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Sprites are transient optical signatures of mesospheric electrical breakdown in 

response to lightning discharges. Multiple sprites are often observed to occur 

simultaneously, laterally displaced from the underlying causative cloud-to-ground (CG) 

lightning discharge. The causes of this lateral displacement are presently not understood. 

This dissertation investigates the role of neutral density perturbations in determining the 

locations of sprite initiation. The work was performed in three interrelated studies. (1) A 

detailed statistical study of the temporal-spatial relationships between sprites and the 

associated CG was performed for July 22, 1996. The distribution of sprite offsets relative 

to the underlying lightning had a mean of -40 km. The distribution of sprite onset delays 

following the parent lightning had a mean of -20-30 ms, consistent with theoretical 

estimates for the electron avalanche-to-streamer transition in the mesosphere. (2) A 

follow-up study for the same observations was performed to investigate the relationship 

of the sprites to convective activity in the underlying thunderstorm, using GOES-8 

infrared imagery of cloud-top temperatures. The sprite generating thunderstorm was a 

Mesoscale Convective System (MCS). The maximum sprite and -CG production of the 

system were simultaneously reached at the time of maximum contiguous cloud cover of 

the coldest region, corresponding to the period of greatest convective activity of the 

system. Thunderstorm convective activity is a potential source of gravity waves and 

mesospheric turbulence. (3) Computer simulations of the temporal-spatial evolution of 

lightning-induced electric fields in a turbulent upper atmosphere were performed. The 

modeled turbulence in the simulations spanned the amplitude range 10% to 40% of the 

ambient background neutral density, with characteristic scale sizes of 2 km and 5 km, 

respectively. The results indicate that neutral density spatial structure, similar to observed 

turbulence in the mesosphere, facilitates electrical breakdown in isolated regions of 

density depletions at sprite initiation altitudes. These spatially distributed breakdown 

regions provide the seed electrons necessary for sprite generation, and may account for 

the observed sprite offsets.
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CHAPTER 1 

' ’ AT . _ '

The mechanisms by which energy and momentum originating in solar processes 

are transferred downwards into and distributed within the Earth’s Mesosphere- 

Thermosphere-Ionosphere (MTI) region, have been the subjects of studies over many 

decades and are relatively well understood. Beginning in the early 1980s, sources 

involving upward transfer and dissipation of mechanical energy from the neutral lower 

atmosphere into the MTI region were identified, in the form of atmospheric gravity 

waves. This form of energy input into the MTI region signaled that understanding the 

properties of near-earth space requires taking into account inputs from both above and 

below.

Recently, an additional form of energy input into the MTI region from below was 

discovered. This new electrical component was discovered by Franz et al. [1990] in low- 

light video images of lightning induced transient optical emissions of large scale in the 

middle/upper atmosphere above a thunderstorm in the central US. After it was 

determined that the emissions extended all the way to the ionosphere [Sentman et al., 

1995a,b], the events acquired the mechanism-neutral name of “sprites” (Figure 1.1).

Figure 1.1 Sprites. On the left, first image of a sprite [Franz et at., 1990], On the right, first true color 
image of a sprite [Sentman et al., 1995a].
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1.1 SPRITE N . Cl*r' -I 3L 3GY

Sprites are predominantly red in color and the dominant emissions (Figure 1.2) 

are found to be from the first positive bands of N2 [Mende et a l, 1995; Hampton at a l, 

1996; Heavner, 2000a,b]. Evidence for ionization has been reported in the form of weak 

red N2+ Meinel emissions [Bucsela et a l, 1998; Morrill et a l, 1998] and transient blue 

N2+ 1NG emissions [Armstrong et a l, 1998; Suszcynsky et a l, 1998; Takahashi et a l, 

1998; Armstrong et a l, 2000]. They are primarily associated with positive cloud-to- 

ground (+CG) lightning strokes [Boccippio et a l, 1995; Lyons, 1996; Sao Sabbas et a l, 

2003a] and the most intense events possess a distinctive ELF-YLF radio signature [Inan 

et a l, 1995, 1996; Dowden et a l, 1996; Reising et a l, 1996]. The duration of a sprite can 

vary from a few milliseconds to a few hundred milliseconds. They were initially reported 

to reach terminal altitudes of -35 km [Franz et a l, 1990], but subsequent dual-aircraft 

measurements revealed they extend from 40-90 km altitude and possess lateral 

dimensions of 5-30 km [Sentman at al., 1995a,b]. More recent observations have shown 

that some sprites appear to extend down to the top of the clouds [Siefring et a l, 1999; 

Pasko et al., 2002], and that their horizontal extent within the mesosphere ranges from 

-10 m, for the small column sprites and fine structure within sprites [Gerken et al., 

2000], to -40 km for fully developed single sprites [Stenbaek-Nielsen et a l, 2000], and a 

few hundred of km for sprite clusters.

Sprite Tendril Spectrum 24 Jul 96, UT 0358:24, W1RO

Measured Spectrum 
(solid curve) Auroral

Spectrum

2

600 650 700 750 800 850 900 950
Wavelength (nm)

Figure 1.2 Sprite and aurora spectrum between 600 e 900 nm [Hampton et at., 2000],
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Following the Franz et al. [1990] discovery, other investigations quickly revealed 

that sprites are only one of a diverse set of lightning driven optical transients above 

thunderstorms. Other types of optical transients (Figure 1.3) that exhibit different 

structural properties and dynamical behavior include Blue Jets and Blue Starters [Wescott 

et al., 1995a, 1996, 1998a], Elves, which are sub-ms optical enhancements of the 

ionosphere at an altitude of -100  km [Inan et a l, 1997], Halos, which are disk shaped 

optical emission believed to be produced by the same physical process that generates 

sprites [Barrington-Leigh et al, 2001; Wescott et al., 2001], and various subspecies of 

these genres.

Figure 1.3 Blue jet (left), elve (center), sprite-halo (right). The blue jet was observed over central US 
during Sprites94 airplane campaign by UAF. The elve was observed by USU over the south of Balkans 
during the NASA Leonid-99 campaign. The sprite-halo was recorded over central US during the Sprites99 
ground campaign by UAF.

In their totality, these events span the full vertical extent of the atmosphere from 

the tropopause (-18 km) to the base of the ionosphere (-100 km). Figure 1.4 illustrates, 

in correct vertical scale, the variety of optical transients that have been reported above 

thunderstorms. Sprites are by far the brightest, most spectacular, most common and most 

important of these phenomena for energy transfer processes, and this work focuses on 

them.
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DISTANCE (km)
Figure 1.4 Lightning excited optical emissions in the upper atmosphere. Sprites and their associated 
tendrils, along with the closely related halos, are the brightest and most commonly observed of these 
transient structures. The other events generally do not occur in association with each other, and are shown 
together here to provide relative scale. (Adapted from Lyons [2000])

1.2 POSSIBLE IMPACT IN THE MTI SYSTEM

All lightning discharges deposit a certain amount of electrical energy into the 

MTI, which may be larger or smaller depending on the amount of charge they extinguish 

in the thunderstorm and on the duration and shape of the electric current of the discharge. 

Both electromagnetic radiation of the lightning currents and the quasi-electrostatic 

component of the field, generated by the charge extinction, are transmitted to the upper 

atmosphere, where they accelerate ambient free electrons. In this highly collisional 

medium, the accelerated electrons interact with the neutral atmosphere, predominantely 

composed of molecular nitrogen and oxygen, in a variety of ways. Elastic scattering is the 

dominant interaction leading to electron heating. For energies greater than excitational 

energies of its neutral collision partner, the scattering may be inelastic. At progressively
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larger electron energies, rotational, vibrational, and electronic energy states may be 

excited in the neutral species, molecules may be dissociated, and if the electron energy 

exceeds the ionization potential of the neutral, ionization may occur. Optical emissions, 

the observable output of these complex interactions, are produced when the radiative 

lifetime of the excited or ionized states is shorter than the de-excitation time (quenching) 

by collisions or chemical interactions.

Photometric measurements of large sprites have determined that the optical 

energy in the flash may be as large as 50 kJ, but the optical component of such a 

discharge represents only a small fraction (<1%) of the total energy [Heavner, 2000a,b]. 

Gas discharge physics developed since the 1930s and subsequent kinetic models show 

that a substantial amount of energy is also deposited in excited electronic or nonradiating 

rotational and vibrational states of N2 and O2 [e.g., Raizer, 1991], Heavner [2000a,b] has 

estimated that the total energy deposited in the mesosphere by a large sprite may be as 

large as 1 GJ, but this has been recently revised downward to 1-10 MJ [Sentman et al., 

2003]. Calculations of the Joule heating of neutrals associated with such large events 

indicate the overall effects are quite small (-0.02K), so that direct thermal effects on the 

neutral chemistry are expected to be marginal.

Vibrationally and electronically activated molecular states possess great potential 

to launch reaction chains or catalytic cycles by interaction with minor species that would 

not otherwise occur in the quiescent nighttime mesosphere. For example, in a model 

study involving several dozen atmospheric species, Sentman et al. [2000] reported 

estimated density enhancements by several orders of magnitude occur at 70 km in both 

negative ions C O / and C O / and hydrated positive ions H+(H20 ) 3 and H+(H20 ) 2

following a single sprite-producing lightning stroke. The effects are local and transient, 

persisting from lOs-lOOOs seconds. However, with an active thunderstorm producing 

several lightning discharges per second over several hours, the enhancements would be 

substantially greater. A related effect showing significant enhancements of NO, an 

important catalyst for ozone destruction, at altitudes 60-80 km above thunderstorms, was 

reported for both simulations and UARS HALOE observations by Armstrong [2001]
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(Figure 1.5). In both studies, the principal activated species driving the electrochemical 

reactions are the electron impact-excited neutral N2( J 3S '̂) and 0 2( a 1Ag) electronic 

states.

Although most sprite measurements have been performed in the Midwest (central 

plains region) of the U.S., sprites are global phenomena. The global aspect of sprites was 

first identified in studies of video tapes from the Mesoscale Lightning Experiment (MLE) 

performed from the space shuttle [Boeck et al., 1992]. Between 1989 and 1991, 17 sprites 

were recorded above thunderstorms distributed over Australia, Africa, South Pacific and 

South America. Aircraft observations over Central and South America [Sentman et al., 

1995c; Wescott et al., 1995b], ground campaigns in Japan [Fukunishi et al., 1999, 2001] 

Australia [Dowden et al., 1996], more recent aircraft [Taylor et al., 2000] and ground- 

based observations [Neubert et al., 2001] over Europe, over Asia [Su et al., 2002] and 

over Central America [Pasko et al., 2002] have generally confirmed these results.

ti&m

\ P I * i£ NU 9 ii*} »* # - - I 1 ^ ;
■« <• ' "> . A' ' x. A ' "4

Figure 1.5 HALOE data. The figure shows a westward plume of NO at ~3 5 km (Courtesy, Armstrong 
[2001]).
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13 CURRENT THEORIES

Observations of sprites provide possible opportunities to indirectly determine the 

associated electrical energy transferred from thunderstorms into the mesosphere. The 

principal energy transfer mechanism is believed to be the local acceleration of ambient 

electrons by large transient electric and electromagnetic fields associated with cloud-to- 

ground lightning. There are several current sprite theories: (1) Lightning-induced quasi­

electrostatic heating of the neutral atmosphere [Pasko et al., 1995, 1996, 1997b]; (2) 

Runaway electrons of MeV energies [Bell et al., 1995; Roussel-Dupre and Gurevich, 

1996; Taranenko and Roussel-Dupre, 1996; Yukhimuk et al., 1998]; and (3) Lightning 

Electromagnetic Pulse (EMP)-induced breakdown [Rowland et al., 1995; Milikh et al, 

1995; Fernsler and Rowland, 1996; Rowland et al., 1996; Cho and Rycroft, 1998, 2001], 

Recent models have incorporated key elements of these theories into a more general 

description constructed around mesospheric plasma streamers as a key element in the 

generation of sprites [Pasko et a l, 1998; Raizer et al., 1998].

The streamer theory is based on the concept of the growth of a thin ionized 

channel (streamer) between electrodes; the streamer follows the positively charged trail 

left by the primary intensive avalanche. Electrons of numerous intensive avalanches are 

pulled into the trail by the field. These avalanches are created by new electrons created by 

photons close to this trail. Photons are emitted by atoms that the primary and secondary 

avalanche have excited [Raizer, 1991]. The streamer model (Figure 1.6) accounts for 

many sprite properties, including the elementary columnar form of the simplest structures 

termed “c-sprite” [Wescott et a l, 1998b], sprite ignition at -7 5  km [Stanley et a l, 1999; 

Stenbaek-Nielsen et al., 2000], the downward evolution and speed of development 

[Stanley et al., 1999; Stenbaek-Nielsen et al., 2000; Moudry, 2003], the estimated 

magnitude of the current (-20 A) flowing within the streamer column [Cummer and Inan, 

1997], inferred channel electron densities of 10 cm’ [Dowden et al., 1996; Groves et al., 

1996 give an upper limit of 103-105 cm'3], transverse thicknesses of -50 m at 80 km and 

10 m at 50 km [Gerken et a l, 2000], and -100 ms duration of ionization in streamer 

columns evidenced by column reactivation [Gerken et a l, 2000; Moudry et a l,  2001],
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Mesospheric Streamer (C-Sprite)

z~75 km . C ^ lo n iz a f io n  Patch

60nL9____
Eo~50 V/m j , Plasma ,  ,o /v = r if  N,~10 f

|l~20A |Streamer

t- 100 ms 

(Activated N„ O, 
-> Chemistry)

z~50 km

V~10 m/s I
4  k  hv Upstream 

E Photoionization
-250  V/m

Streamer tip 
Electron Impact 

Ionization

Figure 1.6

Most sprite models using a laminar atmospheric pressure and conductivity profile 

predict that sprites will occur directly above the lightning discharge where the electric 

field is strongest. In contrast to the predictions of these models, most sprites are observed 

to be laterally displaced from the underlying lightning source by several tens km [Wescott 

et al., 1998b, 2001; Sao Sabbas et a l, 2003a]. Several alternative mechanisms have been 

previously proposed to account for the observed offset of sprites relative to the 

underlying lightning.

Valdivia et al. [1997] attributed the offsets and multiple ignition sites to spatial 

structure in the lightning electromagnetic field, using a fractal model for intracloud 

lightning as the source. The resultant radiation fields were spatially complex and 

produced multiple breakdown locations in a simple laminar mesospheric medium. 

However, high-speed (1000 fps) imaging observations of sprites [Stenbaek-Nielsen et a l,

2000] show that they originate as one or more isolated, individual streamers (Figure 1.7) 

that may emerge from a smooth background of weak optical emissions [Moudry, 2003]. 

The smooth background emissions are interpreted to be electron impact excited N2 IPG 

and cannot be accounted for by the Valdivia et al. [1997] model.
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65 frame 
break

Figure 1.7 High-speed (1000 fps) sequences of sprites [Stenbaek-Nielsen et al., 2000],

Rowland et al. [1996] proposed that the generation of multiple breakdown 

ionization regions above a lightning discharge could be due to the interaction of lightning 

electromagnetic fields with gravity waves in the mesosphere. They modeled the 

interaction of electromagnetic pultses generated by horizontal and vertical lightning 

discharges with a horizontal sine wave variation in the neutral density, attributing the 

spatial variations found in the ionization to its sensitivity to the neutral density. Likewise, 

Pasko et al. [1997a] proposed that gravity waves launched by a large area MCC can lead 

to modulation of the mesospheric neutral density of the order of tens of percent, 

cylindrically shaped in the vertical direction, similar to those associated with sprites. 

They further suggested that the several hour delay generally observed between the onset 

of a thunderstorm and sprites may be a consequence of the time for the gravity wave 

travel to the mesosphere, such that the appearance of sprites and their spatial structure 

may be related to gravity waves. One of the implications of the Pasko et al. [1997a]
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results is that only large MCCs can produce mesospheric density modifications large 

enough to facilitate the production of sprites, whereas recent observations reveal that 

prolific sprite activity may occur above smaller thunderstorms [Moudry et a l, 1997; 

Fukunish et a l, 1999; Neubert et al., 2000; Taylor et a l, 2000; Su et a l,  2002],

Meteor effects on the upper atmosphere have also been proposed to account for 

the offsets. Symbalisty et al. [2000] and Wescott et al. [2001] proposed that micro­

meteor influxes could create an ionization/dust trail which, when exposed to the transient 

electric fields of a lightning discharge, could initiate a sprite. Zabotin and Wright [2001] 

further provide a detailed discussion of electrostatic field amplification and corona 

breakdown from microspires on dust surfaces in meteor trails.

The effects described above may be classified as being of two different types: (1) 

Perturbations in the dielectric due to effects in gas dynamical parameters, such as local 

neutral, ion and electron density perturbations, as well as temperature perturbations, with 

consequent focusing and enhancement of the electric field in the inhomogeneous 

conductivity background. (2) Effects of particulates such as micro-meteors, and dust or 

ice particles in general, where corona sites on microspires may provide seed electrons to 

initiate sprites. In principle, both types of effects might occur. It is presently unknown 

which of these two classes of effects is the more important.

1.4 SCOPE OF .DISSERTATION

Sprites are the optically observable component of air electric breakdown in the 

mesospheric region of the atmosphere due to electric fields generated by underlying 

lightning discharges. Specifying the mechanisms by which the breakdown occurs 

requires a description of the lightning radiation and electrostatic fields, and the 

interaction of these fields with the dielectric of the upper atmosphere. The simultaneous 

appearance of spatially distributed, multiple breakdown sites suggests the presence of 

spatial structure in this region or/and in the electromagnetic/electrostatic fields that 

interact with the mesosphere. Models of both kinds have previously been proposed.
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The conditions that determine the specific locations where sprite ignition occurs 

may depend on several interrelated factors. These include the nature of the underlying 

lightning discharge, i.e., if it is a CG or intracloud, the existence of spatial structure and 

its characteristics in the medium where breakdown occurs, and whether the lightning and 

mesospheric inhomogeneities share a common source, e.g., the underlying thunderstorm.

In this thesis, interrelationships among lightning, convective storm dynamics, 

conductivity inhomogeneities in the mesosphere and sprites were investigated to help 

clarify the respective roles they play determining the locations of sprite ignition. The 

principal goals of the thesis were: (1) To determine the spatial and temporal relationships 

between sprites and lightning. (2) To characterize the convective activity associated with 

sprite producing lightning based on infrared satellite images of the associated 

thunderstorm. (3) To investigate the role played by conductivity inhomogeneities in the 

mesosphere/lower ionosphere in determining specific locations where electric 

breakdown, which may lead to sprite ignition, occurs.

The dissertation is organized in five chapters. Chapter 1 is the Introduction. 

Chapter 2 presents results of a detailed statistical analysis of the temporal and spatial 

association of sprites with lightning. In this chapter the distribution of the extent of 

spatial displacement of sprites from their parent lightning is documented. Both temporal 

and spatial criteria were used for the first time to select the parent +CG in a statistical 

study of this type. The distribution of time intervals between sprites and parent +CGs 

with a peak between 10-20 ms, presented in this chapter, may characterize the time scale 

for the development of an individual electron avalanche into a streamer between -70-85 

km altitude. The distribution of the distance between sprites and parent +CGs suggests 

that the characteristics of the local mesosphere, such as inhomogeneous conductivity, 

may play a significant role in determining where and how many sprites occur in 

association with a lightning discharge. These and other results of this study are published 

in the Journal o f Atmospherics and Solar Terrestrial Physics [Sdo Sabbas et al., 2003a],

Chapter 3 investigates the dynamical relationship between the occurrence rates of 

cloud-to-ground lightning and sprites, and convective activity of the associated
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thunderstorm as revealed in infrared cloudtop temperatures (Tc) from satellite imagery. 

Here the thunderstorm generating the sprites and lightning analyzed in the previous 

chapter were investigated in detail to ascertain the relationship of lightning and sprites to 

the convective regions of the storm where gravity wave generation would maximize. The 

maximum sprite and -CG production of the system occurred when the contiguous cloud 

cover of the coldest region with Tc < -52° C reached its maximum area. This work, the 

first of its kind, revealed a tighter correlation between the total -CG activity and sprite 

activity during the convective development of a thunderstorm than was previously 

known. These and other results of this study are published in the Geophysical Research 

Letters [Sdo Sabbas et a l, 2003b],

Chapter 4 presents results of an investigation of the effects of conductivity 

inhomogeneities in the mesosphere/lower ionosphere on determining sprite ignition 

locations. Self-consistent simulations of the quasi-electrostatic field generated by 

lightning were performed using neutral density, electron density and ion conductivity 

profiles appropriate to midlatitude nighttime conditions. The evaluation of the interaction 

of only the quasi-electrostatic component of the field with the conductive medium was 

based on the fact that the time scale of sprite generation, of the order of to 10s of , 

is much longer than the characteristic time scale of electromagnetic processes in the 

mesosphere, of the order of 10s to 100s of ps. The simulations included nonlinear 

modifications to the conductivity from changes in ionization, attachment and electron 

heating, and were carried out until the termination of the underlying lightning discharge. 

The objective was to verify where and under what conditions electric breakdown would 

occur, given the parameter space explored in the simulations. The production of sprites 

involves the nonlinear physics of streamer and is not part of the objectives of this 

dissertation. The simulations verified that spatial perturbations in the conductivity lead to 

electric breakdown in isolated patches of reduced neutral density, where sprite ignition 

may occur.

Chapter 5 summarizes the main results of this dissertation and presents the 

conclusions.
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2,1 MOTIVATION

Boccippio et al. [1995] first established that a +CG lightning precedes most 

sprites by approximately 20-30 ms. In their study, totals of 42 and 55 sprites observed in 

July 12 and September 7, 1994, respectively, were analyzed. Approximately 86% and 

82% of the sprites each night, respectively, were preceded by a +CG recorded by the 

National Lightning Detection Network (NLDN), and 95% and 78% were preceded by a 

Q-burst (large excitation of the normal modes of the Earth-Ionosphere cavity in the 

Extremely Low Frequency (ELF) Schumann resonance band), recorded by an ELF 

sensor. Subsequent studies have reported results that are generally consistent with these 

observations [Lyons, 1996; Cummer andInan, 1997; Bellet al., 1998],

Based on observations showing evidence that sprites are strongly associated with 

positive cloud-to-ground lightning, several mechanisms have been proposed to explain 

the sprite generation process [Boccippio et al. 1995; Pasko et a l, 1997b, Bell et al., 1995; 

Roussel-Dupre and Gurevich, 1996; Taranenko and Roussel-Dupre, 1996], A widely 

accepted model [Pasko et a l, 1997b] uses a quasi-electrostatic approach in which a 

transient electric field generated by a +CG is the dominant trigger mechanism for sprites. 

Because of the higher altitude of the positive charge center inside the thunderstorm 

assumed in this model and the higher incidence of continuing current among +CGs when 

compared to other types of lightning, the charge moment (total charge removed x 

altitude) of +CGs is on average greater than other types of discharges, making +CGs 

more effective at generating sprites than other types of lightning. However, the model 

does not rule out occasional -CGs and intracloud discharges (ICs) with a large enough

1 Sao Sabbas, F. T., D.D. Sentman, E.M. Wescott, O. Pinto Junior, O. Mendes Junior and M. J. Taylor, 
Statistical analysis of space-time relationships between sprites and lightning, J. Atmos. Solar-Terr. Phys., 
65(5), pp. 523-533, 2003.
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charge moment to generate a breakdown electric field in the mesosphere and produce a 

sprite.

Using an extensive set of low-light TV data from the summer of 1996, Sdo 

Sabbas [1999a,b] analyzed 746 sprites from 7 different nights and found that only 65% of 

sprites were associated with +CG recorded by the NLDN, suggesting that other types of 

lightning besides +CGs could be generating sprites. About 11% of sprites were found to 

be immediately preceded by a -CG, and 24% of sprites were not associated with a CG 

registered by the NLDN. At the time this study was performed no association between 

sprites and -CG had been reported. In an independent study, Barrington-Leigh at a l 

[1999] subsequently reported observations of 2 sprites that had a -CG VLF signature 

associated with them. Those results support Sdo Sabbas [1999a,b] suggestion that +CGs 

are not the only type of lightning that can generate sprites.

This chapter reports results of a detailed statistical study of the space-time 

association of sprites with positive and negative CGs [Sdo Sabbas et al, 2003a]. In most 

previous studies of the association of sprites with lightning, sprites were assumed to be 

centered above the causative +CGs, which were identified based on timing proximity 

[Lyons, 1996; Cummer and Inan, 1997; Bell et a l, 1998], Lyons [1996] and Wescott et 

al. [1998b; 2001] have triangulated the location of sprites showing that they are actually 

laterally displaced from the +CGs. Lyons [1996], using 7 events, found an average 

displacement ~42km, and Wescott et al. [1998b; 2001], using 20 events, found an 

average displacement ~25km. In the present study the association of sprites with +CGs 

preceding the sprites was investigated based on time and distance. The distribution of 

distances, and time differences between the parent +CG and the sprite, and the peak 

current distribution of the sprite-associated +CGs were calculated. The results obtained 

here were compared with four previous observational studies.
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2,2 OBSERVATIONS

A set of 40 sprite events recorded on July 22, 1996, during the Sprites96 

Campaign, conducted in the central United States, was analyzed. The location of cloud- 

to-ground lightning discharges of the sprite producing thunderstorm, recorded by the 

NLDN between 00:00 and 14:00 UT, are shown in Figure 2.1 together with locations of 

CGs from other thunderstorms. Sprites were documented above the Mesoscale 

Convective Storm (MCS) over Kansas.

Figure 2.1. Map of United States showing location of CGs. The +CGs (red), -CGs (blue) and +CGs 
possibly associated with sprites (green), occurred between 0 and 14 UT, on July 22, 1996. The lightning 
from the sprite producing storm is within the green rectangular region. Yellow asterisks indicate the 
locations of the two ground observation sites.

The location of the sprites was triangulated, with an accuracy of a few to several 

tens of km, from images simultaneously obtained by University of Alaska (UAF) and 

Utah State University (USU) located at different ground optical sites. Wescott et al. 

[2001] provides a good description of the triangulations techniques used here. 

Simultaneously recorded sprites were easily identified by comparing their time and visual 

characteristics in the images recorded by UAF and USU. The UAF observations were 

made from the Wyoming Infra-Red Observatory (WIRO, 41.098° N, 105.997° E, 2.943
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km alt.), on Jelm Mountain, Wyoming, using an unfiltered intensified (-600-800 nm 

BW) CCD video camera with -  17° FOV operating at 30 frames/sec (fps). A GPS clock 

was coupled to the camera system to provide time stamped images (TV fields) with a 

resolution of -16.7 ms (1 field), and an absolute scan line accuracy of 1 ps. The GPS 

time stamped onto the image (tfieid) corresponded to the very last scan line of each field, 

and was used as the sprite time (tspri,e).

The USU observations were obtained from Yucca Ridge Field Station (YRFS, 

40.669° N, 104.939° E, 1.6 km alt.), located 20 km northeast of Ft. Collins, Colorado. 

Sprites were recorded at 25 frames/sec (fps) using an Isocon camera with -22° field-of- 

view (FOV). The camera was fitted with a 665 nm interference filter to image sprites in 

the N2 first positive system, and each video field was uniquely time stamped using a 

crystal clock oscillator with a drift of -2  s/day assumed to be linear. The clock was set 

manually at the start of each night to an accuracy of better than 1 sec [see Armstrong et 

a l, 1998 for details].

The lightning information was provided by the NLDN [Cummins et a l, 1998a, 

1998b]. Broadband electric field data (between -200 Hz and -200 kHz) recorded from 

the Langmuir Laboratory, New Mexico [Stanley, et a l, 2000], were examined to look for 

Very Low Frequency (VLF) signatures (3-30 kHz) of CGs flashes in the cases for which 

NLDN did not record a lightning signature.

2 J  IDEN7IF CATION OF SPRITE INDEPENDENT EVENTS

Initially, 47 sprites recorded from both ground sites were visually identified and 

triangulated. To be identified as an independent event, a sprite had to have occurred with 

a time separation of at least 1 video field (-16.7 ms) and be spatially distinct from any 

sprite occurring in the previous field. The spatial displacement requirement prevented 

counting a re-brightening or the continuity of previous processes as distinct events. 

Individual events could be single “sprite units” [Sentman et a l, 1995a] or what was
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defined as “sprite spatial groups,” i.e., a group of units that occurred simultaneously, 

within a single video field (e.g. Figure 2.9).

This preliminary definition, based solely on video images, proved not to be 

completely unambiguous in the case of complex events when a single lightning discharge 

generates consecutive sprites. Hence, a statistics based on both the time interval between 

a sprite and its nearest preceding (parent) +CG, and on triangulation was constructed 

according to the following procedure. The parent CG candidates, positive or negative, 

were initially screened by requiring the CG to have occurred in a space-time vicinity of 

the sprite defined as a square region of 400 km on a side, centered on the sprite, and 

within a one second window preceding the sprite. Cloud-to-ground lightning registered 

by NLDN, occurring closest in time preceding the sprite and closest in space, were 

selected as being the parent CG. NLDN uncertainty in time is 1 ps and in location is 0.5 

km [Cummins et a l, 1998a], For CGs with a VLF signature and no NLDN signature, 

only the time criterion was applied. Negative CGs were selected only if neither the 

NLDN nor the Broad band electric field sensor recorded a positive CG. To calculate the 

time interval between sprites and parent +CGs (At = tsprite - tid ing) the GPS time tag of 

the video field (tgeid) in which the sprite first appeared was used as tsprite (Figure 2.2).

1 video field =  -1 6 .7  ms

! y : ■ ■ \
\ Bef  nin9  somewhere End

: -J    | -̂r—^ 4 ►
j  r 1 _ T Time (ms)

; lightning Field Sprite

1- |
• ^-j- —  J _ J
I Sprite Lightning ii :

Figure 2.2 Diagram showing how At can be < 16.7 ms. The lightning occurs before the sprite and the GPS 
time stamped at the end of the field is assigned as t^te- Due to causality the sprite must have occurred some 
time after the lightning but before the end of the video field.

In the video systems used in this study the time stamp on each image field refers 

to the end of the video field. Each video field has a duration o f -16.7 ms, so the start of
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the image is at tfieid -16.7 ms and the end is at tfieid- When a sprite is present in a field, 

tgpnte is assumed to be tfieid, which is the maximum time at which the sprite could have 

occurred. The sprite could have occurred at any instant in the interval tfieid -16.7 ms to 

tfieid, hence 16.7 ms is the experimental error in tsprite. In the cases when the parent 

lightning occurs within the interval of the video field containing the sprite, turning 

provides a minimum time at which the sprite could have occurred, and At (tsprite - tughming) 

will be less than 16.7 ms, since causality requires the sprite to have occurred at some 

instant of time after ti d i ng and before tfieia- The sprite must be constrained to this 

interval. Hence when the parent lightning occurred within the sprite video field At < 16.7 

ms, the uncertainty in the sprite time is equal to At in these cases. If the actual times of 

sprites are statistically distributed uniformly 0 < At< 16.7 ms, the mean uncertainty is 8.5 

ms. A conservative estimate of 10 ms is adopted for the statistical uncertainty.

Figure 2.3 shows the distribution of time intervals between sprites and parent 

+CGs. The first bin (0 < At < 10 ms) and part of the second bin (10 < At < 20 ms) 

represent the cases in which the parent lightning occurs within the interval of the video 

field containing the sprite, discussed in the previous paragraph. The time-interval 

distribution peaks around 10-20 milliseconds and has a mean value of 30 ms (20 ms if the 

2 outlying events are excluded). This distribution agrees with Bell et a l, [1998] results.
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Figure 2.3 Distribution of the time difference (At =  tsprjte -  tfightning) between the sprite and parent +CG. 
The flashes were binned in intervals o f 10 ms. The error bars are the statistical (standard) errors, i.e. the 
square root of the number of events in each bin. The horizontal error (not shown) is the estimated statistics 
uncertainty of 10 ms.
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Bell et a l, [1998] suggested that the longest delays observed in their study were 

associated with small sprites for which horizontal intracloud discharges removed the 

amount of charge necessary to generate them. Furthermore, At would vary from 0-15 ms 

for the larger events to 100 ms to the smallest events. The sprites analyzed here were 

grouped in three categories with respect to visual size and brightness: small, medium and 

large. The three groups were statistically consistent with each other (graph not shown). 

No consistent visual distinction between sprites with short and long At; was observed, in 

fact, the two events with largest At (outliers) were very bright (large) sprites. The results 

suggest that the time delay between lightning and sprites characterizes the time scale of 

the duration of the physical process (or processes) that is responsible for the sprite 

initiation, and takes place once the transient electric field is established in the 

mesosphere. This process is discussed in recent models based on streamer physics [Pasko 

et a l,  1998; Raizer et a l, 1998] that explain in detail how the fine structure observed in 

high-speed [Stanley et a l, 1999; Stenbaek-Nielsen et a l, 2000] and telescopic [Gerken et 

a l, 2000] images of sprites develop.

The process that originates a streamer can be triggered from an avalanche initiated 

by a single electron. The avalanche creates a local charge separation, and the streamer 

develops when the electric field of the space charge equals the external transient electric 

field in the mesosphere generated by the CG. Pasko et a l  [1998] have modeled the 

characteristic time of this process as tz = zjva, where zs = (1/a) ln(4TC8or/ EjJe) is the 

distance over which the avalanche generates a space charge field comparable to the 

ambient electric field, taken to be the breakdown field (Ek). Here, a  = (vi - va)/ vd, where 

Vi is the ionization rate, va is the electron attachment rate, vd is the electron drift speed, 

and the space charge is assumed to be concentrated in a sphere of radius ~rs. Figure 1 of 

Pasko et al. [1998] shows the altitude profile of the modeled tz. The distribution of At 

between the sprite and parent +CG shown in Figure 3 is consistent with the characteristic 

time scale for the development of an individual electron avalanche into a streamer 

between -70-85 km altitude modeled by Pasko et a l  [1998],
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Figure 2.4 shows the distribution of distances (As) between the triangulated nadir 

point (latitude and longitude) of sprite events and the location of parent +CGs. The 

distances between sprite events and parent +CGs were calculated for the +CGs detected 

by the NLDN only. When the sprite events were “spatial groups” an average nadir point 

was calculated using the triangulated nadir points of each “sprite unit.” The distribution 

displayed in Figure 2.4 shows that approximately two thirds of sprites occurred within 

-50 km from the parent +CG, in agreement with Lyons [1996] and Wescott et al. [1998b,

2001], The maximum distance observed was -82 km. Since “spider” discharges 

extending for -100 km have been previously observed [Lyons, 1996], it is possible for 

sprites to occur with As = -82 km. All +CGs in the present study had As consistent with 

previous results, and no further spatial selection criteria were applied to identify 

independent events.

Figure 2.4 Distribution of the triangulated distances between sprites and parent +CG. The events were 
binned in intervals of 25 km, and the “error bars” are the statistical (standard) errors. The horizontal error 
(not shown) is the estimated mean uncertainty o f the triangulated distances, 10 km.

The time intervals versus the distance (Figure 2.5) were also plotted and there was 

no statistically significant correlation between the two quantities, i.e. sprites further away 

from the +CG do not appear to have longer delays.
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Figure 2.5 Time interval between sprites and associated +CGs versus the distance. The two outliers, one 
with At=140 ms and As=51 km, and the other with At=197 ms and As=75 km, are not shown. The errors 
associated with the data points (not shown) are the estimated mean uncertainties of At, 10 ms, and As, 10
km.

Most sprites (-95 +5/-15 %) that were associated with +CGs occurred within 40 

ms after the parent +CG, where the uncertainties are the estimated standard errors. Only 

two events occurred with a At greater than 40 ms after the +CG. Given the large time 

interval that those sprites had from their parent +CG (140 and 197 ms) it is possible that 

closer +CGs had occurred but were not registered by either NLDN or the Broadband 

electric field sensor.

Except for the two outlying events, the analysis of Figure 2.3 suggests 40 ms as 

an effective upper limit for the delay between the parent +CG flash and the sprites 

observed during this night. The 40 ms delay exceeds the experimental error of -16.7 ms 

by a factor o f -2.5 and the statistical uncertainty by a factor of 4, and is therefore a robust 

result. Based on this result, consecutive sprites that had a minimum time separation of 

-16.7 ms from each other and a maximum time interval of 40 ms from the parent CG 

were grouped into a “sprite time group,” similar to the manner in which individual 

strokes are grouped into flashes [Cummins et al., 1998a, 1998b]. The individual “sprite 

units” [Sentman et a l, 1995a] or “sprite spatial groups” were called “sprite time units.” 

Seven sprites that did not have a +CG registered by any system, and which had been 

initially considered to be independent events were reclassified to be sprite time units

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

forming a sprite time group. The hypothesis used here is that if the electron avalanche 

can take up to 40 ms to develop into a streamer in a particular location, multiple sprite 

time units could be produced by the same CG at different locations, with a varying 

duration for the streamer development, probably influenced by the local mesospheric 

characteristics, within a maximum At of 40 ms from the CG. The total number of sprite 

events was thereby reduced from 47 to 40, 7 events being sprite time groups with 2 sprite 

time units each.

The definition of what an independent sprite event might be has been extensively 

but informally discussed within the sprite community; the topic has not yet been 

approached in the scientific literature. There is no established definition of “independent 

sprite event.” This is an important issue since any analysis of the temporal and spatial 

relationship between sprites and lightning based on observational data is affected by how 

and if sprites are grouped into independent events, i.e., by the definition used. For the 

sprites occurring on July 22, 1996, analyzed in this paper, the maximum At observed, 

excluding the 2 outliers, was 40 ms. However this could be a particularity of this specific 

night, resulting from a combination of the characteristics of the thunderstorm, lightning 

activity and local mesospheric conditions. For example, applying the same selection 

criteria for parent +CGs (closest in time preceding the sprite and closest in space), a 

preliminary analysis of 69 triangulated sprites from July 24, 1996, resulted in only 

58+9% sprites occurring within 40 ms after the parent +CG (not shown). That illustrates 

the necessity of a detailed statistical study of a large data set of triangulated sprites with 

GPS timing from a variety of storms and locations to establish a definition of independent 

sprite event with bounded variances that can be widely adopted.
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2A SPRITE ASSOCIATION W1T- _iGI- IING AND

COMPARISON WITH OTHER STUDIES

Within the redefined data set of 40 sprite events, about 73+13% of the sprites 

were associated with a +CG recorded by the NLDN, where in this and the following 

percentages the quoted uncertainty is the statistical (standard) error. This percentage 

increased to 82+14 % when VLF signatures for +CGs not detected by the NLDN were 

considered. NLDN has detection efficiency around 90% for -CGs [Cummins et a l, 

1998a]. The detection efficiency of +CGs has not been documented, but may be assumed 

to be similar to this. The 10% change in the number of sprites associated with +CGs 

when VLF data is considered supports this assumption.

The percentage of sprites associated with lightning calculated in this work was 

compared with values reported by Boccippio et al. [1995], Lyons [1996] and Sdo Sabbas 

[1999a], Boccippio et al. [1995] compared the time of occurrence of sprites, recorded in 

GPS time-stamped low-light-level video images, with the time of lightning discharges 

from the associated thunderstorms recorded by the National Lightning Detection Network 

(NLDN), as well as with electromagnetic “Q-bursts” events. The ELF data was time- 

tagged with an internal PC clock that drifted -13 s/day. The drift was assumed to be 

linear. An algorithm generated by comparing the recorded onset times with the GPS- 

timed sprite events corrected the drift. The sprites occurred above thunderstorms over the 

central U.S. and were observed from Yucca Ridge. The identification of the parent +CGs 

of the sprites was based mainly on timing. Sprite locations were not triangulated, and the 

spatial requirement was that NLDN and/or ELF signatures must have originated from the 

same thunderstorm that generated the sprites.

Lyons [1996] studied 36 sprites recorded in GPS time stamped images from 

Yucca Ridge, during a 2 hr interval. The sprites occurred above a Mesoscale Convective 

System (MCS) over Nebraska on August 6, 1994. Lyons [1996] reported that 94% of 

sprites were preceded by +CGs registered by the NLDN. Seven sprites were triangulated
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and the location of the other sprites was estimated based on the location of the parent 

+CGs, which was identified based on timing.

Sdo Sabbas [1999a] analyzed 746 sprites from 7 different nights in 1996, 

recorded from Yucca Ridge by Utah State University. The sprites occurred above 

thunderstorms over the central U.S. on July 6, 7, 11, 19, 21, 22 and 24, 1996, and were 

imaged using the same system describe in the section 2. To compensate for the time 

uncertainty of this system, a selection window with At of 360 ms before the sprite and 60 

ms (3 fields at 25 fps) afterwards was adopted in identifying the parent +CG. Sprites were 

not triangulated in this study, so to be considered a possible parent the +CG had to be 

inside the field of view of the camera. With this approach several +CGs that were not 

associated with sprites may have been incorrectly tagged as the possible parents of 

sprites. Nevertheless, only 65+3% of the sprites were associated with a +CG signature 

registered by the NLDN. The same criteria were used to look for a possible association of 

sprites with -CGs when there was no +CG. Table 2.1 summarizes these results.

Table 2.1 Comparison of Reports of the Percentage of Sprites Associated with +CGs

Study Dates Report Total number 
of sprites

Percentage o f sprites with 
+CGs detected by the NLDN

1 M y 12, 1994 Boccippio et al., 1995 42 86+14%
2 September 7, 1994 Boccippio et al., 1995 55 82+12%
3 August 6, 1994 Lyons, 1996 36 94+16%
4 M y 6, 7, 11, 19,21, 

22, 24, 1996
Sao Sabbas, 1999a 746 65+3%

5 July 22, 1996 This study 40 73+13 %

The definitions of sprite independent event utilized for studies 1 to 3 were not 

available, in study 4 all sprite time units were considered to be independent events. The

statistical uncertainties of these percentages were estimated using Ax = x/(N>fx) , where 

x is the number of events relative to the percentage (x/N) and N  is the total number of 

events, and are included in Table 2.1. These results, including the estimated

uncertainties, are plotted in Figure 6. The figure also shows the Least Upper Bound
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(LUB) and the Greatest Lower Bound (GLB) of the uncertainties for studies 1, 2, 3 and 5. 

When these uncertainties are taken into account, studies 1, 2, 3 and 5 are statistically 

consistent among themselves within the region bounded by the LUB and GLB. Report 

number 4 however is statistically distinct from the other reports, since its error bars do 

not fall within their LUB and GLB. The low percentage (65+3%) of sprites associated 

with +CGs was obtained using a large time selection window, and a data set on average 

17 times larger than the data sets utilized in the other studies. Even adjusting upwards by 

10% to approximately compensate for the 90% detection efficiency of NLDN, 25+2% of 

sprites remains without +CGs. Sdo Sabbas [1999a] suggested that -CGs and intracloud 

discharges were generating the sprites without +CGs that could not be explained by 

NLDN detection efficiency.

Figure 2.6. Comparison between the statistical studies. The percentages of sprites associated with +CGs 
were calculated using NLDN data. The region between the Least Upper Bound (LUB) and the Greatest 
Lower Bound (GLB) is highlighted.

Table 2.2 shows the percentage of positive and negative lightning relative to the 

total lightning (positive + negative) for the sprite producing thunderstorm of July 22,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

1996 analyzed here, together with percentages for other nights analyzed by Sdo Sabbas 

[1999a,b]. The table also shows the number of sprites observed and duration of the sprite 

production period for comparison. All storms had small percentages of +CGs (from 7.3% 

to 17.0%), showing that the production of a large percentage of +CGs by the 

thunderstorm is neither a necessary condition for sprite occurrence nor a determining 

factor for the number of sprites produced.

Table 2,2 Lightning and Sprite Related Data [Mo Sabbas, 1999a]

July,
1996

Percentage of +CGs 
relative to total

Percentage of -CGs 
relative to total

Total number of 
CGs

Number of 
sprites

Duration of 
sprite period

6 10.9% (2652) 89.1% (21740) 24392 36 2 h 34 m
7 14.1% (1367) 85.9% (8318) 9685 88 4 fa 22 m
11 10.7% (1928) 89.3% (16129) 18057 38 1 fa 32 m
19 7.3% (1086) 92.7% (13714) 14800 83 3 h 05 m
21 17.0% (1504) 83.0% (7327) 8831 212 3 h 27 m
22 10.9% (4412) 89.1% (36193) 40605 84 4 h 07 m
24 9.0% (5088) 89.0% (51446) 56534 205 5 h 20 m

Figure 2.7 shows a relationship between the onset of sprite production and growth 

in the rate of occurrence of the storm’s +CG for all peak current ranges. Of the seven days 

in 1996 studied by Sdo Sabbas [1999a,b], July 21, 1996, is the only day for which the 

onset of the sprite occurrence might have been observed, since the observations for this 

day started before lightning activity. In all other days, lightning activity had already 

commenced before observations began. On July 21, 1996, sprites were observed to 

commence after a continuous growth in the occurrence rate of storm’s CGs, for all peak 

currents ranges. All other days had similar growths and peaks in the +CG occurrence rate 

of storm’s +CG before the beginning of the observation period (not shown).
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Figure 2.7 30-min +CG rate for different peak current ranges. The data is for day 203/96 [Sdo Sabbas, 
1999a,b]. The vertical black line delimitate the observation period. Sprites started to occur at 6:40 UT.

2,5 NEGATIVE SEMITES AND SPRITES WITHOUT A CG

Approximately 27+8% of sprites did not have a parent +CG recorded by the 

NLDN, and 17+7% had neither NLDN nor VLF signatures. Two of the seven sprite 

events that had neither a NLDN nor VLF +CG signature were preceded by a -CG (Figure 

2.8a and Figure 2.9a). Figure 2.8 shows three consecutive independent sprite events. The 

time separation between the first and second events is 50 ms, and between the second and 

third is 117 ms. The first event (Figure 2.8a) was preceded by a negative CG with At = 9 

ms. This flash was not registered by the NLDN, but it was registered by the New Mexico 

Tech VLF system. Due to its small At it is very likely that this -CG, in fact, generated the 

sprite. The second sprite (Figure 2.8b), considered as an independent event here 

(occurred 59 ms from the -CG associated with the first sprite), was not associated with 

any detected CG, positive or negative.
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(b) (c)

Figure 2.8 Three consecutive independent sprite events. The time separation is 50 ms (a and b) and 117 
ms (b and c), respectively. The first sprite (a) was preceded by a -CG recorded by the Broad band electric 
field sensor (no NLDN), At=9 ms. The second sprite (b) had no CG signature associated with it in either 
NLDN or VLF, and the third (c) was preceded by 48 kA +CG recorded by both systems, At=T7 ms and 
As=78 km. The images shown were obtained by UAF

The third event (Figure 2.8c) had both NLDN and VLF +CG signatures preceding 

it by 17 ms. The +CG had a peak current of 48 kA and occurred ~78 km from the sprite. 

The discharge had a slow tail in VLF that lasted -0.5 ms. It was followed, -4  ms 

afterwards, by a slow energetic field change, possibly due to the sprite, that lasted -1 ms 

(not shown). The “positive sprite” (Figure 2.8c) was the brightest of these three 

consecutive events, but there were other “positive sprites” that occurred during the night 

of the study that were much smaller and dimmer than the possible “negative event” 

displayed in Figure 2.9a. The variation of brightness of the sprites with respect to 

underlying lightning characteristics is not yet well understood.

The second sprite preceded by a -CG detected in this study is shown in Figure 

2.9a, together with a “positive sprite” (Figure 2.9b) for comparison of visual 

characteristics. The -CG was recorded by the NLDN and VLF system 146 ms before the 

sprite, had a peak current of 22 kA and occurred at a distance of -201 km from the event. 

Because of the large At and distance between this sprite and the -CG, it is possible that 

both NLDN and VLF systems missed a +CG (or -CG) that would have a better 

association with this event. The units of this sprite, shown in Figure 9a, were slightly 

brighter and larger than the units of the positive sprite of Figure 9b. The sprite in Figure
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9b was preceded by a +CG with a At equal to 28 ms. The +CG peak current was 47 kA 

and it occurred ~9 km from the sprite.

29

(a) (b)

Figure 2.9 Comparison between negative and positive sprites. The first image (a) shows a sprite preceded 
by a 22 kA -CG recorded by both NLDN and VLF systems, At=146 ms and As=201 ms. The second (b) 
shows a similar type of sprite event that was preceded by a 47 kA +CG, At=28 ms and As=9 km. The 
images shown were obtained by UAF.

None of the sprites without +CGs had any particular characteristics that would 

visually distinguish them from the positive sprites. An upward-downward difference in 

the branch orientation might conceivably be expected for sprites generated by lightning 

of different polarities. However this difference was not expected to appear in a 16.7 ms 

integration image; it is more likely to show on 1 ms images from high-speed cameras 

(e.g., Stanley et a l, [1999]; Stenbaek-Nielsen et al., [2000]). Comparatively, the 

percentage of “bright” and “small” events was about the same for positive and negative 

sprites.

There are two possible interpretations for the sprites without a +CG. The first is 

that they were preceded by positive strokes undetected by either the NLDN or the VLF 

systems. An alternate interpretation is that other types of lightning besides +CGs, e.g., 

negative CGs and intracloud discharges, may also generate sprites. This interpretation is 

supported by the Sdo Sabbas [1999a, b] studies, and is not ruled out by Pasko et al.
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[1997b] quasi-electrostatic model, or the Pasko et al. [1998] and Raizer et al. [1998] 

streamer models. Sprites generated by other types of lightning besides +CGs would 

represent a smaller portion of the total, such as may have been observed here. 

Furthermore, according to Dejnakarintra and Park [1974], and Baginski et al. [1996], 

vertical intracloud discharges that annihilate positive charge at the top of the clouds and 

negative charges at the bottom can both generate large electric fields in the upper 

atmosphere, also supporting this interpretation.

2,6 PEAK CURRENT DISTRIBUTION OF PARENT +CGS

Figure 2.10 shows the peak current distribution of the sprite’s associated +CG. 

The distribution exhibits a maximum for peak current between 40-50 kA. Five out of the 

29 (17+7%) +CG flashes preceding sprites had high peak currents (> 75 kA). The 

average peak current of 60 kA in the present study agrees with the 52 kA reported by Bell 

et al. [1998], and supports results showing that the peak currents of +CGs producing 

sprites span a large range of values.

10

Day 20496 
mean = 00 kA

8

0 10 20 30 40 50 60 70 80 90 1 00 110 120 130 140

Positive peak current (kA)

Figure 2.10 Peak current distribution o f the parent +CG flashes. The +CGs are binned in intervals of 10 
kA. Error bars are the statistical errors.
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Figure 2.11a shows that the peak current distribution of sprite’s associated +CGs 

in the 7 storms studied in Sdo Sabbas [1999a,b] also has a maximum around 40-50 kA, 

and is statistically consistent with the one reported here (Figure 2.10). Both distributions 

are different from the distribution for all +CGs in the 7 storms (Figure 2.11b), which 

peaked at 10-20 kA and had a mean value of 27 kA. This difference in distributions is 

one of the principal characteristics that appear to distinguish the lightning population 

associated with sprites from those not associated with sprites. The peak current 

distribution of the -CG candidates found in the Sdo Sabbas [1999a] studies and th e . 

totality of -CGs of the storm are quite similar to each other; both are centered at 10-20 kA 

(not shown).

P eakC urrent (KA) Peak Current (kA)

(a) (b)

Figure 2.11. Percentage distribution o f the peak currents. The figure shows +CGs associated with sprites 
(a), and (b) the totality of +CGs of the storm [Sdo Sabbas et al., 1999a]. The last column, in both figures, is 
the percentage of all +CGs with peak current greater than 100 kA.
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2,7 SUMMARY OF RESULTS

A detailed statistical analysis of the space-time relationships between sprites and 

the associated lightning characteristics has been performed. The results of this study can 

be summarized as follows:

1. A set of 40 sprite events from the Sprites96 campaign was analyzed. Seven of the 

events (17%) did not have a parent +CG registered by either NLDN or VLF 

sensors. Images of these events revealed no particular visual characteristics that 

distinguished them from positive sprites, and such differences are not expected at 

16.7 ms integration. Two of the sprites without +CGs were preceded by a -CG, 

one of them was very likely to be associated with the -CG, which was registered 

by the VLF system 9 ms before the sprite.

2. No correlation between the apparent visual size and brightness of sprites, and time 

delays from the associated +CGs was found. No correlation was found between 

the size or brightness of sprites and the time interval or distance from their parent 

lightning, i.e. smaller/dimmer sprites or sprites further away from the associated 

+CG did not have longer time delays from the parent +CG then the bulk of the 

sprite population.

3. The distribution of time intervals between sprites and parent +CGs showed a peak 

between 10-20 ms with a mean of 30 ms (20 ms excluding the outliers). The 

results suggest that this distribution characterizes the time scale for the 

development of an individual electron avalanche into a streamer between -70-85 

km altitude, as given in the Pasko et al. [1998] model. Most sprites occurred 

within 40ms from the parent +CGs, suggesting this time interval as upper limit for 

the characteristic time delay between the +CG flash and the sprites observed 

during this night.

4. The distribution of the distance between sprites and parent +CGs showed that 

sprites have the tendency to occur within 50 km lateral displacement from the CG,
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consistent with results previously reported by Wescott et al, [1998, 2001] and 

Lyons [1996].

5. The peak current distribution of +CGs associated with sprites exhibited a larger 

mean and standard deviation than the distribution of all positives in the storm. It 

had a maximum between 40-50 kA and a mean of 58 kA, compared to a 10-20 kA 

maximum and 27 kA mean of the distribution for all positives.

This is the first statistical study to use both GPS timing for images and 

triangulated positions of sprites, where both temporal and spatial criteria are used to 

select the parent +CG. Additional statistical studies utilizing large data sets (>100 sprites) 

over numerous storms distributed globally are necessary to arrive at a tightly 

parameterized definition of “sprite independent event.”
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3.1 MOTIVATION

In the Midwest United States, most sprite observations have been made during the 

May-August summer thunderstorm season, where Mesoscale Convective Complexes 

(MCC) are somewhat common occurrences [Lyons, 1996], MCCs are a particular type of 

Mesoscale Convective Systems (MCS). They are meteorological systems with strong 

convective activity, dimensions between 250 and 2500 km and duration greater than or 

equal to 6 hr (meso-a scale definition [Maddox, 1980]). MCCs were defined based upon 

physical characteristics observed in enhanced, infrared (IR) satellite images of 

meteorological systems [Maddox, 1980], Table 3.1 presents the definition criteria.

Table 3.1 Mesoscale Convective Complex (MCC) definition [Maddox, 1980]

Size: A -  Cloud shield with continuously low IR temperature < -32° C, area > 100,000 km2 
B -  Interior cold cloud region with temperature < -52° C, area > 50,000 km2

Initiation: Size definitions A and B are first satisfied
Duration: Size definitions A and B must be met for a period > 6 h
Max. extent: Contiguous cold cloud shield (IR temperature < -32° C) reaches maximum size
Shape: Eccentricity (minor axis/major axis) > 0.7 at time of maximum extent
Termination: Size definitions A and B no longer satisfied

In addition to the central US, MCCs are common in oceanic and continental 

tropical regions, especially in the intertropical convergence zone (ITCZ), and over South 

America [Conforte, 1997], In South America, the MCCs are, on average, about 60% 

larger in area and persist over longer intervals than similar systems in the US [Velasco

2 Sao Sabbas, F. T., D.D. Sentman, Dynamical relationship of infrared cloudtop temperatures with
occurrence rates of cloud-to-ground lightning and sprites, Geophys. Res. Lett., 30, pp 40-1 to 40-2, 2003.
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and Fritsch, 1987], thus making this region the most active in the Western Hemisphere. 

Sprite observations over different regions of the globe, for example Peru [Sentman et a l, 

1995c; Moudry et al., 1997], Europe [Neubert et al., 2001; Taylor, 2000], and Japan 

[Fukunishi et a l, 2001], reveal that sprites can also be generated over small 

thunderstorms, suggesting that the type and size of thunderstorms that generate sprites 

may depend on local meteorological characteristics. Hence, the MCC and/or large size 

requirements may not be sufficient for assessing the potential for thunderstorms to 

produce sprites and other optical effects on the upper atmosphere.

This Chapter describes the cloud-top temperature (Tc) characteristics, obtained 

from infrared GOES-8 satellite images, and the inter-relationships with associated 

lightning and sprite activity of the July 22, 1996, thunderstorm [Sdo Sabbas et al., 

2003b], The meteorological system was classified according to the Maddox [1980] 

definition. The analysis examined the occurrence rate and location of sprites and 

lightning with respect to the thunderstorm features and temporal development. The study 

establishes the base of a robust methodology based on satellite imagery that could be 

used in investigations of planetary sprite production.

3.2 DATASET

GOES-8 geosynchronous satellite 10-12 jam. IR images of the North America 

sector over the period 0015-1545 UT containing the meteorological system that produced 

the sprites on July 22, 1996, was used. The data was provided by the National Climatic 

Data Center (NCDC), Asheville, North Carolina. The images were stored in as 10 bit 

Mcldas area files, with a spatial resolution of approximately 4 km, temperature resolution 

0.1 K, sampled at 30 min intervals. Some of them presented bad scan lines that were 

corrected using simple linear interpolation. The part of the image corresponding to the 

sprite-producing MCC and environs (Figure 3.1a) was isolated, remapped to an isometric 

latitude and longitude grid, and the pixel count values of the remapped region of interest 

were converted to temperature using the procedures of Weinreb et al. [2001] for further
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comparison with lightning and sprites. First the count values where converted to radiance 

using equation 1:

R - ( X - b ) / m  (1)

where R  is radiance (m W/fm2-sr-cmlJ) and X  is the image count value. The coefficients 

m -  5.2285 and b -  15.6854 are the scaling slope and intercept, respectively.

Radiance was converted to effective temperature using the inverse of the Planck 

function as follows:

(g2 ~v) 
ln[l + (cj -v3)/  R]T < f -  7 ~ 7 7 ~ ~ — 3T7TT (2)

where Te/f is effective temperature (K), and R is radiance. The coefficients v = 934.30 

( cm1), a  = 1.191066 x 10'5 [mW/(m2-sr-cm'4)], and = 1.438833 (K/cnf1) are the 

central wavenumber of the channel and the two radiation constants, respectively. The 

constants c; and C2 are invariant, but v  depends on the spectral characteristics of the 

channel, in this case the 10-12 pm channel.

The effective temperature was converted to actual temperature T (°C) using the 

following equation:

T = (a + @-Teff) - 273 (3)

where a  -  -0.322585 and f t  -  1.001271 are two conversion coefficients. (All expressions 

and coefficients described above are from Weinreb et al. [2001].)
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Temperature (C)

(a) (b)

Figure 3.1 IR images of the sprite producing thunderstorm of 22 July 1996. The image was recorder by the 

GOES-8 satellite at 06:15 UT. Panel (a) is the raw data utilized, i.e., the satellite view. Panel (b) is a 

cloudtop temperature (Tc) map as a function of latitude and longitude. The map also shows the location of 

+CGs (pink crosses), -CGs (black dots), sprites (green circles), and +CGs associated with sprites (white 

circles). The CGs and sprites plotted on this map occurred with + 15 min from the image time. A similar 

map showing the association of lightning with cloudtop temperatures has been previously presented by 

Lyons [2000].

Figure 3.1b shows the resulting color-coded temperature map as a function of latitude 

and longitude (lat/lon) for 0615 UT. To enhance the contrast of the temperature range of 

the thunderstorm, pixels with temperature above 0° C (land area) were set to 0° C, 

represented by a reddish-brown in the color scale used. On these maps were also plotted 

the location of +/-CGs detected by the NLDN and triangulated locations of sprites that 

occurred within +/-15 min of the image, e.g. from 0600- 0630 UT in Figure 3.1.

3.3 ANALYSIS

The lat/lon of the lightning flashes and triangulated positions of sprites were 

matched to the lat/lon matrices of the images and the pixels with the associated 

temperatures of the correspondent cloudtop region were identified in the temperature 

map. For each 30 min image histograms of lightning flashes and sprites versus 

temperature were assembled. Comparison of the histograms with the lat/lon maps of Tc
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showing the locations of +/-CGs shows that, as the storm grows, compact regions of very 

cold cloudtops develop and the lightning discharges, -CGs more than +CGs, had the 

tendency to concentrate on those regions. Not all regions with very cold cloudtops 

exhibited lightning activity, even though cold cloudtops are strong evidence of vigorous 

convection. Generally, one expects that charge separation, hence lightning, follows 

convection, leading to an intensification of the lightning activity associated with cold 

cloudtops.

The histograms were combined into temperature-time diagrams (Figure 3.2) that 

reveal the evolution of Tc associated with lightning and sprites over the lifetime of the 

storm. There is some minor smearing in the histograms from samples obtained near sharp 

temperature gradients, due to the thunderstorm movement northeastward at a rate of 

several tens of km between the 30 min image intervals. This motion corresponded to 

several pixels in the IR images, but the overall effect is minor.

Figure 3.2a shows that, throughout the lifetime of the thunderstorm, the -CG 

occurrence rate increases in association with decreasing Tc during the growing phase, 

reaches a maximum associated with the coldest Tc (-72° C < Tc< -69° C) that lasts for ~2 

h, and then decreases in association with increasing Tc during the decay phase of the 

storm. The +CG rate (Figure 3.2b) remains associated with approximately constant Tc (­

72° C < Tc < -69° C) during the growth of the thunderstorm and also decreases with 

increasing Tc during the decay phase. The +CGs produced during the growth phase occur 

in association with the same Tc range that -CGs are associated with during the maximum 

production.

The sprite observation period was 0323-0856 UT, and sprites were recorded from 

0428 UT to 0829 UT. Figure 3.2c shows that during the period of most intense sprite 

activity, between 0545 UT and 0615 UT, sprites concentrated over regions with T0 > -70° 

C, in particular -65° C < Tc < -63° C (0615 UT). The peak in sprite activity (from 0545 

UT to 0615 UT) occurred during the period when the -CGs occurrence rate reached a 

maximum associated with minimum Tc {-12° C < Tc < -69° C). Even though sprites are 

predominantly generated by +CGs [Boccipio et al., 1995; Lyons, 1996, Cummer and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

Inan, 1997; Bell et al., 1998; Sdo Sabbas, 2002a], this result shows that the total -CG  

activity is tightly correlated with sprite activity. Whether the total -CG  activity plays a 

role in determining the sprite occurrence rate, or this result reflects a particular 

characteristic of the specific thunderstorm studied, is presently unknown.

rim e (U T } n m e fU l)

(c) (d)
Figure 3.2 Cloudtop temperatures, lightning and sprites. Temporal development of the relationship 
between GOES-8 IR cloudtop temperatures and the occurrence rate of lightning discharges and sprites 
throughout the lifetime of the thunderstorm. Each pixel is 30 min by 1° C, such that each column is the 
temperature histogram of number of lightning (or sprites). The thunderstorm growth phase is 0015 -  0545 
UT. Panel (a) is the temperature-time diagram for -CGs, (b) is for +CGs, (c) is for sprites, and (d) is for 
sprite producing +CGs.

The rate of occurrence of sprite generating +CGs remains associated with 

approximately constant Tc (Figure 3.2d), following the behavior of the total +CGs rate 

(Figure 3.2d). The difference is that the distribution of the sprite-generating +CGs (Figure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

3.2d) is centered between -67° and -69° C, about 2-3° C warmer than for +CGs taken as 

a whole (Figure 3.2b). The bulk of +CGs of the storm tend to occur in the strong 

convective regions associated with the coldest cloudtop temperatures, while sprite 

producing lightning tend to occur in warmer stratiform regions.

The development of the thunderstorm area is shown in the last row of Figure 3.3 

together with the sprite, +CG, -CG and total +/-CG occurrence rates during the lifetime 

of the thunderstorm. The sprite producing storm is “bom” between 0045 and 0115 UT, as 

a result of the coalescence of two relatively small thunder cells (not shown). At 0115 UT 

it satisfies the Maddox initiation criteria for MCCs (cf. Table 3.1). The storm grows until 

0545 UT when the region with contiguous cloudtop with T < -52° C reaches the
3 2maximum area of -140x10 km , after which the storm starts to decay, even as the total 

area of the thunderstorm, as defined by the warmer Tc < -32° C, continues to expand. The 

maximum extent (cf. Table 3.1) of the storm -2.32x103 km2 is reached at 0745 UT. The 

eccentricity of the storm at this point is less than 0.7, so this MCS cannot be classified as 

an MCC according to the Maddox criteria (cf. Table 3.1). The MCS terminates at 1015 

UT.

The -9  hr lifetime of the system studied here is lower than the 14.3 hr mean 

MCCs duration reported by Goodman and MacGorman [1986] in a study of 10 MCCs 

over the Midwest US. During these -9  hr a total of 40605 cloud-to-ground flashes were 

produced, of which 10.9% (4412) were +CGs and 89.1% (36193) were -CGs. The 

average flash rate of 75.2 min'1 was more than 2 times greater than the maximum 32.7 

min'1 average flash rate reported by Goodman and MacGorman [1986],
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Figure 3.3. Temporal development o f thunderstorm parameters. The first row shows sprite rate, the second 
row shows +CG rate, the third row shows -CG rate, and the last row shows contiguous area of cloud cover 
with Tc < -32° C and Tc < -52° C, during the thunderstorm lifetime. All rates were calculated using 30 min 
intervals.

Figure 3.3 shows that the maximum production of sprites, from 0545 UT to 0615 

UT, occurs at the time of maximum area of the region of T < -52° C, spanning the 

transition between growing and decaying phases of the MCS. The same behavior also 

occurs for the -CG (third row) and total (+/-) CG (fourth row) occurrence rate. The +CG 

rate (second row) remains high during this period (>170 flashes/30 min), with a relative 

maximum, but its absolute maximum occurs at 0215 UT, approximately 1 hr after 

merging of the two cells that originate the MCS. The total +/-CG occurrence rate peaks 

~2hr before maximum extent, agreeing with the 2.6 hr reported by Goodman and 

MacGorman [1986]. By the time of maximum extent of the storm (cf. Table 3.1) the total
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+/-CG occurrence rate starts to decrease. Goodman and MacGorman [1986] suggest that 

this occurs because the convective precipitation regions are replaced by widespread 

stratiform precipitation.

3,4 SUMMARY OF RESULTS

The sprite producing system centered on Kansas the night of 21/22 July 1996 was 

an MCS that originated from the merging of two thunderstorm cells between 0045 UT 

and 0115 UT. The total lifetime of the system was ~9h. The MCS moved northeastward 

and reached a maximum extent of ~2.3xl05 km2 at 0745 UT, approximately 6 hr after its 

initiation. The maximum sprite and -CG production of the system were simultaneously 

achieved at the time of maximum contiguous cloud cover of the coldest region with Tc < 

-52° C, ~ 2 hr before the system reached its maximum extent. The -CG rate increased 

during the growth phase of the thunderstorm in association with decreasing Tc, it reached 

a maximum associated with the coldest Tc {-12° C < Tc < -69° C), and then, in the decay 

phase of the MCS, it decreased in association with increasing Tc. This suggests that the 

total -CG  activity and dynamical development of the thunderstorm may be more tightly 

correlated with sprite activity than has previously been reported. The +CG rate remained 

high during the sprite-recording period (above 170 flashes/30 min), and remained 

associated with approximately constant Tc (-72° C < Tc < -69° C, same as -CGs) while the 

system was growing, subsequently decreasing with increasing Tc during the decay phase. 

Sprite-generating +CGs occurred in regions about 2-3° C warmer than the bulk 

population of +CGs.

The techniques reported here to correlate sprite occurrence with the spatial and 

temporal topology of cloudtop temperatures are the initial steps towards developing a 

robust methodology based on satellite imagery that could be used to study sprite- 

generating thunderstorms wherever they might occur in the world. The present analysis 

was for a single storm. To be most useful and to bound the variance of the results, 

additional studies would need to be made across many thunderstorms and a variety of 

latitudes, longitudes and seasons. Candidate regions and satellites suitable for such
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studies include South America (GOES-8; Velasco and Fritsch [1987]), equatorial and 

Southern mid-latitude Africa (Meteosat-7; Fuellekrug et al. [2001]) and South-, 

Southeast Asia, and the Malay Archipelago (GMS-5 and InSat; Sentman and Sdo Sabbas, 

[2001]).
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CHAPTER 4

CONDUCTIVITY 1NHOMOGENEITES AS A DETERMINING  

FACTOR FOR SPRITE INITIATION AND LOCATION

4,1 MOTIVATION

When a sufficiently strong electric field is applied to a nonconducting medium, 

like air, the medium becomes conducting. This transformation is defined as electric 

breakdown and is generally accompanied by a flash [Raizer, 1991], Sprites are the 

“flashes” observed when the mesosphere breaks down under the influence of the electric 

field produced by lightning discharges. Most sprites occur in groups of several units 

[Sentman et al. 1995a] laterally displaced from the underlying lightning source by several 

tens of km [Wescott et al., 1998b, 2001; Sdo Sabbas et a l, 2003a]. A computed 

distribution of lateral offsets based on triangulated observations is presented in Figure 

2.4. This distribution cannot be explained by any of the current sprite models based on 

laminar atmospheric density and conductivity profiles. These models predict that 

breakdown and therefore sprites will occur directly above the generating cloud-to-ground 

lightning discharge, in contrast to what is observed.

The quasi-electrostatic field induced in the atmosphere by lightning discharges is 

strongly dependent on the ambient conductivity, and vice-versa. In the presence of an 

electric field greater than ~ 0.05 % of the breakdown field substantial electron heating 

occurs, which results in a local modification of the electrical conductivity. Under these 

conditions Ohm’s law relating current density J  to the electric field becomes nonlinear, 

J  = a (E )E . In a laminar atmosphere, all parameters describing the gas are a function 

only of altitude, and the field maximizes directly above the region where the charge has 

been removed. If the atmospheric conductivity is spatially structured, the resultant 

electric field reflects the structure, exhibiting local maximums above the breakdown 

threshold in regions that are laterally displaced from the underling lightning.
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The atmospheric conductivity has an ion and an electron component. The 

nighttime electron component is negligible below -60 km, where the atmosphere is 

basically neutral, and becomes dominant above that altitude [Pasko et al., 1997b]. Spatial 

structure in the neutral density affects both the ion and electron component of the 

conductivity. The ion component is directly affected, since in the highly collisional 

environment below -100 km altitude, the effects of the magnetic field are negligible and 

the massive ions move with the neutrals. Figure 4.1 shows an atmospheric conductivity 

profile between -20 km and -75 km altitude, mainly due to ions, above an isolated 

thunderstorm with heavy precipitation, experimentally measured by Holzworth et al. 

[1985], Figure 4.1 also shows conductivity measurements reported by Maynard et al. 

[1981], .

Figure 4,1 Gerdien condensers conductivity measurements from two rocket experiments. The left panel is 
from Holzworth et al. [1985] and the right panel is after Maynard et al. [1981].

The electron component of the conductivity (Equation (4.1)) is indirectly affected 

through changes in the electron mobility due to inhomogeneities in the electron-neutral 

collision frequency, which depends on the particle number density.

e2n
<Je = efiene   vm = N  vth crc (1- <cos 6>), (4.1)

mv„

where e is the electron charge, m is the electron mass, / 4  = ehnvm is the mobility, ne is the 

electron density, vm is the effective collision frequency for momentum transfer, N  is the
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density o f the gas, v th is the thermal velocity (velocity of random motion), <jc is the cross 

section o f elastic collisions and <cos 9> is the mean cosine of the scattering angle. For 

isotropic scattering <cos 6> = 0, and vm -  N  vth erc = vc, where vc is the electron collision 

frequency.

Inhomogeneities in the ion density directly affect the ion component of the 

conductivity and inhomogeneities in the electron density directly affect the electron 

component. Inhomogeneities in the electron temperature indirectly affect the electron 

component of the conductivity through changes in the electron-neutral collision 

frequency and therefore electron mobility. In order to investigate the effects of an 

inhomogeneous atmospheric conductivity profile on the sprite generating electric field in 

the mesosphere, computer simulations of the temporal-spatial evolution of the lightning 

induced field were performed.

The simulations followed the quasi-electrostatic formulation of Pasko et al. 

[1997b], where the time evolution of the electric field and conductivity are calculated in a 

self-consistent manner. The nonlinear problem was solved within a region of 90 km 

distance from the discharge and up to 90 km altitude. Both a laminar and perturbed 

atmospheric conductivity, due to neutral density inhomogeneities, were used. Random 

density inhomogeneities were superimposed on the laminar profile to address the general 

problem independent of particularities of the source of the perturbation, which are outside 

the scope of this dissertation. Several thunderstorm charge configurations were used for 

the lightning discharge. Here, the results of the perturbed case are compared to the 

laminar case, and the latter is compared to the results of Pasko et al. [1997b], The 

objective was to investigate whether a perturbed atmospheric conductivity background 

could account for the multiple occurrences of sprites and their lateral displacement from 

the generating lightning.
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4,2 CHARACTERIZATION OF NEUTRAL U ENSITY SPATIAL

■ :t u r e

Common sources of small scale (<10 km) perturbation in the neutral density of 

the upper atmosphere are gravity waves and locally generated turbulence. Turbulence in 

the mesosphere is generally associated with two mechanisms, wind shear instability and 

breaking gravity waves. Gravity waves transport energy and momentum from the 

troposphere into the middle and upper atmosphere. They are pressure waves that 

propagate upward with amplitudes that increase with the inverse square of the density, in 

the absence of dissipation, in order to conserve their kinetic energy. They affect the 

temperature structure, the spatial distribution of mixing ratios of the atmospheric gases 

and the background wind field of this region [Alexander, 1996], Gravity waves are 

capable of major forcing in the general circulation of the middle atmosphere [Tsuda and 

Nishida, 2000],

Hines [1960] first considered the generation and propagation of gravity waves into 

the mesospheric region, and estimated a 10% fluctuation at 90 km, and 50-100% 

fluctuations at 115 km. Pierce and Coroniti [1966] considered a mechanism by which 

gravity waves could be generated specifically by thunderstorms, and Stull [1976] 

extended these ideas to effects from thunderstorm penetration of the tropopause. The 

gravity waves occur with a wide variety of spatial spectral ranges, from quasi- 

monochromatic wave trains, to small-scale turbulence structures arising from wave 

breaking. Fritts [1984] reviewed gravity wave saturation in the middle atmosphere, and 

Walterscheid and Schubert [1990] reviewed the processes leading to overturning and 

gravity waves and creation of turbulence. More recent observations described latter in 

this section are used to characterize the turbulence model in the simulations.

If the amplitude of a gravity wave grows large enough that the temperature 

perturbation becomes superadiabatic, the wave becomes unstable and “breaks” [Brasseur 

and Solomon, 1986]. Atmospheric conditions strongly affect the wave propagation. For 

instance, when the wave phase speed equals that of the zonal background wind the wave
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is absorbed. The level at which this occurs is referred to as the critical level. The wave 

can also be reflected at the altitude where its frequency equals the buoyancy, or Brant- 

Vaiss&la, frequency [Brasseur and Solomon, 1986],

Observations verify that gravity waves are generated both by surface winds 

interacting with orographic features and by thunderstorms, and may penetrate to 

mesopause altitudes. Larsen et al. [1982] have observed gravity waves generated by 

thunderstorms using a radar. Perturbations in OH nightglow due to gravity waves have 

been reported [e.g., Krassovsky, 1972; Taylor and Hapgood, 1988; Taylor et al., 1991; 

Turnbull and Lowe, 1991, and references therein], Matthews et al. [1993] reported 

vertical displacements 2-3 km in the neutral density at 95 km, corresponding to density 

variations of 20-30%. Small-scale structures in OH airglow images, attributed to gravity 

wave modulation, have been reported by Hecht et al. [1997] and Hecht et al. [2000], and 

breaking action has been interpreted using the 3-D simulation results of Fritts et al. 

[1997],

The analysis of the latitude/longitude cloudtop temperature map of the 

thunderstorm generating the sprites studied in this work, described in Chapter 3, revealed 

the complex temporal dynamics of the spatial structure of the top of the thundercloud, 

associated with the convective activity inside the thunderstorm. Thunderstorm convective 

activity is a source of short period gravity waves. To date, however, in only a few studies 

has the source of specific gravity wave features observed in the nightglow been precisely 

identified [Taylor and Hapgood, 1988, Medeiros, 2001; Sentman et al., 2003]. A good 

example of gravity wave effects on the mesosphere is shown in Figure 4.2. The circular 

wave pattern was observed in OH simultaneously with sprites above a thunderstorm 

[Sentman et al., 2003], The patterns in the OH emissions were probably related to gravity 

waves. The waves and the sprites are likely to have been produced by the same 

thunderstorm.
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Figure 4.2 Circular wave pattern observed in OH probably due to gravity waves. The pattern was observed 
above a sprite-producing thunderstorm. The sprite on the main image is shown in the inset in more detail as 
recorded by a separate ICCD camera. The image was recorded using 25 sec time exposure with a NIR filter 
during the Sprites99 campaign [Sentman et al, 2003],

Small scale breaking of gravity waves has also been observed in OH airglow 

[Yamada et a l, 2001], Figure 4.3 from Yamada et al. [2001] shows an example of 

gravity wave breaking of -27 km dominant wavelength to turbulent scale sizes <10 km. 

The basic photochemistry of this region is reviewed by Sentman et a l, [2003] and Liu 

and Swenson [2003]. At lower altitudes, gravity wave perturbations have been observed 

in stratospheric CO2 medium infrared emissions [e.g., Dewan et a l, 1998; Picard et a l, 

1998],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

vsi -c*; r real 77*1 &■»* -j .z'iWf.w? i.i :S95r?/3'-7i ...T 1SS512731631 UT

<?V1'':?.ZViZ- J " :»5uwis;? ut ! K 5 l J 2 j ! S - ! 0  X  S*5!2.131S22 UT ■ W C - i S ' i i s  5.T

*

1

‘aisinaAiasB ;r
■ i

im:72̂ i7Ca J7

■ ■

■ I  ................................

4 N t  - 4 :  : . •‘ u' ...’ l ife
b S S U 'I^S lW  LT I ■583(22317:

111

mm

i7P r-i22 11 7-2  J"

■B j p

! 2 3 S l 7 ? j : , ’ S i  _Yf :5so:j?ji;:2 urjifjfy..-     * & ;99&*773Wi2 ..r■ . .;iKi??3l777 J” 1»s:.v3l ,Vb CT

■ Bill

Figure 4.3 Time sequence of OH airglow images. The sequence span the period of 1619-1725 UT on 
December 23, 1995. The last four digits at top of each image give universal time. The image area is 
approximately 180 x 180 km at 87 km [Yamada et at., 2001],

Lubken et al. [2002] performed rocket measurements in northern Norway and 

Sweden to investigate the possible relationship between polar mesosphere summer 

echoes (PMSC) and neutral air turbulence. It was found that there was a significant 

amount of turbulence at the mesopause, but it was uncorrelated with the occurrence of 

PMSCs. Figure 4.4 from Lubken et al. [2002] shows a range of spatial inhomogeneities 

in the temperature of the polar mesosphere. The vertical temperature profiles across the 

mesopause were obtained during the rocket flights. The measured root-mean-square
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(rms) turbulence levels ranged from 5-20 K about the mean. In adiabatic processes, 

fluctuations in the temperature are related to fluctuations in the neutral density by

f = ( r - i ) - 4 - ,  (4.2)1 n 5 n

where y=7/5 is the specific heat ratio for a diatomic gas. However, one of the conclusions 

of Lilbken et a l  [2002] was that the turbulence was not adiabatic. The turbulence 

extended across a vertical layer of thickness 5-10 km centered on the mesopause at -85 

km. No information was provided about horizontal turbulence, i.e., whether the 

turbulence was isotropic.

Other studies have revealed the occurrence of mesospheric bores [Dewan and 

Picard, 1998,2001] and overturning or convective roll cells near the mesosphere [Larsen 

et a l, 2003], These types of perturbations possess long horizontal extensions, and are 

qualitatively different from the turbulence cited in previous studies. Thus, the 

temperature/density of the mesosphere in the region of the mesopause appears to posses a 

variety of inhomogeneous structures that are highly variable over a wide variety of 

latitudes and local times, with amplitudes up to several tens percent, and scale sizes that 

range from a few- to a few-tens of km.
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Figure 4.4 Vertical temperature profiles in the vicinity of the polar summer mesopause. The panels 
illustrate vertical structure in this region; the shaded areas are polar mesosphere summer echoes [Liibken et 
al., 2002],
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4.3 B A C . ''-5, J  ' I  \  ? ,C„ * ' UMULATION

During the development of a thunderstorm, strong updrafts and downdrafts take 

place inside the clouds. These drafts generate charge separation in the ice particles and 

water droplets that form the clouds, through collisional (and other not well understood) 

processes that have a complicated dependence on the local temperature. These charged 

particles form the complex charge structure of thunderstorms, generally approximated as 

an “inverted dipole,” with the positive charge center lying above the negative. 

Simultaneously, polarization charges of opposite polarity are induced in the surrounding 

atmosphere due to the finite vertical conductivity gradient, shielding the thunderstorm 

electric field at high altitudes (Figure 4.5).

v f  n  r  r r i  t  ,  i  i /  ) r t  j~t t t t ~

Figure 4.5 Inverted dipole model of thunderstorm. (Adapted from Pinto Jr. and Pinto [1996])

When a lightning discharge occurs, it produces a transient electric field that has a 

rapidly varying component of short duration, an electromagnetic pulse (EMP) produced 

by the return stroke current, and a slowly varying component with long duration, i.e., the 

quasi-electrostatic field produced by the removal of the thundercloud charge. The EMP 

propagates at speeds close to the speed of light, passing too quickly through the 

mesosphere to produce an appreciable effect in the highly collisional environment. They
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are, however, the source of elves (Figure 1.3, center), outwardly expanding ring shaped 

optical emissions excited in the ionosphere at -100 km [Fukunishi et a l, 1996a,b].

It has been shown that the quasi-electrostatic approximation is adequate to 

account for the characteristics of sprites [Pasko et a l, 1997b]. The quasi-electrostatic 

approximation involves assuming the electric field can be written solely in terms of a 

scalar potential function E = N<p, where electric displacement effects are ignored. 

Conduction currents are related to the electric field via Ohm’s law J  = oE, where the 

conductivity a  is assumed to be a scalar quantity. The simulations involved solving the 

coupled Gauss law

where the subscripts 0 and 1 indicate the source, or thunderstorm, and induced, or 

atmospheric quantities, respectively.

The quasi-electrostatic component of the field may generate sprites at the 

locations where it exceeds the breakdown threshold [Pasko et a l,  1997b]

where £* is the characteristic air breakdown field, No is the neutral density on the ground 

and N  is the density profile. Ei (Figure 4.6) is determined by the relation between creation 

and removal of electrons, i.e. ionization, attachment, and less effectively, recombination. 

Electron impact ionization is the most important charge generation mechanism in a gas 

discharge. Other less effective ionization mechanisms are photoionization, which provide 

seed electrons that start avalanches in streamer propagation, ionization by resonance-

v .e = (Al± A )

*0
(4.3)

and the continuity equation

(4.4)

Ek = 3 .2 x l0 6 (4.5)
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excited species, and associative ionization {Raizer, 1991], The rate of impact ionization 

in the absence of losses is characterized by the ionization frequency vt (Equation (4.6))

Figure 4.6 Breakdown electric field as a function of altitude.

dn„
dt

= vtne .

j n ^ v a ^ s j d s

jn(e)d£
(4.6)

where n(s) is the electron energy distribution function (density normalized), oi(e) is the 

ionization cross section of gas species in ground state and v is the velocity of the electron. 

The electron impact cross sections for the two major constituents of the atmosphere, 

molecular nitrogen (-78%) and molecular oxygen (-22%), are shown in Figure 4.7.
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Figure 4.7 Cross sections of N2 (left), and 0 2 (right) as a function of energy. [Lummerzheim, 1987]

The recombination rate in a plasma without electronegative components, and in 

the absence of an electric field, follows

d n

dt
= - p n en+,

l + Pn°et
(4.7)

where j3 is the electron-ion recombination coefficient, n+ is the density of positive ions, 

and ne° is the initial electron density. Recombination is a less effective electron removal 

mechanism than attachment, since it is proportional to the electron density squared 

[Raizer, 1991], and will not be considered in this work.

In the mesosphere, attachment is the main loss mechanism for electrons. 

Molecular oxygen, the second major constituent of the atmosphere, is a major sink of 

electrons in the mesosphere, since the dominant attachment reactions in this region are 

dissociative attachment of O2 and a three-body reaction involving O2 :

e + 0 , —̂ 0  + 0

e + 0 2 + M  —» 0 2"~ + M  .

(4.8)

(4.9)

The total change in electron density is then given by
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- £  = < y -v a)n.> (4-10)at

where va is the attachment frequency. Experimentally, what one actually measures in a dc 

electric field are the ionization and attachment coefficients, a  and a respectively, which 

are the ionization/attachment per unit length along the field (a  = vjv, a = v jv , c.f. Raizer

[1991]).

As mentioned previously, the mesosphere and lower ionosphere are weakly 

ionized collisional media. In such a collisional regime, the conductivity, electron 

mobility, electron density, ionization and attachment frequencies, depend nonlinearly on 

the electric field. The Pasko et al. [1997b] quasi-electrostatic model for sprite production 

treats the nonlinear effects using a self-consistent calculation of the conductivity and 

electric field. The heating of the local electrons strongly modifies the conductivity above 

-60 km where the electron component of the conductivity is dominant; below that 

altitude the changes in the conductivity are negligible since the ions are not significantly 

heated by the electric field. Pasko et al. [1997b] takes into account the effects of the 

electric field on the conductivity through changes in the mobility / 4  due to heating and 

changes in the electron density ne due to ionization and attachment processes. The 

simulations performed in this study follows the Pasko et al. [1997b] self-consistent 

formulation as described in the next section.

4.4 DESCRIPT. I ■ ; " 7  3  4 SIMV l, 17 173

The objective of the simulations was to investigate whether inhomogeneities in 

the atmospheric conductivity can be the cause of multiple sprites occurring due to a 

single lightning stroke, and possessing lateral displacement from the generating 

discharge. The simulations followed the spatial-temporal evolution of the lightning 

induced quasi-electrostatic field (E = -V $  in a laminar and perturbed atmosphere. It was 

terminated when all the thundercloud charge associated with the lightning was
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discharged. The simulations involved solving Equations (4.3) and (4.4) rewritten as a 

function of the potential

VV = - ~ , ptot = Po + Pi (4.11)

= (4.12)
a? s0

The problem was solved in two dimensions (2-D) using cylindrical geometry (r, 

z) with axial symmetry (Figure 4.8). The computation domain was a square region of 90 

km with grid elements, dr and dz of 1 km. The time steps, At, were taken to be one half

the shortest relaxation time ( 7  = so/a) of the system, which occurs at 90 km altitude, i.e.,

At — T90 fojj/2.

Figure 4.8 Coordinate system used in the simulations. Boundary condition is ckp!dr = 0 at all boundaries.

In cylindrical coordinates Poisson’s equation is

VV = - j - *  +
d z

f  d 2 1 d
— _ _ j --------------------

d r r dr
\

0: (4.13)
y
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The radial and vertical differential operators were discretized into matrix operators using 

second order forms from Abramowitz and Stegun [1962], so that Poisson’s equation may 

be written

L2(j> + cpLr = —ptot. (4.14)
£0

Here the vertical component of the Laplacian (Lz) is a left matrix operator and the radial 

component (Lr) is a right matrix operator. Letting X = <p, A = LZ, B = Lr , and

C = - ( l/f i '0)p tot be the respective parameter matrices and matrix operators, the matrix

form of the Poisson’s equation may be written in the standard form for Sylvester’s 

equation

AX + XB = C . (4.15)

The boundary conditions were set in the first and last rows of the matrix 

operators. The ground (2 = 0 km) and ionospheric (z = 90 km) boundaries were assumed 

to be perfect conductors and Dirichlet’s boundary condition {dtp/fr = 0) was applied, 

making the electric field perpendicular to these boundaries. Neumann’s boundary 

condition {dtp! dr = 0) was applied along the z-axis (r = 0 km) and at the cylindrical 

boundary (r =90 km), making the field parallel to the boundary (i.e., vertical). The 

cylindrical boundary condition can in principle be set as dqick = 0 or as ckp/ck -  0. Both 

of these conditions lead to unphysical modifications near to the boundary, but the spatial- 

temporal evolution of the electric field does not depend significantly on the edge fields 

since the boundary is far enough from the charge source. Pasko et al. [1997b] have set 

the cylindrical boundary at r  = 60 km in his simulations, as a trade off between computer 

resources available at the time and the accuracy, and showed that these boundary 

conditions lead to an error of < 10% on the magnitude of the field at r = 50 km and z = 10 

km.

Poisson’s equation in the form of Sylvester’s equation (4.15) was solved at each 

time step using the method of Schur decomposition [Bartels and Stewart, 1972], The
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other equations were discretized using the method of first finite differences [Fletcher,

1990],

The thunderstorm charge centers were modeled as Gaussians having the total 

charge (Q±), center altitude (z+), and 1/e widths iza and ra) as free parameters (Equation 

(4.16)). The charge centers were placed along the 2-axis.

A> -  P+ + P± 9±
v exp +

\  za J \ TaJ
(4.16)

where p+ and p .. are the positive and negative charge densities respectively and V is the 

normalization parameter applied to yield a total charge equal Q+.

The laminar neutral density profile (Figure 4.9) was obtained from the MSIS-E-90 

model for 22 July, 1996, latitude 37.5° N, longitude 99.0° W, and 6 UT as input 

parameters. This configuration approximately corresponds to the location of the sprite 

producing region of the thunderstorm studied, during the period of high lightning and 

sprite activity studied in Chapters 2 and 3.

Figure 4.9 Neutral density (left) and ion conductivity (right) profiles. The neutral density was obtained 
from the MSIS-E-90 model for input parameters date = July 22, 1996, lat. = 37.5° N, Ion. = 99.0° W, and 
time = 6 UT. The ion conductivity was modeled after Holzworth et al. [1985],
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The laminar conductivity profile (Figure 4.11) was calculated as a sum of the ion 

and electron components. The ion component (Figure 4.9) was adapted from Holzworth 

et a l,  [1985] and the electron component was calculated using

a e =enepie. (4.17)

The electron density profile of the bottom of the nighttime ionospheric D/E region 

(Figure 4.11) used in the calculation of the electron component of the conductivity was 

modeled after Chapman’s theory

["o.5*(l-Z-e~ZV| „  Z — Z  „[ Z  = (4.18)
H 0

where n e,max is the maximum electron density, zmax is the altitude of maximum electron

density, and Ho is the scale height of the layer. All those quantities are free parameters

that may be adjusted to model a wide variety of profiles.

The altitude of maximum electron density was set as 100 km. The other two free 

parameters were carefully chosen (Table 4.1) in order to construct a conductivity profile 

that would best fit the midlatitude conductivity profile measured by Maynard et al. 

[1981] (Figure 4.1), without inducing electric breakdown when a 50 C positive charge 

center was completely discharged. This laminar conductivity profile (cn) and 

thunderstorm charge configuration Q+ = +50 C constituted the control case against which 

all other cases spanning the explored parameter space were compared. The right panel of 

Figure 4.10 shows a comparison between the conductivity data (OMaynard), the control 

conductivity (<%), a conductivity profile calculated using the electron distribution 

provided by the IRI model (ami) for the same input parameters used in the MSIS-E-90 

model, and a conductivity profile using the same Ho and zmax as oa and ne:max = 2 x 109 m' 

3 (aze9), extracted from Rees [1989], The left panel of Figure 4.10 shows the electron 

density profile used to calculate the electron component of the conductivities oa, am, 

a2e9- This figure illustrates the large variability of electron density and conductivity that 

may occur in the atmosphere.
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Figure 4.10 Comparison of several electron densities (left) and conductivities. oyaynant is the conductivity 
data extracted from Maynard et al. [1981], crA is the control conductivity, <jm  is a conductivity profile 
calculated using the electron distribution provided by the IRI model <jm , and a2eg is a conductivity profile 
calculated using the same H0 and zmax as aA and ne max = 2 x 109 m-3. n^, nam , and ne2eg the electron density 
profiles used to calculate crA, am , a2e9.

4.4.1 PRE-LIGHTNING CONFIGURATION

The first step in the simulations was to calculate the electric field and induced 

charge in the laminar atmosphere due to the presence of the thunderstorm, before the 

lightning discharge, i.e., the pre-lightning configuration. Since the time scale of 

thunderstorm development, of the order of hours, is much larger than the electric 

relaxation time over all altitudes, in the pre-lightning configuration the atmosphere would 

have relaxed over all altitudes. The relaxation time decreases with altitude, therefore the 

top of the system relaxes first and the relaxation level moves downwards with time, i.e., 

the so called “moving capacitor model” of Greifinger and Greifmger [1976], In these 

simulations, due to computational limitations, the atmosphere was allowed to relax only 

down to 50 km altitude. The simulations are therefore valid for altitudes above 50 km.

Also due to the long charge build up time, no self-consistent formulation was 

applied in this part of the simulations. It was assumed that the thunderstorm charges build 

up slowly enough that the dipolar electric field maintains a linear relationship with the
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conductivity, no ionization or attachment is produced and the electrons are not heated. 

The electron mobility was calculated using the linear expression in Equation (4.22).

Several parameter regimes were selected to provide a variety of atmospheric 

conditions under which sprites may occur. Two laminar conductivity profiles, the control 

conductivity and a variation of that with reduced nefinax (aB), were used. The values chosen 

for the free parameters of Equation (4.18) generating the electron density profiles used to 

calculate of the conductivities are shown in Table 4.1. The table also shows the resulting 

maximum ambient conductivity, at 90 km, and the resulting time step. Figure 4.11 shows 

the electron density profiles calculated using the parameters in Table 4.1 and the 

conductivity profiles oa and aB together with the conductivity data (XMaynard-

Table 4.1 Parameters related to laminar ambient conductivity profiles

Profiles ê, max (m ) Zmax (km) Ho (km) amax (S/m) At = 0.5*Tpohn (s)
OA 5xl0; 100 15 3.72xl0'6 LlOxlO"6

lx l0 y 100 15 4.45x10 ; 5.94x10‘6

Figure 4.11 Electron densities (left) and conductivities (right) used in the simulations.

For each conductivity profile, three charge configurations (Q+ = +50 C, Q± = 

+100 C and Q+ = +200 C) were used to model thunderstorm charge centers. Table 4.2 

shows the values utilized for the free parameters of Equation (4.16) determining the
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charge density of the thunderstorm. In order to consistently compare results due to 

different thunderstorm charges, the location of the charge centers and their relative sizes 

were kept constant; only the total charge amount was varied.

Table 4.2 Charge related parameters

Q+ (C) z+ (km) r/za+ (km) Q -( Q z_ (km) r/za. (km)
50 10 3 -50 5 3
too 10 3 -100 5 3
200 10 3 -200 5 3

A total of six laminar pre-lightning configurations were evaluated. The pre­

lightning atmospheric induced charge density (pi), and total electric field (Etot) of the 

control case (0+ 50 C, first line of Table 4.2, and conductivity oa) are shown in Figure 

4.12 together with the thunderstorm (po) and total charge densities (/w), and electric field 

components (Er and Ez).
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Figure 4.12 Pre-lightning configuration of total charge density for the control case. The first line shows the 
thundercloud charge density (p0), the charge density induced in the atmosphere (pj), and total charge 
density (plot), respectively. The second row shows the Er and Ez components of the electric field, as well as 
the total field (Elol), respectively. Note that p 0, and p t and p to, are saturated below 20 km.

The perturbed, or inhomogeneous, pre-lightning configurations were generated by 

superimposing six different perturbation patterns of varying amplitude and scale size onto 

the neutral density profile. The perturbations were mapped to the relevant density 

dependent quantities (/4 , ne, cf, Etot) according to expressions given in Section 4.4.2, 

previously evaluated for the laminar pre-lightning configuration of the control case. Since 

the atmosphere has relaxed down to 50 km in the pre-lightning scenario, the electric field 

is almost totally excluded above that altitude (Figure 4.12) and E/Ek ~ 0. Therefore,
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superimposing the perturbation patterns on the already calculated laminar pre-lightning 

configuration produces the same perturbed pre-lightning configurations as if they were 

initially calculated with the perturbation patterns.

A simple isotropic model characterized by a Gaussian amplitude probability 

distribution generated by a spatially low pass filtered random number field (Equation 

(4.19)) was adopted to create smooth perturbation patterns

^pert(^) = Apertrpert(z ,r )exp[-(z - z0pertf  / a2pert] , (4.19)

where Apert is the amplitude of the average perturbation, rpevt (z, r) is an uniform random 

pattern generated to yield a specified standard deviation and isotropic scale size. The 

exponential factor centers the random pattern at altitude zotPert with characteristic layer 

thickness apert. To generate the random pattern rpert (z, r) of specified scale size sizepert, a 

matrix was created and initialized with independent identically distributed white 

(Gaussian) noise. It was then convolved with a 2-D isotropic Gaussian of width sizepert, 

and scaled according to the specified standard deviation.

The perturbation pattern was then superimposed on the ambient background 

profile by multiplication to produce the spatially structure density field

N {z,r) = N0 (z, r)[l + Apert (z, r)]. (4.20)

This perturbation model is sufficiently flexible to permit investigation of the 

effects of turbulence on sprite initiation over a wide variety of turbulent conditions.
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Table 4.3 shows input values for the parameters used in generating the perturbation. 

Figure 4.13 shows, as an example, the perturbation pattern used for Apert =0.3 and sizepert 

= 2 km, as well as the resulting density, mobility and conductivity.

67
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Table 4.3 Parameters related to neutral density perturbations

cases Apert sizepert (km) Zo.pert (km) aperl (km)

input actual input actual

1 0.1 0.0985 2 2.0132 80 10
2 0.2 0.1993 2 2.0397 80 10
3 0.2 0.2065 5 5.0285 80 10
4 0.3 0.2931 2 2.0457 80 10
5 0.3 0.2959 5 5.1943 80 10
6 0.4 0.3971 2 2.0475 80 10
7 0.4 0.3875 5 5.1338 80 10
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Figure 4.13 Perturbation pattern and perturbed density, mobility and conductivity. Input parameters are
Apert = 0.3 and sizepert = 2 km.
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4.4.2 SPACE-TIME EVOLUTION OF LIGHTNING INDUCED ELECTRIC 

FIELD

After the pre-lightning condition was determined, either laminar or 

inhomogeneous, a cloud-to-ground discharge of 1 ms (tught) was simulated by removing 

the charge of the positive/negative charge center adopting the same functional form used 

by Pasko et al. [1997b]

Po /A “t" p ± 1-
tan h (t/tllght) 

tanh(l)
t< tught. (4.21)

The functional variation for charge removal models the discharge process. The specific 

form is not critical for the physics of the phenomena modeled [Pasko et al., 1997b], as 

long as it is monotonically decreasing. The form used here has a characteristic duration of 

-300 ps in agreement with observations for positive lightning [Uman, 1987],

In these simulations (nonlinear regime) the electric field and conductivity were 

calculated in a self-consistent manner, after the model of Pasko et al. [1997b], The 

electron component of the conductivity (Equation (4.17)) was recalculated at each time 

step to take into account changes in the electron mobility due to heating [Pasko et a l, 

1997b]

N

2

atx̂
10°
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v,
(N_
yN 0j

\  "S' ax'L— i ‘ 
10°

FAf ,
for = ^ -  > 1.122 x 106 V/m 

N  ~
(4.23)

where x = log10
V N  ,

v,- 0 ,  for — - <  1.122x 10 V/m
N

ao  -  -624.68, a i  = 249.60, ay = -32.878, and ay = 1.4546.

These ionization rates compare favorably with those given by Papadopoulos et al. 

[1993], and with swarm data [Dutton, 1975].

The attachment frequency was calculated using [Barrington-Leigh et al., 2000]:

(4.24)' N  EN, <;10 0 , ^  > 3.162 x lO 5 V/m
N o N

EN,

where x = log10 

= -1.35113.

N

va = 0, f o r— -  < 3.162 x 10 V/m
N

, ao ~ -3567.0, a; = 1992.68, a2 -  -416.601, ay = 38.7290, and ay

The expressions given above are based on experimental data and on kinetic 

simulations [Pasko et a l, 1997b, and references therein]. Figure 4.14 graphically shows 

the dependence of the /4 , v; and va on ENofN. The self-consistent formulation of this 

model has the same limitations described in Pasko et al. [1997b], and are only valid for 

ENo/N < 1.6 x 107 V/m, or E!Ek < 5. For fields above this value the electron energy 

approaches the ionization energy and the ionization process becomes nonstationary 

[Pasko et a l, 1997b; Papadopoulos et al., 1993, and references therein]. In this work, 

E/Ek < 5 for all cases studied. A second limitation is that the model is not valid for time 

scales less than the time required for the establishment of the stationary electron 

distribution function [Pasko et a l, 1997b], estimated as lOps for an altitude range of 80­

90 km [Taranenko et al., 1993],
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Figure 4.14 Mobility (left) and ionization (right) and attachment frequencies as a function of ENq/N.

4A2A.  LAMINAR CASES

Six different cases were run for a laminar atmosphere. For each conductivity 

profile, oa and as, all three charge configuration were employed. All the results of this 

dissertation are presented in terms of electron mobility, electron density, conductivity, the 

ratio ElEk, and total charge density. They are shown at t = 0 ms (before lightning), at the 

time step in which ElEk ^ 1 for the first time, and at t = 1 ms (at the termination of the 

lightning discharge).

The results at t -  1 ms of the control case (oa and Q+ = +50 C) and of the other 

two cases in which only the thunderstorm charge was varied ( oa  and Q+ = +100 C, Q+ = 

+200 C), were compared with the correspondent results of Pasko et al. [1997b], They are 

in very good qualitative and reasonable quantitative agreement, with only minor 

differences due to the fact that different ambient (t = 0 ms) conductivity profiles were 

used in the respective models. Figure 4.15 shows a comparison of vertical profiles of 

electron density and conductivity at t = 1 ms, together with the ambient profiles, taken at 

r = 0 km. For 50 C, attachment dominates at all altitudes and the electron density is 

slightly reduced in both models compared to the ambient profiles.
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The altitude distribution of mobility and electron density are shown in Figure 

4.16, Figure 4.18 and Figure 4.20 for the region above 60 km, where modifications from 

the ambient profiles occur. Figure 4.17, Figure 4.19 and Figure 4.21 show the altitude 

distribution of conductivity and ElEk, for the same region. In the control case (Figure 4.16 

and Figure 4.17) no breakdown is produced. The mobility and conductivity are reduced 

by approximately 2 orders of magnitude everywhere above 60 km. Changes in mobility 

dominate over changes in the electron density in this case, and the conductivity temporal- 

spatial evolution is determined by the mobility evolution. The electron density is 

modified by attachment within -40 km distance in the radial direction.

Bed non density at t=1 ms (m3) Conductivity at t= 1 ms (S/m)

9 0

8 0 -

5 0

.. ...  7 f 80C ,100C , 1

Anntferit's.

C T ^ A \2CJQC 250C /  250C

Ne (cnr3)
1CT10 1 0 *  1 0 *  W 7

o (Sim)
Figure 4.15 Electron density and conductivity for this and Pasko et al. [1997b] model. All the results are 
for the termination of the lightning discharge (/=  1 ms). The first row shows results for this model and the 
second row shows the top row of Figure 12 of Pasko etal.  [1997b],
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Figure 4.16 Electron mobility (left) and electron density (right) for the control case. The first row shows t 
= 0 ms and the second row shows t= 1 ms. The atmosphere does not breakdown in this case.
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Figure 4.17 Conductivity (left) and Eto/Ek, (right) for the control case. The first row shows / = 0 ms and the 
second row shows /=  1 ms. The atmosphere does not breakdown in this case.
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(Figure 4.20 and Figure 4.21), the mobility term dominates over the electron density, 

reducing the conductivity over all altitudes until the electric field reaches the breakdown 

threshold. Breakdown occurs earlier, and therefore with less charge removal, for the 200 

C case than the 100 C case. After that, the electron density term becomes progressively 

dominant, i.e., ionization progressively dominates over attachment above -73 km, for 

100 C, and above -65 km, for 200 C, enhancing the conductivity in that region up to r = 

-50  km. Below those altitudes, the conductivity is reduced.
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Figure 4.18 Electron mobility (left) and electron density (right) for the 100 C case. The first row shows t = 
0 ms, the second row shows when Etol = Ek for the first time, and the third row shows t = 1 ms. The 
percentage of the total charge removed (Qremm) and breakdown time are indicated above the middle row 
panel. The laminar control profile, <7a, was used.
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The other three laminar cases, where the conductivity profile as was used (same 

charge configurations), qualitatively show behavior similar to that previously described. 

In general, the greater the charge in the initial configuration, the greater are the changes 

in the magnitude of the electron mobility, electron density and conductivity, and the 

earlier the atmosphere breaks down. The main difference between profiles oa and os is 

that breakdown occurs in the 50 C case for profile as, the environment with smaller 

conductivity has fewer charge carriers to shield the penetration of the electric field. This 

case is shown in Figures A-l and A-2 of Appendix A.

t =0 ms, Q=100Ccta laminar
90

80

70

60

90

1  80
<Dn
i  70 
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E=Ek t =0.090 ms, Q

t = 1 ms (end of lightning discharge)
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Radial distance (km)

20 40 60
Radial distance (km)

80
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Conductivity (S/m) x -| q 8
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E/Ek

Figure 4.19 Conductivity (left) and Em!Ek, (right) for the 100 C case. The first row shows t = 0 ms, the 
second row shows when Em = Ek for the first time, and the third row shows t — 1 ms. The percentage of the 
total charge removed (Qremm) and breakdown time are indicated above the middle row panel. The laminar 
control profile, aA, was used.
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In all laminar cases in which the electric field reaches the breakdown threshold, it 

develops centered on the underling charge, as in other models adopting a laminar 

description of the atmosphere. The temporal-spatial evolution of the electric field is in 

good agreement with the evolution of modeled intensity of emissions of the first positive 

band of N 2 shown in Figure 14 of Pasko et al. [1997b], for 250 C. The temporal-spatial 

evolution of the optical emissions is controlled by the development of ionization and the 

relatively faster relaxation of the electric field at higher altitudes.
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Figure 4.20 Electron mobility (left) and electron density (right) for the 200 C case. The first row shows t = 
0 ms, the second row shows when Etot = Ek for the first time, and the third row shows t = 1 ms. The 
percentage of the total charge removed (Qranov) and breakdown time are indicated above the middle row 
panel. The laminar control profile, aA, was used.

However, in this model, breakdown first occurs at the ionospheric boundary at 90 

km, at the very top “row” of the domain, where the upper boundary is located. This could
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be interpreted as the boundary condition (perfect conductor, d(ptdr = 0) leading to 

unrealistic large values of the electric field at the boundary. .

Figure 4.22 shows the total charge density in the atmosphere {ptot = Po + p i)  for 

the three charge configurations, before the lightning, when the electric field first reaches 

breakdown, and at the end of the discharge. A layer of positive polarization charge 

develops above 60 km due to the removal of the positive center of the thunderstorm. The 

magnitude of this induced charge layer reflects the amount of removed charge. A similar 

behavior is observed when the conductivity profile B is used (Figure A-3, Appendix A).

cta laminar t =0 ms, Q =200 C
90 ------------ ----------------------------------------------------------

70

601-----------------------------------------       J L-— ------------------------------------ -
E=E. t =0.033 ms, Q =4.36% 

k ’ remov

< g0[---   ,-- J I------------
t = 1 ms (end of lightning discharge)

8° f

70       .

601   -
0 20 40 60 80 0 20 40 60 80

Radial distance (km) Radial distance (km)

0.5 1 1.5 2 2.5 3 0 1 2 3 4
Conductivity (S/m) x 10B E/Ek

Figure 4.21 Conductivity (left) and E,JEt, (right) for the 200 C case. The first row shows t = 0 ms, the 
second row shows when Em = Eh for the first time, and the third row shows t = 1 ms. The percentage of the 
total charge removed (Qremov) and breakdown time are indicated above the middle row panel. The laminar 
control profile, cta, was used.
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Figure 4.22 Total charge density for Q = 50, 100, 200 C. Refer to Table 4.2 for further details. The first 
row shows t — 0 ms, the middle row shows when E,ot = £* for the first time, and the last row shows t = 1 ms. 
The percentage of the total charge removed (Qremm) and breakdown time are indicated above the middle 
row figures. The laminar control profile, Oa, was used. Notice that the control case (left column) does not
breakdown.
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4,42,2 PERTURBED CASES

A total of eight different perturbation cases were evaluated, in which the relative 

average amplitude (Apert) of the perturbation was varied from 0.1 to 0.4 in steps of 0.1, 

and the average characteristic spatial scale (sizepert) was either 2km or 5km. The first 

difference noticed between perturbed and laminar cases, is that in all the perturbed cases 

breakdown occurred in locations laterally displaced from the underling lightning, 

agreeing with sprite observations and with the distribution presented in Figure 2.4. 

Furthermore, breakdown occurred at multiple regions (e.g. Figure 4.27), simultaneously 

or within time scales less than 1 ms. Sprites initiated at these points would appear to be 

“simultaneous” for observations at a rate of 1000/s or less. Figure 4.23, an enlargement of 

part of Figure 1.7, contains Stenbaek-Nielsen et al. [2000] 1000 fps observations of 

sprites, showing multiple sprite initiation regions that breakdown points simulated by this 

model, e.g. Figure 4.27, could trigger. The first row was contrast enhanced.

Figure 4.23 Multiple sprite initiation points shown in the middle column. This sequence o f images adapted 
from Stenbaek-Nielsen et al. [2000] was recorded at 1000 fps. The first row was contrast enhanced.
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Perturbations with Apert = 0.1 and sizepert -  2 km (Figure 4.24 and Figure 4.25) are 

sufficient to produce breakdown in the control case. However, no breakdown has been 

observed for 3 different patterns with Apert = 0.1 and sizepert = 5 km (not shown). The 

cases with Apert ~ 0.2 and sizepert = 2 km and 5 km are shown in Figures A-4 to A-7, and 

the cases with Apert = 0.4 and sizepert = 2 km and 5 km are shown in Figures A-8 to A -ll 

in Appendix A. Breakdown first occurred inside “pocket” regions of very large density 

depletions (> 70%). As the charge moment increased, breakdown progressively occurred 

in regions of lower density depletions (< 25%). Around the termination of the lightning 

breakdown was produced in regions with depletions < 10%.
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Figure 4.24 Electron mobility (left) and electron density (right) for perturbed case 1. The first row shows t 
= 0 ms, the second row shows when Elo, = Ek for the first time, and the third row shows t — 1 ms. The 
percentage of the total charge removed (C?remov) and breakdown time are indicated above the middle row 
panel. Case 1 is the control case with input perturbations parameters Aper, = 0.1 and sizepert = 2 km.
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Figure 4.25 Conductivity (left) and E,o/Ek (right) for perturbed case 1. The first row shows I = 0 ms, the 
second row shows when Etol = Ek for the first time, and the third row shows t = 1 ms. The percentage of the 
total charge removed (Qnmm) and breakdown time are indicated above the middle row panel. Case 1 is the 
control case with input perturbations parameters Aper, = 0.1 and sizeper, = 2 km.

For a larger perturbation amplitude, Apert = 0.3, with the same size, sizepert = 2 km, 

larger modifications of the atmosphere were observed. Breakdown was produced at 

multiple locations, within pockets of decreased neutral density. The first breakdown point 

occurred at -84 km altitude, and -7  km lateral displacement, in a pocket of -74% density 

depletion. Regions with lower density depletions, e.g. -20%  and -5%, located at (r, z) 

coordinates approximately (7, 85) and (9, 81) respectively, broke down at a latter time. In 

these pocket regions Ek was lowered. This effect summed with the self-consistent 

reduction of the conductivity, discussed in the previous section, “facilitated” breakdown.
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Figure 4.26 Electron mobility (left) and electron density (right) for perturbed case 4. The first row shows t 
= 0 ms, the second row shows when Eto, = Ek for the first time, and the third row shows t -  1 ms. The 
percentage of the total charge removed (Qremm) and breakdown time are indicated above the middle row 
panel. Case 4 is the control case with input perturbations parameters Apert = 0.3 and sizeper, = 2 km.
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Figure 4.27 Conductivity (left) and EtJ E k (right) for perturbed case 4. The first row shows 1 = 0 ms, the 
second row shows when Elo, = Ek for the first time, and the third row shows t = 1 ms. The percentage of the 
total charge removed (Qremm) and breakdown time are indicated above the middle row panel. Case 4 is the 
control case with input perturbations parameters Apert = 0.3 and sizepert = 2 km.

Keeping the same average amplitude of Apert = 0.3 and increasing the average size 

of the perturbations to sizepert = 5 km, breakdown also occurred in pocket regions of 

neutral density depletions. The first breakdown point (depletion -74%) was located at 

approximately (48, 82). At the termination of the discharge, a second, large, breakdown 

region (depletions ranging from -35%  to -16%) centered at approximately (7, 80) had 

developed. The removal of a larger amount of charge was necessary to produce 

breakdown in this case (-26%), compared to the case in which the average size was 2 km 

(-18%).
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In all cases, the conductivity is enhanced in the regions of depleted density, which 

tends to inhibit breakdown. A focusing of the electric field is expected to occur at the 

external surface of the pocket of enhanced conductivity, however this effect is only 

minor. Conductivity effects, however, are dominated by the lowering of the breakdown 

threshold due to the depleted density and the overall effect is breakdown facilitation, as 

mentioned before.
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Figure 4.28 Electron mobility (left) and electron density (right) for perturbed case 5. The first row shows t 
= 0 ms, the second row shows when Etot — Ek for the first time, and the third row shows t = 1 ms. The 
percentage of the total charge removed (Qremov) and breakdown time are indicated above the middle row 
panel. Case 5 is the control case with input perturbations parameters Aperl = 0.3 and sizeperl = 5 km.
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Figure 4.29 Conductivity (left) and E,ot/Ek (right) for perturbed case 5. The first row shows t = 0 ms, the 
second row shows when Elol = Ek for the first time, and the third row shows t = 1 ms. The percentage of the 
total charge removed (0 remov) and breakdown time are indicated above the middle row panel. Case 5 is the 
control case with input perturbations parameters Apert = 0.3 and sizepert = 5 km.

Figure 4.30 shows the total charge density in the atmosphere for the cases with 

average perturbation sizepert = 2 km and Apert = 0.1, 0.3 and 0.4, respectively, before the 

lightning, when the electric field first reached breakdown, and at the end of the discharge. 

The layer of positive polarization charge above 60 km, centered above the thunderstorm, 

shows spatial structure that reflects the amplitude and size of the perturbations.
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Figure 4.30 Total charge density for perturbed cases 1, 4 and 6. Refer to Table 4.3 for further details. The 
first row shows t = 0 ms, the middle row shows when Etot = Ek for the first time, and the last row shows t = 
1 ms. The percentage of the total charge removed (Oremov) and breakdown time are indicated above the 
middle row figures. The laminar control profile, <Ta, was used. Cases 1, 4 and 6 are the control case with 
input perturbations parameters Apert = 0.1, 0.3 and 0.4 and sizepert = 2 km.
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Figure 4.31 shows a summary of the effects of neutral density perturbations in the 

conductivity spatial structure and the location of electric breakdown points in the 

atmosphere for the profile oa, 50 C, sizepert = 2 km and Apert = 0.1, 0.2, 0.3 and 0.4.
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Figure 4.31 Summary of the effects of conductivity spatial perturbations. Perturbed conductivity profiles at 
t = 0 ms (left) and the EIE* at t = 1 ms (right). The sizepert = 2 km and Apert varies between 0.1 and 0.4 from 
top to bottom.
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4,4.2 J  NEGATIVE LIGHTNING

A negative lightning discharge was generated for the perturbed case with Apert -

0.3 and sizepert — 2 km. Here, charge was removed from the bottom negative charge 

center to simulate a -CG discharge, as opposed to removal of charge from the top positive 

center, as in the previous runs.

Breakdown first occurred at the same location as for the positive discharge 

(Figure 4.33 and Figure 4.27 respectively). The negative discharge required removal of 

more charge to produce breakdown than the positive, -64.5% against 17.8%. This is 

consistent with expectations, since the associated charge moment for the -CG (250 C/km) 

was half that of the +CG (500 C/km) on account of the lower altitude of the negative 

charge. The duration used for the negative is longer than typical values, which may also 

contribute to the larger charge removal necessary for breakdown. The return stroke of a 

typical negative cloud-to-ground discharge has a characteristic duration of -100 ps 

[Uman, 1987], with peak currents of -30 kA. Large strokes may possess currents that 

surpass 200 kA. Thus, the average charge transferred in a typical negative lightning 

discharge is -30 C, with large strokes transferring up to 200 C.

No breakdown region was present at the termination of the lightning. Another 

difference is that the polarization charge layer formed above 60 km was of negative 

polarity, as opposed to positive due to a +CG (Figure 4.34).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

<ta perturbed, rms =0.3, size =2 km t =0 ms, Q = -50 C

20 40 60
Radial distance (km)

20 40 60
Radial distance (km)

1 2

Mobility (m2sA/) x 10

1 2 3 4 5

Electron density (m'3) x 10

3

Figure 4.32 Electron mobility (left) and electron density (right) for negative discharge. The first row shows 
t = 0 ms, the second row shows when E,ot = Et for the first time, and the third row shows t = 1 ms. The 
percentage of the total charge removed (Qre,nov) and breakdown time are indicated above the middle row 
panel. The -CG was performed for case 3, the control case with input perturbations parameters Apert = 0.3 
and s i z e ^  = 2 km.
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Figure 4.33 Conductivity (left) and ElolIEk (right) for negative discharge. The first row shows t -  0 ms, the 
second row shows when Etot = Ek for the first time, and the third row shows t=  1 ms. The percentage of the 
total charge removed (QKmov) and breakdown time are indicated above the middle row panel. The -CG was 
performed for case 3, the control case with input perturbations parameters Apert = 0.3 and sizeperi = 2 km.
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Figure 4.34 Total charge density for negative discharge. The first column shows t — 0 ms, the middle 
column shows when Etot = Ek for the first time, and the last column shows t = 1 ms. The percentage of the 
total charge removed (0 remOT) and breakdown time are indicated above the middle column figures. The -CG 
was performed for case 3, the control case with input perturbations parameters Apert = 0.3 and sizepert = 2 
km.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

4.5 S1JMM;Na' Of RESULTS

Simulations of the response of the upper atmosphere to lightning discharges were 

performed using a non-linear, self-consistent quasi-electrostatic model. The objective was 

to investigate the role of neutral turbulence in creating multiple, laterally offset 

breakdown regions for sprite initiation. The results can be summarized as follows:

1. The results for a laminar atmosphere agree well with results previously obtained 

by Pasko et al. [1997b].

2. Spatial structure in the neutral density can facilitate breakdown of the upper 

atmosphere by lowering the breakdown threshold at regions of density depletions, 

such that weaker electric fields than in a laminar atmosphere are needed to 

produce breakdown.

3. The conductivity, which is enhanced at the density depleted regions, has the effect 

of inhibiting breakdown at those pockets; electric field focusing on the external 

surface of those regions is only marginal. However the conductivity effects are 

dominated by the effects of the lower breakdown threshold due to the lower 

density.

4. Breakdown occurred at multiple points between -75 km and -85 km altitude, 

laterally displaced from the underlying lightning. This result is consistent with 

occurrence of multiple sprites generated by a single lightning, as well as their 

lateral displacements.

5. Breakdown first occurred inside pockets of large density depletions (> 70%). As 

the charge moment increased, breakdown progressively occurred in regions of 

lower density depletions (< 25%). Around the termination of the lightning 

breakdown was produced in regions with depletions < 10%.

6. A negative discharge may also lead to breakdown in a turbulent atmosphere.
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7. The model accounts for the occurrence and location of multiple breakdown 

points. Sprites may develop at these breakdown points if conditions for streamer 

generation are satisfied.

8. The model is two-dimensional and for r > 0 the modeled turbulence corresponds 

to cylindrical rings centered at the symmetry axis. For short segments, the 

turbulence modeled here closely corresponds to plane wave, mesospheric bores 

and rolls that are observed at mesospheric heights.

9. The results obtained in this study are not expected to change significantly in a 3-D 

isotropic turbulence field. The main effect facilitating breakdown is the lowering 

of the threshold in density depletions. This occurs because the electron-neutral 

mean free path is increased, and the mean free path is isotropic.
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CONCLUSIONS

In this work the role of conductivity spatial structure in determining the location 

of sprite initiation points was studied. The investigation was motivated by observations 

showing that sprites are typically offset laterally by several tens of km from the parent 

lightning, and was performed in three interrelated studies: (a) A statistical analysis of the 

temporal-spatial relationships between sprites and their causative lightning; (b) An 

analysis of the relationship between the convective activity of the underlying 

thunderstorm, based on GOES-8 observations of infrared cloudtop temperatures, and the 

occurrence of lightning and sprites; and (c) Computer simulations of the temporal-spatial 

evolution of the lightning-induced electric fields in the mesosphere, under conditions 

when the neutral density structure is both laminar and turbulent. The nonlinear 

relationship between the electric field and the conductivity plays an important role in the 

response of the system, and is treated self-consistently in the simulations. The results of 

these studies are summarized in detail at the ends of Chapters 2, 3 and 4, respectively. 

Studies (a) and (b) have been published as standalone works, and provide the 

observational foundation for the simulations presented in study (c).

The principal results from study (a) used in the simulations are the distribution of 

distances between sprites and their parent +CG, showing that most sprites (-2/3) occur 

within 50 km from the +CG. The principal result of study (b) of importance to the 

simulations was the dynamical relationship between thunderstorm convective activity and 

the production rate of the total -CG population and sprites. This aspect was revealed 

when the maximum sprite and -CG production of the system were simultaneously 

achieved at the time of maximum contiguous cloud cover of the coldest region with Tc < 

-52° C (region with most intense convective activity). Observations have shown that 

sprite activity generally commences a few hours after the onset of lightning activity, 

suggesting that the thunderstorm creates some delayed pre-conditioning of the
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mesosphere. It was hypothesized that this pre-conditioning could originate from 

thunderstorm generated gravity waves, and/or turbulence from breaking gravity waves, 

creating density perturbations at the altitude range of -75 to -85 km, where sprites are 

observed to be initiated. On average, gravity waves take a few hours to propagate to the 

mesopause, which is consistent with the observed delay of several hours between onset of 

lightning and sprite production.

Perturbations to the neutral density can also be generated by other sources, e.g. 

wind shear instability, and mesospheric bores and rolls. Independent of the source, 

neutral density perturbations alter the local response of the atmosphere to electrical 

stimuli. Under these circumstances, breakdown, a necessary condition for sprite 

development, may occur at particular locations that are not directly above the generating 

cloud-to-ground discharge.

Model simulations of the effects of neutral density perturbations on mesospheric 

electrical breakdown were performed to test this hypothesis. The perturbations were 

modeled as isotropic random turbulence fields spanning a range of amplitudes and 

characteristic scale sizes similar to observed mesospheric perturbations.

The results from the simulations of a laminar atmosphere elucidated the non­

linear self-consistent relationship between the electric field and conductivity. The electric 

field applied to the mesosphere due to thundercloud charge removal heats the free 

electrons above 60 km, increasing the electron-neutral collision frequency, which 

decreases their mobility. Consequently, the conductivity, which is directly proportional to 

the mobility, is reduced; this reduction can be as much as a factor of fifty. The effects due 

to changes in the electron density, which are completely dominated by the effects due to 

electron heating, also contribute to the reduction of conductivity, since attachment 

dominates before the field reaches the breakdown threshold. This reduction of the 

conductivity leads to a faster growth of lightning induced electric field in the mesosphere 

than if the self-consistent effects are not taken into account.
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In the simulations a standard thundercloud charge distribution, comprising a 

positive charge +Q at an altitude of 10 km and negative charge -Q  at 5 km, was adopted 

for all cases. Measurements show that the actual charge distribution inside the 

thunderstorm can be extremely complex involving several layers of charge with 

alternated polarity. For the strength of the lightning generated electric field in the 

mesosphere, the important quantity is the charge moment and the simple standard model 

adopted is perfectly adequate. A +/-CG discharge was simulated by removal of the +/-Q 

with a characteristic time scale of a few hundred fis, and complete removal after 1 ms. 

The discharge was performed in a pre-lightning configuration having the atmosphere 

above 50 km relaxed from the influence of the thundercloud dipolar electric. As 

previously mentioned, sprite activity generally commences a few hours after the onset of 

lightning activity. If the interval between lightning discharges is shorter than the 

relaxation time at a particular altitude hum, the pre-sprite electric field configuration at hnm 

and lower altitudes will be different from the pre-lightning configuration used here, and 

may be a superposition of +/- cloud-to-ground, and/or intracloud and etc, discharges. The 

pre-lightning configuration used in the simulations is a good approximation since the 

average time interval between CGs ranges from -300 ms to -1.5 s.

To simulate neutral density perturbations, a randomly generated isotropic 

turbulence layer centered at 80 km with a characteristic thickness of 10 km was 

introduced in the neutral density. Electric fields produced by positive cloud-to-ground 

discharges using mesospheric turbulence levels with relative average amplitudes 0.1-0.4 

and average characteristic scale sizes 2 and 5 km, were investigated. These cases were 

compared against a laminar control case that did not breakdown. Breakdown occurred in 

all simulations involving perturbed mesosphere except the case of the perturbation with 

the smallest relative amplitude (0.1) and largest average perturbation scale size (5 km).

The simulation of a negative lightning discharge also produced breakdown in a 

perturbed atmosphere. The breakdown occurred at the same location as for the first 

breakdown point produced by a positive discharge using the same perturbation pattern. 

The removal of a larger amount of charge was necessary for breakdown with a negative
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discharge than for the positive charge, consistent with observations that negative sprites 

are less frequent events than positive sprites on account of the lower overall charge 

moments associated with negative lightning. These results are consistent with the results 

of Chapter 2, where it was found that 17% of the sprites did not have a parent +CG 

registered by NLDN or VLF sensor, and one sprite was associated with a negative cloud- 

to-ground discharge.

In the perturbed cases, breakdown occurred in isolated pockets of neutral density 

depletions. In no case was breakdown observed in regions of increased density. The 

physical reason for this behavior is that inside pockets of lower density, the electron- 

neutral mean free path is increased, which lowers the characteristic electric breakdown 

field. In the absence of an electric field such density depletions induce local conductivity 

enhancements due to reduced collision frequency and increased mobility. At the onset of 

the cloud-to-ground lightning discharge, the enhanced conductivity initially leads to a 

lower electric field inside the depletions. However, when the field grows enough to heat 

the local free electrons ( E  ~ 0.0005 E k ) , their mobility decreases, leading to a reduction of 

the local conductivity and larger electric fields. Even though by the moment of 

breakdown the conductivity can be a factor of 50 lower than the initial value, it is still a 

local maximum. Focusing of the electric field occurs at the external surface of those 

pocket regions, but this effect is only minor compared to the effect of conductivity 

enhancement. Consequently, the resulting effect of the conductivity is to inhibit 

breakdown at the pockets of density depletions. Conductivity effects are dominated by 

the lowering of the breakdown threshold purely due to the depleted density, with the end 

result that breakdown is locally “facilitated” inside pockets of neutral density depletions. 

Sprites will initiate at these locations if the local mesospheric conditions are conducive to 

the subsequent development of streamer channels.

The turbulence levels modeled in this work correspond to moderate turbulence. 

Knowledge of the mean level of fluctuations in the mesosphere is presently sparse, as is 

information about the variance of this quantity, or the relative occurrence rates of discrete 

structures such as monochromatic wave trains, mesospheric bores and rolls in comparison
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to isotropic turbulence. In the perturbed density cases studied here, breakdown occurred 

first in locations corresponding to regions of greatest density depletions (> 70%), and was 

followed by breakdown in other regions of progressively smaller density depletions. 

Close to the termination of the lightning discharge (1 ms) breakdown occurred in regions 

with density depletions < 10%. The breakdown threshold depended on a combination of 

size and amplitude of the local density perturbation, and charge moment of the 

underlying lightning.

Because the dominant effect facilitating breakdown, the reduction of the 

breakdown threshold, is a local effect due solely to neutral density depletions, it is 

immune to structure out of the r-z model plane. Hence, the results obtained from the 

present two-dimensional cylindrical model simulations also apply to good approximation 

to three-dimensional turbulence. Short sections of the cylindrically symmetric rings 

modeled are in fact good approximations to horizontal plane waves, mesospheric bores 

and rolls that are observed at mesospheric heights. Therefore, the two-dimensional 

cylindrical model used here can be used to study a wide variety of mesospheric 

conductivity inhomogeneities.

This work extends previous studies of the effects of neutral density perturbations 

on breakdown by using realistic mesospheric turbulence structures and following the 

dynamical development of breakdown within these structures in response to applied 

lightning electric fields. The results demonstrate that regions of neutral density depletions 

in the mesosphere lead to local electrical breakdown at multiple sites laterally offset from 

the parent lightning discharge. These results are in good agreement with sprite 

observations. Furthermore, the results of this work indicate that neutral density depletions 

may play a decisive role in setting the sprite activity level above a thunderstorm. The 

isolated breakdown points provide the seed electrons necessary for the primary electron 

avalanche that initiate the generation of the plasma streamers forming sprites.
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Figure A-l Electron mobility, left, and electron density, right, for Q -  50 C and laminar conductivity 

profile o®. The first row is at t = 0 ms (pre-lightning), the second row is at breakdown (E = E/,) and the last 

row is at the end of the positive lightning discharge (t = 1 ms). The instance when breakdown first occurs 

and percentage of the total charge removed (Qremov) at that time are indicated above each panel in the 

middle row.
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Figure A-2 Total conductivity, left, and EtJ E k, right, for Q -  50 C and laminar conductivity profile aB. 

The first row is at / = 0 ms (pre-lightning), the second row is at breakdown (E — Ek) and the last row is at 

the end of the positive lightning discharge (t = 1 ms). The instance when breakdown first occurs and 

percentage of the total charge removed (Qremov) at that time are indicated above each panel in the middle

row.
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Figure A-3 Total charge density for Q = 50, 100, 200 C and aB. Refer to Table 4.2 for further details. The 

first row shows t = 0 ms, the middle row shows when Et0, = Ek for the first time, and the last row shows t = 

1 ms. The percentage of the total charge removed (Qremov) and breakdown time are indicated above the 

middle row figures. Notice that the control case (left column) does breakdown.
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Figure A-4 Electron mobility (left) and electron density (right) for perturbed case 2. The first row shows t 

= 0 ms, the second row shows when Etot = Ek for the first time, and the third row shows t = 1 ms. The 

percentage of the total charge removed (Qremov) and breakdown time are indicated above the middle row 

panel. Case 2 is the control case with input perturbations parameters Apert = 0.2 and $izepert = 2 km.
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Figure A-5 Conductivity (left) and E ,JEk (right) for perturbed case 2. The first row shows t = 0 ms, the 

second row shows when Etot = Ek for the first time, and the third row shows t = 1 ms. The percentage of the 

total charge removed (Qremm) and breakdown time are indicated above the middle row panel. Case 2 is the 

control case with input perturbations parameters Apert = 0.2 and sizepert = 2 km.
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Figure A-6 Electron mobility (left) and electron density (right) for perturbed case 3. The first row shows t 

= 0 ms, the second row shows when Etot = Ek for the first time, and the third row shows t = 1 ms. The 

percentage of the total charge removed (C?remOT) and breakdown time are indicated above the middle row 

panel. Case 3 is the control case with input perturbations parameters Aperl = 0.2 and sizepert = 5 km.
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Figure A-7 Conductivity (left) and E ,JE k (right) for perturbed case 3. The first row shows t = 0 ms, the 

second row shows when Eto, = Ek for the first time, and the third row shows t = 1 ms. The percentage of the 

total charge removed (Qremov) and breakdown time are indicated above the middle row panel. Case 3 is the 

control case with input perturbations parameters Apert = 0.2 and sizepert = 5 km.
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Figure A-8 Electron mobility (left) and electron density (right) for perturbed case 6. The first row shows t 

= 0 ms, the second row shows when Etot = Ek for the first time, and the third row shows t = 1 ms. The 

percentage of the total charge removed (Qremov) and breakdown time are indicated above the middle row 

panel. Case 6 is the control case with input perturbations parameters Aperl = 0.4 and sizepert = 2 km.
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Figure A-9 Conductivity (left) and ElotIEk (right) for perturbed case 6. The first row shows t = 0 ms, the 

second row shows when Eto, = Ek for the first time, and the third row shows t=  1 ms. The percentage of the 

total charge removed (Qremov) and breakdown time are indicated above the middle row panel. Case 6 is the 

control case with input perturbations parameters Aper, = 0.4 and sizepert = 2 km.
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Figure A-10 Electron mobility (left) and electron density (right) for perturbed case 7. The first row shows t 

= 0 ms, the second row shows when Elo, = Et for the first time, and the third row shows t = 1 ms. The 

percentage of the total charge removed (Qremov) and breakdown time are indicated above the middle row 

panel. Case 7 is the control case with input perturbations parameters Apert = 0.4 and $izepert = 5 km.
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total charge removed (Qnmm) and breakdown time are indicated above the middle row panel. Case 7 is the 

control case with input perturbations parameters Apert = 0.4 and sizepert = 5 km.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

' „ ' - . 1 ' . ' i  r :  7,  .  , „  « 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

P E R G A M 0 N  Journal o f Atmospheric and Solar-Terrestrial Physics i l l  (IIS I) I l l - I l l

Journal of 
ATMOSPHERIC AND 
SOLAR-TERRESTRIAL 
PHYSICS

www.elsevier.com/locate/jastp

Statistical analysis o f  sp a c e - tim e  relationships betw een sprites 
and lightning

Fernanda T. Sao Sabbas3-’*, Davis D. Sentman3, Eugene M. Wescott3, Osmar Pinto Jr.b,
Odim Mendes Jr.b, Michael J. Taylor0

a Geophysical Institute, University o f Alaska Fairbanks, 903, Koyukuk Drive, Fairbanks, A K  99775-7320, USA 
bInstitute National de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP 12240-340, Brazil 

cSpace Dynamics Laboratory, Utah State University Research Foundation, 1695 N. Research Parkway,
North Logan, UT 83431-1947, USA

Abstract

We present a detailed statistical analysis o f the association o f 40 sprite events w ith  lightning from  the parent thunderstorm. 
Both temporal and spatial criteria were used to identify the parent cloud-to-ground (CG) lightning. Sprite images were GPS 
tim e stamped and their locations triangulated. In  contrast to previous reports o f nearly one-to-one association o f sprites w ith  
positive cloud-to-ground (+C G ) lightning, 11 events (27% ) did not have a +CG  recorded by the National Lightning Detection 
Network (N LD N ), and 7 events (17% ) had neither N LD N  nor very low  frequency (V LF ) signatures associated w ith  them. A  
negative cloud-to-ground (-C G ) preceded one o f these events by 9 ms. As expected fo r ~16.7 ms integrated images, none 
o f the sprites without a +CG had any discernible visual characteristic that would distinguish them from  “ regular positive 
sprites” . We have calculated the distribution o f tim e intervals (A t =  rSpnte —  /lightning) fo r the sprites that had a parent -l-CG 
flash registered by the NLDN or VLF systems, and the distribution o f distances between the sprite nadir positions and the 
flash locations registered by the NLDN. The time interval (A t)  distribution had a peak around 10-20 ms and a mean o f 
30 ms (total). This distribution is broadly consistent w ith  the characteristic single electron avalanche time scale associated 
w ith  streamer growth between ~7Q and 85 km. The distribution o f the distances (A s) between the nadir point o f sprites and 
the parent -t-CGs showed that approximately two-thirds o f the sprites occurred w ithin 50 km lateral displacement from  the 
parent +CG. The parent +CG peak current distribution had a maximum at 40-50 kA  and mean o f 60 kA, suggesting that 
high peak currents (I S' 75 kA ) are not a necessary prerequisite fo r sprites. The peak current distribution for all +CGs o f the 
storm, w ith a maximum around 10-20 kA  and mean o f 27 kA , exhibits a qualitatively different form  from  the peak current 
distribution o f the parent +CGs producing sprites.
©  2003 Elsevier Science Ltd. A ll rights reserved.

Keywords: Sprites; Lightning; Relationships; Triangulation; Statistics

1. Introduction •

Sprites are luminous mesospheric/D region emissions 
generally associated w ith positive cloud-to-ground lig h t­
ning (+CG s). Their duration can vary from  a few ms to a 
few hundred ms. Sprites were in itia lly  reported to extend

* Corresponding author. Tel: +1-907-474-7410; fax: +  1-907­
474-7290.

E-mail address: ftsufcbosw gi.aiaska edi; (F.T. Sao Sabbas).

from  40 to 90 km altitude and possess lateral dimensions o f 
5-30 km ( 3attrt;ais c l a l, i ‘%5). More recent observations 
have shown that some sprites appear to extend down to the 
top of the clouds (Sw fring et :<l. 1999), and that their hor­
izontal extent w ith in the mesosphere ranges from  ~10 m, 
fo r fhe small witlumn sprites and fine structure w ith in  sprites 
(Ge i ), to ~4Q km  fo r fu lly  developed single
sprites ( o et al., 2000), and a few hundred
o f km ft r sprite i lusters. Sprites are predominantly red in 
color and the dominant emissions are found to be from  the

1364-6826/03/S - see front matter ©  2003 Elsevier Science Ltd. A ll rights reserved, 
doi: 10.1016/SI 364-6826(02)00326-7
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first positive bands o f N 2 (Moij.de as at.. 199: .
et as.. .1996; Huh v net et a l, 2090). Evidence to r ion­
ization has been reported in  the form  o f weak red Nj" 
Meinel emissions (Bncsela c l a!..
1998) and transient blue N f 1NG emissions (A«m>1tvng

A r n i s t n T T  3,1 a l. ,  T .T 9 ) .

Boccippio el ,ii. ( 1995) first established that a +C G  ligh t­
ning precedes most sprites by approximately 20-30 ms. In 
their study, totals o f 42 and 55 sprites observed in  July 12 
and September 7, 1994, respectively, were analyzed. Ap­
proximately 86% and 82% o f the sprites each night, respec­
tively, were preceded by a +CG recorded by the NLDN, 
and 95% and 78% were preceded by a Q-burst (large 
excitation o f the normal modes o f the Earth-ionosphere 
cavity in  the extremely low  frequency (ELF) Schumann res­
onance band), recorded by an ELF sensor. Subsequent stud­
ies have reported results that are generally consistent w ith 
these observations ( Lyons, 199 r and bian, 1997;

Based on observations showing evidence that sprites are 
strongly associated w ith  positive cloud-to-ground lightning, 
several mechanisms have been proposed to explain the sprite 
generation process (Bocsippio e t  a!., 1995; Pa.4o et si.
f OO'T- i- 'v f !  :*f ;vf fy K s V 'L vO j j p j £  .3 T;d ( j U f C  V’ i.Ch, l v 9 t V

Tara !59o). A  w idely accepted
model ( ’ 1 ' ) uses a quasi-electrostatic ap­
proach in  which a transient electric fie ld generated by a +CG 
is the dominant trigger mechanism for sprites. Because o f 
the higher altitude o f the positive charge center inside the 
thunderstorm assumed in  this model and the higher inci­
dence o f continuing current among ‘ CGs when compared 
to other types o f lightning, the charge moment o f 9-CGs 
is on average greater than other types o f flashes, making 
-f-CGs more effective at generating sprites than other types o f 
lightning. However, the model does not rule out occasional 
— CGs and intracloud discharges (IC s) w ith  a large enough 
charge moment to generate a breakdown electric fie ld in  the 
mesosphere and produce a sprite.

Using an extensive ei 1 1 -light TV data from  the sum­
mer o f 1996, Sao Sab analyzed 746 sprites from  7
different nights and found mat only 65% o f sprites were as­
sociated w ith -f-CG recorded by the N LDN, suggesting that 
other types o f lightning besides +CGs could be generating 
sprites. About 11 % o f sprites were found to be immediately 
preceded by a —  CG, and 24% o f sprites were not associated 
w ith  a CG registered by the NLDN. A t the tim e this study 
was performed no association between sprites and —  CG had 
been reported. In  an independent study, Barrington-Leigh cl 
al. 3.1999) subsequently reported observations o f 2 sprites 
that had a —  CG VLF signature associated w ith them. 
Those results support Sao Sabbas { j 999) suggestion that 
+CGs are not the only type o f lightning that can generate 
sprites.

In  this paper, we report results o f a detailed statistical 
study o f the space-time association o f sprites w ith positive

and negative CGs. In most previous studies o f the associ­
ation o f sprites w ith  lightning, sprites were assumed to be 
centered above the causative +CGs, which were identified 
based on tuning proxim ity ( , v rac 1 . i ’
1997; Beil csl al., 1998).' , . 1 , using 7 events, and
W'isuofi ui a*. 3. s 998; 2 ;in 1 1 , using 20 events, have triangu­
lated the location o f sprites showing that they are actually 
laterally displaced from  the -t-CGs on average — 50 km. In 
the present study we investigated the association o f sprites 
w ith ±CGs preceding the sprites based on tim e and dis­
tance. We calculated the distribution o f distances and time 
differences between the parent +C G  and the sprite, and the 
peak current distribution o f the sprite-associated +CGs. The 
results obtained here were compared w ith four previous 
observational studies. We also discuss a definition fo r an 
“ independent sprite event”  based on the tim e interval and 
distance between the sprite and the parent +CG, as w ell as 
considerations about the physical process involved in  in iti­
ating a sprite.

2. Observations

We studied a set o f 40 sprite events recorded on July 22, 
1996, during the Sprites96 Campaign, conducted in  the cen­
tral United States. The location o f cloud-to-ground lightning 
discharges o f the sprite producing thunderstorm, recorded 
by the NLDN between 00:00 and 14:00 UT, are shown in 
Fig. ! together w ith  locations o f CGs from other thunder­
storms. Sprites were documented above the mesoscale con­
vective storm (M CS) over Kansas.

The location o f the sprites was triangulated, w ith  an 
accuracy o f a few to a few tens o f km, from  images si­
multaneously obtained by University o f Alaska (U AF) and 
Utah State University (USU) located at different ground 
optica! sites. Simultaneously recorded sprites were easily 
identified by comparing their tim e and visual characteris­
tics in  tlie  images recorded by UAF and USU. The UAF 
observations were made from  the Wyoming Infra-Red Ob­
servatory (W IRO, 41.098°N, 105.997°E, 2.943 km alt.), on 
Jelm Mountain, W yoming, using an unfiltered intensified 
(-6 0 0 -8 0 0  ran BW ) CCD video camera w ith  -1 7 ° FOV 
operating at 30 frames/s (fps). A  GPS clock was coupled 
to the camera system to provide tim e stamped images (TV 
fields) w ith a resolution o f — 16.7 ms (1 fie ld), and an ab­
solute scan line accuracy o f 1 ps. The GPS time stamped 
onto the image (t#eid) corresponded to the very last scan 
line o f each fie ld, and was used as the sprite time (fspnte)-

The USU observations were obtained from  Yucca Ridge 
Field Station (YRFS, 40.669°N, 104.939°E, 1.6 km a lt.), 
located 20 km northeast o f Ft. Collins, Colorado. Sprites 
were recorded at 25 frames/s (fps) using an Isocon cam­
era w ith — 22° fie ld-of-view  (FO V). The camera was fit­
ted w ith  a 665 nm interference filte r to image sprites in  the 
N2 firs t positive system, and each video field was uniquely 
time stamped using a crystal clock oscillator w ith a d rift o f
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1

Fig. 1. Map o f United States showing location of +CGs (red), -CGs (blue) and +CGs possibly associated with sprites (green), occurred 
between 0 and 14 UT, on M y 22, 1996. The lightning from the sprite producing storm is within the green rectangular region. Yellow 
asterisks indicate the locations o f the 2 ground observation sites.

~ 2 s/day assumed to be linear. The dock was set manually 
at the start o f each night to an accuracy o f better than 1 s 
(see d a l., 1’>99 fo r details).

The lightning inform ation was provided by the NLDN 
(Cun 1, W S ). Broadband electric fie ld data (be­
tween ~200 Hz and ~200 kH z) recorded from  the Lang- 
m uir Laboratory, New Mexico (Stanley a a l. 2009), were 
examined to look fo r very low  frequency (V LF ) signatures 
(3-30 kH z) o f CGs flashes in  the cases fo r which NLDN 
did not record a lightning signature.

3. Results and discussion

3.1. Identification o f sprite independent events

In itia lly , we visually identified 47 sprites recorded from  
both ground sites that could be triangulated. To be identified 
as an independent event, a sprite had to have occurred w ith 
a time separation o f at least 1 video fie ld (~16.7 ms) and 
be spatially distinct from  any sprite occurring in  the previ­
ous field. The spatial displacement requirement prevented 
counting a re-brightening or the continuity o f previous pro­
cesses as distinct events. Individual events could be single 
“ sprite units”  (Sentaae al., or what we defined as 
“ sprite spatial groups” , i.e., a group o f units that occurred 
simultaneously, w ith in a single video fie ld  (e.g. Figs. 9a 
and b).

This prelim inary definition, based solely on video images, 
proved not to be completely unambiguous in  the case o f 
complex events when a single lightning discharge generates

consecutive sprites. Hence, we constructed a statistic based 
on both the tim e interval between a sprite and its nearest 
preceding (parent) +CG and on triangulation. The parent 
CG candidates, positive or negative, were in itia lly  screened 
by requiring the CG to have occurred in  a space-time vicin­
ity  o f the sprite defined as a square region o f 400 km on a 
side, centered on the sprite, and w ithin a 1 s window pre­
ceding the sprite. Cloud-to-ground lightning registered by 
NLDN, occurring closest in  time preceding the sprite and 
closest in  space were selected as being the parent CG. For 
CGs w ith  a VLF signature and no NLDN signature, only 
the time criterion was applied. Negative CGs were selected 
only i f  neither the N LD N  nor the Broad band electric fie ld 
sensor recorded a positive CG. To calculate the time inter­
val between sprites and parent +CGs (A t =  fente -  Oigktmng) 
the GPS time tag o f the video fie ld (t^a  ) in which the sprite 
first appeared was used as %,rjte (Fig. 2).

In  the video systems used in  this study the time stamp on 
each image fie ld refers to the end o f the video field. Each 
video fie ld has a duration o f ~16.7 ms, so the start o f the 
image is at feu -1 6 .7  ms and the end is at fed (=tspnte when 
a sprite is present). Hence, the sprite could have occurred 
at any instant in  the interval isplite —  16.7 ms to fspnte, and 
16.7 ms is the maximum uncertainty in  the sprite time. In 
the cases when the parent lightning occurs w ith in the inter­
val o f the video fie ld containing the sprite, A t may be less 
than 16.7 ms, since causality requires the sprite to have oc­
curred some time after the lightning but before the end o f the 
video field. The sprite must be constrained to this interval. 
When A t < 16.7 ms, the uncertainty in  the sprite time is 
equal to At.
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1 video field = -16,7 ms

Sprite End 
somewhere

-F 4
Ughtning

1—
TField TSprite

Time

^  ^Sprite ^Lightning

Fig. 2. Diagram showing how A t can be < 16.7 ms. The lightning 
occurs before the sprite and the GPS time stamped at the end of 
the field is assigned as iSpiite- Due to causality the sprite must have 
occurred some time after the lightning but before the end o f the 
video field.

At between sprite and +CG (ms)

Fig. 3. Distribution o f the time difference between the sprite and 
parent +CG flashes within the sprite’s space-time vicinity, binned 
in intervals of 10 ms. The error bars are the statistical errors, i.e. 
the square root o f the number of events in each bin.

Fig. 3 shows the distribution o f time intervals between 
sprites and parent +CGs. The first bin (0 <  A t <  10 ms) 
and part o f the second bin (10 <  A t <  20 ms) represent the 
cases in  which the parent lightning occurs w ith in the interval 
o f the video field containing the sprite, discussed in  the pre­
vious paragraph. The tim e-interval distribution peaks around 
10-20 ms and possesses a mean value o f 30 ms (20 ms i f  
we exclude the 2 outlying events). This distribution agrees 
w ith  results reported by Bell et al. (1.998 j.

B»dl el ;;i. (1998) suggested that the longest delays ob­
served in  their study were associated w ith small sprites 
for which horizontal intracloud discharges removed the 
amount o f charge necessary to generate them. Furthermore, 
A  t would vary from  0 to 15 ms for the larger events to 
100 ms to the smallest events. We grouped the sprites an­
alyzed here in  three categories w ith respect to visual size

and brightness: small, medium and large. The three groups 
were statistically consistent w ith each other (graph not 
shown). We did not observe any consistent visual distinc­
tion between sprites w ith short and long At: in  fact, the two 
events w ith  largest A t (outliers) were very bright (large) 
sprites. We suggest that the time delay between lightning 
and sprites characterizes the time scale o f the duration 
o f the physical process (or processes) that is responsible 
fo r the sprite initiation, and takes place once the transient 
electric fie ld is established in the mesosphere. This process 
is discussed in  recent models based on streamer physics 
( 1 t , el i ) that explain in  de­
ta il how the fane structure observed m high-speed (Stanley 

N ielser; ei _nt'(') and telescopic 
( ) images o f sprites develop.

The process that originates a streamer can be trig ­
gered from  an avalanche initiated by a single electron. 
The avalanche creates a local charge separation, and the 
streamer develops when the electric fie ld  o f the space charge 
equals the external transient electric fie ld in the mesosphere 
generated by the CG. Pasco et ai. (199K) have modeled 
the characteristic time o f this process as iiz =  zs/vi, where 
z, =  (l/a)hi(4TOoG2i? i/e ) is the distance over which the 
avalanche generates a space charge fie ld comparable to the 
ambient electric field, taken to be the breakdown field 
Here, a =  (n, —  )/t?d, where Vj is the ionization rale, v, is
the electron attachment rate, id  is the electron d rift speed, 
and the space charge is assumed to be concentrated in  a 
sphere o f radius ~ rs. Fig. i  o f el al (1998) shows 
the altitude profile  o f the modeled i,. The distribution o f A t 
between the sprite and parent +C G  shown in  Fig. 3 is con­
sistent w ith the characteristic tim e scale fo r the development 
o f an individual electron avalanche into a streamer between 
~ 7 0  and 85 km altitude modeled by Pinko si ei , I VPS).

Fig. 4 shows the distribution o f distances (A i)  between 
the triangulated nadir point (latitude and longitude) o f sprite 
events and the location o f parent 4-CGs. The distances be­
tween sprite events and parent +CGs were calculated fo r the 
+CGs detected by the N LD N  only. When the sprite events 
were “ spatial groups”  an average nadir point was calculated 
using the triangulated nadir points o f each “ sprite unit” . The 
distribution displayed in  Fig. 4 shows that approximately 
two thirds o f sprites occurred w ith in  50 km from  the par­
ent +CG, in  agreement w ith  [.yens i,i. Wfc) and Wesmt; es 
s i i \9W t. The maximum distance observed was ~82 km. 
Since “ spider”  discharges extending fo r ~  100 km have been 
previously observed (Lyons, 1996), a ll +CGs in  the present 
study were consistent w ith previous results, and no further 
spatial selection criteria were applied to identify indepen­
dent events.

We also plotted the tim e intervals versus the distance 
(Fig. 5) and there was no correlation between the two quan­
tities, i.e. sprites further away from  the +CG do not appear 
to have longer delays.

Most sprites (~95 ±  15%) that were associated w ith 
+CGs occurred w ith in 40 ms after the parent +CG. Only
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Fig. 4. Distribution o f the distances between sprites events and 
parent +CG flashes within the sprite’s space-time vicinity. The 
events were binned in intervals o f 25 km, and the “error bars” are 
the statistical errors.

40 60
As (km)

100

Fig. 5. Time interval between sprites and associated +CGs versus 
the distance between them. The two outliers, one with A t=140 ms 
and As=51 km, and the other with Ar =197 ms and As=75 km, 
are not shown.

a maximum time interval o f 40 ms from  the parent CG were 
grouped into a “ sprite time group” , sim ilar to the manner in 
which individual strokes are grouped into flashes (Cummins 
e  ai... 1998). The individual “ sprite units”  or “ sprite spa­
tia l groups”  were called “ sprite time units” . Seven sprites 
that did not have a +CG  registered by any system, and 
which had been in itia lly  considered to be independent events 
were reclassified to be “ time units”  form ing a single “ time 
group”  event. The hypothesis used here is that i f  the electron 
avalanche can take up to 40 ms to develop into a streamer 
in a particular location, m ultiple “ sprite time units”  could 
be produced by the same CG at different locations, w ith a 
varying duration fo r the streamer development, probably in ­
fluenced by the local characteristics, w ith in  a maximum A i 
o f 40 ms from  the CG. The total number o f sprite events 
was thereby reduced from  47 to 40, 7 events being “ time 
groups”  w ith  2 “ time units”  each.

The definition o f what an independent sprite event m ight 
be has been extensively but inform ally discussed w ith in  the 
sprite community; the topic has not yet been approached in 
scientific papers. There is no established definition o f “ inde­
pendent sprite event.”  This is an important issue since any 
analysis o f the temporal and spatial relationship between 
sprites and lightning based on observational data is affected 
by how and i f  sprites are grouped into “ independent events” ,
i.e., by the definition used. For the sprites occurring on M y  
22,1996, analyzed in  this paper, the maximum A t observed, 
excluding the 2 outliers, was 40 ms. However this could be 
a particularity o f this specific night, resulting from  a com­
bination o f the characteristics o f the thunderstorm, ligh t­
ning activity and local mesospheric conditions. For exam­
ple, applying the same selection criteria fo r parent +CGs 
(closest in  tim e preceding the sprite and closest in  space), 
a prelim inary analysis o f 69 triangulated sprites from  M y  
24, 1996, resulted in  only 58 ±  9% sprites occurring w ithin 
40 ms after the parent +CG  (not shown). That illustrates the 
necessity o f a detailed statistical study o f a large data set o f 
triangulated sprites w ith  GPS tim ing from  a variety o f storms 
and locations to establish a definition o f “ independent sprite 
event”  w ith  bounded variances that can be w idely adopted. 
Such a study is been currently developed as a continuation 
o f the analysis reported herein.

two events occurred w ith  a A i greater than 40 ms after the 
+CG. Given the large time interval that those sprites had 
from  their parent +CG (140 and 197 ms) it  is possible that 
closer -t-CGs had occurred but were not registered by either 
NLDN or the Broadband electric fie ld sensor.

Except for the two outlying events, the analysis o f Fig. 3 
suggests 40 ms as an effective upper lim it for the delay be­
tween the parent -t-CG flash and the sprites observed during 
this night. The 40 ms delay exceeds the tim ing uncertainty 
o f ~  16.7 ms by a factor o f ~2.5, and is therefore a robust 
result. Based on this result, consecutive sprites that had a 
minimum time separation o f ~  16.7 ms from  each other and

3.2. Sprites' association with lightning and comparison 
with other studies

W orking w ith the redefined data set o f 40 sprite events, 
we found that about 73 ±  13% o f the sprites were associ­
ated w ith  a +C G  recorded by the NLDN. This percentage 
increased to 82 ±  14% when we considered VLF signatures 
fo r -t-CGs not detected by the NLDN. NLDN has detection 
efficiency around 90% fo r — CGs (OsMruas et a’ ., 11/98). 
The detection efficiency o f -t-CGs has not been documented, 
but may be assumed to be sim ilar to this. The 10% increase 
in  the number o f sprites associated w ith -t-CGs when VLF 
data is considered supports this assumption.
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Table 1
Comparison o f reports of the percentage o f sprites associated with +CGs

Study Dates Report Total number 
of sprites

Percentage of sprites 
wit!} +CGs detected 
by the NLDN (%)

July 12, 1994 
September 7, 1994 
August 6, 1994 
July 6, 7, 11, 19, 21, 
22, 24, 1996 
July 22, 1996

B o c c ip p io  o: a l. ! 1 9 9 .')  

Lyons ( U hkji 
Sec Sabhr, { i 999;

This study

42
55
36

746

40

86 ±  14 
82 ±  12 
94 ±  16 
65 ± 3

73 ±  135

We have compared the percentage o f sprites associated 
w ith lightning calculated in  this work w ith values reported
by ’ , . (■) and Sao Sab-

mpared the time
ot occurrence o f sprites, recorded in  GPS time-stamped 
low -light-level video images, w ith the time o f lightning 
discharges from  the associated thunderstorms recorded by 
the National Lightning Detection Network (N LD N ), as 
w ell as w ith electromagnetic “ Q-buxsts”  events. The ELF 
data was time-tagged w ith  an internal PC clock that drifted 
~13 s/day. The d rift was assumed to be linear. An algo­
rithm  generated by comparing the recorded onset times w ith 
the GPS-timed sprite events corrected the d rift. The sprites 
occurred above thunderstorms over the central US and were 
observed from  Yucca Ridge. The identification o f the par­
ent -t-CGs o f the sprites was based m ainly on tim ing. Sprite 
locations were not triangulated, and the spatial requirement 
was that N LDN and/or ELF signatures must have originated 
from  the same thunderstorm that generated the sprites.

Lyons ; I'W f) studied 36 sprites recorded in  GPS time 
stamped images from  Yucca Ridge, during a 2 h interval. 
The sprites occurred above a mesoscale convective system 
(MCS) over Nebraska on August 6, 1994. Lyons (1996) 
reported that 94% o f sprites were preceded by -t-CGs reg­
istered by the NLDN. Seven sprites were triangulated and 
the location o f the other sprites was estimated based on the 
location o f the parent +CG, which was identified based on 
the tim ing.

Sac Sabbas {. analyzed 746 sprites from  7 different 
nights in  1996, recorded from  Yucca Ridge by Utah State 
University. The sprites occurred above thunderstorms over 
the central US on July 6, 7, 11, 19, 21, 22 and 24, 1996, and 
were image using the same system describe in  the Section
2. To compensate fo r the time uncertainty o f this system, 
a selection window w ith A t o f 360 ms before the sprite 
and 60 ms (3 fields at 25 fps) afterwards was adopted in  
identifying the parent +CG. Sprites were not triangulated in 
this study, so to be considered a possible parent the +CG 
had to be inside the fie ld o f view o f the camera. W ith this 
approach several -FCGs that were not associated w ith  sprites 
may have been incorrectly tagged as the possible parents 
o f sprites. Nevertheless, only 65 ±  3% o f the sprites were

55 -|---------- 1---------- 1---------- 1---------- 1---------- 1----------
0 1 2 3 4 5 6

Report

Fig. 6. Comparison between various statistical studies o f percent­
ages o f sprites associated with +CGs detected by the NLDN. The 
region between the least upper bound (LUB) and the greatest lower 
bound (GLB) is highlighted. •

associated w ith  a +CG  signature registered by the NLDN. 
The same criteria were used to look fo r a possible association 
o f sprites w ith  — CGs when there was no +CG. Table 1 
summarizes these results.

The definitions o f “ sprite independent event”  utilized for 
studies 1-3 were not available, in  study 4 a ll “ sprite time 
units”  were considered to be “ independent events.”  The sta­
tistica l uncertainties (“ error bars” ) o f these percentages were 
estimated using A x =  x/(N^/x), where x is the number o f 
events relative to the percentage (x/N) and N  is the total 
number o f events, and are included in  Table 1. These re­
sults, including the estimated uncertainties, are plotted in 
Fig. 6. The figure also shows the least upper bound (LU B ) 
and the greatest lower bound (G LB ) o f the uncertainties for 
studies 1, 2, 3 and 5. When these uncertainties are taken 
into account, studies 1, 2, 3 and 5 are statistically consis­
tent among themselves w ith in the region bounded by the 
LUB and GLB. Report number 4, however, is statistically 
distinct from  the other reports, since its error bars do not fa ll
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Table 2
Lightning and sprite related data (fib : Sabbss. 'Tyi)

July, 1996 Percentage of 
+CGs relative to total

Percentage of 
— CGs relative to total

Total number of
CGs

Number of 
sprites

Duration of 
period

6 10.9% (2652) 89.1% (21740) 24 392 36 2 h 34 in
7 14.1% (1367) 85.9% (8318) 9685 88 4 h 22 m

11 10.7% (1928) 89.3% (16129) 18057 38 1 h 32 m
19 7.3% (1086) 92.7% (13714) 14 800 83 3 h 05 m
21 17.0% (1504) 83.0% (7327) 8831 212 3 h 27 m
22 10.9% (4412) 89.1% (36193) 40605 84 4 h 07 m
24 9.0% (5088) 89.0% (51446) 56 534 205 5 h 20 m

w ithin their LUB and GLB. The low percentage (65 ±  3%) 
o f sprites associated w ith -t-CGs was obtained using a large 
time selection window, and a data set on average 17 times 
larger than the data sets utilized in  the other studies. Even 
adjusting upwards by 10%, to approximately compensate for 
the 90% detection efficiency o f NLDN, 25 ±  2% o f sprites 
remain w ithout +CGs. Sao Sabbas t 1999) suggested that 
— CGs and intracloud discharges were generating the sprites 
w ithout -t-CGs that could not be explained by NLDN detec­
tion efficiency.

Table 2 shows the percentage o f positive and negative 
lightning relative to the total lightning (positive +  nega­
tive ) fo r the sprite producing thunderstorm o f July 22, 1996 
analyzed here, together w ith percentages fo r other nights 
analyzed by Sao Sabbas (1999). The table also shows the 
number o f sprites observed and duration o f the sprite pro­
duction period fo r comparison. A ll storms had small per­
centages o f +CGs (from  7.3% to 10.9%), showing that the 
production o f a large percentage o f +CGs by the thunder­
storm is neither a necessary condition fo r sprite occurrence 
nor a determining factor for the number o f sprites produced.

Fig. 7 shows a relationship between the onset o f sprite pro­
duction and growth in the rate o f occurrence o f the storm’s 
- f CG fo r a ll peak current ranges. O f the seven days in  1996 
studied by Sao Sabbas (1799), July 21, 1996, is the only 
day fo r which the onset o f the sprite occurrence m ight have 
been observed, since the observations fo r this day started 
before lightning activity. In  a ll other days, lightning activ­
ity  had already commenced before observations began. On 
July 21, 1996, sprites were observed to commence after a 
continuous growth in  the occurrence rate o f storm’s +CGs, 
fo r a ll peak currents ranges. A ll other days had sim ilar 
growths and peaks in  the +CG occurrence rate o f storm’s 
+CG before the beginning o f the observation period (not 
shown).

3.3. Negative sprites and sprites without a CG

Approximately 27 ±  8% o f sprites did not have a parent 
+CG recorded by the NLDN, and 17 ±  7% had neither 
NLDN nor VLF signatures. Two o f the seven sprite events
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Fig. 7. Time distribution of the number o f positive lightning in 
30-min intervals, for different peak current ranges, day 203/96 (SEo 
Sabbas, iv>.'<9). The vertical black line delimitate the observation 
period. Sprites started to occur at 6:40 UT.

that had neither a NLDN nor VLF +CG signature were 
preceded by a — CG (Figs. 8a and 7a). Fig. 8 shows three 
consecutive independent sprite events. The time separation 
between the firs t and second event is 50 ms, and between 
the second and third is 117 ms. The first event (Fig. Sa) 
was preceded by a negative CG w ith  A t = 9 ms. This flash 
was not registered by the N LDN, but it was registered by 
the New Mexico Tech VLF system. Due to its small A t  it 
is very like ly  that this — CG, in  fact, generated the sprite. 
The second sprite (Fig. 8b), considered as an independent 
event here (occurred 59 ms from  the -C G  associated w ith 
the firs t sprite), was not associated w ith  any detected CG, 
positive or negative.

The third event (Fig. 8c) had both N LDN and VLF 4-CG 
signatures preceding it  by 17 ms. The -f-CG had a peak 
current o f 48 kA  and occurred ~78 km  from  the sprite. The 
discharge had a slow ta il in  VLF that lasted ~0.5 ms. It 
was followed, ~ 4  ms afterwards, by a slow energetic field 
change, possibly due to the sprite, that lasted ~ lm s  (not 
shown). The “ positive sprite”  (Fig. Sc) was the brightest o f
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Fig. 8. Three consecutive independent sprite events separated by 50 (a and b) and 117 ms (b and c), respectively. The first sprite (a) was 
preceded by a — CG recorded by the Broad band electric field sensor (no NLDN), At = 9 ms. The second sprite (b) had no CG signature 
associated with it in either NLDN or VLF, and the third (c) was preceded by 48 kA +CG recorded by both systems, A t =  17 ms and 
As =  78 km. The images shown were obtained by UAF.

Fig. 9. The first image (a) shows a sprite preceded by a 22 kA -  CG recorded by both NLDN and VLF systems, A t =  146 ms and 
As = 201 ms. The second (b) shows a similar type of sprite event that was preceded by a 47 kA +CG, A t =  28 ms and As =  9 km. The 
images shown were obtained by UAF.

these three consecutive events, but there were other “ positive 
sprites”  that occurred during the night o f the study that were 
much smaller and dimmer than the possible “negative event”
(a) displayed in  Fig. Xa. The variation o f brightness o f the 
sprites w ith  respect to underlying lightning characteristics is 
not yet w ell understood.

The second sprite preceded by a — CG detected in  this 
study is shown in  Fig. 9a, together w ith  a “positive sprite”  
(Fig. 9b) for comparison o f visual characteristics. The — CG 
was recorded by the NLDN and VLF system 146 ms be­
fore the sprite, had a peak current o f 22 kA  and occurred 
at ~201 km from  the event. Because o f the large A t  and 
distance between this sprite and the — CG, it  is  possible that 
both NLDN and VLF systems missed a +CG  (or — CG) that 
would have a better association w ith  this event. The “ units” 
o f this sprite, shown in  Fig. 9a, were slightly brighter and 
larger than the “ units”  o f the “ positive sprite”  o f Fig. 9b. 
The sprite in Fig. 9b was preceded by a +CG  w ith  a A t 
equal to 28 ms. The +CG  peak current was 47 kA  and it  
occurred ~9 km from  the sprite.

None o f the sprites w ithout +CGs had any particular 
characteristics that would visually distinguish them from 
the positive sprites. An upward-downward difference in  the 
branch orientation m ight conceivably be expected fo r sprites 
generated by lightning o f different polarities. However, we 
do not expect this difference to appear in  a 16.7 ms in ­
tegration image; it  is more like ly  to show on 1 ms im ­
ages from  high-speed cameras (e.g., Stanley et al., 1 999; 
Slenbjek-Nietscn ef a l, 2000). Comparatively, the percent­
age o f “ bright”  and “ small”  events was about the same for 
positive and negative sprites.

There are two possible interpretations for the sprites w ith­
out a +CG. The firs t is that they were preceded by positive 
strokes undetected by either the N LD N  or the VLF systems. 
An alternate interpretation is that other types o f lightning be­
sides 4-CGs, e.g., negative CGs and intracloud discharges, 
may also generate sprites. This interpretation is supported 
by the S5o Sabbas (199V • study, and is not ruled out by 
Pasko etaJ. (1997) quasi-electrostatic model, or the Pasko et 
al. (1998) and .Raizer et u treamer models. Sprites
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Fig. 10. Peak current distribution o f the parent +CG flashes within 
the sprite’s space-time vicinity. The +CGs are binned in intervals 
of 10 kA. Error bars are the statistical errors.

generated by other types o f lightning besides +CGs would 
represent a smaller portion o f the total, such as we may have 
observed here. Furthermore, according to Oejnaknramt and 
Pvtk i 1974), and .. •"<}, vertical intracloud
discharges that annihilate positive charge at the top o f the 
clouds and negative charges at the bottom can both generate 
large electric fields in  the upper atmosphere, also supporting 
this interpretation.

3.4. Peak current distribution o f parent +CGs

Fig. s l) shows the peak current distribution o f the sprite’s 
associated +CG. The distribution exhibits a maximum for 
peak current between 40 and 50 kA . Five out o f the 29 
(17 ±  7%) +CG Hashes preceding sprites had high peak

currents ( >  75 kA ). The average peak current o f 60 kA in  
the present study agrees w ith  the 52 kA  reported by Soil 
ef: j  and supports results showing that the peak
cun i CGs producing sprites span a large range o f
values.

Fig. i la  shows that the peak current distribution o f 
sprite’s associated +CGs in the 7 storms studied in  Sao 
Subhis (1999: also has a maximum around 40-50 kA , and 
is statistically consistent w ith  the one reported here (Fig. 
10). Both distributions are different from  the distribution 
fo r a ll +CGs in  the 7 storms (Fig. 1 lb ), which peaked at 
10-20 kA  and had a mean value o f 27 kA. This difference 
in  distributions is one o f the principal characteristics that 
appear to distinguish the lightning population associated 
w ith  sprites from  those not associated w ith  sprites. The 
peak current distribution o f the -C G  candidates found in  
the Sito Sabbas (1999) study and the totality of —CGs of 
the storm are quite sim ilar to each other; both are centered 
at 10-20 kA  (not shown).

4. Conclusions

We performed a detailed statistical analysis o f the 
space-time relationships between sprites and the associated 
lightning characteristics. The results o f this study can be 
summarized as follows:

1. A  set o f 40 sprite events from  the Sprites96 campaign 
was analyzed. Seven o f the events (17%) did not have a 
parent +CG registered by either NLDN or VLF sensors. 
Images o f these events revealed no particular visual char­
acteristics that distinguished them from positive sprites, 
and such differences are not expected at 16.7 ms integra­
tion. Two o f the sprites w ithout -|-CGs were preceded 
by a — CG, one o f them was very like ly to be associated 
w ith  the —  CG, which was registered by the VLF system 
9 ms before the sprite.
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2. No correlation between the apparent visual size and 
brightness o f sprites, and time delays from  the asso­
ciated +CGs was found. No correlation was found 
between w ith  the size or brightness o f sprites and the 
tim e interval or distance from  their parent lightning, i.e. 
smaller/dimmer sprites or sprites further away from  the 
associated - f CG did not have longer time delays from  
the parent +CG  then the bulk o f the sprite population.

3. The distribution o f time intervals between sprites and 
parent +CGs showed a peak between 10 and 20 ms w ith 
a mean o f 30 ms (20 ms excluding the outliers). We 
suggest that this distribution characterizes the tim e scale 
fo r the development o f an individual electron avalanche 
into a streamer between ^70 and 85 km altitude, as given 
in  the Pasko «  al. ; i ;!1W ■ model. Most sprites occurred 
w ith in  40 ms from  the parent +CGs, suggesting this time 
interval as upper lim it for the characteristic time delay 
between the +CG  flash and the sprites observed during 
this night.

4. The distribution o f the distance between sprites and par­
ent +CGs showed that sprites have the tendency to occur 
w ith in  50 km  lateral displacement from the CG, consis­
tent w ith  results previously reported by Wwjcotf cl :>!. 
; 5 9 98 )and Lyons! i996).

5. The peak current distribution, o f +CGs associated w ith 
sprites exhibited a larger mean and standard deviation 
than the distribution o f a ll positives in  the storm. It  had a 
maximum between 40 and 50 kA  and a mean o f 58 kA , 
compared to a 10-20 kA  maximum and 27 kA  mean o f 
the distribution fo r a ll positives.

The present work is the firs t statistical study to use both 
GPS tim ing fo r images and triangulated positions o f sprites, 
where both temporal and spatial criteria are used to select 
the parent +CG. Additional statistical studies u tiliz ing  large 
data sets (>  100 sprites) over numerous storms distributed 
globally are necessary to arrive at a tigh tly  parameterized 
definition o f “ sprite independent event” .
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[l] We correlated cloudtop temperatures obtained from 
GOES-8 infrared images, lightning data from the National 
Lightning Detection Network, and triangulated nadir 
positions of sprites from a 22 July 1996 Mesoscale 
Convective System (MCS) over Kansas. The maximum 
sprite production of the MCS occurred during the transition 
between growth and decay phases of the system, and when 
the occurrence rate of negative cloud-to-ground (-C G ) 
flash activity maximized. The —CG flash rate was 
maximum when the overlying cloudtop temperatures Tc 
were minimum, —69° to —72°C. During the MCS growth 
phase, the -C G  occurrence rate increased smoothly with 
decreasing Tc, and declined with increasing Tc during the 
decay phase. By way of contrast, the +CG rate remained 
associated with approximately constant Tc (-6 9 °  and 
-72°C ) during the growth phase, and then also declined 
with increasing Tc during the decay phase. The sprite- 
generating +CGs occurred in regions with cloudtop 
temperatures 2-3°C  warmer than the rest of the +CG 
population. INDEX TERMS: 0320 Atmospheric Composition 
and Structure: Cloud physics and chemistry; 3324 Meteorology 
and Atmospheric Dynamics: Lightning; 3329 Meteorology and 
Atmospheric Dynamics: Mesoscale meteorology; 3360 
Meteorology and Atmospheric Dynamics: Remote sensing. 
Citation; Sao Sabbas, F. T., and D. D. Sentman, Dynamical re­
lationship of infrared cloudtop temperatures with occurrence rates 
of cloud-to-ground lightning and sprites, Geophys. Res. Lett., 10(5), 
1236, doi: 10.1029/2002GL015382, 2003.

1. Introduction

[2] Sprites are optical after-effects induced in the middle 
and upper atmospheres by lightning discharges, first docu­
mented in 1989 [Franz et al., 1990], Boccippio et al. [1995] 
were the first to identify that a positive cloud-to-ground 
lightning (+CG) preceded ~85% of the sprites using +CG 
signatures identified by the National Lightning Detection 
Network (NLDN) and/or “Q-bursts” signatures identified 
by ELF/VLF sensors. Subsequent observational studies 
have generally supported those results [Lyons, 1996, Cum­
mer and Inan, 1997; Bell et a l, 1998]. Sao Sabbas [1999], 
studying 746 sprite events from 7 days from the Sprites96 
Campaign, found that only 65% of sprites were preceded by 
a +CG. About 11% were preceded by a —CG and 24% did 
not have any CG signature recorded by the NLDN. A 
detailed study of one of these days, 22 July, 1996, using 
NLDN and VLF data showed that this percentage could be 
increased to ~75%, where the extra 10% would account for

Copyright 2003 by the American Geophysical Union. 
OO94-8276/O3/2OO2GLO15382$O5.0O

+CGs that NLDN would not have registered [Sao Sabbas et 
a l, 2003], About 25% of events remained without preced­
ing +CGs, suggesting that -C G s and intracloud discharges 
might also produce sprites, a possibility that is not ruled out 
by current theories [Pasko et a l, 1997, 1998, and references 
therein].

[3] Although most sprite measurements have been per­
formed in the central region of the US, sprites are global 
phenomena, as was first documented during the space 
shuttle Mesoscale Lightning Experiment (MLE) [Boeck et 
al., 1995]. Between 1989 and 1991, 17 sprites were 
recorded above thunderstorms over Australia, Africa, South 
Pacific and South America. Aircraft observations over 
Central and South America [Sentman et al., 1995], ground 
campaigns in Japan [Fukunishi et al., 2001] Australia 
[Dowden et al., 1996], more recent aircraft [Taylor et al.,
2000] and ground-based observations [Neubert et al., 2001] 
over Europe and over Asia [S« et al., 2002] have confirmed 
these results.

[4] In the Midwest US, most sprite observations have 
been made between May-August, where Mesoscale Con­
vective Complexes (MCC) are somewhat common occur­
rences [Lyons, 1996]. MCCs are a particular type of MCS. 
They are meteorological systems with strong convective 
activity, dimensions between 250 and 2500 km and duration 
greater than or equal to 6 hr (meso-a scale definition based 
upon physical characteristics observed in infrared (IR) 
satellite images [Maddox, 1980], cf. Table 1). MCCs are 
also common in oceanic and continental tropical regions, 
especially in the intertropical convergence zone (ITCZ), and 
over South America [Conforte, 1997]. In South America, 
the MCCs are, on average, about 60% larger in area and 
persist over longer intervals than similar systems in the US 
[Velasco and Fritsch, 1987], thus making this region the 
most active in the Western Hemisphere. Sprite observations 
over different regions of the globe, e.g., Peru [Sentman et 
al., 1995; Moudry et al., 1997], Europe [Neubert et al., 
2001; Taylor et a l, 2000], and Japan [Fukunishi et a l,
2001], reveal that sprites can also be generated over small 
thunderstorms, suggesting that the type and size of thunder­
storms that generate sprites may actually depend on local 
meteorology.

[s] In the present paper we investigate the cloud-top 
temperature characteristics of an intense sprite-producing 
thunderstorm system and the inter-relationships with asso­
ciated lightning and sprite activity. The meteorological 
system is classified according to the Maddox [1980] defi­
nition. The analysis examines the occurrence rate and 
location of sprites and lightning with respect to the thunder­
storm features and temporal development. The objective of 
the study is to create a methodology based on satellite
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Table 1. MCC definition [adapted from Maddox, 1980]

Size A - Contiguous Cloud shield with T® <  —32°C,
area >  105 km2 

B - Interior clouds with Tm <  -52°C , area >  5 x 104 km2 
Initiation Size definitions A and B are first satisfied
Duration Size definitions A and B must be met for a period >  6 h
Max. extent Cloud shield defined in A reaches maximum size 
Shape Eccentricity >  0.7 at time o f maximum extent
Termination Size definitions A and B no longer satisfied______________

imagery that could be used in studies of global sprite 
production.

2. Data Set
[6] We used GOES-8 satellite 10-12 pm IR images over 

the period 0015-1545 UT containing the meteorological 
system over Kansas that produced the sprites observed on 
the night o f July 22, 1996. Forty events from the set of 
sprites observed on this night have previously been studied 
in a detailed report presented by Sao Sabbas et al. [2003]. 
The sprite positions were triangulated (see Sdo Sabbas et al. 
[2003] for details) and the lightning information used here 
was provided by the NLDN.

[7] The GOES-8 data were provided by the National 
Climatic Data Center (NCDC), Asheville, North Carolina. 
The 10 bit/pixel images had a spatial resolution of approx­
imately 4 km, temperature resolution 0.1 K, and were 
spaced at 30 min intervals. We isolated the part of the 
image corresponding to the sprite-producing MCC and 
environs (Figure la) and remapped it to an isometric 
latitude and longitude grid. The count values were con­
verted to cloudtop temperature (Tc) using the procedures of 
Weinreb et al. [2001], Figure lb  shows the resulting color- 
coded temperature map as a function of latitude and 
longitude (lat/lon) for 0615 UT. On these maps were also 
plotted the location of +/—CGs detected by the NLDN and 
triangulated locations of sprites that occurred within +/—15 
min of the image, e.g., from 0600-0630 UT in Figure 1.

several tens of km between the 30 min image intervals. 
This motion corresponded to several pixels in the IR 
images, but the overall effect is minor.

[10] Figure 2a shows that, throughout the lifetime of the 
thunderstorm, the —CG occurrence rate increases in associ­
ation with decreasing Tc during the growing phase, reaches a 
maximum associated with the coldest Tc (—72°C < Tc < 
—69°C) that lasts for ~2 h, and then decreases in association 
with increasing Tc during the decay phase of the storm. The 
+CG rate (Figure 2b) remains associated with approximately 
constant Tc (—72°C <  Tc < -69°C ) during the growth o f the 
thunderstorm and also decreases with increasing Tc during 
the decay phase. The +CGs produced during the growth 
phase occur in association with the same Tc range that —CGs 
are associated with during the —CGs maximum production.

[11] The sprite observation period was 0323-0856 UT, 
and sprites were recorded from 0428 UT to 0829 UT. Figure 
2c shows that during the period of most intense sprite 
activity, between 0545 UT and 0615 UT, sprites concentrated 
over regions with Tc >  —70°C, in particular —65°C <  Tc <

3. Analysis
[s] We matched the lat/lon of the lightning and triangu­

lated positions of sprites to the lat/lon matrices of the 
images and identified the pixels with the temperatures of 
the correspondent cloudtop region. For each image we 
assembled histograms of lightning flashes and sprites versus 
temperature. Comparing the histograms with the Tc maps, 
we find that as the storm grows, compact regions of very 
cold cloudtops develop and the lightning discharges, —CGs 
more than +CGs, have the tendency to concentrate on those 
regions. Not all regions with very cold cloudtops exhibited 
lightning activity, even though cold cloudtops are strong 
evidence of vigorous convection. Generally, we expect that 
charge separation, hence lightning, follows convection, 
leading to an intensification of the lightning activity asso­
ciated with cold cloudtops.

[9] The histograms were combined into temperature-time 
spectrograms (Figure 2) that reveal the evolution of Tc 
associated with lightning and sprites over the lifetime of 
the storm. There is some smearing in the histograms from 
samples obtained near sharp temperature gradients, due to 
the thunderstorm movement northeastward at a rate of

Figure 1. Images of the sprite producing thunderstorm of 
22 July, 1996, observed by the GOES-8 satellite at 0615 UT. 
Panel (a) is the raw data utilized, i.e., the satellite view. Panel
(b) is a cloudtop temperature map (Tc) as a function oflatitude 
and longitude. The map also show the location of+CGs (pink 
crosses), —CGs (black dots), sprites (green circles), +CGs 
associated with sprites (white circles), and —CGs associated 
with sprites (white squares). The CGs and sprites occurred 
within ±15 min of the image time. A similar map showing the 
association of lightning with cloudtop temperatures have 
been previously presented by Lyons et al. [2000].
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Figure 2. Temporal development of the relationship between GOES-8 IR cloudtop temperatures and the occurrence rate 
of lightning and sprites throughout the lifetime of the thunderstorm. Each pixel covers 30 min by 1°C, so that each column 
is the histogram of occurrences vs temperature. The thunderstorm growth phase is 0015-0545 UT. Panel (a) is for -CGs, 
(b) is for +CGs, (c) is for sprites, and (d) is for sprite producing +CGs.

—63°C (0615 UT). The peak in sprite activity occurred 
during the period when the —CGs occurrence rate reached 
a maximum associated with minimum Tc. Even though 
sprites are predominantly generated by +CGs [Boccippio et 
al., 1995; Lyons, 1996, Cummer and Inan, 1997; Bell et al., 
1998; Sao Sabbas et a l, 2003], this result shows that the 
total —CG activity is more tightly correlated with sprite 
activity than has previously been reported. Whether the total 
-C G  activity plays a role in determining the sprite occur­
rence rate, or this result reflects a particular characteristic of 
the specific thunderstorm studied, is presently unknown.

[12] The rate of occurrence of sprite generating +CGs 
remains associated with approximately constant Tc (Figure 
2d), following the behavior of the total +CGs rate (Figure 
2b). The difference is that the distribution of the sprite- 
generating +CGs (2d) is centered between -6 7 °  and 
-69°C , about 2-3°C  warmer than for +CGs taken as a 
whole (2b). The bulk of +CGs of the storm tend to occur in 
the strong convective regions associated with the coldest 
cloudtop temperatures, while sprite producing lightning 
tend to occur in warmer stratiform regions.

[13] The development of the thunderstorm area is shown 
in the last row of Figure 3 together with the sprite, +CG, 
—CG and total +/—CG occurrence rates during the lifetime 
of the thunderstorm. The sprite producing storm is “bom” 
between 0045 and 0115 UT, as a result of the coalescence of 
two relatively small thunder cells (not shown). At 0115 UT 
it satisfies Maddox's initiation criteria for MCCs (cf. Table 1). 
The storm grows until 0545 UT when the contiguous cloud­
top region with T <  —52°C reaches the maximum area of 
~1.4 x 10s km2, after which the storm starts to decay, even 
as the total area of the thunderstorm, as defined by the 
warmer Tc < —32°C, continues to expand. The maximum 
extent of the storm ~2.32 x 105 km2 is reached at 0745 UT. 
The eccentricity of the storm at this point is less than 0.7, so 
this MCS cannot be classified as an MCC according to the 
Maddox criteria. The MCS terminates at 1015 UT.

[14] The ~9 hr lifetime of the system studied here is 
lower than the 14.3 hr mean MCCs duration reported by 
Goodman and MacGorman [1986] in a study of 10 MCCs 
over the Midwest US. During these ~ 9  hr a total of 40,605 
cloud-to-ground flashes were produced, of which 10.9% 
(4,412) were +CGs and 89.1% (36,193) were -C G s. The 
average flash rate 75.2 min-1 was more than 2 times greater 
than the maximum 32.7 m in"1 average flash rate reported 
by Goodman and MacGorman [1986].

[is] Figure 3 shows that the maximum production of 
sprites, from 0545 UT to 0615 UT, occurs at the time of 
maximum area of the region of T < —52°C, spanning the 
transition from growth to decay phases o f the MCS. The 
same behavior also occurs for the —CG (third row) and total 
(+/—) CG (fourth row) occurrence rates. The +CG rate

I ” ' -

Figure 3. Temporal development of sprite rate (first row), 
+CG rate (second row), —CG rate (third row) and contiguous 
area of cloud cover with Tc <  —32°C and Tc < —52°C during 
the thunderstorm lifetime.
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(second row) remains high (>170 flashes/30 min) and 
exhibits a relative maximum during this period, but its 
absolute maximum occurs at 0215 UT, approximately 1 hr 
after merging of the two cells that initiated the MCS. The 
total + /-C G  occurrence rate peaks ~2hr before maximum 
extent, agreeing with the 2.6 hr reported by Goodman and 
MacGorman [1986], By the time of maximum extent of the 
storm (cf. Table 1) the total +/-C G  occurrence rate starts to 
decrease. Goodman and MacGorman [1986] suggest that 
this occurs because the convective precipitation regions are 
replaced by widespread stratiform precipitation.

4. Summary of Results
[i6] The sprite producing system over Kansas on 22 July 

1996 was an MCS that originated from the merging of two 
thunderstorm cells between 0045 UT and 0115 UT. The total 
lifetime o f the system was ~9h. The MCS moved north­
eastward and reached a maximum extent o f ~2.3 x 105 km2 
at 0745 UT, approximately 6 hr after its initiation. The 
maximum sprite and -C G  production of the system were 
simultaneously achieved at the time of maximum contiguous 
cloud cover of the coldest region with Tc <  —52°C, ~  2 hr 
before the system reached its maximum extent. The -C G  
rate increased during the growth phase of the thunderstorm 
in association with decreasing Tc, it reached a maximum 
associated with the coldest Tc (—72°C < Tc < -69°C), and 
then, in the decay phase of the MCS, it decreased in 
association with increasing Tc. We suggest that the total 
—CG activity and dynamical development o f the thunder­
storm may be more tightly correlated with sprite activity than 
has previously been reported. The +CG rate remained high 
during the sprite-recording period, and remained associated 
with approximately constant Tc (-72°C  <  Tc < -69°C, 
same as -C G s) while the system was growing, subsequently 
decreasing with increasing Tc during the decay phase. Sprite- 
generating +CGs occurred in regions about 2-3°C  warmer 
than the bulk population of +CGs.

[n] The techniques reported here to correlate sprite 
occurrence with the spatial and temporal topology of cloud­
top temperatures are the initial steps towards developing a 
robust methodology based on satellite imagery that could be 
used to study sprite-generating thunderstorms wherever 
they might occur in the world. The present analysis was 
for a single storm. To be most useful and to bound the 
variance of the results, additional studies would need to be 
made across many thunderstorms and a variety o f latitudes, 
longitudes and seasons. Candidate regions and satellites 
suitable for such studies include South America (GOES-8; 
Velasco and Fritsch [1987]), equatorial and Southern mid­
latitude Africa (Meteosat-7; Fuellekrug [2001]) South-, 
Southeast Asia, and the Malay Archipelago (GMS-5 and 
InSat; Sentman and Sao Sabbas [2001]).
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