to seedling ratio on mineral soil of 30-50 seeds per seedling 

and on organic soil 500-1000 seeds per seedling. Marshall may not have sow n enough 

seeds to establish seedlings in this environment. The seeds Bob Marshall u sed  were 

from Chippewa National Forest near Cass Lake, MN. When tested in 1938 they 

showed a germination rate of approximately 80%, but they were not genetically ideal 

for this high latitude site. According to Nienstaedt and Zasada (1990), spruce seeds 

transplanted either more than 150 m altitudinally, or more than 3° latitudinally will 

probably show detrimental growth effects.

Seedling survival rates over decades are not well documented for treeline areas, 

but it could be argued that two out of 100 is quite normal or even above average. On
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the other hand, environmental conditions may just be unfavorable to grow th despite 

recent w anning trends. Soil temperatures might be too low, snowbeds too persistent 

and therefore the vegetative growth period too short. This plot does not m eet the 

criteria for a "safe spot" (usually south facing, sheltered depressions), the locality most 

likely to promote survival of seedlings at northern treelines. In addition disturbance b y  

animals o r humans might be a factor. After we located the plot in 2001 we had a chance 

to meet Sam Wright and he told us that in 1989 he had found evidence of human 

interference on Bob Marshall's plot. But in 2001 the two surviving seedlings seemed 

healthy and showed recent growth.

And so despite all these scientific explanations and thoughts, the legacy of Bob 

Marshall in the Brooks Range of Alaska will not only include his life long work for 

nature conservation, but also two spruce trees growing on his plot about 5 km  north o f  

current treeline - a very small but living monument to his research and exploration in 

what is now called the Gates o f the Arctic National Park and Preserve.
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Figure 2.1: Map of the upper North Fork o f the Koyukuk River, Brooks Range, Alaska. 

Bob Marshall's plot is situated approximately 5 km north of current treeline in 

Barrenland Creek at an altitude of 1050 m a.s.l. Current treeline is situated on north 

(760 m a.s.l.) and south (850 m a.s.l.) facing slopes in the drainage o f the North Fork o f  

the Koyukuk.
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Figure 2.2: One of the two spruce trees still alive on Bob Marshall's plot in  Barrenland 

Creek. Sam Wright planted this tree as a 4 years old seedling in 1968. In 2001, 37 years 

old, it measured about 30 cm in height, but showed recent growth on the tips. A sibling 

of this tree, planted at the University of Alaska Fairbanks measures 9 m in height today 

(Viereck, pers. com., Sept. 2001). Visible in the background is Twoprong Mountain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-52 -

'Chapter 3

Recent climate warm ing forces contrasting growth responses of w h ite  spruce at 

treeline in Alaska through tem perature  thresholds

'Prepared for submission to Ecology Letters: Wilmking, M., Juday, G.P., Ibendorf, J ., 

Barber, V. A. and Zald S.H. Recent climate warming forces opposite growth responses 

of white spruce at treeline in Alaska through temperature thresholds.
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Abstract:

O ur findings o f both positive and negative growth responses to clim ate warming 

at treeline challenge the widespread assumption that arctic treeline trees grow  better 

with warming climate. Hot Julys decrease growth o f -40%  of white spruce sampled at 

treeline in  Alaska, whereas warm springs enhance growth of others. Growth increases 

and decreases appeared at temperature thresholds, which have occurred m ore 

frequently in the late 20th century. Without accounting for these opposite responses and 

temperature thresholds, climate reconstructions based on ring-width will miscalibrate 

past climate, and biogeochemical and dynamic vegetation models will overestimate 

carbon uptake and treeline advance under future warming scenarios.

Keywords: Threshold effects, Alaska, climate change, white spruce, treeline, cluster 

analysis, dendrochronology, carbon uptake
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In troduction:

High latitude forests provide important feedbacks to global climate: They contain 

49% of the carbon stored in forested ecosystems (Dixon et. al., 1994) and increases in 

growth and forest area enhance CO2 uptake (Koerner, 2000). However, replacement o f  

tundra by evergreen conifers (treeline advance), decreases albedo and enhances 

wanning (Bonan et ah, 1992; Foley et a l, 1994; Foley et. al, 2000), 

Dendrochronological studies and climate reconstructions of the boreal forest focus on 

the positive growth response of treeline trees to warmth (Garfinkel and Brubacker,

1980; D'Arrigo and Jacoby, 1993; Briffa et al., 1998), from limited samples on 

sensitive sites (Pilcher et al., 1990). Using these parameters, vegetation m odels produce 

northward expansion of boreal forest under warming climate (Kitttel et al., 2000,

Chapin et al., 2000; Rupp et al., 2001). However, positi ve sensitivity of northern high- 

latitude trees to temperature has recently declined (Briffa et al, 1998), and temperature- 

induced drought stress can limit white spruce radial growth (Barber et al., 2000; Lloyd 

and Fastie, 2002). Population-wide responses o f treeline trees to climate rem ain largely 

unexanuned. Our study identifies diverging population-wide growth responses 

(enhanced and decreased growth with warming climate) in two mountain ranges in 

Alaska, quantifies the relative abundance o f each growth response and provides a 

plausible mechanism, through which climate is forcing these divergent growth 

responses.

Methods:

We collected tree ring samples from 1558 white spruce (Picea glauca  (Moench 

(Voss)) in the Brooks Range and Alaska Range of Alaska (Fig. 3.1). W here possible
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(11 out o f  13 sites), we sampled five site types: floodplain, north- and south-facing 

forest and north- and south-facing treelimit. We collected nearly exclusively 

penetrating cores, so that two radial measurements were available for each year. Ring 

width w as measured and both annual ring width measurements were then averaged.

This analysis is based on the 1155 trees older than 100 years. The 403 younger trees 

showed nearly identical results, but were excluded to maintain stable sam ple size 

throughout the common period of analysis. Tree growth was compared w ith  the 

Fairbanks record (1906-2000) o f mean monthly temperatures. Fairbanks h as  the longest 

record o f  climate in Interior Alaska, is centrally located between the two mountain 

ranges and is highly representative of temperature trends in the boreal forest region o f  

Alaska (Garfinkel and Brubaker, 1980; Jacoby and D'Arrigo, 1995; Barber et al., 2000, 

Lloyd and Fastie, 2002, Lloyd and Fastie, in press).

Tree ring series were crossdated using COFECHA (Cook et al., 1992) and 

dentrended with ARSTAN (Detrending removes the age effect, Cook et al., 1992). W e 

correlated each tree's record of detrended annual radial growth with the 57 mean 

monthly temperatures preceding the end of ring formation (results from non-detrended 

tree ring series exhibited similar results, suggesting that age did not have a  significant 

influence on the tree growth-climate relationship). The Pearson correlation scores for 

each of the 57 correlations for each tree were used as input into a cluster analysis 

(STATISTICA). We used "joining" (tree diagram, complete linkage) in the  cluster 

module and visually inspected the results. Based on similar pattern at each site, we then  

refined the clusters using the "k-means" clustering procedure, where the program 

calculates a user specified number of clusters. We increased the number o f  clusters in  

each step (starting from two) to maximize the difference between clusters. B y visually
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inspecting the means of each clustering run, we were able to stop the procedure as soon 

as the new run did not produce new clustering pattern (significantly different mean), 

but merely created a new cluster emulating an existing pattern.

The cluster analysis was used only to mechanise the process of correlating each 

individual tree with Fairbanks climate parameters. Once we had identified the two 

dominant climate signals on a population basis (significant correlation of rin g  width 

after 1950 with a) July and b) Spring temperature indices, r > 0.25, or r < -0.25), we 

calculated the correlation score o f each individual tree's detrended radial grow th with 

these two climatic predictors. Other important growth predictors (Summer temperature, 

average o f May-September; Winter temperature, average o f November-February) w ere 

also tested.

We then manually assembled the clusters based on the common highest 

correlation scores (July prior, spring temperature index). We grouped first all trees w ith 

a significant negative correlation (p<0.01, r < -0.25) to the mean monthly temperature 

in Fairbanks after 1950 o f the July prior to growth (negative responders). A ll remaining 

trees were grouped according to the spring temperature index, significant positive 

correlation (p<0.01, r > 0.25) lead to assembly in the group o f positive responders, all 

others were labelled "non-significant". Histograms were inspected to check for normal 

distribution o f correlation scores to predictor indices before and after 1950 as well as 

for the period o f record (1906-2000).
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W e first assembled the positive and negative responding clusters for each 

mountain range and then for each site. Five year smoothing was used to assemble Table 

(3.1).

To examine the consistency of the growth responses throughout the last 200 

years, w e calculated the decadal mean raw ring width o f trees from both mountain 

ranges belonging to the two clusters that were significantly correlated with temperature. 

Because the number of trees contributing rings in each decade varied (because of 

different dates of origin during the 19th century) we calculated the 95% confidence 

interval in differences of the means of radial growth by decade for the two clusters.

We then developed a regression of the two climatic predictors versus the mean o f  

detrended radial growth o f the two significant clusters. Piece-wise linear regression in  

STATISTICA was used to test, whether a single regression or two regressions showed 

higher predictive power across the entire range o f data. The program calculates two 

linear regressions for a data array. The breakpoint or "threshold" o f these regressions is 

chosen where the difference in slope of the two models is maximized. We tested the 

significance of these differences by comparing the slope and p-values of th e  two 

resulting equations.

Results:

Based on the relationship between annual radial growth and Fairbanks mean 

monthly temperature, the initial clustering "tree"-diagram over the entire period (1906-
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2000) o f  climate record revealed a major division between trees with generally positive 

versus negative correlations with temperature. The "k-means" clustering procedure 

produced 3 distinctive clusters, revealing three populations of 1) consistently positive, 

2) consistently negative and 3) non-significant correlation of growth with temperatures 

(Fig. 3.2). It is particularly noteworthy that this pattern repeated itself at each  of the 13 

sites in both mountain ranges (data not shown). More trees belonged to the cluster 

defined by  negative growth responses to warm temperatures (40.1%), than to the 

cluster w ith positive growth responses (36.3%). While all 57 monthly correlations 

define membership in a cluster, statistically significant or near-significant scores are 

concentrated in only a few specific months (Fig. 3.2). Serial autocorrelation leads to a 

similar pattern o f correlation each year for a period o f years prior to ring formation.

Recent findings identify a difference in tree-growth/climate relationships at 

treeline between the penods pre- and post-1950 (Briffa et al., 1998; Lloyd and Fastie, 

2002). Many subregions across the Arctic experienced a period of cooling following 

1950 until the late 20th century (Overpeck et al., 1997, Vaganov et al., 2000). However, 

interior Alaska experienced steadily warming growing season temperatures since 1950 

(Barber et al., in press). Clustering runs from our sample restricted to the p re- and post- 

1950 periods also show distinct differences across this time boundary (Fig. 3.2, C-F). 

The absolute value o f the mean correlation scores o f our clusters in both mountain 

ranges changed from almost uniformly non-significant pre-1950 (p > 0.01, Fig. 3.2 

C,D) to a pattern after 1950 in which correlation scores o f several months were 

statistically significant (Fig, 3.2 E,F). All further references to statistical significance 

are based on p < 0.01.
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At each of the thirteen sites, as well as the combination of data in each  mountain 

range (Fig. 3.2), the three most distinct clusters in the post 1950 data displayed 

essentially the same pattern of correlation scores: Cluster 1 a highly significant 

negative response to previous July temperature, Cluster 2 a highly significant positive 

response to spring temperatures (March one year and April temperatures tw o  years 

prior in the Alaska Range, and April one and two years prior in the Brooks Range), and 

Cluster 3 no significant responses. This pattern persisted even at one site w here only 15 

trees met our age criterion. These July and spring temperatures serve as o u r climatic 

predictor-indices for positively and negatively responding trees.

Before 1950 the individual tree correlation scores with the two clim atic predictor- 

indices were distributed normally (Fig. 3.3 A,B) on each axis with the m odal class 

centred near the significance level (r = ± 0.25). However, after 1950 distributions o f 

individual tree correlation scores in both mountain ranges have become either strongly 

positive or strongly negative (Fig. 3.3 C,D). This divergent response was especially 

distinct, and underlines the non-overlap of the two significant climate responses. The 

distinctiveness o f the clusters therefore was not the result of a few trees w ith unique 

growth patterns, rather trees generally responded either negatively or positively to 

warming.

To test for site-specific responses, we examined the proportion o f negative and 

positive responders at each site. Negative responders were defined by a correlation 

score of < -0.25 (threshold of significance) of detrended growth with the Ju ly  prior 

temperatures after 1950. Positive responders were all remaining trees w ith a correlation 

score > 0.25 of growth versus the spring temperature index (after 1950). In  addition, w e
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checked for consistency of predictive power o f the climate indices before and after 

1950 at each site, by developing site-specific climate predictor indices that maximized 

the correlation scores of the mean of each positive and each negative population (Table

3.1).

Before 1950 a variety of months best predicted annual growth for positive and 

negative responders, but after 1950 the months contributing to the best predictor index 

were highly consistent among sites and identical to the two predictor indices derived 

from the overall population clustering procedure: Previous July limits radial growth in  

negative responding trees and warm spring increase growth in positive responding 

trees. Correlation scores after 1950 are greater in magnitude than before 1950. Unlike 

previous studies (Garfmkel and Brubaker, 1980; Lloyd and Fastie, 2003), Fairbanks 

precipitation and cold season temperatures added no independent explanatory power to  

the climate-tree-growth relationship after 1950.

The smoothed values (five-year running mean) o f our climate indices explain up 

to 81% o f the variability in growth of the sampled trees after 1950 (Table 3.1). During 

the same period, 43% of the Brooks Range trees showed significant negative responses 

to climate, and 38% positive, while 37% of the Alaska Range trees were negative and 

35% positive. The higher correlation o f the individual tree-growth-response to climate 

after 1950, demonstrated by the cluster analysis and the scatter o f the two best predictor 

indices, is also consistent across all sites and site types in both mountain ranges (Table

3.1), suggesting widespread occurrence and unique processes after 1950.
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For negative responders, the colder portion o f the range of M y  temperatures (< 

-16  °C has no predictive power for radial growth (Fig. 3.5 A,B). July temperatures over 

-16  °C however, show a strong significantly negative relationship with growth. This 

apparent threshold operates at all sites. The relationship o f July temperatures in 

Fairbanks to the actual temperatures at most sites remains unknown. However, at one 

site (ARRC), climate records exist from Denali National Park Headquarters. July 

temperatures at Denali Headquarters are on average (1923-1997) -4.5 °C low er than in  

Fairbanks. We calculated a similar offset (4 years overlap) for one Brooks Range site 

(BRNC). Based on these offsets the mean July temperature above which rad ial growth 

the following year will be limited would be o f about 11-12 °C,

The spring temperature index predictors also appear to be operating above certain 

thresholds (Fig. 3.5 C,D), but only after 1950. In the Alaska Range after 1950 the years 

o f highest radial growth are associated with the warmest spring index values. There is a 

similar relationship in the Brooks Range, but the warmest seven springs w ere  all in the  

1990s. Therefore we cannot exclude the possibility that the apparent spring temperature 

threshold of growth acceleration is partly coincidental in the Brooks Range.

Discussion:

The finding of highly significant negative relationships between July temperature 

and radial growth as the most common climate signal present at treeline and  near 

treeline sites in Alaska is quite surprising, and apparently not consistent w ith  much 

published literature in North America (Garfinkel and Brubaker, 1980; Jacoby and 

D'Arrigo, 1989; Jacoby et al., 1996; Overpeck et al., 1997; Lloyd and Fastie, 2003).
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Negative response of growth to July temperatures from drought stress is reported for 

some w hite spruce in particular habitats (Garfinkel and Brubaker, 1980; D'Arrigo and 

Jacoby, 1993; Barber et a l, 2000; Lloyd and Fastie, 2002). Here we show that trees 

respond negatively to temperature even at the coldest sites, the northern an d  altitudinal 

tree limit and that this response has become stronger with increasing temperatures. In 

most o f the previous studies (exception Lloyd and Fastie, 2002) in this environment the  

sampled trees were deliberately chosen to obtain a pure climate signal w ith  positive 

response to temperature (e.g. for climatic reconstructions,). Our sampling, in  contrast, 

was based on landscape parameters and can be taken as representative of th e  population 

of trees in this environment.

Dendroclimatological research is often site-specific and includes som e subjective 

elements in the selection of the climatic parameters used in reconstruction. Our 

clustering approach applied a consistent criterion to all trees across all sites and only 

then proceeded to site specific analysis. The consistency o f white spruce growth 

response to climate across all sites and both mountain ranges, both negatively and 

positively, and the strengthening o f this response in the post 1950 time period, suggests 

that a true climatic control is involved.

This strengthening of the climate-growth relationship after 1950 in o u r sample 

contrasts with the hemisphere-wide decrease in positive sensitivity of northern tree 

growth to summer warmth (Briffa et al., 1998). Possible explanations for th is 

discrepancy include a) we did not assume a coherent climatic signal at each site, but 

tested each tree explicitly for its growth response to climate and thus did n o t average 

opposite responses b) warm season temperature trends in the western N orth American
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Arctic have been the opposite o f hemisphere-wide trends (Barber et a l, 2003; Juday e t 

al., in press) c) we exclusively examined white spruce and not a variety' o f  species that 

may have included opposite trends.

M ost negative-responding trees in our sample (but not all!) grow on south-facing 

slopes just below, or in tree islands at, treeline. South-facing sites below treeline are the  

most productive locally, with higher stem density than in the treeline ecotone. At these 

sites physiological limitation on water transport due to low soil temperatures (Goldstein 

et a l, 1985) and increases in shrublayer (Sturm et a l, 2001) result in higher 

competition for below-ground resources such as water, and may ultimately lead to 

drought stress. Growth of boreal conifers is affected mostly by previous y ear 

temperatures (Jacoby and D'Arrigo, 1995; Jarvis and Lindner, 2000). Thus the pattern 

in negative responders of maximized correlation scores with previous July temperature 

is consistent with a drought stress mechanism.

Positively responding trees may be benefiting from lengthening of th e  growing 

season observed in high-latitude environments (Keeling et al., 1996; M yneni et al., 

1997), leading to earlier onset of ring formation and increased CO2 assimilation early in 

spring (Keeling et al., 1996). Lengthening of the growing season may be d u e  largely to 

the timing of snowmelt, which in turn may be strongly influenced by late winter/early 

spring temperatures (our predictor index). In the case o f the spring temperature index in 

the Alaska Range, the mean o f March and April temperatures at Denali National Park 

Headquarters is only about 2K lower than in Fairbanks, so that the upper h a lf  (above 

threshold) of spring temperature index values may actually reflect the onset of 

snowmelt at the sites. Timing differene o f these events between the A laska and Brooks
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Range caused by latitudinal difference also support the hypothesis, that threshold 

values for positive responders reflect onset of snowmelt. In the Alaska R ange the 

positive correlation of growth with temperature is maximized earlier than In  the Brooks 

Range (Fig. 3.1 E,F, Table 3.1), which is further north and experiences later snowmelt.

Boreal coniferous trees need soil water to reinitiate photosynthetic activity in 

spring (Jarvis and Lindner, 2000). Liquid water can be available at the soil surface as 

soon as overlying snow starts to melt, even though mean air temperatures are below 

freezing (Jarvis and Lindner, 2000). We infer that warmer spring temperatures produce 

earlier onset of snowmelt leading to the positive growth response of a sub-population 

of white spruce. Although this explanation is consistent with our data, further work 

needs to be done to confirm this mechanism. On the other hand, the consistency of this 

positive response from individual trees to sites to entire mountain ranges suggests that a 

true threshold mechanism is involved.

Carbon sequestration in deciduous boreal ecosystems is positively related to early  

thaw (Jarvis and Lindner, 2000; Black et al., 2000; Barr et al., 2002). We show that 

also in coniferous forests ring width and therefore above-ground carbon uptake can 

increase due to warm springs, but only in our positive responding population. Some 

boreal systems switch from carbon-sink to -source over periods of years and  net 

ecosystem productivity (NEP) in them is actually controlled by respiration (Valentini et 

al., 2000). Carbon flux measurements, needed to calculate respiration and ultimately 

NEP, are not available for our sites.
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The similarity of the percentages o f positive and negative responders in  both 

mountain ranges after 1950 could lead to the conclusion that in the short te rm  there has 

been no net change in carbon uptake on a regional scale by trees in these environments. 

However, it appears that positive responders are more frequent in environments with 

lower stem density than negative responders, so that calculated per unit area, the carbon 

uptake potential of positive responders may be far less than that of negative responders. 

Even more significantly, the majority of trees now responding positively, historically 

grew less than negative responders until the late 20th century (Fig. 3.4) and as a result 

are smaller (avg. dbh 16.0 cm, height 8.4 m) than negative responders (avg. dbh 23.0 

cm, height 10.4 m). Negative responders have achieved significantly less growth than 

positive responders since the 1970s (Fig. 3.4), a period o f especially strong climate 

warming. Therefore in these environments future climate warming might n o t be 

associated with a significant increase in carbon uptake and sequestration, b u t carbon 

uptake overall may actually decline. Surprisingly, in our results, age as an independent 

factor did not affect the correlation of trees to temperature as reported elsewhere (Lloyd 

and Lastie, 2002; Szeicz and MacDonald, 1994).

Conclusions:

Recent climate warming has intensified the negative growth response o f a large 

proportion o f trees at locally productive sites near treeline in Alaska. Trees on less 

favourable sites may be benefiting from earlier thaw and are now outperforming 

productive sites, reversing the historical growth relationship (Fig. 3.4). A ny  assumption 

that white spruce growth at treeline will change uniformly in relation to climate appears 

unjustified, and this changing sensitivity to climate is an obvious contributor to the
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error-term in ring-width based reconstruction o f past climate. Our results indicate that 

climate-tree growth relationships of treeline white spruce in Alaska can be modelled 

successfully as two distinct responses across entire mountain ranges. For modeling 

applications at larger scales the main question becomes the relative proportion of 

positive spring responders and negative summer-drought responders in the area of 

interest. The consistency of the proportion of trees displaying these two responses in 

the Brooks Range and Alaska Range suggests that these ratios are applicable to similar 

areas o f  the boreal forest. The unprecedented levels o f high temperatures in  the last 

decades (Barber et al., 2003) have led to non-linear patterns o f white spruce growth 

responses to warming at Alaska's treelines and temperature thresholds appear to be 

operating. Drought stress is now even affecting treelines at the cold margin o f the 

boreal forest. In the longer term, intensification of wanning could lead to the  

elimination of these negative responding trees through stress related mortality. 

Dynamic vegetation and biogeochemical models need to incorporate these divergent 

responses and apparent temperature thresholds to avoid overestimation of treeline 

advance, high latitude carbon uptake and future aboveground carbon storage.
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Figure 3.1: Location of study sites in Brooks Range and Alaska Range in Alaska. 

Shaded area is extent of boreal forest. All sites are at or near treeline. B rooks Range 

sites: 1, BRKG (68.0 °N, 161.5 °W), 2, BRHF (67.8 °N, 152.4 °W), 3, B RC L (67.7 °N, 

150.5 °W), 4, BRNF (67.9°N, 150.5°W), 5, BRNC (67.9°N, 149.8°W), 6, B R SJ (68.5 

°N, 143.8 °W), 7, BRFR (68.6°N, 141.6°W). Alaska Range sites: 8, ARCC (63.6°N, 

150.0 °W), 9, ARTL (63.4°N, 149.2 °W), 10, ARRC (63.7 °N, 149.0 °W), 11, ARSC 

(63.5°N, 148.8 °W), 12, ARBC (63.4 °N, 146.4 °W), 13, ARTK (63.3 °N, 143.3 °W).
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Figure 3.2: Cluster analysis of climate - tree correlation scores. Correlation scores o f  

annual radial growth with Fairbanks mean monthly temperature over a 57 month period 

prior to the end of each yearly ring formation. The three lines depict the m ean  of the 

three most destinctive clusters developed using "k-means" clustering. Solid lines 

represent the mean correlation scores o f all trees included in the cluster w ith  positive
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radial growth responses to monthly temperatures, dotted lines represent the  cluster 

defined by  negative responses, and dashed line represents clusters defined b y  trees w ith 

no consistent growth response. Level o f  statistical significance (p ~ 0.01) indicated b y  

horizontal dashed lines. Note intensification o f growth response after 1950 period and 

the maximization of correlation scores in the July prior to ring formation fo r  negative 

responders in both mountain ranges and in the spring (March and/or April) for the 

positive responding population. Because of a high degree o f serial autocorrelation m ost 

explanatory power is concentrated in the maximum correlation scores of th e  two years 

prior to ring formation.
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Figure 3.3: Growth predictor indices before and after 1950. Scatterdiagram of 

correlation scores of individual tree radial growth with previous July temperature (x- 

axis) and spring temperature index (y-axis) for Alaska Range (n=600) and Brooks 

Range (n=555) before and after 1950. Level o f statistical significance indicated by 

dashed lines. The values inside the box are non-significant. Note the scatter before 

1950 (top row) indicating normal distribution along both axis. After 1950 the 

distribution shifts in the direction of strong positive and strong negative correlations. 

Note that the majority of trees display either negative or positive correlation with 

predictor indices, rather then both responses simultaneously.
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Figure 3.4: Mean raw radial growth by decade o f negative and positive responders. 

Negatively (white colums) and positively (grey columns) responding populations in the 

Alaska Range and Brooks Range. Note the reversal of historic relationship o f  growth in 

the last part o f the 20th century, consistent with recent climate warming.
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Figure 3.5: Ring width controlled by temperature thresholds. Piecewise linear 

regression o f annual correlation scores of detrended radial growth (standardized values) 

versus temperature indices in the Alaska Range (A,C) and Brooks Range (B ,D ) before 

1950 (solid squares) and after 1950 (hollow squares). Two regression lines are 

produced for each data set, maximizing the difference in slope to estimate "breakpoint" 

or threshold. Dashed lines indicate regression line before threshold, solid lines after 

threshold. July temperature (in °C) displays little predictive power for grow th in both 

the Alaska Range (A) and Brooks Range (B) until an apparent ~16 °C threshold. (C,D) 

Detrended radial growth of positive responding trees to temperature predictor index 

(mean March-l/April-2 in the Alaska Range, and mean of April-1/-2 in the  Brooks 

Range). Growth shows little response to temperature before 1950. After 1950, growth 

responds positively to an increase in temperature index in the upper portion o f the 

range of values (warm springs). The absolute values o f the apparent spring temperature 

thresholds differ between the mountain ranges, because of the different m onths used in  

calculating each temperature index.
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Table 3.1:

Pre and post 1950 correlation scores of growth with temperature by site

Site n >  100 % Post 1950 r 5 yr. Pre 1950 r

vrs. at site sig. smooth

ARBC 167 19.8 Jul-1 -0.63 -0.85 Aug -0.41

ARCC 28 78.6 Jul-1 -0.50 -0.82 Jul-l/-3 -0.33

ARRC 121 38.0 Jul-1 -0.59 -0.86 Aug/Aug-1 /  Apr-3 -0.47

ARSC 15 33.3 Jul-1 -0.52 -0.80 Aug -0.35

ARTL 123 52.8 Jul-1 -0.77 -0.81 July-1/'Aug-1 -0.38

ARTK 146 35.6 Jul-1 -0.54 -0.85 Aug/Aug-1 -0.37

BRCL 68 38.2 Jul-1 -0.68 -0.86 Apr/Jul-l/Jul -3 +0.55

BRFR 59 67.8 Jul -1 -0.64 -0.90 Jul/Feb-1 +0.35

BRHF 73 42.5 Jul-1 -0.66 -0.83 Jun/May-2 +0.42

BRKG 67 8.9 Jul-1 -0.58 -0.75 Jan-1/Jul-1 +0.48

BRNC 109 46.8 Jul-1 -0.65 -0.87 Jul-1/Apr-4 -0.53

BRNF 79 51.9 Jul-1 -0.64 -0.88 Jul-1 -0.52

BRSJ 100 46.0 Jul -1 -0.66 -0.87 Jul-l/Apr-4 -0.41

ARBC 167 33.1 Mar-1/Apr-2 +0.53 +0.78 Mar/Jul-1 -0.41

ARCC 28 7.1 Mar-1/Apr-2 +0.56 +0.65 Aug/Aug-2 -0.36

ARRC 121 49.5 Mar-1/Apr-2 +0.60 +0.85 Mar/Jul-1 -0.44

ARSC 15 53.3 Apr-1/Apr-2 +0.61 +0.75 Aug -0.40

ARTL 123 36.5 Mar-1/Apr-2 +0.63 +0.84 Jul-1/Aug-1 t O Od 00

ARTK 146 27.4 Mar-1/Apr-2 +0.60 +0.81 Aug-l/-2 -0.42

BRCL 68 51.5 Apr -1/-2/-3 +0.67 +0.77 Jun/Jan-2/-3 +0.50

BRFR 59 16.9 JuL Apr -2 +0.70 +0.76 Aug/Feb-1/Aug-2 A). 50

BRHF 73 30.1 Apr-2/Feb-2/Jan-3 +0.54 +0.82 Jul/Aug -2 +0.43

BRKG 67 76.1 Apr-2/Jul-2/Dec-2 +0.55 +0.87 Aug -1/-2 +0.51

BRNC 109 43.1 Apr-11-2 +0.62 +0.74 Jul-1/Apr -4 -0.47

BRNF 79 32.9 Apr -1/-2 +0.60 +0.70 Jan -3/-4 -0.30

BRSJ 100 20.0 Apr-l/-2 +0.58 +0.73 May-1/D ec-1 +0.37
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Correlation scores o f growth with temperature pre and post 1950 by site fo r negative 

responders (upper portion) and positive responders (lower portion). Correlation was 

performed using the mean of all negative or positive responders including all site types. 

Each o f the 57 months preceding the end of each ring formation was tested as a 

possible growth predictor. Combination of months with highest predictive power is 

shown. After 1950, the unifying explanatory variable for negative responders is prior 

July (indicating drought stress) at each site. The smoothed (5-year running mean) 

values explain up to 81% of variation in growth at these sites. March and A pril 

temperatures one and two years prior to ring formation are the months w ith peak 

correlation for the positive responding populations at each site after 1950, consistent 

with the earlier onset of spring in this period. For site locations see Fig. 3.1.
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Chapter 4

M odeling spatial variability of treeline white spruce growth responses to 

Climate Change - Outlook for two National Parks in A laska

‘Submitted as: Wilmking, M., Juday, G.P., Ibendorf, J., Terwilliger, M. and Barber,

V. A. Modeling spatial variability o f treeline white spruce growth responses to Climate 

Change - Outlook for two National Parks in Alaska. Landscape and Urban Planing.
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A bstract:

National Parks in Alaska are among the largest protected areas in the northern 

high latitudes. They are mostly intact ecosystems where human modifications have 

been and will be very low. The biggest threats to their biodiversity are large-scale and 

rapid changes in climate. In this paper we present a study o f tree-growth - environment 

relationships o f the treeline species white spruce (Picea glauca (Moench[Voss])) in tw o  

National Parks in Alaska: Gates of the Arctic National Park (GAAR) and Denali 

National Park (DNP). For each park, we modeled tree-growth based on landscape 

characteristics and extrapolated the results into the 21st century using data from five 

General Circulation Models (GCMs). In GAAR, one o f the most remote and  pristine 

parks o f North America, our results based on the application of these scenarios, 

indicate enhanced growth at low elevation, whereas other areas will see changes in 

forest structure (dieback of tree-islands, infilling of existing stands). In DNP our results 

indicate possible dieback of white spruce at low elevations and treeline advance and 

infilling at high elevations. This will affect the road corridor with a forest increase o f  

about 50% along the road, which will decrease the possibility for wildlife viewing. 

Surprisingly, aspect did not affect tree growth - climate relationships. Our results 

provide maps of possible forest dieback and expansion, which can be tools for future 

park planning.

Keywords: National Park, Alaska, Treeline advance, Decision tree model, White 

Spruce
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Introduction:

Treelines are the limit of upright woody trees, beyond which only prostrate 

vegetation can survive. High-latitude and alpine treeline areas are zones o f  transition 

between two major biomes, boreal forest and alpine or arctic tundra. W hile sometimes 

conceived o f as a broader transition zone, treelines in our study areas, representing tw o 

northern mountainous regions, are relatively sharply defined borders between forested 

sites and tundra. In this paper we apply the term treeline to an imaginary line 

connecting the highest patches of forests on a given slope (Komer, 1998).

Historically, the survival and growth o f trees at treeline were seen as limited by 

only one environmental factor. The lack of available warmth has generally been 

interpreted as the limiting factor for tree growth in cold regions. This apparent 

simplicity o f only one controlling factor has made treeline environments th e  focus o f 

sustained research interest (Griggs, 1934; Krebs and Barry, 1970; Elliot-Fisk, 1983; 

Grudd et al. 2002).

Treeline ecotones have been investigated as potential "early warning stations" fo r 

Climate Change (Lescop-Sinclair and Payette, 1995; Hogg and Schwarz, 1997). 

Warming has been greatest in the high latitudes (Overpeck et al., 1997, Serreze et al.,

2000), for example during the last century, Alaska experienced one of the strongest 

warming trends on a global basis (Chapman and Walsh, 1993).

Given the historical relationship between temperature and treeline position, the 

warming trend o f the last decades could be expected to cause treeline advances in 

Alaska, which have been documented in some places (Suarez et al., 1999; Lloyd and
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Fastie, 2002). However, arctic treelines might be more stable than expected (Szeicz an d  

MacDonald, 1994), may not react quickly to climate wanning (Lavoie and Payette,

1996), or might be relicts of warmer periods and not reflect current climatic conditions 

(Weisberg and Baker, 1995).

Large-scale climate-vegetation models assume linear correlation between 

changing climatic conditions and subsequent position o f the boreal treeline (Pielke and 

Vidale, 1995; Elliot-Fisk, 1983). Site-specific studies, on the other hand, d o  not 

document significant changes in treeline position associated with recent climate 

warming o f the last few decades (Holtmeier, 1995; Baker and Weisberg, 1997). 

Topography represents a barrier to treeline advances in response to climate wanning. 

Models incorporating the topographic influences o f mountain masses (Rupp et al.,

2001) produce expansion of boreal forest onto the North Slope of Alaska after 

thousands of years.

Historically summer temperature (especially the July 10°C isotherm 

(Daubenmire, 1954; Holtmeier, 1974)) is reported as the main factor controlling 

treeline position. Komer (1998) and Chapin and Shaver (1985) proposed tha t soil 

temperatures o f the root zone provide a far better explanation than generalized air 

temperatures, and Goldstein et al. (1985) suggested that colder soil temperatures can 

limit tree growth through increased resistance o f water flow in white spruce at treeline. 

However, within the boreal forest, well south o f the treeline areas, the lim iting factor 

for white spruce growth is moisture supply (Barber et al., 2000). In parts o f  the forest- 

tundra ecotone in Alaska, growth limitations may have shifted from lack o f  warmth to
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lack of m oisture (Jacoby and D ’Arrigo, 1995, Chapter 3). Across the northern 

hemisphere, the sensitivity of radial growth and late wood density o f high latitude trees 

to temperature has decreased since the mid 20th century (Briffa et a l, 1998).

A laska’s northern treeline consists mostly o f white spruce (Picea glauca (Moench 

(Voss))). In  Alaska, white spruce populations at or near treeline in the Brooks Range 

and Alaska Range are mixed with positive, negative and no significant grow th response 

to temperature (Chapter 3). Roughly equal proportions (-30 - 40%) of these trees 

display negative and positive sensitivity to temperature. Warm mean July temperature 

prior to the year of growth results in the reduction o f growth in negative responding 

trees, and, warm spring temperatures one and two year prior to growth control growth 

increases in positive responding trees. During the second half of the 20th century, w hen 

most northern hemisphere trees at treeline sites experienced reduced sensitivity to 

temperature (Briffa et al, 1998), the Alaska trees increased in sensitivity (Chapter 3).

About 1975 Alaska's climate regime shifted to the warmest and driest in the last 

century (Barber et al., in press), so that these temperature thresholds are occurring m ore 

frequently in the later part of the 20th century. Future climate wanning will likely have 

even greater effects on growth of Alaska treeline trees than has been seen in  the past, 

because thresholds will be exceeded even more frequently.

In this paper we explore the spatial distribution of white spruce affected by these 

temperature thresholds in two National Parks in Alaska and attempt to build  a 

simplified, medium scale, spatially explicit model o f tree-growth climate relationships.
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National Parks have multiple roles of protecting natural ecosystem processes and  

natural habitat, and providing for the enjoyment, education and recreation o f  visitors. 

Park boundaries are stable, but ecosystems are constantly responding to changing 

environmental conditions. Treeline advance is one example of the response to a change 

in environmental conditions that can be relatively rapid, with extreme rates o f  up to on e  

km/decade on level terrain (Lloyd and Fastie, 2002).

GAAR is one of the most pristine areas o f  North America. Visitor frequency in 

GAAR is very low, and implications o f treeline advance or retreat will be o f  

importance primarily to the relative area occupied by tundra and boreal forest, the 

associated changes in habitat structure and the feedbacks to wildlife and th e  global 

climate system. DNP is the most visited National Park in Alaska with m ore than 

280,000 visitors per year (http://www.nps.gov/dena/pphtml/facts.html) . B us tours 

provide the main visitor experience with viewing of wildlife and scenery along the park  

road, which leads from boreal forest through treeline into broad expanses o f  tundra.

The general vision statement of the DNP goals states: "The National Park Service w ill 

preserve outstanding opportunities to view wildlife and mountain scenery, ..."  (Denali 

National Park and Preserve, 2003). Small-scale changes in treeline position in our study 

areas, i.e. treeline advance and infilling, would reduce the ability of visitors to see 

wildlife from the road.
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Description of study areas:

GAAR in the Brooks Range and DNP in the Alaska Range both encompass 

boreal forest and arctic or alpine tundra (Table 4. 1). GAAR became a National Park

'j
and Preserve in 1980. It encompasses over 34 000 km" in the central portion o f the 

Brooks Range, Alaska. Boreal forest reaches from the southern foothills nearly  to the 

continental divide, stretching along large river valleys, occupying 18% of the  park area. 

Treeline occurs at elevations of about 800 to 900 m on south-facing slopes and 700 to 

800 m on north-facing slopes and is a mixture between alpine (elevational) and 

latitudinal treeline. North o f the continental divide, no naturally occurring white spruce 

is found. Our four study sites in GAAR (one site (BRNC) is actually 2 km outside the 

eastern border of GAAR) were located at or close to the northern limit of white spruce 

in Alaska (Fig. 4.1).

Denali National Park and Preserve was originally established as Mt. McKinley 

National Park in 1917. Today it consists o f over 24 000 km2, 38% of w hich is boreal 

forest. Our study sites (Fig. 4.1) were located at treeline in three watersheds within the  

park. Road tours into the park began in the 1920s and a comparison of historic 

photographs from that time period with the views o f today suggests infilling of trees in 

scattered stands (Viereck, pers. com).
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Methods:

Tree cores:

We collected tree ring samples from 793 white spruce (Picea glauca (Moench 

[Voss]) in GAAR. and DNP. Site conditions (aspect, slope angle, elevation) were 

estimated at each tree location using GPS, altimeter and clinometer. We selected trees 

with no visible mechanical damage and cored mostly dominant and co-dominant 

individuals along transects from south-facing treeline through south-facing forest, 

through floodplain into north-facing forest and up to north-facing treeline.

For each tree, we recorded diameter at breast height (dbh), tree height (dbh and 

tree height were used to calculate green weight (Manning et al., 1984)) and position 

with a handheld GPS. Penetrating tree-cores were collected from each tree with a 

Hagloef increment borer. Cores were mounted, sanded (to 600 grit), rings counted, 

marked and measured using a Velmex measuring stage. Annual ring-width values w ere 

then averaged from both sides of the core. Averaged values were crossdated using 

standard techniques (Fritts, 1976). We verified the crossdating using COFECHA. Our 

goal was to include two 25-year periods before and after a major climate sh ift in 1975 

(Barber et al., in press). Therefore we included only the 753 trees, which w ere  50 years 

or older and contributed rings continuously over that 50 year period in the analysis.

To establish membership in a responder class, we used the annual raw  ring-width 

values. We compared averaged raw ring width o f the time periods 1950-1974 and 

1975-2000 and calculated the amount o f decreased or increased rates o f growth for 

those two time periods. Trees suffering a decline in growth we called "losers", trees
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with increased growth we called "winners" (there was only minimal change in 

membership if  we used detrended values).

W e then detrended and standardized the raw ring width values using ARSTAN 

(Cook and Kairiukstis, 1990) to remove the age effect. Tree growth was th en  correlated 

(Pearson correlation) with the Fairbanks record (1906-2000) o f mean m onthly 

temperatures. Fairbanks has the longest record of climate in Interior A laska and is 

highly representative of temperature trends in the boreal forest region o f A laska 

(Garfmkel and Brubaker, 1980; Jacoby and D'Arrigo, 1995; Barber et al., 2000, Lloyd 

and Fastie, 2002 and 2003).

Based on empirical relationships of tree-growth and climate (Chapter 3), we used 

data from five GCMs (Kattsov et al,, in press) for the 21st century to examine future 

rates of growth that might be expected under elevated temperatures. For th e  loser 

population o f trees, we assumed a linear reduction in rate o f growth under scenario 

temperatures based on the observed values (Fig. 4.2). Our standard for projecting the 

elimination of trees was when the projected empirical relationship reached zero growth. 

We used a responder function (Chapter 3), which models zero growth at a Fairbanks 

July temperature higher than about 22°C (Fig. 4.2).

Decision-tree model:

We developed two models of the relationships between tree growth and 

environment for white spruce, one for GAAR and one for DNP. Our goal was to 

predict where, within our catchment areas, trees suffered a decline in growth versus
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areas where growth accelerated after the major climate regime shift in 1975 (Barber et 

al., in press). Input parameters (predictors) included characteristics of each tree (age, 

dbh, tree-height, green weight) and environmental variables o f the site w here the tree 

grew. Environmental variables were both categorical: aspect, competition factor, stand 

characteristic (closed canopy, open canopy, outlier etc.), and continuous: elevation, 

height above valley floor.

We used the "classification tree" module in STATISTICA for model 

development. "Classification trees" are used to predict membership in classes of 

categorical dependent variables (in our case "winner" or "loser") on the basis of 

measured predictor variables.

In essence the program asks a series of hierarchical questions. Each answer leads 

to a univariate split in the data, in our case separating mostly winners from mostly 

losers, i.e. all tree weighing more than 310kg are assembled in one group o f  mostly 

losers, all lighter trees in the other (Fig. 4.3). After each split a new set of questions is 

tested against the remainder of the data-points to optimize the classification, e.g. if a 

tree is lighter than 310kg AND grows higher than 38.5m above the creek level. The 

C&RT-univariate split selection method employs an exhaustive grid search o f all 

possible combinations o f univariate splits to compute the classification tree 

(STATISTICA, help file). Predictive power is optimized by using half o f th e  sample 

(randomly selected) for model development and the other half for model testing.

The main advantage of using "classification trees" was that they produce an easy 

to use "flowchart" with "if - then" questions and that the ecological validity can be
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tested with expert knowledge. In addition "classification trees" are organized 

hierarchically (as the environment), use univariate splits, which ecologically can be 

translated as "thresholds", they are nonparametric and numeral and categorical 

variables can be used as input. In each National Park we developed the m odel first for 

all trees within that area and then tested that model against each study site within the 

area.

Spatial translation o f decision-tree model:

After model development, we used a GIS to "translate" our simplified schematic 

model into space. We obtained landcover classification from the National Park Service 

(2003; 60 m resolution). In order to apply the classification results spatially, we used 

elevational buffers to calculate area around streams (our model uses elevation above 

stream as a base for classification) and the treeline polygon (border of forested area to  

shrub and/or tundra). The treeline polygon obtained by this procedure was about 50 m  

lower in elevation in DNP than the highest trees we cored. Therefore, we used the 

treeline polygon and buffered it 50 m upward to estimate area occupied by these 

highest communities (winners).

For GAAR we applied our model to the entire park area. In DNP, large areas 

classified as boreal forest are occupied by black spruce. Since our model w as 

developed on the basis o f white spruce, we used only a subsection in the northeast o f  

the park (~25% of park area) to extrapolate our decision-tree model results into space. 

Boreal forest in the area chosen is dominated by white spruce forests and treeline. In
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addition w e used a 7.2 km wide corridor in DNP with the park road in the center to 

examine the extent and magnitude of the projected change in the area most heavily 

visited.

Results:

Winners and Losers:

Out o f 753 trees tested for winner and loser status (both parks), 388 w ere winners 

and 365 were losers. In GAAR (n = 381) 57% of tested trees were winners, 43% losers. 

Winners in GAAR increased in radial growth 26.6%  on average between th e  two test 

periods, losers decreased 17.3%. In DNP (n = 372) 46% of tested trees w ere winners, 

54% losers. Winners in DNP increased radial growth on average by 28%, losers 

decreased 27%.

Decision tree model and model test:

The decision-tree model correctly classified between two-thirds and three-fourths 

winners and losers in both parks (Tables 4.2 and 4.3). Rates o f correct classifications 

were generally higher at DNP (Table 4.3) than at GAAR (Table 4.2). The highest rate 

of misclassification of winners predicted as losers (31.4%) occurred at one site in 

GAAR (BRNF). The highest misclassification o f losers as winners (21.7%) occured at 

the BRNC site in GAAR. For site nomenclature see Fig. 4.1.
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The model for GAAR was developed on the basis o f four study sites and 378 

trees (three trees lacked complete site information). The model predicted 6 8 %  of class 

membership correctly and mis-classified 13% winners and 19% losers (Table 4.2).

The model for DNP was developed on the basis o f three study sites and  306 trees 

(66 trees lacked complete site characteristics) and was tested against the 372  trees older 

than 50 years. The model predicted 74% of class membership correctly and  miss- 

classified 14% winners and 13% losers (Table 4.3).

In GAAR the decision-tree model proceeds in four steps to reach the final level 

o f classification (Fig. 4.3A), including, in order, tree biomass, relative elevation, 

competition status and tree height. First, all trees above 310 kg (15% o f sample) of 

green weight are predicted as losers (Node 3, for miss-classification see Table 4.4). 

From the remaining trees, all trees growing up to an elevation of about 40 m  above the  

floodplain are classified as winners (Node 4). If  trees above the 40 m threshold grow in 

tree-islands, they are classified as losers (Node 6) and the remainder of trees in our 

sample (mostly the trees on middle to upper slopes) are classified as w inners if they are 

smaller than 8.45 m in height (Node 8). All residual trees following the last step are 

classified as losers (Node 9). However, node 9 contains nearly an equal num ber of 

winners and losers and is the main contributor to the overall misclassification. In easy 

terms, these model parameters can be summarized as follows:

Statement 1: Big trees do not benefit from wanner and drier conditions regardless 

of landscape position.
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Statement 2: Trees growing on lower slopes close to the creeks benefit from 

warming.

Statement 3: Tree-island competition is not beneficial for trees under warming 

conditions.

Statement 4: Small trees on middle and upper slopes benefit from w arm er 

conditions.

The DNP decision tree uses five decision levels (Fig. 4.3B), which a re  low 

relative elevation, high relative elevation, tree age, mid-elevation position and dbh and 

height. In this model, all trees growing in the lower belt around the floodplains (lower 

than 65 m above creek-bed) are classified as losers (Fig. 4.3B, Node 2; for 

misclassification see Table 4.5). Trees growing higher than 305 m above th e  creek-bed, 

however, are classified as winners (Node 5), and form the highest current treeline 

communities. The trees growing on the remaining middle slopes are classified as 

winners i f  they are younger than 64 years (Node 6). The model also classifies trees as 

winners if  they occur lower than 135 m above the valley floor and have a dbh  over 39 

cm (Node 11), or are relatively tall trees (> 8.45 m) and occur higher than 135 m above 

the valley floor (Node 13). This seemingly more complex model can also be  

summarized in more intuitive terms as follows:

Statement 1: Trees growing on lower slopes do not benefit from a warmer, drier 

climate.
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Statement 2: The highest treeline communities are able to take advantage of 

warmer conditions.

Statement 3: Young trees on mid-slopes show accelerated growth after the regime 

shift.

Statement 4: Established, larger trees in existing stands do benefit from  wanning.

Ecological translation - projection into space:

Since our decision-tree-models incorporate both environmental parameters and 

tree information, such as age or green weight, which is not necessarily related to 

landscape position, extrapolating these models into space requires substitution of tree- 

specific parameters by the landscape parameters that are the best proxies fo r them. W e 

tested each tree-specific predictor for it's relationship to landscape position, but did no t 

find any reliable predictive relationship. As a result, the adaptation o f the m odel we 

applied in order to identify areas predicted to support winners, losers and mixed 

populations consisted only of landscape parameters. The output of the spatial models 

can be seen in Fig. 4.4 for GAAR and Fig. 4.5 for the subsection of DNP.

In GAAR all areas up to 40 m above the main creek or river in a catchment are 

classified as landscapes currently occupied by winners. These areas total 2100 - 2500 

km2 or 35 - 40% of the existing boreal forest within the park. We infer that these areas 

would experience increasing tree growth and vigor under a warming climate. The 

decision tree model o f GAAR also classifies 1) younger and smaller trees located 

higher than 40 m above a creeks or river as winners, and 2) tree-islands and older and
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bigger trees in the above 40 m elevation zone as losers. Since these parameters express 

tree to tree variability, they cannot be modeled using landscape information. Therefore, 

we consider the zone above the 40 m limit as "mixed", consisting o f winners and losers. 

This mixed zone totals 60 - 65% or 3500 - 4000 km of the existing boreal forest w ithin 

the park. We infer that these areas would experience continuous forest cover in a 

warming climate, but composed of an increasing proportion of winners.

Boreal forest in DNP is a mixture between black and white spruce. S ince our 

land-cover classification did not differentiate between the two forest types, we ran the 

spatial model only for areas most likely occupied by white spruce, e.g. areas close to 

treeline, mountainous terrain (see box in Fig.4.1). All areas up to about 65 m  above the  

main creek or river in a catchment are classified as landscapes currently occupied by 

losers, which is the opposite response type compared with the similar landscape 

position in GAAR. These areas total about 383 km2 or 49% of the existing boreal forest 

within the area o f extrapolation in DNP. We infer that these areas would experience 

substantial growth decreases under a wanning climate, possibly including elimination 

of white spruce with sufficient warming. The next node in the decision tree model o f  

DNP classifies all trees higher than 305 m above the creek or river as winners. We in fer 

that these areas, which include the highest current treeline communities, would support 

increased tree growth, tree establishment and infilling, and possibly treeline advance 

into alpine tundra under future warming conditions. Infilling and treeline advance 

during the last few decades of unusual warmth have been reported from other high 

elevation treeline areas in Alaska (Lloyd and Fastie, 2003). In the decision tree model
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o f DNP, areas between 65 m and 305 m above creeks or rivers (400 km") a re  classified 

as supporting mixed populations of winners and losers. In these areas very young trees 

(< 65 years, 10% of sample) are classified as winners similar to GAAR. W ell 

established bigger trees are also classified as winners in the decision tree m odel of 

DNP. However, in the middle elevation zone in DNP shorter trees and sm aller 

diameter trees are classified as losers, suggesting that competition may be a  factor in 

their negative response to wanning. As a result we infer that in this mixed population 

zone warming would be associated with decreasing tree stem density.

Changing environment - projection in time:

A high percentage of the trees in our sample and other similar sites in  the Alaska 

Range and Brooks Range show a statistically significant correlation between mean 

monthly temperatures in Fairbanks and annual radial growth, including both  positive 

and negative correlations (Chapter 3). Negative correlations were maximized using the  

mean monthly temperature of July in the year prior to ring formation. This negative 

response is consistent with temperature-induced drought stress as a controlling factor 

for growth of white spruce in central Alaska (Barber et al., 2000) and at treeline 

(Jacoby and D'Arrigo, 1995). Negative effects o f July temperature on treeline white 

spruce occur only above the threshold o f 16°C at the Fairbanks station, w hich probably 

translates to a temperature of 11-12°C at treeline sites (Chapter 3). This temperature 

function predicts tree growth reduced to zero at about 22°C at Fairbanks (F ig. 4.2). 

Sustained periods o f time at or even near July temperatures that produce zero growth
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are likely to  result in the death of white spruce negatively correlated with Ju ly  

temperature in our study area, through stress related factors such as insects (Hard, 1985 

and 1987).

D uring the 20th century, mean monthly July temperatures in Fairbanks reached o r  

exceeded the 16°C growth reduction threshold in 52 of 93 years (record 1906-1999).

The five GCMs project temperatures at Fairbanks above the threshold ranging from 85 

out of 99 years (CSM-model) to 98 out of 99 (CCC-model) in the 21st century (Kattsov 

et al., in press).

M ean monthly July temperature o f the Fairbanks grid-cell modeled b y  ECHAM, 

HAD and GFDL reach and/or exceed the 22°C zero growth threshold in the  second h a lf  

o f the 21s1 century. The CCC and CSM models project highest July temperatures of 

around 20°C during the scenario period (Kattsov et al., in press).

Discussion:

Winners and Losers:

Most published literature on treeline studies in the northem-hemisphere focuses 

on the positive growth response of trees with warming climate (Garfmkel and 

Brubaker, 1980; D'Arrigo and Jacoby, 1993; Briffa et al., 1998). In our sample, 

however, negative growth responses o f treeline trees with warming are widespread 

(48% of trees greater than 50 years old). Temperature-induced drought stress as the 

major factor controlling tree growth has been reported within the boreal forest (Barber 

et al., 2000) and at treeline (Jacoby and D'Arrigo, 1995). Recent warming and a shift
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around 1975 to the warmest and driest climate regime of the last century (Barber et al., 

in press) have intensified the negative growth responses of trees to warming. We report 

here that large areas of white spruce at or near treeline in two National Parks in Alaska 

are also showing reduced growth consistent with the drought stress hypothesis.

M ore trees responded positively to warming in the northern study areas of GAAR 

(57%) than in DNP (46%). While the average growth increase after 1975 is  about 

similar in  both parks, the average rate o f growth decrease is higher in DNP. Both of 

these trends suggest that the northern treeline (the colder environment) benefits from 

warming more than elevational treelines within the boreal forest. In addition, summer 

and winter precipitation in DNP is higher than in GAAR (Hammond and Y arie, 1996) 

and probably offsets some of the drought stress there.

Error structure of the decision tree model:

In GAAR, most trees misclassified as winners, which are in fact losers, grew 

either on south-facing forests in one study site (BRNC), or as small scattered trees on 

north-facing slopes. Half of the trees misclassified as losers (which are winners) grew 

on south-facing forest sites. A further 25% of winners misclassified as losers represent 

scattered trees on north-facing slopes, and the remaining 25% are large trees growing in 

floodplains. Since winners and losers are mostly misclassified in the same 

environments (south facing forests and scattered trees on north-facing slopes) 

misclassification is partly offset and the outcome o f the overall classification is more 

accurate than would otherwise be the case. Site variations (as in BRNC) can  play a ro le

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-99  -

in changing the general relationship between tree growth and environment. It is 

therefore important to employ an extensive sampling design, rather than concentrating 

on a few sampling locations in order to control for this spatial variability.

The vast majority o f trees in DNP which our model classified as losers but in fact 

are winners, belong to one o f the following groups: 1) south-facing forests or 2) forest 

in floodplains. Interestingly enough, the trees classified as winners (which are in fact 

losers) also belong mostly to one o f these categories, leading to two conclusions: First, 

here again the classification errors partly compensate for each other and decrease the 

overall misclassification as in GAAR. Second, trees in these environments can be 

winners or losers, but those traits are apparently not controlled by any of o u r predictor 

variables, and thus might be controlled by variables we did not measure, o r  variables on 

a smaller scale than our investigation, e.g. local moisture supply. However, plot scale 

correlation o f soil temperature and soil moisture with growth response (Wilmking, 

unpublished data) does not support this hypothesis. Alternate explanations o f  opposite 

responses o f trees in apparently similar environments, such as genetic differences 

between winners and losers, await further study.

Projection into space:

The application of our decision-tree models spatially in both National Parks 

projects strongly reduced growth of trees at low elevations in DNP and larger trees in 

GAAR, possibly eliminating these trees through stress-related mortality as climate 

warms within the next 100 years. By contrast, at higher elevations in DNP all trees
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show a growth increase under warmer conditions. Positive growth responses and future 

recruitment in these highest elevation environments is a prerequisite for future treeline 

advance. Actual treeline advance in the last decades in Alaska (Lloyd and Fastie, 2002 

and 2003) occurred during a period of climate wanning, empirically validating this 

projection. In GAAR trees at higher elevations only show increased growth with 

warming i f  these trees are not hindered by tree-to-tree competition. Nearly all trees in  

tree islands show reduced growth after the regime shift to a warmer climate in 1975. 

Single trees at high elevations in GAAR are mostly winners. Tree-to-tree competition 

also seems to be a factor in the mixed mid-elevation zones in both parks w here positive 

and negative responders can grow in close proximity to each other (sometimes < 3m!). 

In DNP bigger, established trees have a competitive advantage over smaller trees in the  

mid-elevation zones. We hypothesize that small-scale differences in soil, nutrients, and 

light can be overcome by trees able to integrate across these differences w ith  larger 

rooting volumes and crowns. On the other hand, most trees between 50 and 60 years 

old in this elevation zone did increase their growth with warmer and drier conditions, 

suggesting that these trees are utilizing growth resources not used by established trees. 

In GAAR, small trees in the mid-elevation zone are mostly winners (Fig 3 A , Node 8). 

These inconsistent results lead us to two conclusions: Growth response in these areas is 

mostly controlled by 1) factors we did not measure (e.g. genetic variability, nutrient 

availability), and/or 2) by factors acting on a smaller scale than our investigation. As a 

result, in both national parks our models show the highest misclassification rates in 

these zones.
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Trees growing close to creeks or rivers (low-elevation slopes and floodplains) 

show opposite growth responses to temperature in the two National Parks. In GAAR, 

low-elevation slopes and floodplains are the areas o f increased growth w ith  warming 

climate, whereas in DNP under the same warming conditions trees on such sites show 

decreasing growth. Floodplains and low-elevation sites in DNP are locally the most 

productive sites, supporting closed canopy forest with high stem densities. The soils are  

silty. In GAAR, floodplain sites in our sample areas are one o f two types, either young 

gravelly floodplains supporting widely spaced individual trees, or older floodplains 

underlain by permafrost, also supporting widely spaced trees. Low elevation sites in 

GAAR are locally also the most productive, but stem densities are lower than  in DNP. 

In low-elevation and floodplain areas, as in the high elevation areas, tree to  tree 

competition seems to be an important factor determining growth response under 

warming climate. Trees not hindered by other trees (as in GAAR floodplains) are able 

to take advantage o f warmer air and soil temperatures with increased growth. If the 

depth o f the active layer in permafrost sites increases with warming climate, larger 

rooting volume and new nutrient sources probably benefit the trees. In D N P by 

contrast, these sites are already fully occupied by established trees and warming 

probably intensifies existing competition.

Surprisingly, neither tree age (Szeicz and MacDonald, 1994) nor aspect showed 

any significant relationship with growth response. Age was only used once as a 

deciding factor in our decision-tree models. Instead, tree weight and dimensions of the
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tree (dbh, height) seem to play an important role in the climate-tree growth 

relationship.

Projection in time:

Opposite growth responses o f treeline white spruce in Alaska have intensified in  

the latter part of the 20th century due to climate warming (Chapter 3). If  th is  warming 

continues (as modeled by five GCMs), we expect a further intensification o f  diverging 

growth responses of white spruce at treeline in Alaska. Winners will take advantage o f  

warmer conditions and enhance growth, thereby increasing their carbon uptake. Losers 

will experience further decline in growth and drought stress-related m ortality of these 

trees is likely due to several reasons. 1) Growth rates of zero are associated with the 

range o f temperatures projected by the scenarios for the 21st century; 2) Growth rates 

are averaged over a population; single trees will reach zero growth far earlier; 3) 

Stressed trees are more likely to attract and sustain damage from factors such  as insects 

(Hard 1985 and 1987); 4) Prolonged growth rates o f only 30 - 40% of historical levels 

may severely diminish their ability to compete with other plants for resources. In 

addition, such rates of reduction might lead to population responses far larger than w e 

project for individual trees.

It is therefore likely that under further warming conditions landscape-scale 

changes in white spruce distribution will take place. Areas o f declining growth (lower 

hillsides in the DNP or tree islands in GAAR) would have high rates o f tree  mortality,
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and areas experiencing enhanced growth (treeline areas in DNP and lower hillsides in  

GAAR) would experience infilling and higher productivity.

Exam ple: The Park Road

W e chose the road corridor in DNP as an example to illustrate the magnitude, 

extent and impact of possible advance of treelines and dieback of white spruce. In 

2002, DNP was visited by 280,911 recreational visitors (a drop from the 350,000 

visitors/year at the end o f 90s). The overwhelming majority of those visitors drove into 

the park with a shuttle bus. Wildlife viewing (e.g. Moose, Caribou, Dali Sheep, Grizzly 

Bear, Wolf, Fox etc.) and the view of Mt. McKinley are the major attractions of the 

park. Increased traffic in the last 30 years has apparently had no negative effect on the 

number o f wildlife sightings from the road (Burson et al., 2000) and, w hile moose 

behavior indicated possible traffic avoidance, this does not hold true for th e  distribution 

of grizzly and caribou (Yost and Wright, 2001).

We define the road corridor as an area extending 3.6 km out on either side of the 

road. In 2000, 21.1% of the road corridor (187.0 km ) was classified as boreal forest 

(Fig. 4.6A, Table 4.6), where the distance in which wildlife can be seen (< 100m from 

the road) is far smaller than in terrain not forested. The application o f our spatial model 

of tree-growth landscape relationships for the road corridor identifies areas o f  possible 

forest expansion and dieback (Fig. 4.6B). If climate warming occurs according to the 

pattern simulated by the climate scenarios during the 21st century, boreal forest area 

would increase to 289 km and occupy 33% o f the road corridor (Table 4 .6), an
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increase o f  about 50% over the current forested area. Dieback of trees would occur at 

low-elevation areas at the park entrance and along major river valleys (about 10% of 

road corridor), which are now occupied by boreal forest. More important fo r  visitors 

though, the tundra areas south o f the western portion o f the park road (see arrows) 

would experience increases in tree density (infilling) and treeline advance (Fig. 4.6B). 

These are the prime areas of wildlife viewing and allow stunning views o f  Mount 

McKinley on clear days. Repeating the general vision statement o f the D N P goal: "The 

National Park Service will preserve outstanding opportunities to view w ildlife and 

mountain scenery, ..." (Denali National Park and Preserve, 2003), it will b e  a challenge 

to address the dichotomy of preserving natural ecosystems and all associated changes 

and the impact o f these changes on its visitors.

Conclusions:

White spruce populations at and near treeline in the Brooks Range an d  Alaska 

Range o f Alaska include roughly equal numbers o f trees that have increased (winners) 

or decreased (losers) in growth after a major shift in 1975 to a warmer climate. The 

occurrence o f winners and losers was effectively modeled in GAAR and D N P using 

tree and site characteristics, primarily size of trees, relative elevation and age. The 

models were different for both National Parks, expressing regional variability. In 

GAAR, trees that respond to climate wanning with increased vigor and growth 

(winners) are generally found at low-elevation slopes and on floodplains. Similar 

environments in DNP are occupied by losers. Trees currently at the highest elevations
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in DNP are all winners. All other zones showed mixed growth responses. O n e  possible 

explanatory factor that ties together the responses and spatial distribution o f  winners 

and losers at different scales appears to be tree to tree competition. Areas o f  low 

competition, e.g. highest treeline sites or low density floodplains, show generally 

positive growth responses with wanning. Areas o f high competition, e.g. h ig h  tree 

density floodplains and forests, are primarily occupied by losers. The partly  opposite 

model outputs in both National Parks lead to the conclusion that a generalization of o u r 

results is only possible within the context o f our sample area and the results cannot b e  

applied broadly.

Growth o f loser white spruce is predicted by temperatures of the previous July, i f  

it exceeds 16.5°C at the reference station in Fairbanks. Temperatures greater than 22°C 

at Fairbanks are projected to result in zero growth o f losers. Five GCM scenarios for 

the 21st century produced temperatures above the growth reduction threshold more than  

85% of all years, and three of the five scenarios produced temperatures w hich reached 

or exceeded 22°C in the second half of the 21st century. This result suggests that areas 

now occupied by losers would no longer be able to sustain the species under scenario 

conditions.

The combination o f the decision-tree model o f DNP with the five G CM  scenarios 

for the 21st century projected treeline advance o f about 50 m in elevation. A s a result, 

our spatial model for the road corridor in DNP projects a significant increase in forest 

cover from now 22% to 32%, even though dieback o f white spruce in low elevation 

areas would occur. This increase in forest cover would significantly decrease the ability
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of visitors to see wildlife and scenery from the road, and should be carefully considered 

when planning the future park infrastructure.

In summary, if  recent warming trends continue, changes in distribution o f white 

spruce forests are within the range of possibility on a regional scale (treeline advance, 

dieback) and structural changes within existing forest are possible on a m edium  

(landscape) scale (changes in tree density through infilling and dieback). O u r results 

show that changes in growth performance o f individual trees due to climate warming 

are already underway, that further wanning would intensify these changes and that they  

would have landscape-wide consequences.

In a global context, our results indicate that large-scale models o f climate- 

vegetation interaction will have to be coupled with medium-scale topographically 

based models. As an example, structural changes (dieback, infilling and treeline 

advance) can happen in an area smaller than 4 km2 which might be within the extent o f  

one grid-cell in global vegetation models. Albedo as well as carbon uptake or release- 

potential are directly linked to these structural changes and therefore cannot be 

captured using large-scale models. Spatially explicit medium-scale models, however, 

can capture this variability so that a combination o f large-scale and medium-scale 

models will greatly increase the predictive power o f such approaches.
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Tables:

Table 4.1: Landcover types in study areas (km2), (National Park Service, 2003)

GAAR DNP
Boreal forest 6241.3 9531.6
Shrubs 17746.4 4126.2
Tundra 5358.9 3434.6
Water bodies 335.7 438.0
Bare/burned area 2962.8 2605.6
Snow/ice 145.0 2717.0
Indeterminate/clouds 1523.5 1750.9
Total area 34313.6 24603.9

Table 4.2: Model classification of winner and loser trees in GAAR, based on

comparison between "decision tree" modeling versus actual growth performance:

TEST correct Loser misclassified 
as winners

Winner misclassified 
as loser

GAAR n 381 260 50 71
% 100.0 68.3 13.1 18.6

BRNC n 129 88 28 13
% 100.0 68.2 21.7 10.1

BRNF n 86 52 7 27
% 100.0 60.5 8.1 31.4

BRCL n 77 59 9 9
% 100.0 76.6 11.7 11.7

BRHF n 89 61 6 22
% 100.0 68.5 6.7 24.7
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Table 4.3: Model classification of winner and loser trees in DNP, based o n  comparison

between "decision tree" modeling versus actual growth performance:

TEST correct Loser misclassified 
as winners

Winner misclassified 
as loser

DNP n 372 269 53 50
% 100.0

_ _ _
72.4 14.2 13.4

ARRC n 97 25 20
% 100.0 68.3 17.6 14.1

ARCC n 33 29 3 1
% 100.0 87.9 9.1 3.0

ARTL n 165 125 19 21
% 100.0 75.8 11.5 12.7

Table 4.4: Misclassification of trees as winners or losers at decision nodes in the

GAAR "decision tree" model

Node n winners n losers n misclassification rate [%]
3 28 5 23 18
4 42 35 7 17
6 12 2 10 17
8 52 40 12 23
9 55 25 30 45

Table 4.5: Misclassification o f trees as winners or losers at decision nodes in the D N P

"decision tree" model

Node n winners n losers n misclassification rate [%]
2 47 5 42 11
5 13 13 0 0
6 16 13 3 19

10 30 6 24 20
11 7 5 2 29
121 4 0 4 0
13 35 23 12 34
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Table 4.6: Aggregate area of spatially predicted actual tree performance tinder climate 

wanning in the DNP road corridor

Road-corridor (RC) ""km7..... % o f existing 
forest in RC

% of RC

Total area of RC 883.4 100.0
Existing forest in RC 187.4 100.0 21.2
Potential forest loss 85.3 45.5 9.7
Potential forest gain 186.5 99.5 21.1
Net forest after change 288.6 154.0 32.7
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Figure 4.1: Location of study sites:

(A) Gates o f the Arctic National Park, Brooks Range (BR), Alaska. All study sites are 

at or close to treeline. At each study site cores were sampled from north  and south- 

facing slopes at and below treeline and where possible in the floodplain. Location o f 

study sites: 1) Hunt Fork, BRHF (67.8 °N, 152.4 °W), 2) North Fork Koyukuk, BRNF 

(67.9°N, 150.5°W), 3) Chimney Lake, BRCL (67.7 °N, 150.5 °W), 4) Nutirwik Creek, 

BRNC (67.9°N, 149.8°W).
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(B) Denali National Park, Alaska Range (AR), Alaska. All study sites are a t or close to  

treeline. At each study site cores were sampled from north and south-facing slopes at 

and below treeline and where possible in the floodplain. Location of study sites: 5) 

Cabin Creek, ARCC (63.6°N, 150.0 °W), 6) Savage River, ARTL (63.4°N, 149.2 °W), 

7) Rock Creek, ARRC (63.7 °N, 149.0 °W).
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Previous July (C)

Figure 4.2: Temperature threshold controlling negative growth response (modified 

from Chapter 3). Mean ring width index (MRWI) as a measure of growth (y-axis) o f  all 

sampled trees older than 50 years with a negative growth response versus Fairbanks 

mean monthly July temperatures of the year prior to ring formation. A M RW I of 1 is 

the mean average growth over the life-span of each tree o f the sampled population until 

we cored it. Piecewise linear regression was used to calculate the threshold, by 

maximizing the difference in slope between the two regression lines. M ean monthly 

temperatures below 16.5°C do not affect MRWI o f the following year (r2=0.05, n=55). 

Above 16.5°C however, tree growth is strongly negatively correlated with warmer Ju ly  

temperatures (r =0.51, n=38).
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Figure 4.3: Decision tree model for GAAR (A) and DNP (B)

Tree and landscape characteristics are used to compute the decision-trees in  each 

National Park. The model asks a series of hierarchical if-then questions (m ost 

important questions at the top) to classify the trees into "winners'' and "losers". 

Winners are symbolized by black and losers by gray columns in every box 

(Node). All trees belonging to the group characterized by a positive answer to the 

question (below the box) move to the left, all others to the right (e.g. if  a tree's 

green weight is less than 310 kg it will be moved to box 2 in (A), if  a tree is 

heavier, it will be moved to box 3 in (A) and classified as "loser"). Numbers to the 

left of each box indicate "node" number. Misclassifications for each node can be 

found in Tables 4 and 5. The number on top o f each box represents percentage of 

trees in that box of total sample within each park. Column height corresponds to 

percentage o f winners and losers in each box (as in a histogram). "Elevation ov." 

equals the relative altitude of a tree over the creek below, e.g. a low "elevation 

ov." corresponds to a site on the lower slopes. TI: Tree-Island, Dbh: Diameter at 

breast height.
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Figure 4.4: Effect o f further warming on GAAR. The spatial application o f  our 

decision-tree model for GAAR projects no major treeline advances. However, within 

the existing boreal forest (6241.3 km2) our model identifies areas currently occupied by 

winners (black shading). These areas, amounting to 35 - 40% of existing forests along 

the creeks and rivers are projected to increase in tree growth under a w arming climate. 

Gray shaded areas represent mixed populations o f winners and losers, w hich cannot b e  

modeled using only landscape information.
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Figure 4.5: Effect o f further warming on DNP. We restricted the spatial application o f  

our decision-tree model for DNP to the area where white spruce is the dominant tree 

species. Total area occupied by boreal forest in 2000 in the box was 784 k m 2. Spatial 

application o f our decision-tree model projects treeline advances at higher elevations 

(black shading), in an area of 801 km2 (=102% of existing forest) and dieback in areas 

currently occupied by losers (light gray), amounting to 384 km (49% of existing 

forest). Taking together these two processes, the forest would expand by about 50% 

and occupy 1201 km2. Dark gray shaded areas represent mixed populations o f winners 

and losers, which cannot be modeled using only landscape information.
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Figure 4.6: Boreal forest distribution in DNP road corridor today and after 21st century 

climate warming scenarios. In 2000, 21% of the road corridor (187.01cm2) was 

classified as boreal forest (National Park Service, 2003; Fig. 4.6A). Using the  existing 

relationship of winners and losers to landscape position, the spatial model fo r the road 

corridor (Fig. 4.6B) produces areas of possible forest expansion (black) and dieback 

(light gray). Areas in light gray represent existing boreal forest, classified as losers and 

projected to lose all forest cover as a result of climate warming produced b y  the
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scenarios. Areas in medium gray are currently occupied by existing boreal forest 

classified as mixed winners and losers that would remain in forest cover throughout the  

scenario period. Areas in black depict all pixels 50 m higher than and adjacent to 

highest elevation existing forest pixels, representing areas o f forest expansion into 

tundra under further warming similar to climate scenarios. Boreal forest a rea  would 

increase to 288.6 km2 and occupy 32.7% of the road corridor. Note that som e forest 

areas, especially along low lying river corridors will experience forest decline (arrow

1). Some tundra areas (arrows 2 and 3) south o f the park road (Fig. 4.6B), now prime 

areas o f wildlife viewing, would experience increases in tree density (infilling) and 

treeline advance leading to reductions in scenic views along the road.
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C hapter 5

Closing the circle:

Application of the theoretical model from C hapter 1 

and a general sum m ary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 125 -

Closing the circle - Application of theoretical model:

Let us remember look at Fig. 5.1 (Fig. 1.2.) for a minute. Four ecosystems are on  

their journey through space and time, their paths controlled by unknown attractors and 

resulting trajectories. This - E cosystem  II

up//" ' j

general concept can be applied 

to the content of this thesis 

and vice versa, the results of 

this thesis can enhance the 

readability o f our figure. Let 

us replace "Ecosystem 1" with 

"Mammoth Steppe", an 

ecosystem prevalent during the

E cosystem  i /  b-—

7 /  ('■  ̂ W  '■ /  E cosystem  I V

/ H I i , V ''

"■♦Controlling

SPACE

Figure 5.1: Four ecosystems on th e ir journey 
through time and space, see chapter 1.

last glacial maximum (Walker et al. 2001); since then environmental conditions have 

changed, and controlling factors (jacks in the figure) have lead to an extinction of this 

ecosystem type at this place (Fig, 5.2). A threshold effect in time has "stopped" it’s 

trajectory. If we make the space axis more applicable to the northern high latitudes, w e 

see the latitudinal relationship of major biomes: "Boreal Forest", further north  "Arctic 

Tundra" and then "Polar desert", which does not exist in Alaska, in northern Canada. 

While the "Mammoth Steppe" does not exist any more, our three current ecosystems 

roll parallel in time, adjusting their position slightly to the spatial change in  controlling 

factors, the resilience of these systems symbolized by their "curvy" trajectory. The
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boundaries dividing these 

ecosystems are the "Forest-tundra 

ecotone" and the "Northern limit 

of vegetation".

But a  new controlling 

factor is appearing, "Drought 

stress" (Jacoby and D'Arrigo, 

1995; Barber et al., 2000;

Chapter 3 and 4). This controlling 

factor influences in our case 

the ecosystem "Boreal Forest", 

There might be new 

controlling factors in "Arctic 

Tundra" as well, e.g. 

thermokarst and drainage of 

large areas, but we will restrict 

our exercise to boreal forest.

The ecosystem "Boreal 

Forest" will reach a bifurcation,

A rctic  1

/ /  •/  /  emerging
!  /  Ecotone

• /  Threshold in j  } \ yj& f  { '

/ /  / /

Ne»> controlling factor 

e.g. Drought stress

South SPACE North

Figure 5.2: Present trajectories o f  northern h igh  
latitude ecosystems.

South SPACE North

Figure 5.3: New controlling factors lead to an
, • , em ergent ecotone, which gives rise to a newwhere some areas now occupied A ° ,

ecosystem type, Aspen Parkland.

by boreal forest will experience the control o f drought stress mechanism and  switch to 

a new ecosystem, e.g. "Aspen Parkland" (Fig. 5.3.), now prevalent in the southern
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extend o f  the Canadian boreal forest (Hogg and Hurdle, 1995; Barber et a l., 2000). In 

addition, the controlling factor now symbolized by drought stress might a lso  include 

other factors, which become more prevalent in the future, e.g. a shortening o f  the fire- 

retum interval.

Therefore, in the future, we might see four ecosystems on this slice o f  the earth's 

surface, symbolized by this space-time continuum: "Aspen Parkland" m ight replace the  

"Boreal Forest" in the south, which reduces the area o f this ecosystem. O nly small- 

scale invasion of "Arctic Tundra" seems likely at the northern edge o f the boreal forest 

in the near future (Rupp et a l, 2001, Chapter 4). How "Arctic Tundra" and "Polar 

desert" will change in the future is also an open question.

This short excursion into general system theory provides a tool to tie results o f 

different studies together to provide an overview. We can use it to highlight a particular 

characteristic of these environments (e.g. emergent controlling factor). In addition it 

offers the option to, at least mentally, assess the impacts of change and it offers the 

possibility to communicate different scenarios and ideas.
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G eneral sum m ary and conclusions of this thesis:

The overall significance and contributions of this thesis summarized as follows:

1) The generalized systems model o f space-time continua, controlling factors, 

attractors and trajectories can be applied as a theoretical foundation to  ecotone 

research (Chapter 1 and 5).

2) Rediscovery o f a treeline research plot from 1939 in the Brooks Range is of 

general interest to the arctic scientific community (Chapter 2).

3) Contrary to previous results, white spruce treeline communities in the  Alaska 

Range and Brooks Range display positive and negative relationships with 

climatic indicators (temperature, Chapter 3).

4) Contrary to previous results, these relationships with climatic indicators are not 

decreasing but increasing in significance in the last decades (Chapter 3).

5) The negative response to increasing temperature is most likely produced by a 

drought stress mechanism. This mechanism operates at every site in two 

mountain ranges, it is a widespread phenomenon and, especially under future 

warming conditions, would be increasingly important (Chapter 3 and 4).

6) Positive and negative responses o f tree growth to climate are controlled by 

temperature thresholds (Chapter 3). Using temperature - growth relationships and 

projection o f future temperature regimes in interior Alaska (five General 

Circulation Models), elimination of white spruce from some sites is within range 

of probability during the present century (Chapter 4).
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7) Landscape position alone can only partly explain why certain individual trees 

display positive or negative relationships of growth with climate. Genetic 

variability and other environmental factors should be considered (Chapter 4).

Based on these results, it seems likely that under future warming conditions 

changes in white spruce distribution and structure of current forest stands w ill take 

place: Treelines will probably advance at some altitudinal tree limits in the Alaska 

Range and infilling will occur at northern treeline in the Brooks Range. It seems 

unlikely however that a widespread invasion o f trees into arctic tundra w ill take place 

in the near future, but some areas (especially around streams and creeks) a t northern 

treeline will increase in stand density and above-ground carbon uptake. O ther areas 

(low-lying areas in the Alaska Range, tree-islands in the Brooks Range) w ill experience 

decreases in tree growth. Any assumption th a t white spruce growth at treeline will 

change uniformly in relation to climate is unjustified, and this changing sensitivity 

to climate also is an obvious contributor to the error-term in ring-width based 

reconstruction o f past climate. Tree growth at treeline is not only controlled by one 

environmental factor, but by a combination o f many factors acting on varying scales.

For example, precipitation varies regionally, effective soil moisture, however, locally. 

Future research should include hypothesis o f which environmental factor operates on 

what scale and test explicitly o f how far extrapolations can be made based on each 

factor.
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