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ABSTRACT
111

In several populations of pink salmon, the short-term dynamics population size was 

related to both the mean and variance of individual family sizes, because not all families 

were equally productive. In the marine lifestage, population increases came 

disproportionately from the most productive families, especially in populations with the 

highest average marine survival. Moreover, the trait of marine survival itself had a 

statistically detectable genetic component. This implies that the most favored phenotypes 

change from generation to generation, and that the marine environment is unpredictable 

and changing. These results, together with laboratory studies of freshwater survival and 

measurements of wild pink salmon in Prince William Sound. Alaska, seemed to indicate 

that family-specific variation in marine survival and variation in egg retention within the 

redd were the most important potential influences on variation of pink salmon family size 

in the studied populations, when density was controlled to intermediate levels. These 

results provide more justification for maintaining stock sizes at intermediate or high 

levels, and for protecting metapopulation structure. These results also show the 

importance of variation and instability in the recruitment process of Pacific salmon, and 

highlight the inadequacy of current models of salmon recruitment, w hich emphasize 

stability and long-term averages.
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Much of the work on my dissertation was done in collaboration w ith others.

About two weeks after the wreck of the Exxon Valdez in 1989 .1 traveled to Pnnce 

W illiam Sound with Doug Eggers. Chief Fisheries Scientist for the Alaska Department of 

Fish and Game, to begin planning for the evaluation of the effects of the resulting oil spill 

on Fishery resources. Initially. Dr. Eggers and I started planning a series of studies w ith 

Alaska Department of Fish and Game staff -  especially Sam Sharr. w ho at the time w as 

the Commercial Fisheries Division’s research project leader in Prince William Sound. In 

those First few days of planning, Alex Wertheimer and a number of his colleagues at the 

National Marine Fisheries Service helped refine the goals for an entire suite of pink 

salmon studies to be coordinated between ADF&G and the National Marine Fisheries 

Serv ice. After several days of discussion, we jointly agreed to a series of related studies 

to be conducted cooperatively between the University of Alaska, the Alaska Department 

of Fish and Game, and the National Marine Fisheries Service. We agreed that to quantify 

the effects of the oil spill we needed to 1) develop improved estimates of pink salmon 

escapem ent for pre- and post-spill years, 2) measure egg (embryo) survival. 3) measure 

fry survival, 4) observe the near-shore condition and distribution of fry in Prince William 

Sound, 5) measure hatchery and wild salmon survival in the saltwater environment, and 

6) survey the pink salmon habitat affected by the oil spill. The management of indiv idual 

studies was assigned to Sam Sharr and Brian Bue, of the Alaska Department of Fish and 

Game, Alex Wertheimer and colleagues at the National Marine Fisheries Service, and 

Mark W illette of ADF&G and his collaborators at the University of Alaska Fairbanks.
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Alas tor you lawyers' You have taken away the key of knowledge. You did not go m yourselves, and those that 
were on their way in, you stopped.

—  Luke 11:52

CHAPTER 1 -  INTRODUCTION 

THE STORY OF TWO SALMON MANAGEMENTS

Lichatowich’s (1999) history of the Pacific salmon in the Pacific Northwest takes 

the reader from 400 million years ago to the present. Beginning w ith the industrialization 

of the Pacific Northwest, he tells a story of overharvest, inability to control harvest rates 

directly, ideological dependence on hatchery technology, inability to recognize clear 

failure, and most importantly, the conversion of salmon habitat to other uses. The 

subtitle of Lichatowich’s book, “A history of the Pacific salmon crisis,” sets a tone that I 

think many people associate with the state of salmon and their management everywhere 

they occur, or once occurred, including Alaska. Canada, and the Russian Far East.

This account contrasts sharply with Royce’s (1989) glow ing description of the 

success of science and industry in Alaskan salmon management. Royce was a student of 

the Alaskan situation beginning in period of over harvests, ineffective management, and 

great public dissatisfaction, and his account was written near the peak of the value of the 

Alaskan salmon fishery. In describing changes in Alaska from the 1950s through the late

16
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1980s, it seemed to Royce that salmon scientists and managers had achieved all their 

major goals: depleted runs were rapidly increasing -  presumably because of the effects ot 

management -  the benefits of the resource were broadly distributed, and there was an 

effective management system in place with strong public support. In the late 1980s, the 

value of the resource was at an all-time high and the seafood harvesting industry was the 

largest private-sector employer in the Alaskan economy, both in terms of income and 

employment.

Alaska and the Pacific Northwest had similar pre-industrial histories with salmon 

management and human use, and in both regions people v alued salmon and had complex 

property-nghts systems and economies based on salmon (Lichatowich 1999). Starting in 

the 19Ih century, salmon were recognized as a valuable industrial resource to western 

industry, and an infrastructure to use Alaskan salmon as an industrial commodity began 

to develop. By about 1900, canning became the main means of preserv ing the salmon 

harvest, and the Federal Government w as looking for w ays to encourage an Alaskan 

salmon industry.

In 1897, The Federal Government sent the vessel Albatross to Alaska to survey 

the situation with the Alaska salmon fisheries under the command o f Jefferson F. Moser. 

Moser (1899) provided a good characterization of the state of the fishery and the thinking 

of the salmon industry at the time. Referring to the 1897 fishing season, he says "the 

redfish (sockeye salmon) is the commercial fish, the other species being packed

17
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incidentally, or to fill up the quota when other kinds are scarce.” Later in his report, 

he states that just over 7 5 of  the 1897 pack w as sockeye salm on, by w eight, w ith just 

over 11% pack pink salmon. Even more interesting is his statement.

Even when white men are met and questioned, information relating to the streams is 

difficult to obtain with any degree o f exactness. The men at the head o f  the canneries 

know the cannery business thoroughly. They know how to get the fish to the canneries, 

pack them, case them for the market, and figure on the profits, but it is exceptionally rare 

to find one w ho has followed even his home stream to its sources and examined the lake 

system and the spawning grounds. This is not said in the sprit o f  criticism, for the 

cannerymen are interested only in obtaining fish, but to indicate the difficulty o f  

gathering the information desired in our work, except by personal examination and 

investigation.

Even at this very early stage of the fishery development M oser observed depleted 

runs, and he could clearly see the need for conservation measures. M oser also noted how 

the new industrial fishery changed the status of fishery rights:

Many disputes arise concerning the fisheries. A native, w hose ancestors, and whose 

rights are respected by other natives, supplies a certain cannery with his catch, as possibly 

he has been doing for years. A rival cannery tells the native that he must sell his catch to 

it. and that otherwise their men will fish the native's stream. The result is over fishing, 

complaints, bad feelings, blow s, and threats o f  bloodshed. So far as can be learned, there 

are no legal rights or title to any fishing-grounds in Alaska except w hat force or strategy 

furnish.

18
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One of the first acts of federal management in 1896 forbade blocking or 

damming salmon streams, and forbade certain fishing practices (M oser 1899). Within a 

few years, federal law w as to require any person, company, or corporation in Alaskan 

waters to establish a fish hatchery that would produce sockeye salmon fry at least four 

times the number of mature salmon taken each year. These early enhancement efforts 

were almost all failures, because the hatchery operators did not understand basic salmon 

biology (Ropel 1982).

The salmon trade concentrated in the hands of a few pow erful fish packing 

companies. Large and efficient fish traps were introduced, and the Federal Government 

allowed exclusive fishing rights. Commercial catches increased to a peak of 126 million 

fish in 1936. and then declined. Detailed catch statistics for the commercial salmon 

fishery in Alaska are available from 1878 (Byerly et al. 1999), and these provide a long

term index that tell much o f the story of salmon and salmon fisheries in Alaska.

Alexandersdottir (1987) divided the pre-statehood pink salmon fishery in 

Southeast Alaska into three periods (following Cooley 1963). which could be applied to 

the whole salmon fishery in Alaska. She describes 1900 to 1925 as the buildup period, 

when there was very little regulation o f the fishery. This period ended with the White 

Act. passed in 1924, w hich halted fishing at the midpoint o f the run -  a disastrous policy 

from the point of view of preserv ing all genetic components o f the run. The second 

period from 1925 to 1945 was a time when major fishing districts were defined, and a

19
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number of management measures and weekend fishing closures were introduced.

Fishing effort increased up to 1930, w hen the number of fish traps was restricted. By the 

end of this period the runs were severely overfished and catch trends were on their way 

dow n. In the final period from 1946 to statehood -  the period of decline -  run timing had 

been substantially altered, some genetic stocks were gone, and the fishery had lost much 

of its value through depletion.

Because of resentment about the political power and exclusive fishery rights of 

the large packing companies, the narrow distribution of the benefits within Alaska, and 

resentment about the ineffectiveness of Federal management, control of salmon 

management was a major issue leading to A laska’s statehood in 1959. Evidence that 

these issues were strong political motivating forces can be seen in the Alaskan State 

Constitution. Article VIII deals with exclusively with Natural Resources. SECTION 15 

of this article is titled ‘NO EXCLUSIVE RIGHT OF FISHERY." The new State 

government quickly outlawed fish traps, w hich were a powerful symbol of the period of 

Federal control, except for a single, small Federal reserve in Southeast Alaska. The new 

government launched a state fishery management system, with the principal goals of 

sustainable resource management, and broad distribution of the benefits.

This new management machinery had components that dealt with enforcement, 

research, management, permitting, and an explicitly political system for settling 

allocation disputes. The Alaska Board of Fisheries is a group of citizens chosen by the

20
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Governor, and confirmed by the Alaskan State Legislature, with somew hat vaguely 

defined powers that overlap somewhat with those of the Alaska Department of Fish and 

Game. But the Board of Fisheries has the unambiguous role of approving fishery 

management plans into regulation, and. thereby, o f settling allocation disputes between 

competing fishing groups. In 1947 prior to statehood, the fish-processing industry 

approached the University of W ashington about beginning a program o f research and 

recommendations for management, similar to the program that led to the International 

Pacific Halibut Commission -  one o f most visible symbols of success in fishery 

management. The early work by the Fisheries Research Institute at the University of 

Washington led to a system of escapement goals and a series of studies to optimize the 

yield from each major salmon stock in Alaska. The Ricker (1954) theory of stock and 

recruitment was an important organizing principle.

Run sizes increased following the move to state control, until 1970, w hen the run 

sizes dropped sharply. A report with the 1970 salmon forecast (Noerenberg and Seibel

1969) began with an optimistic statement about the value of management based on 

scientific principles, and stressed that harvests had seen a 2 5 #  increase over the pre

statehood period from 1951 to 1959. By 1975, the tone among salmon managers had 

changed from optimism to panic. The forecast report from that year (Seibel and Mecham 

1975) is free of the talk about the success of scientific management, and this report makes 

clear that managers at the time placed great importance on the freshwater lifestage. and 

saw this lifestage as the primary source o f variation in run size.

21
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Following the drop in salmon production, Alaska launched two initiatives: it 

began a system of limited entry into the commercial Fishery, and it began a large-scale 

hatchery building program. The originators of the hatchery program were convinced that 

they could intervene in the freshwater lifestage, and largely buffer the Alaskan salmon 

industry from variability in run sizes.

In 1974, the Alaskan limited-entry system was viewed as both a conservation 

measure and a means to maintain a value of the resource for Alaskan citizens (Adasiak 

1977). This system Fixed the number of permits for access to the commercial fishery.

The value of the permit could go up or down based on the health of the resource, and 

based on the health of the trade in fish. This created a proxy for ow nership of the 

resource, and created a large economic incentive to preserve the health of the salmon 

stocks.

In 1971, the Alaska legislature created the Fisheries Rehabilitation, Enhancement, 

and Development Division (or FRED Division as it was known) to both promote and 

regulate enhancement. As in other places in the world, these enhancement efforts were 

heavily weighted toward hatcheries. One goal of this new hatchery division was to 

restore -  through the use of hatcheries -  the commercial salmon harvest to 100 million 

salmon. In the first twenty years, they constructed 20 hatcheries at a cost of $81 million, 

with operational costs many times that. In 1974, the Alaskan Legislature created a
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second hatchery program, which launched a new round o f hatcheries, built and 

maintained by private non-profit corporations. In 1976 and 1977, a revolving aquaculture 

loan fund was created to provide funding for hatcheries. Eventually, the FRED was 

disbanded and the state-built hatcheries were handed over to private non-profit 

corporations. In 2000, there were two state-operated hatcheries and 31 private non-profit 

facilities in Alaska. Hatcheries have had their greatest effect in Prince William Sound 

with pink salmon and in Southeast Alaska with chum salmon. By 2000, biologists in 

Prince William Sound were forecasting a run of pink salmon that was almost SO'/r 

hatchery derived (Scott and Geiger 2000). Hilbom and Eggers (2000) speculated that the 

pink salmon hatcheries in Prince William Sound had merely resulted in a displacement of 

wild pink salmon, and that the number of pink salmon in the commercial harvest might 

be similar if the hatcheries had not been put there. Although Wertheimer et al. (2000) 

and others have challenged Hilbom and Eggers, the benefits and the costs of the Pnnce 

William Sound hatchery programs remain controversial.

The Alaska commercial harvest was 22 million Pacific salmon in 1974. From the 

mid 1970s to the present, run sizes, salmon survival, and sport and commercial fishery 

harvests have generally increased with commercial catches of 218 million salmon of all 

species in 1995 and 217 million in 1997.

23
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Hie Paradigm o f  Salmon Management

Alaskan salmon managers have acted for decades on the belief that recruitment of 

Pacific salmon is generally predictable, following an underlying stock-recruitment law 

that states recruitment is maximized at intermediate stock size. Although many 

theoretical stock-recruit laws are available (Quinn and Denso 1999). the Ricker model 

(1975) is the one most often applied to Pacific salmon. Traditional advice has been to 

estimate parameters of a Ricker model, and then proceed to find the harvest policy and 

specific escapements that will maximize the predicted yield for a stock whose recruitment 

is controlled by the estimated parameters (e.g.. Bevan 1988). without regard to the 

potential loss that might come from model misspecification, sampling error of 

parameters, and so forth. This model has led fisheries management to focus narrow ly on 

abundance alone (Ricker 1975, Walters and Collie 1988). Models used by conservation 

biologists in the analysis of the risk of extinction of populations (Ginzburg et al. 1982. 

Ferson et al. 1989. Dennis et al. 1991) are also based on abundance. However, in 

fisheries science some authors have argued that abundance is the single important 

parameter in fishery management models (e.g., Walters and Collie 1988).

Gulland (1988) expressed the mainstream view, but he seemed somewhat 

uncomfortable with it:

The best initial approach in a particular situation remains that o f plotting pairs o f

observed values o f  stock and recruitment, with the recognition that such a plot w ill
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exhibit a greater or lesser degree o f  scatter, due to the effect o f  environmental 

factors. In many stocks the dominant factor in determining the recruitment in any one 

year will be the environment...In principle the relation o f main interest might be clarified  

by removing the effect o f the environment. In practice, however, there are so many 

possible factors that might be relevant that it is easy to find som e factor that has a high 

correlation with past recruitment...It would probably be optimistic to expect the situation 

to change much in the immediate future.

The notion of Maximum Sustainable Yield occurring at an optimal abundance 

com es directly from the use of this model to optimize yield from a single stock (Ricker 

1975). Justification for other harvest policies, such as harvest rate-based policies, is often 

based on stochastic simulation of this model (e.g.. Denso 1985, Hilbom 1985. and many 

other possible citations). Walters (1986) and others have elevated the search for stock- 

recruit parameters -  which he assumed to be unchanging -  into one of the most important 

objectives of fisheries management.

In the Kuhnian sense (Kuhn 1962). the Ricker stock-recruit curve is the paradigm 

o f salmon management in Alaska, and little research on salmon harvest policy has gained 

popular acceptance outside the perimeters o f this paradigm. Over 20 years ago. as 

influential an author as Larkin (1977) called for a model with a more realistic 

acknowledgment of the dynamics and vicissitudes of the real world -  including genetics 

-  and recommended the retirement of the Maximum Sustainable Yield concept. He 

appeared to have some effect on the use o f this concept in scientific publications, but as 

of 13 years ago. not in the area of policy analysis (Barber 1988).
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The basic -  and usually unquestioned assumption -  implicit in the search for 

unchanging stock-recruit parameters, is that the present -  and especially the future -  is 

part o f the same statistical universe as the recent past. Many researchers are so focused 

on a stock-recruit analytic framework that they see no way to provide advice on harvest 

policy without this reference to past stock-recruit data. For example. Hilbom and 

W alters (1992. p 241) state. "Any model for such synthesis must ultimately be tested by 

comparing its predictions to the observed overall relationship between stock and 

recruitment, so in the end there is no way to escape analysis of the overall relationship.” 

In other words, they insist that advice on stock size and predictions about recruitment is 

consistent with past stock-recruit patterns.

Using computer simulation of the Ricker stock-recruit law. some investigators 

have concluded that salmon populations should be intentionally managed for fluctuation. 

Their reasoning is that to increase yield, intentional stock fluctuation is important to gain 

contrast in stock-recruit data. In principle, additional contrast will then lead to a better 

understanding of Fixed, unchanging, parameters o f the stock-recruit law (e.g., Walters 

1986). Other authors believe that some attribute related to predicted yield is the one that 

should actually be maximized. For example, Deriso (1985) used economic arguments to 

recommend that the logarithm of the predicted yield should be maximized, and that this 

objective requires greater fluctuation in stock size than a Fixed escapement policy 

provides.
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It certainly seems that this generation of salmon scientists should be more 

concerned about having so much of their management advice based on a single 

optimization scheme -  especially one that takes so little of the salm on 's biology and life 

history requirements into account. Using Ricker stock-recruit relationships. Eggers 

(1993) showed that when management error is considered, harvest policies that increase 

stock-size fluctuation introduce an element of risk to yield not previously acknow ledged. 

Schmidt et al. (1997) pointed out that fixed harvest rate-policies. which some authors 

have advocated based on simulations of Ricker stock-recruitment law. increase stock 

fluctuation and that this offers risks that cannot be uncovered or even understood by the 

study of theoretical stock-recruitment relationships. Snedaker and de Sylva (1994) 

showed how subtle the difference is between humorous parody and serious scientific 

advice when talking about the extremely narrowly focused optimization in fisheries -  

without regard to risk or obvious dangers.

By the 1990s, biologists were beginning to pay attention to the prev iously 

unobserved variability in the marine environment, and they were beginning to speculate 

on the role this variability had on fish populations (Quinn and Marshall 1989. Marshall 

1992, Beamish and Bouillon 1995, Hare and Francis 1995. Adkison et al. 1996. Mantua 

et al. 1997, Gargett 1997, Beamish et al. 1998, and many others). In any event, some of 

the new thinking about salmon recruitment has shifted away from models that emphasize 

average recruitment and models that emphasize limitations in the freshwater
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environment, towards explaining variation induced by ocean-climate dynamics.

Recent work on the concept of the regime shift shows w hy the Hilbom and Walters 

approach of validating a model for future production solely on the production pattern of 

the recent past should not be unquestioningly accepted. An extreme and untested 

hypothesis suggesting a possible need to unlink past and future stock-recruit patterns was 

put forw ard by Welch et al. (1998). Their hypothesis states an ocean environment 

hospitable to salmon will contract in the coming years due to global warming. Under this 

hypothesis, some Pacific salmon populations will undergo a steady decline in 

productivity. If Welch and his colleagues are correct, then a study of stock-recruit 

patterns using only past relationships will provide poor advice for the future, and the past 

relationships will overstate future production. A more plausible hypothesis, such as that 

put forward by Beamish et al. (1998), is that even if recruitment is controlled over short 

periods by a common stock-recruit function, these functions change at random, 

unpredictable intervals as a result of atmospheric forcing.

Beyond recognizing a need to maintain spawning stock size, habitat, and a vague 

recognition of the need to preserve productive stock groups, the actual mechanics o f how 

surplus production is generated does not fit into current recruitment theory. Even though 

many authors have speculated that fishing may cause genetic changes, and therefore 

affect future yield, Conover and Munch (2002) have demonstrated “Darwinian 

consequences of selective harvest" in captive fish. Moreover, acknowledging that a 

changing environment plays a major role in yield trends is only now coming into fashion.

28
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Although Kapuscinski and Lannan (1986). Gauldie (1991). Policansky (1993), and 

possibly others have attempted conceptual models of genetic fitness for fisheries 

managers. I know' of no practical translation of genetic principles into specific advice 

about salmon harvest policy. However, over the last 100 years an enormous amount has 

been learned about salmon biology, salmon management, and the consequences of 

v arious policy actions.

Population Genetics and Salmon Management

Population genetics is the study of gene frequencies in a population of plants or 

animals, together w ith the study of the dynamics of those frequencies in the population 

over time. Fisher (1953) went so far as to suggest that from the genetics perspective. 

‘T h e  frequencies with w hich the different genotypes occur define the gene ratios 

characteristic of the population, so that it is often convenient to consider a natural 

population not so much as the aggregate of living individuals as a aggregation of gene 

ratios.” A more fashionable term for the field of genetics that deals with the genetic 

dynamics of exploited populations in a changing environment w ould be conservation 

genetics, although I will use the older and more general term, population genetics to 

include both fields. Not surprisingly, much of genetic theory is based on simple 

probability theory, involving the sampling of dichotomous states (i.e.. the binomial and 

similar probability distributions for discrete outcomes).

29
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Fishery management is the application of scientific principles to the enterprise of 

fishing so as to bring about specific objectives. In their review of “genetics and fishery 

management” A llendorf et al. (1987) begin by noting that one of the most commonly 

used textbooks on the principles of fishery management has no chapter on genetics, and 

that genetics is only mentioned in the context o f selective breeding of hatchery fish. So. 

as of 15 years ago. and probably today, the principles encompassing population genetics 

have not been well integrated into the field of fishery management.

Even so. fishery scientists have long been interested in blending genetics 

principles into fishery management and incorporating genetic principles into explanations 

of fish population dynamics. As influential an author as Larkin (1977) called for more 

biological realism in recruitment models by bringing in genetic concepts. This effort to 

incorporate genetics into population dynamics models has not been restricted to fisheries 

science (see. for example Lotka 1925. or Felsenstein 1988).

The field of genetics has had several important successes in supplying fisheries 

management tools for addressing mixed stock problems. Shacklee et al (1999) reviewed 

the use of genetics in Pacific salmon management. The development of large, shared 

databases of allozymes (allele forms that can be distinguished by protein electrophoresis) 

has proven to be an important tool for looking at the stability of gene frequencies, for 

looking at evolutionary history, and determining migration and straying patterns (Utter et
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al. 1987). More recently. DNA techniques are allowing population geneticists a 

means to look at reproductive isolation and gene flow and reproductive success (for 

example. Hendry et al. 2000 and Hendry 2001). Waples (1995) describes how genetics 

has provided tools for salmon recovery in the Pacific Northwest.

Population geneticists have made progress studying the Pacific salmon and other 

fishes, and geneticists have influenced the field of fishery management by contributing 

several important organizing concepts. One of the earliest and most important 

contributions of population genetic principles to fishery management was the 

development of the stock concept (reviewed by Geiger and Gharrett 1997). and the 

subsequent principle that phenotypic variation among stocks is partially genetically 

based, and that those differences should be preserved, to keep different habitats 

"productive." This provided a shared objective for population geneticists and fishery 

managers: the study of the differences among stocks, and a shared goal o f maintaining 

the genetic basis for those differences.

One of the important concepts that w ill appear repeatedly in the follow ing 

chapters is the idea of the effective population size (Wright 1931). One form of the basic 

idea can be developed from the notion that the frequency of alleles in a population will be 

affected (through sampling) by the size of the breeding population. That is. if breeding is 

random and mortality processes are independent of allelic states, then the frequency in a 

subsequent generation is approximately controlled by a binominal sampling process: if
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the frequency of some allele is p. and there are <V, individuals in the population, then 

the next generation will be formed from sampling the 2 N, total alleles, for a diploid 

species. If there are N,+ i individuals in the next generation, we might assume that the 

variance o f the frequency in this next generation is p( l-p)/(2 N ,). based on the binominal 

distribution. Alternatively, we might admit that mortality, breeding, and family size is 

not random, so that the frequency of genes in the next distribution is more variable than 

the binomial distribution predicts. Wright introduced the quantity N„ such that p(l-p)/(2  

.V,) gives the actual variance of the allele frequency due to sampling from one generation 

to the next. To distinguish this form of effective population size it is called the variance 

effective population size. Note that for very, very large values of N, the gene frequencies 

will not be influenced very much by the effects of sampling. However, for small values 

of /V, the gene frequencies will change due to sampling. This change in small 

populations is called genetic drift.

The way in which inbreeding distorts genetic frequencies is another line of 

population genetics inquiry. The Hardy-Weinberg principle is the name of an outcome 

from binominal probability theory that states that if the frequency some allele is p. under 

purely random sampling of genes from one generation to the next, the underlying mean 

proportions of genotypes will be given by p : , 2p( 1-p), and ( 1-p)2. Inbreeding distorts 

these ratios. Wright (1931) formulated the problem, introducing a qu an tity /so  that with 

inbreeding, the expected proportions of genotypes is given by.
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p 2(l-f)  +fp. 2p( l-p )( 1-/), and (1 -p ): ( 1 -J) +/(1 -p ).

33

Wright also realized that groups of inbreeding animals might interact by 

exchanging migrants. He introduced the quantity m . which is the fraction o f the 

population that is replaced by migrants. Then N (\-m ) is the number of breeding animals 

that originated in the population, and Nrn is the number of migrants. W rig h t 's / is  related 

to m in that if m~ is small, then

/  =    ■AN t m +1

One important result this theory offers is that if m is much larger than \/(ANf ), the 

subpopulation is essentially panmictic with the source of the migrants (Crow and Kimura

1970).

Then the quantities/ ,  Nr, and other genetic quantities provide a means to 

conceptually describe how gene frequencies might change because of small population 

effects: m provides a means to conceptually describe how these frequencies might be 

stabilized by connecting small subpopulations into larger, linked metapopulations.

One of the other central organizing concepts o f population genetics is the idea of 

selection: the process by which nature or man samples genes from one generation to the
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next in a way that favors some genes or gene combinations, and disfavors others. A 

closely related concept is that of fitness: the relative success an animal has at transmitting 

his or her genes to the next generation. In natural populations, selection acts on the actual 

physical characteristics of the animals: the phenotypes. The proportion of the phenotypic 

variation that is caused by additive genetic effects is called the hentability. h".

When considering the population as a w hole, the random quantity w is called the 

Darwinian fitness (Crow and Kimura 1970), and it is defined such that

Darwinian fitness derives from vv.u'Yu + H UjiVA„ + w^N ^, (i.e. depends on genotypic

frequencies and their fitness) with AA, Aa, and aa denoting genotype. If we define u * as

the multiloci extension over the entire genome, then note the similarity with the Ricker 

stock-recruit curve:

N ,,x = Ar,orexp(-/JV( + et ), such that e, -NfO.o), c o ) = 0 ,  and cr>0.

Then the two theories intersect when w’ = arexp(-/?V, + ), although in the fisheries

model the stock sizes prior to year t are irrelevant (for fixed or and f i ), w hereas in the 

genetics model, much of the theory has to do with how past values o f/ ,  m, and especially 

N< and the gene frequencies determine the value of vc,\ for a particular environment. To 

combine population genetics and fishery population dynamics models an obvious starting
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point is break the Ricker m ultiplier into parts, and to allow orto be a time-dependent 

summary of the state of the stock. Letting 0, denote a summary o f the genetic 

information in the population at time /, then letting a (0 , ) denote a factor for the 

underlying stock productivity (as a function of the stock’s history), letting ex p (-/JV ,) 

denote a pure density-dependence factor, letting ex p (f ,) denote a random shock, then the 

population dynamics model could be joined with the genetics model. That is, 

a(0, )e x p (f ,) could be modeled to describe (1) the year-/ genetic state o f the population.

(2) a random environment, and (3) an interaction between the genetic state (the allele 

frequencies) and the environment (and associated fitness) that will produce a new genetic- 

state for year /+ 1.

W right's writing in the 1930s was very much directed at exam ining the effects of 

genetic drift, while the other major figure of early 20th century genetics, Fisher, w as more 

concerned about the effects of selection. A final population genetics concept that is 

relevant to the following chapters is Fisher’s fundamental theorem of natural selection: 

rate of adaptive change in a population is proportional to the amount o f genetic variation 

present (Price 1972). What this would seem to imply is that traits that are very important 

for Fitness would have very little genetic variation, as these traits would have already 

been heavily selected for, draining the population of variation. Lande and Barrowclough 

(1987) stated, ‘Typical levels o f heritability for many traits are of the order of 0.3 to 0.7;
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however, for traits closely related to fitness, e.g.. viability, litter size. etc. heritabilitv
« ©  *  *

values are often considerably lower.”

Effective population size is one of the key concepts in 20th century genetics, and 

there is an enormous body of empirical work demonstrating its practical importance, 

starting with the work of W right’s collaborator. Dobzhanskv. in the 1930s (see. for 

example. Lewontin et al. 1981), and in the field of salmon management see Waples 

(1990). While population size obviously has a role in a population’s extinction 

probability (e.g.. Ginzburg et al. 1982. Dennis et al. 1991. Wissel and Stocker 1991. and 

many others), authors such as Lande and Barrowclough (1987) formulated rules for the 

management of populations based on the effective population size. Many scientists 

studying salmon acknowledge the importance of the effective population size, but there is 

no consensus about specific, concrete advice to give fishery managers. Waples et al.

(1990) stated “There are a variety of opinions regarding the minimum acceptable value of 

Ne almost certainly there is no single number that would apply to all species.”

Population geneticists have had a very hard time making very specific predictions 

about effective population size in wild fishes, and then observing whether or not the 

predictions came true. Fish are mobile, very hard or impossible to distinguish 

individually, and unavailable for observation during most o f their life. Mate selection, 

mortality and fitness processes, environmental change, inbreeding, are all essentially 

unobservable, as are fine-scale genetic relationships. Population geneticists are able to

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



make extremely accurate predictions based on theory that has been validated on 

populations of Drosophila sp., and other species, once values of key genetic parameters 

are known. However, in the case o f salmon these parameters not usually known, and 

most specific predictions are unobservable as well. This has resulted in a lack of simple, 

easy-to-apply genetics procedures for fisheries management -  although genetics has had 

outstanding success recommending simple procedures to the fields of animal husbandry 

and plant agriculture.

In contrast, fisheries management has recommended simple procedures such as Ricker 

analysis (Quinn and Deriso 1999). and the field of fisheries management has received 

widespread acceptance of these procedures within their own discipline. Moreover, 

academies have trained a large corps of technicians who are applying these procedures.

It is unlikely that any omnibus procedure will be able to compete with the Ricker analysis 

for simplicity, ease of training technicians to carry out the mechanics, and the low cost of 

implementation. Still, fishery science should feel some embarrassment for not being 

more questioning about the limits o f this technique, and not being more interested in the 

robustness of the advice it gives. My goal is to direct just a little attention away from the 

search for the underlying, stable, unchanging structure in salmon recruitment, and try to 

have a new look at the variation.
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The Following Chapters

This dissertation began as three somewhat distinct studies of pink salmon biology 

and recruitment. The first was an examination of the effects of the Prince William Sound 

oil spill, the second a reanalysis of a very interesting and unique data set concerning 

family-specific marine mortality, and the third was a reanalysis of laboratory breeding 

studies. The Price William Sound study led to the first chapter, which started as an 

attempt to synthesize several studies about the oil sp ill’s effects on wild pink salmon 

populations. Because pink salmon are so very hard to study in the wild, this study relied 

on average life history measurements from the literature, which stood in for unknown 

values or as benchmarks to see if our measurements seemed reasonable. In the end. one 

of the main outcomes of this study was an attempt to describe the average life history 

situation for Pnnce William Sound pink salmon. The second study started out as an 

attempt to characterize some average genetic parameters. The effective population size, 

which is discussed in detail in Chapters 3 and 4, is one way to quantify how much genetic 

variability a breeding population can hold. The ratio o f effective population size to 

census population size can be very useful thing to know w hen making recommendations 

about population recovery, for example. This study was motivated by the thought that in 

the absence of specific information about a particular population, average values of this 

ratio for pink salmon might be useful to conservation biologists. But while working on
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Chapter 3, my focus changed from characterizing averages to characterizing 

variation. Chapter 4 then became an attempt to have a glimpse at the answer to the 

question, why does family size vary? O f course, family size can vary for many reasons, 

which can change over time, and no attempt at this question can result in a full and 

complete answer. Still, an incomplete look at variation, in a few very specific cases, is 

progress. W hereas Chapters 2 through 4 are studies into pink salmon biology, in Chapter 

5 I try apply this study of w hy things vary to the current canons of salmon management -  

especially to Ricker analysis. Finally, I will conclude by reflecting on the role of policy, 

and to the threats to sustainability of salmon in Alaska. My goal in this undertaking is to 

have a small glimpse into the biological underpinnings of pink salmon recruitment 

process, and contrast the guiding principles of salmon harvest management w ith what has 

recently been learned about the role of change and instability in recruitment.
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. One of our biologists was unable to find a single juvenile salmonid life form in Pnnce William Sound this spnng.
— Former commissioner of Alaska Department of Fish and Game descnbmg

the situation in Pnnce William Sound, following the Exxon Valdez oil spill

CHAPTER 2 -  A LIFE HISTORY APPROACH TO UNDERSTANDING PRINCE 

WILLIAM SOUND PINK SALMON1 

INTRODUCTION

In the confusion following the Exxon Valdez oil spill, anything from no effect to 

devastation of pink salmon (Oncorhynchus gorbuscha) populations in the southwestern 

part of Prince William Sound seemed plausible. In the weeks following the spill, the 

Alaska Department of Fish and Game and the National Marine Fisheries Serv ice initiated 

several studies to 1) develop improved estimates of pink salmon escapement for pre- and 

post-spill years. 2) measure egg (embryo) survival, 3) measure fry survival, 4) observe 

the near-shore condition and distribution of fry' in Prince William Sound. 5) measure

49

1 T h is  chapter is adapted from  Geiger. H .J.. B .G . Bue, Sam Sharr. A  C. W erthe im er, and T . M a rk  W ille tte . 

1997. A  L ife  H is to ry  Approach to E s tim ating  Damage to P rince W illia m  Sound P ink Salm on F rom  the 

Exxon Valdez O il S p ill. In R ice, S.D, R .B. Spies. D .A . W o lfe , and B .A . W rig h t [eds.] Exxon Valdez O il 

S p ill Sym posium  Proceedings Am erican F isheries Society Sym posium  18.
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hatchery and wild salmon survival in the saltwater environment, and 6) survey the 

pink salmon habitat affected by the oil spill.

These studies have now documented contamination of embryos in oiled streams 

(W iedmer et al. 1995). and juvenile salmon in the nearshore environment (Carls et al. 

1995). The contamination has been linked to reduced survival in embryos in oiled 

streams (Bue et al. 1995) and to reduced growth of pink salmon in the marine 

environment (Willette 1995; Wertheimer and Celewycz 1995). The reduced growth in 

the early marine environment has, in turn, been linked to reduced marine survival 

(Willette 1995). Here. I synthesize the results of these studies of individual life history 

stages and estimate the loss of returning w ild adult Prince William Sound pink salmon in 

years following the oil spill.

Pink salmon populations in Prince W illiam Sound are not static. Powerful forces 

that may have affected them in recent years include the Alaskan earthquake of 1964. an 

increasingly intense commercial fishery, tremendous increases in hatchery production, 

and the Exxon Valdez oil spill. The earthquake of 1964 severely damaged some stocks 

and eliminated some runs entirely (Roys 1971). In the mid-1980s, large runs of hatchery- 

produced pink salmon began to equal and then far outnumber the wild salmon. Hatchery 

stocks are an important input to the commercial fishing industry, but from an ecological 

perspective, they are entirely different from the wild salmon. I focus on the wild salmon.
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which play an important role in the Prince W illiam Sound ecosystem and an 

important economic role in the Prince William Sound fishing industry.
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Figure 2.1. The estimated size o f Prince W illiam Sound wild pink salmon from 1963 to 1992.

The size of pink salmon runs to Prince William Sound has fluctuated wildly 

(Figure 2.1) in response to unobserved phenomena in the freshw ater and marine 

environments. With this much background variability, even extremely large damage 

w ould be entirely undetectable using before-and-after comparisons o f any function of 

population size. To gain statistical power I focused on the affected life history stages, 

looking for differences in life history statistics between groups of fish classified as oiled 

and unoiled in the same year. I refer to the summary of the life stage comparisons as the 

life history model.
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I followed the 1988 brood year by estimating parental escapement, survival 

to emergence, and survival to emigration in 1989. measuring growth and survival of 

coded-wire tag groups as they migrated through the oil in the near-shore environment in 

the spring o f 1989. and by measuring their final return numbers in 1990. I then continued 

with the odd-year line: following the 1989 brood year as they incubated in the oiled and 

unoiled streams in Prince William Sound, migrated in the relatively unoiled near-shore 

areas in 1990. and returned in 1991. The 1990 through 1992 brood years were followed 

in a similar manner up to the summer o f 1992. At each life stage for the 1988 through 

1992 brood years I summarized the evidence that the presence of oil reduced survival, 

and the evidence that a survival reduction was translated to reduced survival at the adult 

life stage as well. Figure 2.2 illustrates the life history pattern for pink salmon, showing 

the life stages, and points where oil detectably reduced survival in wild pink salmon.
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Figure 2.2. Pink salmon life history stages, with stages affected by oil denoted. "Oil effect" 

denotes detected effect at that lifestage.

If the oil spill reduced survival at an early juvenile life stage, the final return of 

adult salmon could have remained unaffected because o f com pensatory mortality: 

mortality that increases when density is high, and decreases when density is low. In her 

review of the pink salmon literature, Alexandersdottir (1987) cited Heard's (1978) work 

in Sashin Creek in Southeast Alaska in 1967 and Donnelly's (1983) work in Kodiak to 

conclude compensatory mortality was linked to an overabundance o f spawners, and 

density-dependent survival could be a factor from spawning to outmigration.
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If compensatory mortality effects are negligible at a particular lifestage and 

all subsequent lifestages, then estimating the effects of the oil spill are straightforward: 

the estimated proportional loss of production can simply be the measure of decrease in 

estimated survival at that lifestage. Alternatively, if compensatory mechanisms exist, the 

loss of production from the oil spill will be overestimated by assuming oil-induced 

mortality translates directly into reduced adult production. I examined the available 

evidence that compensatory mortality could be caused by oil-induced loss of production.

The effect of the Exxon Valdez oil spill on any important part of the biota will 

never be known exactly. Unfortunately, the failure to precisely measure injury from the 

oil spill is sometimes confused with justification for concluding the injury is nonexistent. 

Similarly, the ability to statistically detect some aspect of injury is sometimes confused 

with significance in a larger biological sense. Rather than perform a statistical test of the 

hypothesis that pink salmon populations were completely unchanged by the oil spill, I 

viewed my responsibility as to identify the biologically — not statistically — important 

sources of mortality, and provide the most reasonable estimates of the magnitude of loss, 

in units of adult salmon, consistent with the information available to us.
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METHODS
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Prince William Sound Fishing Districts, Stocks and Stock Size Estimates

Prince William Sound is divided into nine fishing districts, which correspond to 

stocks for the purposes of fisheries management (Figure 2.3). In much of the discussion. 

I will be restricting our focus to the Southwest Fishing District, where the greatest 

damage to freshwater spawning habitat occurred (Middleton et al. 1992). I used total 

production and revised estimates of district-specific escapement from a database 

maintained by the Alaska Department of Fish and Game in Cordova, Alaska. The data 

w ere the most current as of June of 1993.

Untfrartk
CoflMI

Figure 2.3. Map o f Prince W illiam  Sound showing the fishing districts.
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Life History Parameters, Statistics, and Estimators

Let v,-: represent the subsequent Prince William Sound wild pmk salmon 

production in year t+2 from an escapement of .v, spawners in brood year t. Let s, 

represent the random variable that summarizes survival and fecundity. This is commonly 

called return per spavvner and is usually expressed as some function of prev ious 

escapement (e.g.. Ricker 1975). I was interested in the life history steps underlying the 

return per spawner when escapement has been restricted to approximately w hat managers 

considered optimal. Formally, the process is described by

= s,x, ■ (2.1)

In year t+2, Pnnce William Sound salmon management attempts to harvest all of 

the return except a Fixed escapement goal. Due to management error, the actual 

escapement is x ,^ ,  and the process repeats.

In years when the oil spill reduced survival, let p, be the fraction o f the total 

number of eggs from brood year t that were potentially affected by oil sometime in their 

life. Let s be the return per spawner reflecting the reduction due to the oil spill, 

including the effects of compensatory mortality.
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In years when a fraction of the potential production is reduced by an oil-spill 

effect, I assumed production was given by

= [(1 ~ P, >S, + P, s', ] .V, - (-•-)

Notice the quantity ( l-p,) is the fraction of eggs unaffected by oil. s, is the return 

per spawner, so that ( l-p,)sh\, denotes the production from unoiled streams; similarly. 

Pts'pc, denotes the production from oiled streams, and production from both sources 

equals the total production.

In actual practice, managers observe i , , some function of.r,. w here the function 

describes observational error. Similarly, C,., denotes the estimated total run. consisting 

of the catch, w hich is approximately known, and the estimated escapement.

To estimate parameters, I first assumed no strong compensatory mortality 

mechanisms, or at least no compensatory mortality after the affected life stage. Without 

reference to stochastic models, I estimate parameters in equations (2.1) and (2.2) 

algebraically: assuming that ,v i s  approximately equal to s, multiplied by the estimated 

amount survival was reduced.
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Letting r, denote the survival in oiled areas expressed as a fraction of 

potential survival at each affected life stage, estimates of s and s, were found as follows 

by replacing elements in equation (2.2) with their estimates and solving.

Sy -  s,r, •

and. then from (2.2),

j, = ^ M ( l  -p, )  + p ,r ,V ' • 
x,

Production, expressed in units of adult salmon that w ould have returned had there 

been no oil spill, was then estimated by

ynttoill-r2 ~V/-V; •

and the estimated loss in broodyear t, at the adult population level, is given by

Lt A notnl.l + l '

To estimate typical values of st, for the purpose of projecting future production 

from the 1991 and 1992 escapements, I considered the median recruits-per-spawner from
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1963 to 1987. Information on the steps that lead to s, from the pink salmon literature 

was used to provide additional justification for this estimate. Five stochastic steps lead to 

the retum-per-spawner value. s,: I ) the fraction o f the run consisting of females, denoted 

Fem,. 2) the average fecundity per female, denoted Fee,. 3) the fraction o f the potential 

egg deposition that is actually deposited, denoted Dept. 4) the survival from eggs 

deposited to emergence, denoted Seg, and 5) the marine survival, denoted Srtir,. The 

ov erall return per spawner. s,. is simply the product of each o f these stochastic outcomes:

S' = Fem, x Fee, x Dep, x Seg: x Sntr, ■ (--3)

The Fraction o f  the Potential Egg Deposition in Oiled Streams

Estimates of the fraction of eggs in oiled streams were obtained by estimating the 

fraction of streams affected by oil and adjusting for the relative egg density in oiled 

streams. I assumed that only streams in the Southwest Fishing District were affected, 

ignoring some oiling on Montague Island and elsewhere.

To estimate the fraction of pink salmon spawning streams affected by oil. I 

needed a sample of stream s w ith information on oiling level and information on egg 

density for each stream in the sample. In 1991, the aerial survey of spaw ning escapement 

was expanded to include a representative sample of oiled and control streams. To
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determine which streams in the 1991 aerial survey were affected by oil, I referred to 

Middleton et al. (1992). personal field observations, and conversations with other 

observers. In general, if a stream was classified as Heavy through Very Light in 

Middleton et al. I considered it an oiled stream. In cases where Middleton et al. 

disagreed w ith our field observations. I relied on our observations. The peak spaw ner 

density from this survey w as used as a proxy for the egg density in each stream in this 

survey. To estimate the fraction of the potential egg deposition in the Southwest Fishing 

District that incubated in oiled streams. I calculated the weighted average o f the 

proportion of streams classified as oiled in the 1991 survey, using the peak aerial 

escapement count in the 1991 aerial survey as the weights. Then, to estimate the fraction 

of the entire potential egg deposition in the whole sound affected by oil. I multiplied this 

weighted average by the fraction of the entire escapement that was in the Southwest 

Fishing District.

Oil-Induced Mortality in the Freshwater Stage

Let m, be the underlying mortality rate of juveniles, at some life stage, with oiling 

level v'. If this is the only affected lifestage. then the ratio of survival at each lifestage to 

the potential survival, defined as r  above, is found by
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r = (I - m„:;)

( I - mun.,.1)
(2.4)

To estimate r. I substituted the unweighted estimated average mortality in the 

embryos into equation (2.4). using data described in Bue et al. (1995). Average mortality 

w as not weighted by total eggs deposited at tide stage because estimates o f total eggs 

deposited by tide stage were unavailable to us.
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Table 2.1. Estimated overall embryo mortalities from oiled and control sites in Prince 

W illiam  Sound, with estimated percentage reduction in survival in oiled areas, by brood year. 

The estimates are based on unweighted average mortalities by tide stage from data described in 

Bue et al. (1995).

Survival in Oiled 

Brood Oiled Control Areas as Percent of

Year________ Sites_________ Sites_________ Potential Survival

62

1989 0.174 0.104 92Cr

1990 0.295 0.195 88<7r

1991 0.433 0.221 73

1992 0.450 0.250 73tf

The Fraction Exposed in the Early Marine Stage

The fraction of eggs that could eventually be affected by exposure to oil in any 

life stage up through the early marine environment was the most difficult parameter to 

estimate. In the end, I simply used the estimated fraction of the 1988 escapement that 

was in the Southwestern Fishing District, knowing that fry that em erged anywhere in the 

Southwestern Fishing District in 1989 were a short distance from exposure once they
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emigrated into the marine environment. I know from Willette (1995) that some fish 

from unoiled areas emigrated into oiled marine areas and vice versa.

RESULTS

W illette (1995) estimated that fry from unoiled areas that reared in oiled near

shore environments in 1989 experienced a marine survival of 7 2 #  of their unoiled 

potential, based on coded-wire tagging studies from the Wallace H. Noerenberg 

Hatchery.

I estimated that the survival from egg deposition to the fry stage was 927c of its 

potential in oiled areas for the 1989 brood year, and 8 8 #  of its potential for the 1990 

brood year (Table 2.1). Bue et al. (1995) found statistically detectable excess mortalities 

in the eyed-embryo stage, which they attributed to oil-spill effects, but they failed to find 

statistically detectable effects in the pre-emergent fry stage of development. The 

estimates of the proportional reduction in survival of oiled eggs, relative to control eggs, 

together with estimates o f overall embryo-stage mortality for oiled and unoiled streams 

are provided in Table 2.2. Statistically detectable elevated mortalities were also noted by 

Bue et al. (1995) between oiled and unoiled sites for the 1991 and 1992 brood years.
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Three pink salmon life stages were judged to have had a measurable oil-spill effect 

(Figure 2.2).

Based on the field surveys. I estimated that the fraction of pink salmon spawning 

streams contaminated w ith oil was 3 1 ^  of all spawning streams in the Southwest Fishing 

District. Unoiled streams had larger average peak escapement counts than oiled streams, 

meaning that 31<T may overstate the proportion of eggs affected in the Southwest Fishing 

District. When I used peak spawner density from the 1991 aerial escapement survey as a 

proxy for egg density, as described above, an estimated 2 0 ^  of the potential egg 

deposition in the Southwest Fishing District was associated with streams classified as 

oiled. Using escapement information to estimate the fraction of the potential egg 

deposition in the entire sound potentially affected by oil in the freshwater stage, the 

estimate never exceeded 67c of the eggs (Table 2.2).

Estimated Adult Salmon that Failed to Return

In 1990, total production o f wild pink salmon was estimated at 18.40 million from 

an escapement of 4.99 million in the 1988 brood year. I assumed that 327c of the 

potential 1988 brood year was exposed to oil effects, using the proportional escapement 

in the Southwest Fishing District, as described above. Based on the observed reduction 

in marine survival of coded-wire tagged fish from Willette (1995), I estimated the
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proportional reduction in survival was 129c, as described above. Substituting these 

estimates for the appropriate quantities in equation (2.2) yields

65

18.40 = ((1 -0.32).v1Pg8 + 0 .32 (s1<wg 0.72))-4.99.

Solving for produced an estimated return per spawner in the absence of oil of 4.06. 

Applying this return per spawner to the 1988 escapement produced an estimate of 20.26 

million adults that would have returned in the absence of oil. By subtraction, the 

estimated loss of adult pink salmon in 1990 was approximately 1.86 million. Key 

statistics and results for the 1988 through 1991 brood years are provided in Table 2.2. 

Using the same reasoning, I estimated that the loss of adult pink salmon was 

approximately 60 thousand and 70 thousand for the 1989 and 1990 brood years, 

respectively.
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Table 2.2. Estimates of oil spill-induced losses of adult production w ith other important statistics 

for brood years 1988, 1989, and 1990; the expected future losses for brood years 1991 and 1992 

are based on the assumption that the genetic damage hypothesis is correct. Losses are expressed 

in units of million adults that fail to return two years follow ing the brood year. The estimated 

return per spawner is the estimate for what would have been possible w ithout the oil spill. 

Estimated production is for all of Prince William Sound.

Estim ated fo r Projected for

Broodyear Brood year

Statistic 1988 1989 1990 1991 1992

Soundside Escapement (millions) 499 6 89 6 18 966 2 ’ 1

Escapement to Southwest District (millions) 1 61 1 91 1 77 2 21 081

Subsequent production (millions) 1840 16 54 4 50 . .. . . .

Estimated return per spawner in absence o f oil 406 241 0 74 1 79: 1 79:

Percent o f PED potentially affected by oil 32 't 6T 6'7 5r ; 6*7

Estimated surv ival o f oil-affected fish relative 

to non-oiled fish I V t 92 't 88*7 73*7 73*7

Estimated production without oil spill effects 

(m illions) 2026 1660 4.57 17 30 4 85

Estimated loss o f returning adult fish (millions) 1 86 0 006 0 07 0 24 008

Loss as percent o f potential production in 

Southwest d is tric t 2 8 '* l^c 65? 6'3 S'r

1 M ed ian value fo r brood years 1963 - 1987
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Figure 2.4. Stock-recruitment history for Prince W illiam  Sound pink salmon. The numbers 

denote the brood year.

Compensatory Mortality

I found no evidence that compensatory mortality mechanisms operate on the scale 

of variation induced by oil-spill effects. Figure 2.4 shows the new stock-recruitment 

history using the revised estimates of escapement. Although compensatory mortality 

mechanisms may control production in Prince William Sound at escapement extremes -  

such as when escapement reaches 20 million -  for the important brood years of 1988, 

1989, and 1990, the escapement remained very near what managers have traditionally 

thought o f as optimum (the escapement goal in the old index-units can be found in Geiger 

and Savikko 1991; an escapement goal has not yet been formulated in the units of the 

revised escapement estimates).
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To see if compensatory mortality was operating during the embryo stage. I 

examined estimated egg survival, up to the time the survey was conducted, as a function 

of observed egg density for 1989, 1990, and 1991. Although some slight compensatory 

mortality might have occurred as densities exceed 2,500 eggs per unit of surface area 

(0.186 m: ) in the lower tide stages in 1989, overall no strong compensation was 

observed. I was unable to detect a relationship between egg density and the empirical 

logit (Agresti 1990) of the egg survival (analysis of covariance, P-val = 0.3135) after 

adjusting for year, tide stage, and oiling level.

If oil-induced mortality is strongly compensated for in the pre-emergent fry stage, 

then the proportion of live fry would be strongly inversely related to the proportion of 

live eggs. Figure 2.5 shows this relationship for the 1989 through 1991 fry dig studies. 

These graphs show considerable mortality and variation in mortality from site to site, yet 

the measured mortality is low in the fry stage, irrespective of the mortality between egg 

deposition and the fry stage. Thus, no compensatory mortality was seen in this life stage.

To look for compensatory mortality in the marine life stages, I examined Prince 

William Sound pink salmon hatchery production as a function of fry released (from data 

supplied by Doug Eggers, Alaska Department of Fish and Game, and recent estimates 

from Prince William Sound hatchery operators). The number of fry emigrating from 

freshwater systems shows a strong linear relationship to the number of returning adults.
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within the range of 0 to approximately 600 million hatchery fry (Figure 2.6). The 

slope of a smooth line through these data is approximately 5 ^ - 3  reasonable average 

survival for pink salmon (Heard 1991). These data indicate no compensatory survival 

mechanisms in the marine lifestages.

In summary. I found no evidence that oil-induced mortality in either the 

freshwater or the marine environment would be compensated for by density dependent 

mechanisms in Pnnce William Sound pink salmon populations.
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Figure 2.6. Production o f pink salmon from Prince W illiam  Sound hatcheries as a function o f fry 

released from 1975 brood year to 1990 brood year. Arrows denote time sequence o f the 

observations. Coded-wire tags were first introduced into the estimation process for the 

1985 brood year.

Typical Life History Values and the 1991 and 1992 Brood years

The annual return per spawner is a random variable in equation (2.1). This 

random variable results from the realization of five previous stochastic steps, as described 

above. Table 2.3 shows our best estimate of approximate typical values for life history 

parameters at each of these steps from various sources in the pink salmon literature, and 

from post-spill, unpublished coded-wire tagging studies of wild pink salmon (data 

available from the Alaska Department of Fish and Game, Cordova, Alaska). These 

estimates led to the impression that typically, about 1.65 recruits per spawner are
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generated from an escapement near the optimum level. Using the revised estimates 

o f escapement, the median return per spawner from the 1963 to 1987 brood year was 

1.79.

The life history parameters from Table 2.3 lead to a similar picture of the typical 

retum-per-spawner values that have been observed recently in Prince William Sound. 

However, this image is quite different from the one based on previous escapement 

estimates (Heard 1991), where the typical return per spawner is thought to be closer to 

4.0. I assumed 1.79 returns per spawner as a typical value, in the absence of oil-spill 

effects, for projection of future production at the time this report was originally prepared 

in June of 1993. The projected returns for the 1991 and 1992 brood years are 17.3 

million and 4.9 million, in the absence of oil-spill effects. If the estimated egg-stage 

survival ratio between oiled and control areas represents persistent oil-spill effects, the 

projected return is reduced by approximately 240 thousand and 80 thousand for the 1991 

and 1992 brood years, respectively.
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Table 2.3. Life history survival and fecundity values from the pink salmon literature. Let Fem be 

the fraction of the run consisting of females. Fee the average fecundity per female. Dep the 

fraction of the potential egg deposition that is actually deposited. Seg is the survival from eggs to 

emergence. Smr is the marine survival, and s^Fem, Fee, Dep, Seg, Smr,.

L ife

Stage

Conversion Next

Stage

T yp ica l

Value

Source

Escapement tim es Fem = Females'. Fem ~ 0.5 Assumed

Females tim es Fee = FED  ; Fee = 1875 Heardt 1991)

FED tim es Dep = .AED ; Dep ~ 0.44 Heardt 1991)

AED tim es Seg = F ry ; Seg = 0.20 Estimated by 

eye from

data in Ignell 11988]

Fry tim es Sm r = Adults', Sm r = 0.02 Unpublished 

coded-w ire  tag 

data from  

M . W ille tte , 

A D F & G . 

Cordova, A laska

Escapement tim es s = Adults: s= 1.65 B v m u ltip lica tio n
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DISCUSSION
74

The studies I examined indicate that the Exxon Valdez oil spill did result in a 

detectable loss of wild adult pink salmon. That conclusion by itself is not of much value 

without some measure of the magnitude of the loss, and a context in which to view the 

magnitude. I estimated nearly two million adult pink salmon failed to return from the 

1988 brood year in 1990 because of oil-induced mortality. This loss may have been over 

a quarter of the potential wild production in the Southwest Fishing District. Unless I 

have considerably underestimated the injuries in the 1989 and 1990 brood years, the loss 

of adult salmon was measurable, but small relative to other human-induced mortality, 

such as that caused by the commercial Fishery. I concluded that the proportion of adult 

pink salmon missing from these brood years was less than 10 ^  of the potential wild 

production in the Southwest Fishing District, and less than 27c of the potential wild 

production in the entire sound.

The 1990 pink salmon harvest was a record catch at approximately 44.2 million 

pink salmon (Geiger and Savikko 1991). The large harvest in 1990 legitimately helps 

makes the point that the Exxon Valdez oil spill did not devastate or cripple the 

commercial Fishery following the year of the spill. However, the commercial harvest in 

1990 is a poor indicator of effect of the oil spill on the wild pink salmon resource in the 

affected areas o f Prince William Sound. The survival of the 1988 brood year was
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strengthened by favorable near-shore conditions for pink salmon fry -  a conclusion 

based on measured zooplankton abundance (Jeff Olsen, Prince William Sound 

Aquaculture Corporation, personal communication). The size of the harvest of wild 

salmon is masked by the harvest of hatchery salmon, which provide a wholly different 

ecological role in Prince W illiam Sound. Well before the oil spill, the total catch of 

salmon in Prince William Sound was expected to increase throughout the 19S0s because 

of increasing hatchery production. In 1989. fry from the 1988 brood year of wild salmon 

were joined by 507 million hatchery fry, the second largest release of pink salmon fry 

into Prince William Sound at that time.

Even though the salmon hatcheries largely masked the effect of oil on the wild 

salmon resource that returned in 1990. the oil had a detectable effect on the hatchery 

resource as well (Willette 1995). Of the total 507 million hatchery pink salmon released 

in 1989, 160 million fry were from the Armin F. Koeming Hatchery, which sits just off 

the path of the oil in the southwestern portion of the Sound. Based on the observed 

growth reductions in Willette (1995), and based on W illette’s size survival relationships, 

the potential loss of the hatchery resource in 1990 is in units of millions of adult salmon. 

The overall estimated survival for the 1988 brood year, which returned in 1990, was 

4.2495- for the Armin F. Koeming Hatchery. The survival at the Wallace H. Noerenberg 

Hatchery, a similar hatchery, but further from the path of the oil, had an estimated 

survival of 8.4995- (unpublished data available from the Alaska Department of Fish and 

Game, Cordova, Alaska) -  approximately twice as large. The estimated survivals in
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years without an oil influence for the Armin F. Koeming and W allace H.

Noerenberg hatcheries were 6.8% and 8.8%. respectively, in 1987 (Peltz and Geiger 

1990); 4.52% and 4.99%, respectively, in 1991; and 2.08% and 0.94%, respectively, in 

1992 (unpublished data). Although not compelling in themselves, these data certainly are 

not in conflict with presumed large numbers of missing adult salmon that would have 

returned to the Armin F. Koeming Hatchery in 1990.

We also concluded that some wild adult salmon that would have returned in 1991 

and 1992 from the 1989 and 1990 brood years were lost due to the oil spill. The primary 

mechanism of the loss was decreased embryo-stage survivals. The presence of oil is 

known to elevate juvenile salmon mortality (Moles et al. 1987). This appears to have 

happened in the contaminated streams in Prince William Sound, yet relatively few 

streams were oiled — approximately 31% of the streams, by our criteria, in that part of 

Prince William Sound most affected by oil. The oiled streams tended to face north, and 

were generally in the southwestern part of the Sound. The oiled streams had a lower 

density of spawners w hen the density was observed in 1991.

We compared our estimates of the spatial distribution of the oil contamination to 

those in presented in other studies, including those sponsored by the Exxon Corporation. 

Maki et al. (1995) estim ated that 14% of the streams in the affected area were oiled, but 

they considered a larger affected area than I did, including the Eshamy and Montague 

Fishing districts. I found no classification disagreement in our sample with that of Bue et
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al. (1995). I did Find two streams (16760 and 16610) out of 10 that were in both our 

sample and that of Brannon et al. (1995). which they considered unoiled yet I considered 

lightly or very lightly oiled. Moderate errors in the spawner density in these streams, 

moderate errors in number of streams oiled, or even moderate errors in the ratio of 

survival in oiled and unoiled streams would not have affected the larger conclusions 

about the result of egg-stage damage in the 1989 through 1992 brood years: the lost wild 

adult salmon probably was far less than 1095- of the potential w ild adult production in the 

Southwest Fishing District, and less than a few percent of the w ild potential production in 

the entire sound.

The most serious criticism of these estimates is that our assumed fraction of fish 

exposed in the near-shore environment is little more than a guess. Most authors believe 

the most critical period for pink salmon survival is when the fish first enter the manne 

environment (e.g.. Alexandersdottir 1987, Heard 1991). Carls et al. (1995) showed that 

juvenile salmon were contaminated, and Willette (1995) observed the reduced grow th 

and survival that might have been predicted from an understanding of pink salmon 

biology. Even without an exact count of the number of fish exposed, because of the 

extent of the oiling of the marine environment, 1 surmised the greatest potential for 

damage to wild pink salmon resulting from the Exxon Valdez oil spill came from 

exposure in the critical near-shore environment.
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The second most serious criticism of this study is that I may have missed 

large, delayed mortality in the marine life stage in brood years after 1988. and may have 

missed mortality in the fry stages in all brood years. Direct examination of pre-emergent 

fry in oiled streams by W iedmer et al. (1995) showed dam age in individual pre-emergent 

fry from oiled streams. Unfortunately, Wiedmer et al. provided no quantitative 

assessment.

The most important question about pink salmon unanswered in this study is why 

the estimated egg-stage mortality did not converge to control levels -  but instead became 

more dissimilar in 1991 and 1992. The egg-stage effects I attributed to the oil spill could 

simply reflect natural differences in sites. Bue et al. (1995) explained why this is 

unlikely, and they speculate that the difference may be due to genetic damage. This 

hypothesis seems a reasonable, if untested explanation, but this explanation is far from 

certain. Exxon Valdez oil was shown to cause chromosome aberrations in larval hem ng 

that incubated in oiled areas in Prince William Sound, and these aberrations were 

reproduced in laboratory studies (Biggs et al. 1995; Hose et al. 1996).

Taking all these uncertainties into consideration, I have attempted to gauge the 

order of magnitude of the wild pink salmon injury for each brood year, leaving the 

question of the larger significance of this loss for someone else. Even so, this study 

points to the large potential for loss o f adult salmon resulting from contamination in the
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early marine life stage. It is this point, in particular. I hope is not lost when plannin 

for and evaluating future oil spills in Alaska.
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It's an ocean filled with tears, and sorrow to fill the sea.  an ocean full of tears, cned by fools like me. 

—  Northwest blues singer Paul deLay

84

CHAPTER 3 -  VARIABILITY OF FAMILY SIZE AND MARINE SURVIVAL' 

INTRODUCTION

The prevailing view in fisheries science is that the most important population 

parameter is abundance. Fisheries management and harvest decisions are based on 

abundance (Ricker 1975, W alters and Collie 1988), as are models used by conservation 

biologists in the analysis of the risk of extinction of populations (Ginzburg et al. 1982, 

Ferson et al. 1989, Dennis et al. 1991). For family size defined as the number of 

returning adult breeders per number of parents, abundance is just the product o f family 

size and the number of breeders in the previous generation. In other words, abundance is 

equivalent to average family size for fixed breeding numbers.

3 T h is chapter is adapted from  G eiger, H.J., W .W . Sm oker. L .A . Z h ivo to vsky  and A.J. G harre tt 1997. 

V a ria b ility  o f  F am ily  Size and M a rin e  S urv iva l in  P ink Salmon Has Im p lica tions fo r C onservation  B io logy  

and Hum an Use. Canadian Journal o f  Fisheries and Aquatic . Sciences 54( 11): 2684-2690.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Little attention has been directed toward how family size varies in fish populations 

or how this variation indexes the amount of genetic variation that can be earned by a 

population. Although this variability has not been used explicitly in models of population 

dynamics or risk assessment, its importance has been acknow ledged in conceptual 

models (Gilpin and Soule 1986, Kapuscinski and Lannan 1986). Below I present a 

context for relating family-specific survival variation at different life-history stanzas to 

the genetic concept of effective population size, and I present an example where the 

population increased largely by increasing the variance of family size -  not by a uniform 

increase in family size across most families.

In the extreme, either variation in anadromous salmon family size reflects only 

random influences or this variation reflects differing genetic approaches to survival in the 

marine environment. To test the hypothesis that family size is random, and not related to 

genetic information passed on from parents, I directly observed the number of pink 

salmon (Oncorhynchus gorbuscha) offspring, marked and tagged by family, surviving to 

return to their natal site in Southeast Alaska. By following the fate of families with more 

than one dam (female parent) per sire (male parent), I was able to use standard analysis of 

variance techniques to test for a genetic (sire) com ponent to survival and family size 

(Falconer 1989). If half siblings with the same sire but different dams have survival and 

family size that is more alike than fish with different dams and sires, then it would seem 

that survival and family size is genetically influenced. To the degree that survival tended
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to be more similar between half sibling groups w ith the same sire than among family 

groups with different parents. I interpreted this similarity to be evidence of genetic 

influence on average family size and survival. These comparisons of survival similarity 

were formalized into standard statistical hypothesis tests.

Theoretical Background

Our notation describes the size of populations and the properties of the families of 

individuals in those populations. Let N, denote the number of adult breeders in a 

spawning population of pink salmon in generation t. Let k denote the random variable 

that describes the number of adult spawners produced in some family in generation /. and 

let k and v(k) denote the mean and variance o f family size. In our notation, i () denotes 

the observed variance among the families actually present, and V() denotes variance with 

respect to some probability distribution.

Crow and Morton (1955) called the ratio Rt = v(k)/k the index of variability and 

described its calculation from adult progeny, from egg production, and from sampling 

variance in gene frequency. They showed that under random survival the index of 

variability tends to 1. In populations where the entire family survives or not as a unit, 

they show this ratio tends to ktarh + v( krarh ) /k rtirh , where early denotes a lifestage 

occurring before the family-specific mortality. Even though both theoretical and
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observed values outside these limits are possible, the value of 1 for random survival, 

and the value given by krariy +v( k tarl̂  ) /kfarh for complete familial surv ival or mortality

provide theoretical lower and upper reference values on the index of variability for 

populations with given fecundity and other parameters.

To consider populations that are intermediate between Crow and Morton's 

reference values, suppose each family is formed by a unique male and female pairing, 

and each family has a unique underlying probability distribution for family size. Let /., 

denote the underlying mean of family size for the / ,h family, and assume that conditioned 

on A , . the family size. k„ is generated by a Poisson distribution. Then for the i th family, 

the actual family size. k„ is a random variable with mean and variance A ,. Let A, follow 

some distribution with probability density function g(A,). and note that k„ the actual 

family size for the / th family, is then generated by a compound distribution (Tittenngton 

et al. 1985).

I am not assuming that the actual family size follows any particular distribution. 

However, if the variance of A, is zero, then the observed family size, k„ follows a Poisson 

distribution, and differences in family size are due to purely random processes not 

indexed by individual family. Alternatively, if the variance of A, is large, then the 

distribution of the actual family size is indexed by family. In this case, the distribution of 

actual family sizes has a greater variance than the Poisson distribution with the same 

mean, but I don’t know' to what extent this variation is due to genetic causes. For
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example, some redds within a stream could be destroyed by ice or other random 

environmental catastrophe, and this will increase the non-genetic familial variation. If 

salmon could be raised in a uniform environment, so as to eliminate non-genetic sources 

of familial variation, then remaining variation would be largely due to genetic causes. 

Either way, to the extent the variation in A, increases, the variance o f family size 

increases. When this happens, the effective population size (Wright 1931. Crow and 

Kimura 1970) will decrease relative to the population census, as will the amount of 

genetic variation the population can carry.

Using E() to denote mathematical expectation, the unconditional mean of k, must 

equal the mean of A„ since

88

E(k, )  = E(E(k,  | A. )) = £ ( / i ,).

To find  an ex p ressio n  for the variance o f k , . in te rm s o f  the variance o f a ,, note

that V(/t,|A,) = A, is the Poisson variance. Then, using the well known result (e.g.,

Lindgren 1993)

V ( x ) - V ( E ( x  | vO + EfV U l y)),

we can find V(/t) as

V(k, )  = V(E(k,  | 4 ) )  + E(V(*. |4 ) )

= V U t ) + E(A,).  '
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Recalling that k,  is the expected underlying number o f offspring from the /*h 

family, let r, denote the expected number of offspring that survive to some lifestage, such 

as entry into the marine environment. Now. let s, be the underlying survival for this 

family in the next lifestage. so that

A, =s tr.

We assume that s, and r, are independent, so that for C, and C,  denoting the respective 

coefficients of variation, then using Goodman's (1960) formula for the variance of the 

product of independent random variables.

T(/t, )=  £(.v, ) ' V( r i ) + V( V )E(r  ): + V(s : )V(r ).

Now, substituting this expression into equation (3.1). dividing by E(kt), and 

omitting the subscript, that indexes the family
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V(k)  £ U )  + V U )
E(k)

V(k)
E(k)

E U )

= 1 +
( E( s ) y V( r )  ( E( r ) yV( s )  V(r)V(s)  
 +  + ------------

£ (s r ) E(sr) E( s r )

V(k)

E(k)
= 1 + E( s r )

(E(s))-V{r)
(£(.v)): (£ ( r ) ) : (E( s ) ) ' (E{r )y  ( E( s ) V( E( r ) V

(E(r ) ) ' V{s ) V(r)V(s )
■ + •

V(k)  
E(k)  

Vik)  
E ( k )

= i + £(/t)[(c; + c; + (c,c,):] 

= i + £U-)[(c; + c; + (c\c,):l-

So this shows how the vunance-mean ratio with respect to a probability distribution is a 

related to variability in survial at each life stage. If k = E(k), v{k) = V(k), and V(k)/E(k) =

\ {k) / k ,  then the variance-mean ratio with respect to a probability distribution, or the 

actual index of variability in a population might be inflated by (1) family-specific 

influences that cause the number of recruits to the marine lifestage to vary, or by (2) 

family-specific influences on survival in the marine lifestage. In the absence of family- 

specific influences, this ratio is 1.
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METHODS
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Identifying Families o f  Anadromous Salmon

In September 1982. 22 female pink salmon (dams) were crossed with 33 males 

(sires) in a factorial design (Figure 3.1) with eleven replicated crosses of two females 

with three males. Dams and sires that were judged to be fully mature were chosen and 

mated at random on each day that spaw ning occurred. All of the offspring of one female 

failed to survive incubation, probably because that female was not fully mature on the 

day she was spawned; this failed family was not included in subsequent analyses. In

1983 and 1984, similar crosses were performed, except that in these years two dams were 

nested within each sire (Figure 3.2), and that two temporally-spaced runs (Smoker et al. 

1994, Smoker et al. 1998) were sampled each year. I considered this arrangement as five 

distinct groups of salmon for this study; 1) 1982 late, 2) 1983 early. 3) 1983 late, 4) 1984 

early, and 5) 1984 late. In the 1983 early and late groups, 60 females were crossed w ith 

30 males; in the 1984 early group, 66 females were crossed with 33 males; and in the

1984 late group, 54 females were crossed with 27 males. In each group, the offspring 

from at least one, but no more than three, sire-darn crosses failed to thrive for reasons 

having to do with artificial culture; these failed offspring were not included in subsequent 

analyses. The total eggs for each individual female were divided into two approximately 

equal groups; each group was then fertilized, and assigned at random to a cell in an
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incubator. After emergence and tagging with a group-specific half-length coded 

wire tag (Thrower and Smoker 1984), all groups were placed into a common holding tank 

until release. The juveniles were counted and released to the ocean prior to their first 

exogenous feeding, at about 0.25g wet body weight. Surviving adult fish were 

intercepted and counted at a trap 16 months later as they entered fresh water. All pink 

salmon were native to Auke Creek. Alaska (Taylor 1980, Gharrett and Smoker 1993).

The mating experiments, incubation, release, and recovery occurred at Auke Creek, in 

Auke Creek water.

Individual pink salmon families (offspring from the same dam-sire pair) were 

monitored for survival to return based on the recovery of coded wire tags. A total of 300 

individual pink salmon families were tagged as larvae (unfed fry), in the five groups. I 

considered marked individuals a random sample from the total offspring surviving to that 

time, and O  , the coefficient of variation of recruitment to the marine life stage, was held 

to a minimum by striving to tag and release 1,000 juveniles per family.
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Sires / ,  y + 1 , and /  + 2

Figure 3.1. Diagrammatic representation of the mating design for the early 1982 run. Sires

(males) are shown as square boxes, and dams (females) are shown as circles. Each sire 

was to be mated with two dams, and each dam was mated w ith three sires. This created 

six half-sib groups per replicate.
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Sires /,  y + 1, and j + 2

Dams i /V5

Figure 3.2. Diagrammatic representation of the mating design for the 1983 and 1984 early and 

late runs. Sires (males) are shown as square boxes, and dams (females) are shown as 

circles. Each sire was to be mated w ith two dams, creating a nested design, with two 

half-sib groups per sire.

Computation

As a variance stabilizing measure, release and return numbers were converted to 

the empirical logit (Agresti 1990) for each dam-sire cross. The empirical logit then 

became the trait of interest. Analysis of variance was used to estimate variance
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components. The usual F-test for a sire effect was used to detect an additive genetic 

component to the variation in the trait (Becker 1984). Because o f the relatively small 

sample sizes, and the lack of information on the size of the effect, all tests were 

performed at the 0.10 level o f significance (Tachaet al. 1982).

The size of a particular dam 's family was not independent of the size of the 

family with the same sire but different dam (see Figures 3.1 and 3.2) -  complicating the 

computation of variance of the number of offspring per family. In other words, the 

offspring numbers in half-sib family groups were correlated, which could result in an 

underestimate of variance in family size. For the 1982 families, the mean and variance of 

the family size were considered to be functions of the dam. and offspring numbers were 

summed over sire only after 1 failed to Find a statistically significant sire effect (P > 0.95). 

In the 1983 and 1984 families, dams were randomly divided into two groups so that no 

sire w as crossed with more than one dam in each group. I then calculated the mean and 

variance for each group, and then averaged the mean and variance over the groups.
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RESULTS AND DISCUSSION
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The index of variability increased as family size increased; similarly, the sire 

effects became more evident (significance probability decreased) as family size increased 

(Table 3.1). The sire effect in the analysis o f variance table measures the genetic 

influences on the variability of the trait of interest (e.g. Falconer 1989. Becker 1984).

Tw o groups had statistically significant sire effects (Table 3.2). The logit of marine 

surv ival, and by implication C , . can have a non-zero genetic component in pink salmon -  

survival and family size are traits that can be inherited.

Family size for the five release groups appeared more dispersed than the Poisson 

distribution would provide, although family size did not seem to consistently follow any 

obvious distribution (Fig. 3.3). The Poisson distribution has a single parameter for both 

the mean and variance; data with a variance far in excess of the mean are sometimes 

described as overdispersed relative to the Poisson distribution. The two release groups 

with the highest survival, that is the 1983 early and 1983 late, had the greatest 

overdispersion and the largest average family sizes.
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Figure 3.3. The distribution of individual family sizes (the number of returning offspring per 

family on the x axis) for each female for each of five runs of pink salmon returning to 

Auke Creek. Alaska; for A. the 1982 late run; for B. the 1983 early run; for C. 1983 late 

run; for D. the 1984 early run; and for E. the 1984 late run. The vertical bars show the 

actual distribution of offspring for each female. The lines show the shape of a Poisson 

distribution with the same mean as the observed average family size. Vertical axis is 

percentage observed for each family size.
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Table 3.1. Seven statistics of interest on survival among pink salmon families released into the 

Pacific Ocean in five distinct groups. As a variance stabilizing measure, release and return 

numbers were converted to the empirical logit for each dam-sire cross; the empirical logit of 

survival then became the trait of interest. Sire significance probability is the result of an F-test of 

no sire effect. Mean survival represents survival from emigration into the marine water until 

adult return. Mean family size is the total number of adult breeders returning divided by the 

number of females in the parent year. The index of variability is the variance of family size 

divided by the mean family size, and plays an important role in determining the genetic quantity 

called the effective population size. The index at release was calculated just before release to the 

ocean, the "predicted index” is a theoretical value generated by scaling release statistics under the 

assumption that marine survival is purely random, and not family-specific. The index at return 

was calculated in the breeding population of mature spawners. Note that the actual index is 

uniformly larger than the "predicted index." strongly suggesting family-specific mortality 

processes in the marine lifestage. Under the hypothesis that marine mortality was completely 

family specific, a comparable predicted index would be near 8(X).

Statistic 1982

Early

1983

Early

1983

Late

1984

Early

1984

Late

Sire s ign ificance p ro ba b ility 0.97 0.07 0.008 0.85 0.71

M ean S urv iva l 0.003 0.012 0.019 0.001 0.002

M ean F am ily  Size at Return 2.8 9.3 13.2 0.7 2.0

M ean F am ily  Size at Release 942 772 706 630 838

Release Index o f  V a r ia b ility 162 97.3 110.7 104.7 101.5

“ P redicted Ind ex" at Return 1.48 2.16 3.05 1.12 1.24

F ina l Index o f  V a r ia b ility 1.77 4.97 4.03 2.45 1.58
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Table 3.2. Analysis of variance tables for the logit of marine surv ival of pink salmon 

returning to Auke Creek. Alaska. Families were indiv idually tagged with coded-w ire tags for one 

run in 1982 and each of two runs, an early and a late run. in 1983 and 1984. In 1982. sire and 

dams were crossed in a factorial design. In 1983 and 1984. families had a single dam (mother), 

but sires (fathers) were mated with two dams, creating a nested design. Not all crosses had 

offspring surviving to release.

99

Source df Sum o f  Squares M ean Squares S ign ificance 

__________________ P robab ility

1982 Late Run

T ota l

Sire

E rro r

58

32

26

39.2439

14.8873

24.3566

0.4652

0.9368

0.970

1983 E arly  Run

T ota l

Sire

E rro r

58

29

29

41.083

26.1007

14.9824

0.9000

0.5166

0.070

1983 Late Run

T ota l

S ire

E rro r

56

29

27

10.7643

7.9117

2.8526

0.2728 

0.1056

0.008
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Table 3.2 (continued)

Source d f Sum o f  Squares M ean Squares S ignificance

probab ility

1984 Early Run

Tota l

Sire

E rror

58

29

29

50.2969 

20.3541 

29 9428

0  7019 

1.0325

0.848

1984 Late Run

Tota l

Sire

E rror

58

29

29

42.9130

192798

23.6332

0.6648 

O S 149

0.706

These results provide several refinements to our understanding of pink salmon 

biology. Specifically, these results provide (a) insight into the effective population size 

(Wright 1931), a familiar genetic parameter describing the am ount o f genetic variability 

that a population can retain; (b) evidence for a genetic com ponent to marine survival in 

some environments; and (c) the observation that in the groups of salmon I studied, the 

index of variability increased with the mean family size at return.
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I implicitly assumed that the salmon were not affected by residual 

nongenetic. family-specific influences on survival in the marine environment. Siblings 

that were incubated together could conceivably remain together in the marine 

environment and be subjected to common mortality, o r prerelease handling could have 

had a large family-specific post-release effect on survival. I assume that these 

possibilities are remote, but in any case, they would not have produced the results I 

observed. The nested design used in the breeding experiment would have prevented most 

non-genetic influences from affecting the statistical hypothesis tests of genetic influence 

on survival. The statistical hypothesis tests were based on the sire effects. That is. the F- 

statistic in question was inflated by a consistent com monality among the survival of half

siblings w ith the same sire -  but not the same dam. same incubator, and so forth.

Recall that Rk = v (k )!k  ; for populations that are expanding or contracting. 

Kimura and Ohta (1971) give the following formula for the variance effective population 

size.
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Rt +1

In populations that are neither expanding nor contracting, the average family size. 

k . must be equal to 2. Assuming no familial mortality and random mating, the variance 

in the family size must also be approximately 2 (Crow and Kimura 1970), so that /?* = 1
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and /V, = N,.| - I. However. I observed indices of variability approximately twice as 

large as this model predicts, even when variation in recruitment to the marine life stage 

w as artificially held to a minimum. In w ild populations, Cr is probably very high if for 

no other reason than the physical proximity that eggs from a single family have in the 

redd. With the index of variability near 2. the effective population size will be near 2/3 

of the breeding population size. If there is a weak association between k and v (k ) / k . 

and little familial variation in recruitment to the marine lifestage, hypothetical AJJN , ratios 

will slowly decline to less than 0.4 over the range of family sizes that I observed (Fig.

3.4). In wild pink salmon populations, we can expect NJN , to be far less than 2/3. 

because of familial variation in recruitment to the marine environment.

The theoretical benchmark value of a mean and variance of family size of 2, 

applies to completely random fecundity, random egg deposition success, and random 

survival at each lifestage -  a biologically unrealistic benchmark. A more realistic 

benchmark is found by letting the index e denote a time event when the average family 

size and variance are calculated at an early life stage, and letting the index / denote a time 

event when these statistics are calculated at a later life stage. Then if survival is 

completely random between time e and time /, Crow and Morton (1955) show
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Alternatively, if survival works on the family as unit, then

or.

v -  v, -  
-+  + k t = +  + k, 

k,

v, v -  -
-d- = -+ + k -  k, (3.3)

The 1982 early population had an index of variability of 162 at release, but the 

other four populations had the index of variability at release held very close to 100 (the 

largest deviation in the latter four populations was 10.7); the median variance-to-mean 

ratio at release as was 104.7, or essentially 100. and the mean family size was 773 (Table 

3.1). Substituting a value of k, = 2 into equations (3.2) and (3.3), and solving for the

index of variation at return, under the hypothesis of a purely random environm ent, with 

no family-specifics of any kind, we expect a variance-mean ratio of 1.24 to 1.33, for an 

average of 2 breeders surviving. The ratio would tend to approximately 870 for survival 

completely determined by family membership, with random survival acting to allow' a
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family to survive or perish as a unit. In other words, if the observed ratios at return 

are near or larger than, say 500, we can conclude that in the marine life stage, surv ival is 

acting almost entirely at the family level, but if this ratio is less than say, 2 or so. 

mortality in the marine environment is working mostly at the level o f the individual, and 

not the family -  which is w hat I would expect. Substituting the actual mean family size 

at return font, in equation (3.2) results in predicted indices that are slightly, but 

uniformly, smaller than the actual observed values (Table 3.1). As expected, these results 

suggest a very large role for randomness in determining final family size. However, 

these results also show a family-specific effect consistently across each of the five 

populations.

Or another way to look at this is to ask the question, given that pink salmon may 

at least occasionally experience density-dependent population-size regulation (McNeil 

1964), w hy has selection not increased the productivity of the stock by favoring those 

fish with higher marine survival, and reduced the genetic component of variation to 

undetectable levels? The answer must be that the favored phenotypes change between 

generations, and that eliminating genetic variation in this trait can have a big effect on 

stock productivity. Evidence of this is supplied by McIntyre et al. (1988). who 

artificially selected individuals for increased marine survival in four successive broods of 

a coho salmon (O. kisutch). The authors reported that marine survival in the selected line 

decreased compared to a control line, presumably because o f the loss of genetic variation.
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Figure 3.4. Index of variability for experimentally produced salmon (left axis), as a function of 

mean family size, and estimated NJN ratios. Because of similar handling in early 

lifestages. these fish have a minimum of familial variation of recruitment to the marine 

lifestage. Boxes represent the five groups of Auke Creek pink salmon. Filled dots 

represent observations of coho salmon by Simon et al. (1986). In all cases, the index of 

variability exceeded 1. Functional relationships between family size and index of 

variability are unknown, and surely differ among species, times, locations. Because of 

the limited sample sizes, a single linear smoothing is provided using the estimated 

regression of the Auke Creek pink salmon and Simon et al. coho salmon (the thick line). 

Based on this regression relationship, a hypothetical NJN , relationship is plotted (the 

dashed line, right axis) as a function of mean family size for population sizes large 

enough that N(~N, - 1. and assuming no familial variation in recruitment to the marine

lifestage. Estimated regression parameters for the equation v = a + b x are a = 1.88

and b = 0.150 for combined data (shown).a = 2.03. and b = 0.102 for the coho salmon

data and a = 1.69. and b = 0.227 for the pink salmon data.
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If marine survival of salmon cannot be increased by selection, any surplus of 

animals available for human use comes from a changing and unpredictable fraction of the 

population. A genetic component of marine survival and a changing environment 

underscore the importance for fitness of genetic variability in exploited or recovering 

salmon populations.

Loss of genetic variation can reduce survival and mean fitness (Falconer 1989). 

Several recent studies provide examples of inbreeding, and its associated loss of genetic 

variation, leading to detectably reduced survival in vertebrates in natural habitats 

(Jimenez et al. 1994. Keller et al. 1994). Ryman (1970) reported lower recapture 

frequencies in inbred families of Atlantic salmon (Salmo salar) and indicated a likely 

additive genetic component of variation of recapture frequencies.

In the only other study I know of in which family size w as directly observed in 

Pacific salmon, Simon et al. (1986) tagged 158 families of hatchery-produced coho 

salmon (O. kisutch) over five years, and reported the index of variability of family size. 

They also noted an increase in the variance of family size as a function of mean family 

size, and observed that the family size distribution did not fit any simple distribution, 

such as the Poisson. Their observations closely agree with ours (Figure 3.4). The index
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of variability was always larger than one. and increased with average family size -  a 

result consistent with Crow and Morton's (1955) findings with fruit flies.

Our finding that v ( k ) / k  is larger than 1 is consistent with studies o f other 

species. A value of x(k ) / k  nearly as high as 15 was reported by Begon (1977) in a 

laboratory study of the fruit fly (Drosophila subobscura). Nozawa (1972) reported 

effective population size estimates of 20f£ to 76*T of the breeding population size in 

Japanese macaque (Macaca sp .). Ryman et al. (1981) simulated populations of moose 

(Alces alces) and white tail deer (Odocoileus virginianus) and speculated that effective 

population sizes would be betw een 20 ^  to 42(r of total populations under various 

harvest strategies that did not alter sex ratios. Frankham (1995) recently provided a 

review of N JN  in a large number of different species, including insects, mollusks. fishes 

and other vertebrates, and plants; this review included estimates o f 0.9 for rainbow trout 

(O. mxkiss) but 0.013 to 0.043 for chinook salmon (O. Tsliawxtsclia). Nunney (1995) 

proposed that the ratio of effective population size to breeding size "is expected to be 

higher than 0.5” in populations with overlapping generations, but that the lack of 

overlapping generations creates "an increased likelihood of extremely low values (i.e.. 

N JN  < 0.25)."

In summary. I showed that the variation in family size of anadromous salmon is a 

function of two potentially important factors: 1) familial recruitment to the marine 

lifestage, and 2) the subsequent familial survival in the marine environm ent. I then
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detected familial differences in marine survival in the populations of pink salmon I 

studied, and linked familial variation in family size to genetic causes. By observing the 

association between average family size, and variance in family size we find a link 

between population increase (or exploitable production, surplus to breeding needs) and 

genetic variability in the population. The important biological conclusion is that some 

part of the breeding population is the most productive, and that this productive segment is 

both changing and unpredictable. Thus, population dynamics models that only 

incorporate abundance will fail to predict decreases in stock productivity as a 

consequence of actions that maintain abundance in the short term, but decrease genetic 

variability.
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It's pretty hard to hurt yourself with a chum salmon.

—  Prof Lewis Haldorson in a lecture to his ichthyology students in the fall of 1995
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CHAPTER 4 -WHAT CAUSES VARIABILITY IN PINK SALMON FAMILY 

SIZE?4 

INTRODUCTION

Although average family size determines recruitment in a single generation, the 

genetic dynamics of a population depend strongly on the variability in the family size. 

High values of the variance of family size mean that a relatively small number of families 

"effectively” contribute genetically to the next generation. This notion is formalized in a 

family of genetic concepts grouped under the heading of effective population size. 

Effective population size influences such things as how much genetic variation can be 

maintained over generations, hence the degree to which evolution will allow the 

population to respond to change, and the magnitude of random genetic drift. Let k and 

v(£)denote the mean and variance o f family size in some population, and let Am denote

4 This chapter is adapted from Geiger, H.J., I. Wang, P. Malecha, K. Hebert, W.W. 

Smoker, and A.J. Gharrett. in progress. What causes variability in pink salmon family 

size?
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the breeding population size in the previous generation. The variance effective 

population size (Nev: Crow and Kimura 1970) is expressed in terms of both the variance 

o f family size and the mean family size.

-1  )k
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AT =■
v ( * ) / + i

/  k

The ratio of the variance to the mean of family size, which appears in the denom inator of 

/V,v. is sometimes called the index of variability (Crow and Morton 1955). For small 

breeding population sizes, the index of variability assigns a measure to the amount of 

genetic variability a population can hold. Recruitment, population increases or decreases. 

Fishery yield, and the index of variability are all determined by a combination of 

fecundity and family-specific survival, which may result from genetic differences or 

spatial clustering o f families in an environment with spatially correlated mortality 

pressures.

Variability in traits closely linked to survival seems to be maintained in Pacific 

salmon because variability is such an important feature of their environment. M cIntyre et 

al. (1988) artificially selected families for increased marine survival in four successive 

generations of a coho salmon (Oncorhynchus kisutch) line; marine surv ival in the 

selected line decreased compared to a control line, presumably because of the loss of 

genetic variation. Previously, Geiger et al. (1997) showed that in pink salmon (O. 

gorbuscha) populations the genetic trait of marine survival varied among families within 

a given environment. Selection appears to stabilize some quantitative traits related to
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survival in wild populations of Pacific salmon, but also to prevent too fine a 

stabilization in some survival-related traits (review by Taylor 1991). Many traits under 

genetic control have been shown to be linked to survival or fitness. For example, embryo 

development rate (in freshwater) has been linked with survival-related events in Pacific 

salmon life histories (Brannon 1987. Hebert et al. 1998. a review by Gharrett and Smoker 

1993a. Smoker et al. 1998. McGregor et al. 1998). Therefore, variation of development 

rate among families will induce variation of family size.

In pink salmon, family-specific mortality is. at times, caused by influences in the 

freshwater life stage (e.g.. Fukushima et al. 1998) related to the spatial clustering of eggs 

from the same mother. DeVries (1997) concluded that egg-deposition depth represents a 

tradeoff o f maternal energy uses, and that burial depth is positively correlated with 

maternal body size and that deeper burial protects eggs from scouring loss. He also 

speculated that pink salmon may require especially deep deposition for their size because 

of the hydrological features of their spawning habitat. It is then reasonable to speculate 

that maternal choices about redd location, construction, and depth will also induce a 

component of variation in family size.

For Pacific salmon, it is convenient and natural to divide the lifetime survival 

process into sub-processes in the freshwater lifestage, and sub-processes in the later 

marine lifestage. Here we have divided pink salmon life history into four life history 

stanzas: (1) fecundity, (2) egg deposition and egg loss from the redd. (3) freshwater
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survival, and (4) marine survival. Although these stanzas are not entirely 

independent, this approximation allows a detailed study of life history and makes the 

study of variation in family size tractable. Geiger et al. (1997) showed that population 

increases were accompanied by a greater variance of family size. Here we used similar 

techniques to examine familial links to freshwater survival and fecundity. To do this we 

reanalyzed the results of genetic breeding experiments on laboratory populations of pink 

salmon that had been conducted for other purposes. We then examined freshwater 

survival measurements -  for those eggs and embryos that were retained in redds -  from 

field studies of wild pink salmon populations in Prince William Sound. Alaska to see if 

these approximately agreed with our laboratory values. Our purpose is to assemble data 

sets that relate family-specific survival with variation in family size in the freshwater 

environment and to compare patterns of this variation w ith patterns of variation in other 

determinants of family size, such as survival in the marine environment and fecundity.

METHODS

Notation and Concepts

For the ith family, let k, denote the random family size. Let f  denote the 

fecundity of the mother, let r, denote the fraction of the total eggs both deposited and then
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retained in the redd, let q, denote the freshwater survival of the emergent fry within 

the redd, and let s, denote the marine survival of emigrant fry. Considering family size in 

this way allows partitioning the variation of family size because kt = f t rtq t s t . Let E(k,)

denote the expectation. V(kt) denote the variance o f family size, and in the notation of 

Goodman (1960) let G(x) denote the square of the coefficient of variation (i.e.. G(kt) = 

Vik,)/ E(k,)2). As a first order approximation, assume th a t / ,  r„ «/,. and s, are nearly

independent. Then using Goodman’s (1960) result.

= E( k i ) ' [G(Ji ) + G(r )  + G(qt ) -t-G(\ )

+ G ( /  )G(rt ) + G ( /  )G(q, ) + G ( /  )G (st )

+ G(r: )G (q.) + G(r,)G(s, ) +Glq, )G(.v,)

+ G ( /  )G(rt )G(ql ) + G( /  )G(r )G(.v,) + G( /  )G(q, )G(s;) + G (r )G(qi )G(s. )

+ G ( f i )G(r)G(ql )G(si )].

Goodman (1960) stated that in cases with "sm all” values of G(.v). it is common to 

approximate the variance with £UT[G(/)+G(r)+GU/)+G(.0]. ignoring the terms involving 

products; the inaccuracy will be on the order of (G (/)'l+G (r)'l+G(</)’l+G(.v)'l+ l )''. Below 

we will estimate the magnitudes of G(J). G(q) -  the ratios of the variance to squared 

means -  for fecundity and freshwater rearing survival -  and compare these v alues to 

estimates of G(s)  from Geiger et al. (1997).
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Laboratory Studies and Statistical Methods

118

We obtained laboratory observations o f freshwater survival in four experimental 

groups of pink salmon native to Auke Creek. Alaska (Taylor 1980. Gharrett and Sm oker 

1993b) and one experimental group from Macaulay Hatchery in Juneau. Alaska.

In some experimental studies, dams and sires were organized into family units by 

mating experiments designed to estimate sire effects (Gharrett and Smoker 1993b: 

Falconer 1989. Becker 1984). These studies o f survival make up data sets labeled Set A 

through Set E; an additional data set labeled Set F contains measurements of fecundity 

only. Family survival was estimated as the surviving eggs for each dam. divided by the 

number of eggs that female had in all incubator rearing compartments, and the dam was 

used to define and index the family.

Data Set A and Set B represent even-year broodline crosses between 40 mature 

pink salmon females with 40 mature males from Auke Creek. The Set A cross w as made 

on 29 August. 1996. The cross was a replicated incomplete-factorial mating design: two 

males were crossed with two females in all four possible ways to produce paternal half- 

sib families. This basic mating unit was repeated twenty times to mate all individuals. 

Embryos of each family were divided, by eye, into two equal proportions; each replicate 

was placed in a randomly assigned (by a pseudo-random number algorithm) compartment
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w ithin one of two vertical incubator stacks of FAL Heath (tm) incubators. For our 

analysis the replicates were combined. The stacks each held sixteen incubating trays 

divided into 10 roughly equal sized compartments by separate acrylic dividers. Loading 

densities were approximately 200 eggs/compartment. This process was repeated on 

September 1 and 2. 1997 for the odd-year broodline cross, and is represented as Set B.

Data Sets C and D were generated as part of a study of heritability of embryonic 

development, and the descriptions of the crosses, handling, and populations are described 

in Hebert (1994) and Hebert et al. (1998). The crosses were a nested hierarchical mating 

design (Becker 1984). mating 40 sires with 80 dams. Each male fertilized eggs from two 

females (two dams nested within each sire) to create 80 half-sib families in August and 

September of 1991.

Data set E was generated from salmon gametes obtained from Macaulay Hatchery 

on 31 August 1996 in Juneau, Alaska. Again, crosses o f sires with dams followed the 

same nested hierarchical mating design used for data Sets C and D. Thirty males were 

mated with 60 females; sperm from a single male fertilized eggs from each of two 

females, creating 60 half-sib families. Each full-sib family (single male mated to single 

female) was split into two replicate lots and randomly placed into two of 120 

compartments of FAL Heath™ incubator trays. For our analysis, the observations of 

survival in the two replicates of each family were combined.
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To improve the statistical properties, the quantitative trait that we analyzed 

for statistical hypothesis tests was the empirical logit of survival (Agresti 1990). For n, 

the number of eggs incubated, and .t, the number that surv ived from the rth family, the 

empirical logit was calculated as /, = ln(( x , + l/2)/(n, - .r, + V i)). Sire effects were isolated 

by means of analysis of variance (Becker 1984). and all analyses of variance and 

statistical tests (based on the F-statistic) described below relate to the logit of survival as 

the trait of interest. Variance components w ere estimated from random effects models, 

and F-statistics were generated by constructing the error term based on expected mean 

squares (e.g. Neter et al. 1985). The means and squared coefficients of variation we 

report were calculated in units of eggs, proportional survival, or number of surv iv ing 

animals.

For Sets C-E. (replicate nested mating design) we avoided treating half-sib groups 

(same sire, different dam) as independent statistical units in the calculation of among- 

family variance, by dividing each data set in half (by sire) so that we had two dependent 

data subsets containing only independent observations for each family in the subset 

(single sire and single dam crosses). We then separately calculated survival within, and 

variance among, full-sib groups in each data subset. The squared coefficients o f variation 

(i.e., estimated values of G(.r)), were averaged over the two subset estimates.

Dam-specific fecundity estimates were made for Sets B-F. The fecundity data were 

calculated either by a hand-count of all eggs (Set F), or volumetric methods with counted
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samples (other data sets). The data set labeled Set F represents a hand-count of eggs 

from 258 Auke Creek females maturing in 1985.

Field Studies

Data collection methods for the field studies in which embryos and larv al fry were 

collected from stream gravels with hydraulic samplers (i.e. pumped jets of water) are 

described in detail in Bue et al. (1996). Graphical summaries of these data are presented 

in Geiger et al. (1996). In the field studies. 25 streams within western Prince William 

Sound. Alaska, were selected to represent salmon spawning streams either affected by the 

Exxon Valdez oil spill in March of 1989 or not affected by the floating oil. Samples of 

spawning habitat were stratified by elevation. Within each stream and within each 

stratum, separate transects across the stream were located for em bryo and fry samples. 

Embryo sampling was conducted in late September to mid October, and fry samples were 

collected the following March. Most transects were approximately 30 m long, although 

some transect sizes were adjusted to fit into riffle spawning areas within the streams. 

Along each transect, 14 separate digs, or holes, were located approximately 

systematically. At each dig. the basic data were counts of live and dead embryos, or 

counts of live and dead fry pumped out of the gravel. Nearly all salmon and debris from 

decaying dead salmon within an approximately 0.183 m: area were pumped out of the 

gravel at each dig-unit. Fry were sometimes killed by the pumping and retrieval, so fry
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with signs of decay were counted as dead but newly dead fry were counted as live.

The data were collected in 1989. 1990. and 1991. Salmon embryos deposited in sub-tidal 

reaches o f streams were underrepresented by this sampling effort because no samples 

were taken below an elevation approximately 2 m above the mean high tide. The unit of 

observ ation for our purpose was the transect, and our data is summarized over the 14 

digs/transect. No attempt was made to determine family relationships, and the sampling 

was only meant to represent spatial mortality processes on a scale that would 

approximate scales of processes that affect clusters of siblings.

For each year, we calculated the mean observed survival for the fish within each 

dig-cluster. and calculated the squared coefficient of variation over all sites sampled for 

the year. In other words, we calculated averages and variances over sites that may have 

been affected by location within stream, effects o f pollution or toxic effects of oil. and 

effects of fry density. If any of these effects were important, they should serve to inflate 

the coefficient of variation.

RESULTS

In the laboratory experiments, mean fecundity ranged from 1.437 to 1,713. These 

values may be biased slightly low because some egg shedding occured while potential
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breeders were held prior to full maturation. Plots of the distribution of dam-specific 

fecundity iFigure 4.1) did not appear to follow any common probability distribution.

A statistically detectable sire component of variation of freshwater life stage 

survival was found in four of the five data sets. Fisher's significance probability values 

that we considered "significant'’ ranged from 0.00001 to 0.022 (Table 4.1). Four of the 

five distributions of family-specific freshwater rearing survival (Figure 4.2) were left 

skewed, whereas one plot (Set C) was multimodal. The unusual pattern in Set C may 

have resulted from artificial spawning o f some females before they were fully ripe, or this 

deviation from the other data sets may have resulted from the ordinary variability in 

surv ival patterns of cultured pink salmon.
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Figure 4.1. Estimated distributions of fecundity of female pink salmon from five

populations. In Data Sets B -  E the fecundity of each sampled female was estimated by 

volumetric methods with counted subsamples. The data from Set F represents a hand 

count of each egg in 258 females.
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Notably, the sample squared coefficients of variation ranged from 0.006 to 0.117 

for fecundity and freshwater life stage survival (Table 4.1). In contrast, the squared 

coefficients o f variation estimated, but not published by G eiger et al. (1997). for family- 

specific marine survival were 5.851. 0.438. 0.177. 1.902, and 0.751. When the 

histograms of the squared coefficients of variation from all data sets were plotted 

together, the variation of fecundity and freshwater survival cannot be distinguished from 

zero on a plot that spans the scale of variation o f marine survival (Figure 4.3).
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Figure 4.2. Distributions of freshwater survival in five laboratory-reared populations of pink 

salmon.
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Figure 4.3. Squared coefficients of variation (G<») = variance(»)/mean'(»)) of fecundity (max.

value 0.047) and freshwater rearing survival (max. value 0.118) of five laboratory-reared 

populations of pink salmon, together with five estimates of the squared coefficients of 

variation of marine survival. Missing are values for egg retention. The sum of the 

coefficients of variations from all four sources is approximately proportional to the 

variance of family size. The variation of survival in the marine lifestage dominates the 

estimates we have, although the egg loss source of variation could be as high or higher.
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Table 4.1. Estimates of pink salmon fecundity, squared coefficients of variation (G<») = 

variance(•)/mean'(•)) of fecundity for five populations of pink salmon, and average family- 

specific freshwater surv ival and squared coefficients of variation of family-specific freshwater 

survival in five populations of laboratory-reared pink salmon. The breeding designs allowed for 

an estimate of a sire effect in the logit-transformed survival. A sire significance level (P-value) 

less than 0.1 was taken as evidence of a genetic component to freshw ater survival
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Mean

Fecundity

/
Data Set

A  na

B 1625

C 1526

D  1488

E 1713

F 1439

Squared Mean 

C oe ffic ien t o f  Freshwater 

V aria tion  Surv iva l

G (/l q

"na 0.929512

0.045 0.908703

0.047 0.637691

0.033 0.863994

0.036 0.901886

0.027 na

Squared 

C o e ffic ie n t o f  

V a ria tio n  o f  

freshwater

surv iva l Sire E ffect

G tr/) P-value

0.011042 0.0001

0.006271 0.0037

0.117618 0.0024

0 0 2 9 3 5 9  0.2791

0.024828 0.0218

na
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O f the eggs retained within the redds in the Prince William Sound field study, the 

mean proportions of live eggs for an entire year were 0.868.0.754. and 0.694 for 1989. 

1990. 1991. respectively. The average survival for fry that were retained within the redd 

was above 0.699, 0.570. and 0.589. respectively. While some fry may have died and then 

decomposed or been scavenged, in this cold environm ent it is unlikely that 

decomposition caused much measurement error. Of eggs that had remained within redds 

until the time of observation, the squared coefficients of variation for surv iv al were 

0.014. 0.060. 0.092. respectively for the three years -  similar to our laboratory results for 

freshwater survival among families. The squared coefficients of variation of fry survival 

were 0.223, 0.432, and 0.318, respectively .

DISCUSSION

Biologists have realized for a long time that a small fraction of the total potential 

egg deposition of salmon survives all life stages from deposition to emergence from the 

spawning gravel. Bailey (1969) assumed less than 25%. and Heard (1991). in his review 

of the literature on pink salmon life history, speculated that this value "commonly reaches 

10%-20%, and at times as low as about 1 %.” In the wild populations we studied, it 

appears that mortality in the freshwater lifestage resulted primarily from superimposition
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of redds by sequential spawners (McNeil 1964; Fukushima et al 1998). washout and 

scouring by high streamflow. and retention of eggs w ithin the mother. Heard (1991) 

reported that egg retention may be in part density dependent, and may range from less 

than 1 ^  to over 40f£ of potential egg deposition, or aggregate fecundity. In one year at 

Auke Creek. Alaska. 307c - 7 0 ^  of females retained more than 500 eggs (about one 

fourth of potential fecundity) at death, a proportion that varied directly w ith migration 

date and stream temperature (Fukushima and Smoker 1997). Clearly, because of 

streamflow events, superimposition, or other random catastrophes, a large part of the 

variability of family size is a result of a loss of all or nearly all of some families.

Geiger et al. (1997) estimated the squared coefficient of variation of marine 

survival among families to be on the order of 0.1 to 10 in the marine environment, where 

pink salmon may occupy a variety of habitats and subsist on a variety of prey (also 

reviewed in Heard 1991). The squared coefficients o f variation of familial freshw ater 

survival and fecundity were estimated to be on the order of 0.01 in our studies of both 

w ild and laboratory-reared pink salmon. Therefore, even though we detected a nonzero 

heritability of freshwater survival, variation in this trait, as compared to other life history 

stanzas, seemed to negligibly affect variation in family size and effective population size.

Falconer (1952) introduced the idea of “character states" to convey the idea that 

quantitative characters expressed in different environments can be considered genetically 

correlated states, each of which is expressed in only one environment. We might think of

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



freshwater survival this way. in which case survival in our laboratory studies would 

be expected to be only partially correlated with freshwater survival o f salmon in the wild 

-  but the degree of correlation would be unknow n. Although the egg and fry-dig data 

from Prince William Sound are not family-specific, these observ ations seem to confirm 

and reinforce our interpretation that the approximate magnitude of the coefficients of 

variation we observed in laboratory experiments of freshwater survival are similar to 

coefficients of variation that occur in natural populations.

Many authors have stressed the effects of water flow , redd superimposition, and 

density dependence on egg loss in pink salmon (Neave and Wickett 1953. Wickett 1958. 

McNeil 1964, Fukushima et al. 1998). I did not consider the effects o f density, and our 

measurements from wild populations are measurements on highly exploited, managed 

populations, where stream-densities were held to an intermediate level -  probably 

somew hat below a level that would generate maximum recruitment. If density were to 

increase in a spawning area, it would lead to increases in family-specific mortality and 

overall average mortality because o f egg loss from redd superimposition, increased 

embryo mortality from mechanical shock, competition among females for spawning 

areas, increased egg retention, and so on (Heard 1991). Even though it is probably 

impossible to generalize -  even about gross trends in variation of family size -  without 

somehow taking density into account or referring to a particular fishery management 

regime, our conclusions provide one view of these trends at moderate to low' density.
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We used functions of survival and fecundity as the response variables and 

used the genetic concept of the "sire effect" to detect a genetic source o f variation above 

background levels in the laboratory populations. Detecting a statistical “sire effect" is 

equivalent to demonstrating a nonzero heritability, in the narrow sense, o f a trait. 

Heritability in the narrow sense is the ratio of the additive genetic variation o f a 

phenotype, to the total variation of the phenotype (from genetic and environm ental 

causes; Falconer 1989). Heritability can only be estimated, and has theoretical meaning 

only in the context of a particular environment, and can only be discussed w ithin the 

context of a given level of environmental variation. We considered survival a 

quantitative trait, and used our experiment to test for a nonzero heritability o f freshwater 

survival. Based on first principles, the null hypothesis of zero heritability for freshwater 

survival is not reasonable, but as far as we know, no one has previously reported 

detecting a nonzero heritability in freshwater survival. While our laboratory' environment 

is unquestionably unlike most natural environments, a natural environment would be an 

unsuitable study situation because strong environmental variation would make small to 

intermediate values of heritability in survival undetectable. Additionally, large gene-by- 

environment effects (Hebert et al 1998) would make estimates from any particular 

environment hard to generalize.
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Finally, we consider the variance effective population size (e.g.. Falconer 1989).

N e = -
Rk +1
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v(k) = V  — — — . and n the number of families). 
n -  1

Then for the populations we studied, assuming that Rk = V( k) t  E{k).  so that for 

k = E( k) .  and for Gif) and G(q)  « 1 ,  (recall that/ denotes fecundity and q denotes 

freshwater survival)

N,  __ E( k ) 1 _ 1
N  ~ V(k)  , ~ V(k)  , 1 ~ ^  4 ^  4 , 1 ‘+ 1  r  + -------  G (r)+  G (s )+

where /?* is the index o f variability (/?* = v(k)/ k . with

E(k) E( k ) : E(k)  E(k)

Assuming that G(.v) (v denotes marine survival) is approximately 1 [(the order of 

magnitude observed by Geiger et al. ( I997)j, and E(k) is at the replacement level of 2, the 

ratio of effective population size to number of breeders might be expected to be crudely 

approximated in the populations we studied by [1.5 + G (r)]'1. Then for an A^-to-A/ ratio 

less than ‘/i (see Nunney 1995), this would mean that G(r) (egg deposition and retention 

in the redd) would be less than one half -  implying that mortality m echanisms in the 

marine environment predominate in the control of the effective population size and 

variation in family size. Alternatively, assuming a value of 1/10 for the Nr-lo-N  ratio, 

and making the same assumptions about other values, we find that G (r) »  G(.v) -  

suggesting that it is entirely plausible for family-specific variation in egg loss to have the 

greatest effect on effective population size and variation in family size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In summary, family-specific egg retention, freshwater survival, or marine 

survival could influence variation in family size and effective population size in pink 

salmon. Considering variation in density, local summer freshwater warming, local winter 

cooling and snowfall, early marine conditions, and so forth, it does not appear that one 

source consistently controls variation in family size. Indeed each of these factors varies 

annually and intra-annually. and the effect on variation in family size must vary also. 

However, egg loss mortality and marine mortality appear to be responsible for most 

variation in family size in the managed populations of pink salmon we have examined, in 

w hich density has not been allowed to vary to extremes.
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Don't give them any more than what they want.

— Comment attnbuted to a former Alaska Department of Fish and Game 
commissioner, giving advice on how to manage seme fishenes
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CHAPTER 5 -  RECOMMENDATIONS TO MANAGEMENT

At the Alaskan Salmon Workshop on ocean-climate change held in Anchorage in 

1999, Prof. Tom Royer made the point that oceanographers began the last century trying 

to describe the average ocean, but they didn't make any progress until they started 

studying why things vary. It turns out that many fields of science advanced in the 1900s 

by moving from a focus on averages, to looking at why things vary -  especially the fields 

of statistics and genetics. R.A. Fisher (1970) made a similar point:

The conception of statistics as the study of variation is the natural outcome of viewing the 

subject as the study of populations... To speak of statistics as the study of variation also 

serves to emphasize the contrast between the aims of modem statisticians and their 

predecessors. For until comparatively recent times, the vast majority of workers in this 

field appear to have had no other aim than to ascertain aggregate, or average values. 

Variation itself was not an object of study, but was recognized rather as a troublesome 

circumstance which detracted from the value of the average.

The previous three chapters of this dissertation are organized into a look at 

average life history benchmarks, a beginning of the study of variation in family size by 

looking at variation in the marine life stage, and then a chapter that takes on the question 

of why family size varies.
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Why does variation in family size matter? Average family size is directly related 

to population size and population increases in any sexually reproducing species. In other 

words, the total population size is equivalent to the average family size, given the number 

of families in the previous generation. It is the variation between individuals within a 

population that allows some individuals to survive epizootic events, extreme 

environmental swings, and any number of the random hardships that kill some organisms, 

while others live; without this variation, a population in an unstable environment will 

decline and fail to recover. Individuals vary either from non-genetic causes or because of 

partial genetic control of (heritable) traits. Evolution can only act when there is both 

variation among individuals, and when there is an underlying genetic basis for the 

variation. Variation in family size is one way to observe and describe this selection, but 

in populations of wild animals, variation in family size over time indicates that that the 

favored genetic types are changing with the random environment.

The theory of gene diversity analysis (Nei 1973, Chakraborty and Leimar 1987) 

was developed to partition genetic variability into within and among subpopulation 

components. However, this theory is based on a somewhat artificial analysis o f easily 

measured single-allele or simple multi-allele collections o f traits. In wild salmon 

populations, from the human perspective, the most important trait is survival; what 

matters as far as stock productivity and evolution is how individuals differ in ways that 

affect survival.
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In this final chapter. I will take a look at the guiding paradigm of Alaska’s salmon 

management, the Ricker theory of stock and recruitment, in terms o f Prince William 

Sound pink salmon. Even w ithout bringing a great deal of understanding of pink salmon 

biology into the discussion. I take a look at alternative hypothesizes for recruitment to 

show w hy the view of recruitment should be expanded and approached w ith much more 

open mindedness. Next. I w ill review the results of Chapters 2 - 4 .  and try and draw my 

conclusions about the under-appreciated role of variation in the marine environment into 

some lessons for managers. Finally. I wish to return to the history of salmon 

management, which we reviewed in the first chapter, and reflect on the outlook for 

sustainability of A laska's salmon resource.

An Example O f The Danger o f Relying On A Single M odel

The Alaska Department of Fish and G am e’s new Escapement Goal Policy states 

that “whenever the department wishes to establish a new [escapement goal] or modify 

and existing [escapement goal], a scientific analysis with supporting data must be 

prepared.” Again, such an analysis is almost always synonymous with a “Ricker 

analysis" (Ricker 1975, Hilbom and Walters 1992, Quinn and Deriso 1999). or a similar 

“stock-recruit analysis," confined within some expanding perimeter of statistical options.
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Writing about the effect of environmental factors and stock-recruit analysis, 

Walters and Collie (1988) state, "... feedback policies for dealing with unpredictable 

variation can be constructed without knowing the causes o f the variation. Once the 

statistical properties o f  the variation are specified  the same policy will be optimal no 

matter what the cause (emphasis added).” But, specifying the "statistical properties of 

variation" greatly begs the question. M aking strong, untested assumptions about the 

statistical properties o f variation are equivalent to simply making strong assumptions 

about the stock-recruit relationship (Schnute 1991). Assuming a simple, well-understood 

pattern of variation has a strong effect on what features of the data appear to be the stock- 

recruit relationship -  even when they are not.

Consider the idea of stock-size contrast from the "adaptive management” 

literature (e.g., Walters 1986). Adaptive management proponents have argued that in 

order to increase certainty about the true underlying stock-recruit relationship, managers 

should intentionally manage to increase the variation in stock size. That way, there will 

be more observations at the low end of the stock, the middle, and the high end of the 

stock; any statistical relationship between stock and recruitment will be easier to estimate 

with regression or statistical curve Fitting algorithms (Draper and Smith 1981). This idea 

has come up over and over recently in discussions about actual escapement ranges in 

Alaska. It just seems to be a matter of common sense that managers should increase 

contrast in the data, because to Fit a statistical regression, it is alw ays better to have higher 

contrast than low contrast (Figure 5.1).
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contrast contrast

Figure 5.1. Hypothetical data and hypothetical fits of regression lines, showing how higher 

contrast leads to less ambiguous fits.

In salmon management, this has been translated into the practical advice as 

follows: allow escapement below the escapement goal during years of low recruitment, 

and allow escapement above the escapement goal in years of high recruitment. Many 

people have already noted this pattern occurs in Alaskan salmon fisheries because of the 

nature of management error, even when managers are not trying to increase contrast in 

the data, but arc managing for fixed escapement goals (Eggers 1993, Geiger 1994, 

Schmidt et al. 1997).

However, a problem that should be obvious arises when (1) stock and recruit data 

points “cluster" because of step-environmental changes, persistent changes in predator or 

prey populations, etc., and (2) management error is correlated with recruitment (either by 

serendipity or because of the belief that this will create more contrast). When
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management error and recruitment are correlated, low v alues o f stock tend to be 

paired with low values of recruitment in the near future, and high values of stock tend to 

occur during periods of high values of recruitment. Figure 5.2 shows recruits per 

spawner for Prince William Sound pink salmon prior to the Exxon Valdez oil spill, and 

prior to the influence o f large hatcheries. Note that recruitment seems to change level 

every six or seven years in Prince William Sound, but these changes are much less 

pronounced for Kodiak.
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Figure 5.2. Pre-oil spill, and pre-hatchery returns per spawner for Prince William Sound and 

Kodiak pink salmon.

An analysis of Prince William Sound pink salmon data shows that underharvest 

(relative to a point escapement goal) does correspond to high recruitment events, and 

overharvest does correspond to low recruitment events (Geiger 1994). Because low 

recruitment causes low stock size -  just the opposite of the theory, which states stock size 

causes recruitment -  it is possible for the data to Fit very well to an entirely incorrect 

model.
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To be concrete, suppose that in Prince William Sound there are three 

“environmental states.” which can be represented as stock-recruit curves, and that the 

environment switches states at a random unpredictable time e v e n  several years (Figure 

5.3
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Figure 5.3. Stock-recruit data (provided by Sam Sharr. formerly of ADF&G Cordova. Alaska) 

from Prince William Sound Pink salmon with three hypothetical stock-recruit 

relationships, corresponding to hypothetical “environmental states.” shown by the solid 

“stock-recruit" lines. During periods of persistent high or low recruitment, observations 

tend to fall into clusters. These clusters tend to form a spurious dome-shaped stock- 

recruit function (dotted line). The 1984 brood year, labeled "84,” has traditionally been 

seen by managers as clear evidence of strong compensation mortality. However, this 

could also be a cluster formed by switching from a period of high productivity to low 

productivity.
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Because the environmental states persist, the lowest stock-recruit curve is over

sampled at the low end of the stock size range (denoted “ low clusters” ): the high stock 

recruit curve is over-sampled at the high end of the stock size range (denoted “high 

clusters” ), and in 1984 when the environment switched from "high” to "low” a single

point cluster occurred in a unique region. When the data is examined with a stock-recruit 

analysis, the relationship appears highly dome shaped, and considerably understates the 

stock's average yield potential at low stock sizes, and overstates the average yield 

potential at high stock sizes, and greatly misstates the stock's average response to very 

high stock sizes.

This "adaptive management" idea of increasing certainty about stock-recruit 

relationships pairing low escapement with low recruitment years and visa versa, can lead 

to poor predictions about how the stock will respond when the environment sw itches 

between “states." In these cases, conventional statistical measures, such as R~. w ill 

provide incorrect guidance and lead to false confidence about model effectiveness.

The fact that analysts often get R1 values near 0.8 or even 0.9 in Ricker-analysis 

relationships between the logarithm of the ratio of recruitment to stock size regressed on 

the stock size (e.g.. Clark 1995, and many other examples) tends to reinforce the idea that 

stock size is a strong predictor o f future recruitment. But the ability to forecast salmon
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production into the future has never been reliable, and stock size has not been an 

effective predictor of future salmon recruitment. Quinn and Marshall (1989) pointed out 

forecasts o f Alaska salmon "have not been accurate." Geiger and M cNair (2000) cite over 

30 years o f salmon forecast in Alaska, describing forecasts that have generally been 

based on stock and recruitment relationships; a review of those documents supports 

Quinn and M arshall's conclusion.

Caution about stock-recruit analysis with a cycling environment is found in the 

stock-recruit literature, and others have described similar situations with stock-recruit 

analysis (Botsford 1986, Collie and Walters 1988. Walters and Parma 1996. and 

elsewhere). Actual data sets from Alaska do seem to demonstrate an interaction of 

management error and persistent changes in recruitment level that produced spurious 

stock-recruit relationships using a conventional analysis, and show the under-appreciated 

role of high-frequency climate change in recruitment control.

A Ricker analysis of this Prince William Sound data will not necessarily lead to 

poor management, even if that analysis is based on a misreading of the situation, and 

even if the model incorrectly predicts the stock’s future behavior. A Ricker analysis of 

this Prince W illiam Sound stock-recruit data would lead to essentially status quo 

management, which seemed to be successful. Although there are certainly some 

controversies about what level of escapement is appropriate in several areas, I do not
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know of even one example in Alaska where a Ricker analysis has clearly led to a 

serious overharvest, or a serious loss of potential yield. The real danger from relying so 

strongly on a model of salmon recruitment that is very simplified, unsupported, and so 

strikingly unquestioned, is that managers can’t ever gain any new understanding or 

insight, because all possible outcomes seem to support the single explanation for 

recruitment.

Unfortunately, if salmon production were to drop in 2002, salmon managers are 

not in a substantially better position to explain to the public w hat happened than they 

were w hen production dropped in the early 1970s. The 1997 El Nino event w as w idely 

reported on in the popular literature. So w hen salmon production dropped quickly in 

Western Alaska in the late 1990s, managers tentatively pointed to El Nino in public 

meetings and on radio interv iews, even though there was no evidence that the effects of 

the 1997 El Nino had reached waters that Western Alaskan salmon would have 

encountered. Western Alaskan salmon managers continued to point to El Nino for 

several years when productivity did not return, because they really had no other way of 

looking at the problem. Indeed “El Nino” came to be a kind of shorthand for "we don’t 

know' w hy” in the jargon of salmon management of Western Alaska. It is hard to 

imagine that salmon managers are in much better position today than they were in 1970 

to make sensible recommendations beyond simply reducing harvest rate for how to 

respond to a large-scale drop in salmon production, when their whole view of salmon
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recruitment is based on a model that predicts recruitment will immediately return to 

the long-term average once escapem ent has been controlled.
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Lessons from  Chapters 2 - 4  and  Genetics in Salmon Management

Pacific salmon are exceptional top-level pelagic ocean predators, which breed in 

freshwater and spawn only once in their life. Salmonid species have fewer and larger 

eggs than most other teleost fishes (Elgar 1990, Marshall et al. 1997). T heir embryonic 

development is extended in time and emergence seems to be strongly linked to food 

availability. Even within the genus Oncorhynchus, there is quite a bit o f variability 

among life history strategies. Some species, such as sockeye or coho salm on, may have 

extended lacustrine or river residence. Pink and chum salmon have the least dependence 

on the freshwater lifestage, and usually migrate directly into the marine environment 

following emergence, w ith minimal freshwater residence. Chinook, chum , coho, and 

sockeye salmon have multiple age classes, which extend the effective population size, 

and hedge the population against year-class failure (Felsenstein 1971, W aples 1990). 

Coho salmon are strongly territorial as juveniles, and like chinook and sockeye salmon, 

they have a specialized freshwater life history strategy (Sandercock 1991). Although the 

previous three chapters deal alm ost exclusively with pink salmon, the basic management
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of all species is very similar, and the basic needs for sustainability are exactly the 

same: salmon habitat must be maintained and managed, human-induced mortality must 

be controlled, and managers must balance yield with the need for an adequate spawning 

stock sizes to sustain the run.

Pink salmon were used in the studies described in Chapters 2 - 4, because of their 

ease of study. Pink salmon have the least dependence on the freshwater environment of 

any of the five species of Pacific salmon in Alaska, and they virtually all return in a 

single age class; both features that make observations about variability in separate 

lifestages easer to find and interpret, and features that make conclusions about effective 

population size less cluttered. However, the simplicity of observing pink salmon 

complicates generalizing conclusions about the role of variation in Pacific salmon.

Salmon in Alaska show a large v ariety of patterns of behavior and adaptation. 

Most pink salmon populations in Alaska are found in short, coastal streams in Southeast 

Alaska, Prince William Sound, and Kodiak. Fall chum salmon migrate far up the Yukon 

River to spawn, but some coastal summer chum salmon stocks spawn within a short 

distance from salt water. Many lakes in Alaska have two or more runs of phenotypically 

distinct sockeye salmon, which have adapted to spawn in different habitats within the 

same lake system. So, variation on a very broad scale is both obvious and seemingly
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necessary for salmon to thrive in so many different habitats. That is. it is not hard to 

convince skeptics that stocks that are very visibly and obviously well adapted to a 

particular habitat need to be maintained to protect the productivity o f that habitat. But the 

necessity of variation within a population, and that variation itself, is much harder to 

observe and describe and to convince the public of its importance.

The biology of Pacific salmon within the ocean is poorly understood, but because 

of the nearness to land the near-shore stage is the best studied of the oceanic phase. 

Referring to pink salmon. Heard (1991) wrote:

New ly formed schools may move quickly from natal stream area or remain to feed along 

shorelines up to several weeks. That timing and pattern o f seaward dispersal is 

influenced by many factors, including general size and location o f  the spaw ning stream, 

characteristics o f the adjacent shoreline and marine basin topography, extent o f  tidal 

fluctuations and associated current patterns, physiological and behavioral changes with 

growth, and possibly, different genetic characteristics o f individual stocks.

Heard’s assessment leads to the conclusion that the phenotypes involved in early marine 

survival or mortality are probably often related to behavioral characteristics controlling 

early-marine growth and dispersal. The conventional view in salmon biology, dating 

back to the work of Parker ( 1962a, 1962b), is that the majority of marine mortality takes 

place in the very early marine lifestage, and this time is often thought of as a "critical 

period” for establishing the total size of the future return. Survival was formerly thought
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to be dependent on the juvenile salm on’s ability to grow rapidly to leave the size 

class of preferred prey of the salm on’s principal predators.

More recent work in Prince W illiam Sound gives the impression that the situation 

is more com plex than that, with both the preferred size class and the principal predators 

changing from year to year, depending on the availability of alternative prey, and the 

constantly changing size of predator populations (Cooney et al. 2001). As part of that 

same series o f studies, Willette et al. (2001) reported on pink salmon losses to alternative 

predators -  related to what they called the “prey switching hypothesis," and the "size- 

refuge hypothesis.” They reported that, ‘T w o  facultative planktivourous fishes. Pacific 

herring (Clupea pallasi) and walleye pollock (Theragra chaleogramma), probably 

consumed the most juvenile pink salmon each year, although other gadids were also 

important." They went to say. “Our size-refuge hypothesis was supported by data 

indicating that size- and grow th-dependent vulnerabilities of salmon to predators were a 

function of predator and prey sizes and the timing of the predation events." So again, the 

phenotypes that are affecting early marine mortality appear to be those related to 

dispersal and growth. But based on the new work from Prince William Sound, it appears 

that the favored phenotypes are changing as a function of predator abundance, the 

distribution o f the ratios of predators, and the sizes of predators -  and these controlling 

attributes o f predators are constantly changing.
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The First lesson to take from the previous chapters has to do with the role of 

variation am ong individuals in a population in relation to a variable marine environment. 

As previously mentioned several times, managers in Alaska have tended to look to the 

freshwater environment to explain variation in salmon recruitment, especially in the case 

of pink salmon, which have the most variable and unpredictable yield in the Alaskan 

commercial salmon fishery (Quinn and Marshall 1989). Mangers looking for evidence of 

the relative stability of the marine environment sometimes cite high R2 statistics from 

Ricker analyses. Studies looking directly at partitioning survival estimates into lifestages 

have not been fashionable in Alaska. In careful studies of the survival of managed coho 

salmon in Southeast Alaska -  a species with strong dependence on the freshwater 

lifestage -  Shaul (1998) concluded that the marine environment contributed 27 .0 # . 

4 8 .4 # , 3 9 .2 # , 73 .0 # , 51 .6# , and 60 .8 #  to the overall estimates of survival in the 

populations he examined; his overall estimate of the average percentage of variation in 

adult abundance due to marine survival was 6 1 .8 # . Evolution operates on traits that vary 

if there is a genetic basis for this variation. We saw in Chapter 3 that marine surv ival had 

more genetically based variation than freshwater survival in pink salmon, and this 

em phasizes the importance of the unobserv able, unobvious variation.

Salmon managers and scientists should now' know from experience, and from the 

previously cited developing body of knowledge from the atmospheric sciences and 

oceanography, that the ocean changes states at random, unpredictable times (see Chapter
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1 for a discussion of this), and salmon productivity is strongly tied to these 

environmental states. These changes have tended to confuse management, because 

managers have tended to think of recruitment only in terms of stock size, and possibly 

weather phenomena they could sense in the terrestrial world. The results in Chapters 3 

and 4 and Shaul (1997) support the hypothesis that salmon populations have evolved to 

be prepared for moderate change and instability in the marine environment, and that 

genetic variation in traits that affect survival in the marine environment are important for 

conservation or for an exploitable potential yield.

The second lesson to take from the previous chapters has to do w ith the ratio of 

effective population size to census size. We saw in Chapter 3 that family-specific 

variation of survival in the marine environment alone might be enough to reduce the 

effective population size to between, maybe, 30 to 80T  of the census population size of 

pink salmon with populations that are stable or increasing. The situation is much more 

complex in other species of Pacific salmon, because variation in the freshw ater 

environment is undoubtedly more important, and because the presence of multiple age 

classes expands the effective population size and makes its calculation or estimation more 

complex (Waples 1990). We saw that Simon et al. (1986) generated results with 

hatchery-produced coho salmon that were very near the results with pink salmon in 

Chapter 3 -  not surprisingly, as coho salmon have a relatively limited distribution over 

ocean-age at return. Hedrick et al. (2000) examined the effective population size of
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captive and endangered hatchery-produced winter-run chinook salmon, and 

estimated an effective population size slightly larger than the census population in one 

year, and an effective population size half of the census population size in another year. 

The Hedrick et al. data set is hard to draw general conclusions from, because these fish 

were bred using a protocol to keep the effective population size high; and they interpreted 

their results as evidence of the success of that protocol. Waples (1990) shows how the 

presence of multiple age classes in chinook salmon extends their effective population 

sizes. Considering everything we have learned by examination of effective population 

size in Pacific salmon, the direct measurements do not conflict with Nunney’s (1995) 

conjecture that effective population size should be near half of the census stock size, and 

rarely less than 2 5 ^  for pink salmon with their single age class. For other species, 

additional family-specific variation in the freshwater environment should tend to reduce 

the ratio of effective population size to census population size, but the extended age 

classes at return should tend to inflate this ratio.

Finally, after reviewing the material in the previous chapters, can variability of 

family size be used as a new way to communicate about genetic ideas, such as effective 

population size, and affect important decisions in salmon management? Currently 

genetic ideas are not used to their full potential in the salmon management decision 

process, whether deciding about escapement goals, enhancement, or habitat alteration.

To some extent, this is because fishery genetics education has failed to reach many of the
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people that go into fishery management, and certainly failed to reach most influential 

members of the general public. Although there are definite exceptions, many senior 

managers within the Alaska Department of Fish and Game that do have advanced 

training in genetics have often studied the agricultural model that applies to the breeding 

of captive animals in controlled environments. When combined with the fisheries bias 

tow ards seeing the ocean as a stable, unchanging environment, the need for genetic 

variation has been under-appreciated in salmon management in Alaska and elsewhere.

At least in Alaska, general genetic principles can be seen to have affected large 

policy statements about management. For example, the State of Alaska has a genetics 

policy (ADFG 1985). However, the field of genetics has probably not had the same 

effect on decisions about enhancement or habitat alteration as say. the field of fish 

pathology. Fishery managers, regulators of enhancement, and influential members of the 

public see genetics as abstract and confusing, and a field that rarely has concrete advice 

based on broad consensus within the field.

Often genetic advice is simply excluded from important decisions about salmon 

management because genetics does not offer a simple calculus, or economics, to examine 

tradeoffs. In other words, managers have simply been puzzled about how' to use genetic 

advice in the process o f m aking unavoidable decisions with potential losses of costs
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associated with each decision option. Consider for a moment the advice that genetic 

variation must be preserved. Industrial fishing, undoubtedly reduces overall genetic 

variation, as does the natural ecological process o f forest succession, as does unavoidable 

climate change, as does many forms of development. If the advice is, allow nothing that 

w ill reduce genetic variation, that impractical advice will just not be considered. This 

advice simply does not fit the need, which is to make tradeoffs.

Is the point of all of this that managers need a new. more complex recruitment 

model -  perhaps a model like the Ricker model, but one that incorporates effective 

population size and other genetics concepts? I think the answer is no. First, there are just 

too many principles and too much specific technological know ledge to produce a 

workable, robust model: principles from genetics, limnology, economics, ecology, and 

technical knowledge economics, other social sciences, and on and on. Adding a lot of 

complexity and a lot o f parameters to the model, especially parameters describing factors 

that are not well studied will just erode the robustness of the model, and result in a loss of 

model precision.

Moreover, management has goals that are much bigger than simply controlling 

harvest rate in the short term. Unfortunately, some of these goals are in conflict. One of 

management’s most important goals is to maintain public confidence in its ability to
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study and understand the dynamics of the resource. The public is looking to 

managers to help ensure that the resource will last far into the future. The goal of 

sustaining the resource in the long term is very different than simple management tasks, 

like choosing among escapement goals. This is especially true when managers are faced 

with the issues of enhancement, alternate habitat uses, or other tradeoffs. In other w ord, 

managers are faced w ith a complex w orld, complex set of challenges, yet they have been 

looking for guidance from very simple models. I believe this may be what Larkin (1988) 

meant when he stated. " Present management, albeit moderately successful, is 

characterized by reaction and a special jargon of stained glass language."

Any action that can change the phenotypic distribution within an animal 

population can reduce the genetic variation the population may need in the future for both 

yield and for sustainability. Fishing activities can and do change size, age o f maturity, 

geographic distribution, timing, and other characters related to fitness (Conover and 

Munch 2002). Managers don’t need just more and more inputs into the models they use 

to justify their actions. Managers clearly need a better overall understanding of the 

consequences of a large variety of actions, and they need a better calculus for explaining 

tradeoffs to the public and themselves. It seems that the best that we can hope for, at 

present, is that managers try to draw on a wider range of technical know ledge from a 

variety of fields, and managers focus on the possible consequences that flow from such 

things as enhancement or climate change if their models are wrong. It seems the most
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important need for future research is work that moves tow ards a calculus that helps 

show the specific effects on. costs to. and tradeoffs involving genetic resources, as a 

consequence o f various actions.

In the mean time, the larger conclusions from Chapters 2 through 4 are that 

sustainability and yield are dependent on moderate or large stock sizes, and that genetic 

variability is important -  again, ideas that don't give managers any specific or concrete 

operational guidance in a specific situation, where management is asked to make 

tradeoffs. But even these larger conclusions are often hard to communicate to the general 

public -  especially when the conclusions are supported by unintuitive technical terms and 

estimates of highly specialized genetic parameters. The concept of variation in family 

size may be a better w ay to try and communicate w ith the general public about a number 

of deeper genetic concepts like effective population size, heritability, selection, and 

fitness. In other words, by explaining that some families have higher survival, greater 

yield, and a greater contribution to future runs, and that the preferred families are 

unpredictable -  an idea that appeals to common sense -  the link between genetic 

variation and production and sustainability might be easer to bring to a decision.

As we saw in the third and forth chapters, even when family size varies for purely 

random reasons, variation in family size controls the amount of genetic variation a 

population can hold. In the case o f Pacific salmon, this genetic variation, together with a 

changing environment, are the sources of population increases and the production surplus
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to what the population needs to sustain itself. Although these results do not help 

salmon managers find exact escapement levels for particular situations or systems, these 

results supply more justification for the principles that stock sizes need to be maintained 

at high levels, all genetic components o f the runs should be maintained, and that removals 

from the population need to be balanced with the number of animals that must be 

returned to the population for it to be sustained -  principles that are already well 

established. However, these results also show' a more important principle -  one that is 

not well established, but should be -  that instability and variation are important features 

of the recruitment process, so loss of genetic variation has a concrete cost.
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Effectiveness o f  Management and Implications fo r  Policies

An obvious question is how should the results of previous chapters affect the 

policies of the Alaska Department of Fish and Game? The Alaska Department of Fish 

and Game already has probably the most extensive, complete, and well thought out 

policies to protect w ild salmon of any management agency in the w orld. For example, 

the ADF&G genetic policy (ADFG 1985) restricts movement of fish, and places 

boundaries on hatcheries and enhancement activities. Recently, the Alaska Department 

of Fish and Game and the Alaskan Board o f Fisheries standardized and formalized some
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long-standing principles and procedures, and jointly prepared a policy on sustainable 

salmon fisheries, and the Board formally placed the policy into regulation in November. 

2000 (5 AAC 39.222). The Policy fo r  the Management o f  Sustainable Salmon Fisheries 

directs the Department o f Fish and Game to require assessments necessary for sustainable 

management of existing fisheries and wild stocks (section C . 3 . J ) .  In the coming years, 

these assessments should take a more standardized form, and they should be produced on 

a predictable three-year cycle. The policy requires the Department to protect wild stocks 

and fisheries on them from adverse impacts from artificial propagation and enhancement 

efforts (section c .l.D ); to develop and to review periodically management objectives in 

harvest management plans, strategies, guiding principles, and policies for hatchery 

production (section C . 3 . B ) :  and to document potential impacts and gather other 

information needed to assure sustainable management of w ild stocks (section c.3.K). 

Moreover, the policy requires the burden of proof to be placed on the proposers of 

activities that "...pose a risk or hazard to salmon habitat or production" (section c.5.A.v). 

The policy outlines procedures for the establishment of an escapem ent goal -  expressed 

as a range -  and defines a sustainable escapement threshold  as a value that triggers a 

procedure for classifying the stock as a stock of concern, when management allows this 

threshold to be crossed.

Under the Policy, three levels of concern are defined, which the Department will 

use in the future to describe stock status. A yield concern is defined to be a chronic
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inability, despite specific actions, to meet “expected yield," which is essentially the 

lower end of the yield that had been observed in the recent past. This is the least serious 

level of concern. A management concern is defined to be the chronic inability, despite 

specific actions, to maintain escapement within the stated escapement goal range. The 

most serious classification is a conservation concern , defined to be the chronic inability, 

despite specific actions, to maintain escapement above the sustainable escapement 

threshold.

These policies arc an attempt to formalize the management behavior that led to 

such high yields when the environment was favorable in the late 1980s and the 1990s, 

and the behavior that protected salmon stocks when the environment was unfavorable in 

the 1970s. The real test of management is what it does when runs decline. As mentioned 

several times previously, beginning in the late 1990's, returns of many Western Alaska 

stocks fell dramatically. Management (ADF&G and especially the Board of Fisheries) 

responded by essentially eliminating commercial fishing and drastically reducing 

subsistence and sport fishing in the affected areas. These disruptive fishery closures were 

in an area with few other economic opportunities, yet there was strong public support for 

these closures because of the high value Western Alaskans place on future runs.
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However, it is not hard to find cases where the Alaska Department has 

simply ignored policies when there was strong public pressure to do so. A good example 

o f this would be the continual overharvest of wild pink salmon in Prince W illiam Sound 

in the early 1990s. Geiger et al. (1992) stated.

In 1992. the smallest number o f  even-year wild pink salmon spawned since statehood. In 

spite o f  this shortfall, fishermen harvested nearly 7 5 #  o f  the wild run. T o put these 

numbers in perspective, managers closed the directed pink salmon fishery in 1972 and 

1974 for conservation reasons -  yet in these years more w ild spawners were observed in 

the streams o f  Prince W illiam Sound.

This pattern of overharvest continued, even w hile Alaska Department o f Fish and 

Game officials were publicly stating that they would not allow this to happen. Geiger 

(1994) explains how escapements to the northwestern Prince William Sound began to 

fall, as production from Prince W illiam Sound’s large pink salmon hatchenes came on 

line. Templin et al. (1996) shows that these northwestern stocks were being harvested 

with excessive harvest rates in large hatchery fisheries. It is probably the case that 

uncontrolled harvest of wild stocks in northwestern Prince William Sound caused a far 

bigger loss of adult wild-stock salmon than the Exxon Valdez oil spill. The escapement 

situation, both in terms of actual escapement numbers and the distribution of the 

escapement, have improved, and one would like to think this is because o f an intentional 

correction of management to bring their actions in line with the policy. However, it is 

more likely that this is simply the result of the drastic drop in the price o f pink salmon.
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which has simply reduced the competitiveness of the fishing in western Prince 

W illiam Sound.

Part of the strength of management comes from the public's trust that the 

managers understand the resource. Management cannot take painful and disruptive 

actions unless the public trusts that managers understand the dynamics of the resource 

and that managers are working in the resource consum er’s best interests. Lichatowich’s 

(1999) history of the failed salmon management in the Pacific Northwest is a study of 

management that is unable and unwilling to question its assumptions, and unable to adapt 

to failure and improve.
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The Outlook fo r  Sustainability

Both the Pacific Northwest and Alaskan salmon management has over 100 years 

of experience managing large fisheries and the salmon and habitat that support them. At 

the seventh Alaskan Salmon Workshop in Anchorage. Jeff Cederholm from the 

Washington Department of Natural Resources warned Alaskan managers that they were 

failing to leam the lessons of management of the Pacific Northwest. As he described his 

interpretation of these lessons, which involved maintaining high levels of marine derived
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nutrient levels in streams, it occurred to me that few people understand the history of 

either the Pacific Northwest or Alaska, and that that there is a lot more to sustainability 

than very specialized technical knowledge -  whether it is knowledge of marine derived 

nitrogen, variation of family size, or mathematical descriptions of the recruitment 

process.

In the sense that commercial harvests in Alaska increased by a factor o f 10 from 

1974 to 1995, the management has been successful, and management's policies have 

worked. But just as it would be misguided for Alaskan salmon managers to try and take 

all the credit for increases in production, which we now' know are partially the result of 

favorable environmental conditions of the 1980s and 1990s. it would be even more 

misguided to give all the credit to managers for forming effective management policies 

and actions. Managers have been able to take effective and painful actions when they 

have had broad public support, and they have been thwarted when they lost public trust, 

or otherwise lost public support. We saw in Prince William Sound, that simply having a 

strong policy to maintain wild stock escapement was meaningless w ithout strong public 

support for that policy. At other times, managers took actions to increase run sizes and 

took concrete steps to protect wild stocks -  and this was possible because of broad public 

support for strong fishery and habitat management, and a strong and loud public lobby 

for effective management policies.
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The single most important lesson from the failed management of the Pacific 

Northwest is that when salmon lost their value to the residents of the region, management 

could not function effectively. Salmon was a foundation of the economy of the Pacific 

Northwest a few hundred years ago. but as NRC (1996) observed: T h e  Euro-American 

settlers that migrated to the region in large numbers after 1800 were farmers." The NRC 

report goes on to document how salmon were less valuable to the industrial economy of 

the Pacific Northwest than the agricultural activities, the logging, and the many other 

activities that a strong fishery management would have interfered with. Alternatively, the 

salmon resource has remained every bit as important in the economy of Alaska as it did 

before the Euro-Americans arrived in the 1800s. At the peak of the resource’s ex-vessel 

value, in the late 1980s. the seafood harvesting industry' was the largest private-sector 

employer in the Alaskan economy, both in terms of income and employment (Jeff 

Hartman, Alaska Department of Fish and Game, personal communication).

The most important lesson about sustainability from the last 50 years is that 

salmon must have enough value to support a weII-organized, politically powerful lobby 

for conservation. At the time of statehood for Alaska, the two important goals for fishery 

management were to take control of the biological management of the runs, and equally 

as importantly, to broadly distribute the economic benefits of the resource.
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In looking to the future. I suspect that two factors will affect the long-term 

status o f Pacific salmon in Alaska more than any others. The first is the ocean-climate 

change, which is essentially unpredictable at this time. But even so. for over 40 years the 

Alaskan public has encouraged their managers to respond to unfavorable environmental 

conditions by controlling harvest rates and protecting habitat. The more important factor 

in the biological health of salmon is the economics of the salmon trade, and the value that 

Alaskans place on salmon. The commercial value of salmon in the Alaskan economy has 

fallen dramatically to less than a third of its nominal ex-vessel value in the since the late 

1980s (Geiger and McNair 2001). The value o f salmon for subsistence and in the sport 

fishery has probably increased quite a bit, although this is a much harder thing to measure 

on a sim ilar scale. If the loss of commercial value of salmon does not reverse, it will 

remain to be seen how society will trade the need to protect genetic variation and large, 

sustainable salmon populations against pressures pushing towards development, 

urbanization of salmon habitat, and benefits that come from habitat alteration. Currently, 

the most important conservation genetics issue in Alaska maybe the loss of a strong, 

healthy, well-funded salmon industry that places a high economic value on the future 

existence of Pacific salmon.
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