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Abstract
Repeat observations using the Global Positioning System at sites on the Earth's surface 

enable the velocity o f  those sites to be estimated. These velocity estimates can be used to 

model the processes o f  the crust's deformation by faulting and folding. The focus o f  this 

study is erusral deformation in Alaska and in particlar the region o f  interior Alaska within 

.'500km o f  Fairbanks, including the Denali fault: the Fairweather fault and Yakutat block in 

southern Alaska: and the Semidi region o f  the Aleutian are. This deformation is driven by 

the relentless northwestward motion o f  the Pacific plate relative to North America.

The Yakutat block, an allocthomms terrane located in the ’armpit’ o f  southern Alaska 

is shown to he moving at neither the Pacific Plate rate nor is it attached to North Amer­

ica. Instead it h;is a velocity parallel to the Fairweather fault, which means that some 

offshore structure, possibly the Transition Zone, must accommodate some of the Pacific- 

North American relative motion. The slip on the Fairweather fault is estimated to be 44 — 3 

mm yr with a locking depth o f  S:nl km. which implies a recurrrence time o f  — SO years for 

an A/s T.'J earthquake. I'sing a model o f  southern Alaska block rotation with the Denali 

fault as the northern boundary, the slip rate on the McKinley segment of the Denali fault is 

estimated to be ~  ti-9 mm yr for a locking depth o f  12 km. Moving to the southwest, data 

from sites in the Semidi segment o f  the Alaska subductioti zone, between the fully-coupled 

segment to th<■ northeast and the slipping Shutnagin segment to the southwest are studied. 

This region, which sustained a magnitude S.2 earthquake in 1938. is determined to be highly 

coupled and accumulating strain.

Finally, all of these pieces are connected in a quantitative model for southern Alaska. 

This model involves three crustal blocks, the Yakutat block. Fairweather block and southern 

Alaska block, which lie between North America and the Pacific plate and move relative to 

these major plates.
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Chapter 1

Introduction

1.1 General

Just twenty years ago. the idea o f  directly measuring the position o f  points on the surface 

o f  the earth with a precision o f  a few millimeters and observing how those points move from 

year to year would have been thought impossible. Today, with a GPS satellite system in 

place •20.0(10 km above the earth and hundreds o f  permanent GPS receivers on earth as well 

as thousands o f  temporary receivers, we are able to observe the deformation o f  the crust at 

accuracies approaching one millimeter per year.

Tectonieally. Alaska is an interesting state. The Pacific plate is moving to the north 

and colliding with southern Alaska, which is part o f  the North American plate. The nature 

o f  this collision varies dramatically along the collision interface, ranging from subduction 

along the Aleutian rnegathrust to strike slip motion along the Queen Charlotte-Fairweather 

fault (Figure 1.1). The velocity o f  the Pacific plate relative to the North American plate 

varies along the collision zone from about 48 m m /y r  in southeastern Alaska to about 68 

m m /y r  in the eastern Aleutian Islands. The deformation associated with the collision o f  

these two plates is not confined to a narrow zone and earthquakes as large as magnitude 

7 have occurred in the interior o f  Alaska. W ith the new GPS technology in hand. I was 

interested in measuring the crustal motion in Alaska to see directly how the surface o f  

this great state is deforming, to estimate parameters such as slip rate and locking depth 

on faults through modeling o f  the surface deformation, and to investigate the along-strike

11
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Figure' 1.1. Map o f  Alaska showing active faults. Triangle shows Fairbanks (FAIR). (Data 
from Plnfker et al. [1994].)

variation in the coupling o f  the subduction zone. This thesis presents the results o f  the GPS 

measurements and modeling o f  crustal deformation in Alaska.

1.2 Thesis Content and Organization

The thesis consists o f  four main science chapters along with this introduction and a general 

conclusions section, followed by three appendices. A bibliography containing references for 

all o f  the chapters is included at the end o f  the thesis. Figure 1.2 illustrates the regions 

studied in each chapter.

Chapter 2 was published in Geophysical Research Letters in October 1999. This paper 

focuses on the plate boundary region between the Queen Charlotte-Fairweather transform 

and the Aleutian megathrust. Here the Yakutat block, an exotic terrane comprising conti-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1.2. Map o f  Alaska showing study region for each chapter. Faults are from Plafker 
et al. [19941. '
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nental and oceanic crust, is colliding with Alaska. This paper presented for the first time the 

velocity o f  a site at Yakutat. on the Yakutat block, based on repeated GPS measurements. 

These measurements clearly show that Yakutat is moving at neither the Pacific plate ve­

locity nor the North American plate velocity. The difference in velocity between the Pacific 

plate and the velocity at Yakutat must therefore be taken up on nearby structures and the 

paper discusses which structures are likely to accommodate some o f  this motion.

Chapter 3 is based on work in the same area, but includes GPS results from additional 

sites spanning the Fairweather fault. This chapter was submitted to Geophysical Research 

Letters in November 2001. The Fairweather fault is a major strike-slip fault which ruptured 

in a M s  7.9 earthquake in 1958. We combined our GPS data with line-length data measured 

by the I ’ . S. Geological Survey [Lisoivski et al.. 1987] in order to estimate the locking depth 

and slip rate o f  this fault. We find that this fault has a higher slip rate than the San Andreas 

fault and lias the potential o f  rupturing in another 1958-sized earthquake within the next 

35 years.

The majority o f  my fieldwork in the summers was spent gathering the data presented 

in Chapter 4. The goal o f  the work described in this chapter is to understand the tectonics 

o f  tin' interior o f  Alaska. Fairbanks is over 500 km from the Pacific-North American plate 

boundary and yet an extensive zone o f  seismicity extends northwestwards through Fair­

banks. In 1937. a M s  7.3 earthquake occurred within 50 km o f  Fairbanks. In addition to 

studying the deformation in the region surrounding Fairbanks, this chapter presents results 

from observations made at sites in two profiles across the Denali fault, a structure that is 

thought to have displacements o f  up to 400 km across it [e.g.. Forbes et al.. 1973: Turner 

et al.. 1974: Xoklebery et al.. 1985]. Whilst such displacements indicate the fault was active 

in the past. I was curious as to whether there was any continuing slip across the fault that 

could be measured by GPS. I propose tectonic model involving rotation o f  southern Alaska, 

but in reality more GPS observations are needed over a longer period o f  time to clarify the 

tectonics o f  this region, because the rates o f  motion are slow.

Chapter 5 moves to a subduction setting. Here, the interesting question is how coupling 

varies along the strike o f  the megathrust. It is known from previous studies that some parts 

o f  the subduction zone are highly coupled [e.g.. Savage et al.. 1999]. while others appear 

to be freely slipping [e.g.. Freymueller and Beavan. 1999]. Using GPS observations, the
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spatial and temporal variation o f  the degree o f  coupling can be estimated. The GPS data 

analyzed and modeled in this chapter are from sites in the Semidi section o f  the Alaska 

subduction zone. The stations occupy part o f  the segment that was ruptured by a M\y

8.2 earthquake in 1938 and which lies between the segments o f  the arc that are considered 

locked and freely slipping. This chapter was published as a paper in Geophysical Research 

Letters in February 2001.

Appendix A presents a short overview on how GPS works and the steps necessary to 

reduce the errors in the observations. The fieldwork procedure used in measuring all sites 

contributing to this thesis is outlined in Appendix B. The position, velocity and errors in 

velocity for all sites measured are tabulated in Appendix C.
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Chapter 2

New GPS Constraints on the 
Motion of the Yakutat Block1

2.1 Abstract

Global Positioning System (GPS) measurements were made at Yakutat. on the Yakutat 

terrane o f  southern Alaska, to investigate the motion o f  the Yakutat block with respect 

to the North American plate and to help constrain motion along the Fairweather fault. 

The velocity o f  Yakutat derived from the GPS data is 44 .1±1 .(J m m /y r  toward N37C\V±4' 

relative' to stable' North America. The magnitude o f  this velocity is similar to that of the 

Pacific plate* pre?elie-teel by NUYEL-1A i DeSIets et al.. 1994], although there is a significant 

difference in the azimuth o f  these two vectors. The motion o f  Yakutat relative to North 

America is almost exactly parallel to the strike o f  the Fairweather fault, suggesting that 

most deformation inboard o f  Yakutat is right-lateral strike slip on the Fairweather fault 

or faults parallel to it. and that significant motion normal to the Fairweather fault occurs 

offshore o f  Yakutat. The GPS velocity at Yakutat is also used to help constrain the slip 

rate and locking depth o f  the Fairweather fault.

'Published ;is Fletcher. H. J. and J. T. Frevmueller. Geophys.  Res.  Lett. .  26. 3029-3032. 1999.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

2.2 Introduction

The Pacific-North American plate interaction dominates the tectonics o f  southern Alaska. 

The Pacific plate subducts under the North American plate at the Aleutian megathrust, 

while in southeast Alaska the Pacific-North American relative plate motion is accommo­

dated along the Queen Charlotte and Fairweather faults. The nature and location o f  the 

plate boundary between this transform fault system and the northern end o f  the Aleutian 

trench is complex [e.g.. Lahr and Plafker. 1980: Perez and Jacob. 1980: Lahr et al.. 1988]. 

The relative plate motion is believed to be taken up on a variety o f  fault systems - the 

Contact and Chugaeh-St. Elias faults and the Pamplona and Kayak Island thrust zones 

accommodate much o f  the* relative motion, with the Denali fault system in the interior o f 

Alaska and the Transition Zone (T Z) offshore o f  southern Alaska possibly taking up) small 

components o f  motion (Figure 2.1).

Southern Alaska is composed o f  numerous allochthonous tectonostratigraphic terranes. 

indicating a compdex history o f  plate motions and collisions that continues today in the 

form o f  the Yakutat terrain*. This terrain*, a composite oceanic and continental block, is 

currently colliding with southern Alaska, allowing us to observe tectonic processes like those 

that empdaced the previous terranes o f  southern Alaska. The Yakutat block is bounded bv 

the Fairweather fault to the northeast, the Kayak zone to the northwest and the TZ  to the 

south (Figure 2.1). Along its western and northern boundaries, the Yakutat terrane has 

been thrust northwestward beneath the Paleogene Prince William terrane [Brocher et al.. 

1994: Plafker. 1987]. Tin* extreme uplift of the Chtigach and St. Elias Mountains are a 

result o f  rranspm’ssion along the northern margin o f  the terrane.

Lahr and Plafker [1980] proposed a kinematic tectonic model for the Pacific-North Amer­

ican plate interaction based on available geologic and seismic data. In their model, the 

Yakutat block is largely coupled to the Pacific plate and is moving parallel to the Pacific 

plate, but at a slightly lower velocity relative to North America. Their model rates were 

chosen to give 4 m m /y r  o f  oblique convergence on the T Z  to be in agreement with data from 

the 6.7 earthquake in 1973 at the eastern end o f  the zone, which had a focal mechanism 

consistent with oblique thrusting on a northwest-striking fault. Based on analysis o f  slip 

vectors o f  the 1973 earthquake and its two aftershocks, and the Pacific-North American

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.1. A map o f  the Yakutat area o f  southern Alaska. Black arrows are the GPS- 
derived velocities o f  Yakutat and Whitehorse, the white arrow is the NUYEL-1A velocity 
o f  the Pacific plate at Yakutat. 959? confidence error elliptses are also shown.
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relative motion predicted by model RM2 o f  Minster and Jordan [1978]. Perez and Jacob 

[1980] calculated a rate o f  convergence between the Pacific plate and the Yakutat block 

o f  10 m m /yr .  However, the marine geophysical data for the offshore part o f  the Yakutat 

block show no obvious deformation or accretion adjacent, to the TZ. Bruns [1983] therefore 

claimed that the zone is a remnant, fracture zone and has been inactive since the Miocene.

The Fairweather fault is the onshore part o f  the Queen Charlotte-Fairweather fault sys­

tem. which takes up most or all o f  the Pacific-North America plate motion in the transform 

part o f  the boundary. The fault strikes linearly northwest to Yakutat Bay. beyond which it 

ends in a series o f  east-west to northeast-southwest striking faults, and appears to connect 

with the Chugach-St. Elias fault system. A A/>- 7.9 earthquake in 1958 ruptured about 350 

km o f  the Fairweather fault. Slip rates o f  between 48 and 58 m m /yr  have been reported for 

the Fairweathor faidt based on geomorphic studies [Plafker e t al.. 1978]. although the lower 

limit is more likely since XUYEL-1A gives a rate o f  only 49.1 =  1.4 m m /yr  for Pacific-North 

American relative motion in this area. From repeated surveys o f  small-scale geodetic net­

works spanning the fault. Lisoicski et al. [1987] estimate the slip rate to be between 41 and 

51 m m /yr.

In 1899. the region between Yakutat Bay and Kayak Island was ruptured by two large 

earthquakes o f  M<  7.9 and 8.0. Page et al. [199F suggest that the Chugach-St. Elias fault 

may bo a likely location for the first o f  these earthquakes due to the lack o f  a tsunami. 

Thatcher and Plafker 1977] studied the effects o f  the second 1899 earthquake and inferred 

10 to 2(1 meters o f  reverse slip on northwest-striking, northeast-dipping thrust faults in the 

Yakutat Bay region. In 1979. the .Us- 7.1 St. Elias earthquake occurred beneath the St. 

Elias Mountains, and involved reverse slip on a gently dipping fault about 15 km deep 

Stephens et al.. 1980: Estahrook et al.. 1992].

2.3 Data and Results

GPS observations were made at Yakutat airport in 1992 by the U.S. Geological Survey 

and in 1993 by the National Geodetic Survey. We carried out subsequent surveys at the 

same location in 1995 and 1996. The permanent GPS station in Fairbanks was in operation 

for the duration o f  all o f  these surveys, and observations at a station in Whitehorse were
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YKTT relative to FAIR

time (years)

Figure 2.2. Time series o f  GPS measurements at Yakutat,. Measurements are relative to 
the permanent GPS site at Fairbanks.

made in 1993. 1995. and 199G. overlapping in time with the 1995 and 1996 Yakutat surveys. 

Wo analyzed the data using the G IP S Y /O A S IS  II software developed by the Jet Propulsion 

Laboratory using analysis methods similar to those described in Larson et al. [1997]. Figure

2.2 shows the individual solutions for the position o f  Yakutat relative to Fairbanks, which 

has a southward velocity o f  2 .1±1.1 m m /yr  relative to stable North America [Larson et al.. 

1997].

Using the estimated station coordinates and their covariances for each day. the Fair­

banks velocity, and assuming constant velocities, we estimated the velocities o f  Yakutat 

and Whitehorse relative to North America to be 44.1±1.9 m m /yr  toward N37C1 U ±  1° and 

5.2±2.3 m m /yr  toward N79C£ ’:=2C (Figure 2.1). The magnitude o f  the GPS-derived velocity
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at Yakutat is only slightly smaller than that o f  the Pacific plate relative to North America 

predicted by NUYEL-1A (49.1 ±1 .4  toward N1UIU ±  1 ') .  However, there is a significant 

difference in the azimuth o f  these two vectors. Subtracting the Yakutat velocity from the 

NUYEL-1A Pacific-North America velocity results in a velocity o f  21 ± 3  m m /y r  towards 

S53MU ±  3:

2.4 Discussion and Conclusions

2.4.1 Yakutat Block Motion

Our result for the velocity o f  Yakutat clearly shows that this part o f  the Yakutat block 

is not moving at either Pacific plate velocity or North American plate velocity. The mo­

tion o f  Yakutat relative to North America is almost exactly parallel to the strike o f  the 

Fairweather fault (N34: IU). suggesting that almost all deformation inboard o f  Yakutat is 

right-lateral strike slip on the Fairweather fault or faults parallel to it. and that most or all 

of the difference between the Pacific plate velocity and the velocity at Yakutat (in essence 

a Fairweather fault-normal velocity component ) must be accounted for by contraction out­

board o f  Yakutat. which would require significant motion either within the Yakutat block 

or between the Yaktitat block and the Pacific plate. The magnitude o f  the velocity differ­

ence is 21 m m /yr  and the orientation is S53: W. A small part o f  the velocity difference 

may occur as a result o f  transient deformation due to elastic strain accumulation on locked 

thrust faults ft) the north, but we expect any deformation at Yakutat.. in the footwall block 

o f  such faults, to be small. In their finite element model. Lundgren et al. [1995] fixed the 

Yakutat block to the Pacific plate, and they calculated large (>  10 inin/yr) north-east 

oriented displacements radiating away from the Queen Charlotte-Fairweather faults. This 

is clearly in disagreement with our results, which imply no significant Fairweather-normal 

contraction inboard o f  Yakutat. Uplift was reported in association with the 1899 Yakutat 

Bay earthquakes [Tarr and Martin. 1912]. which would imply some shortening in the region. 

The GPS uncertainties allow 2-3 mm o f  slip to occur on thrust faults in the area. Figure

2.3 is a cartoon showing the velocity difference at Yakutat that needs to be accounted for. 

and the structures that might account for some o f  this velocity.

The velocity difference is likely taken up by slip on faults outboard o f  Yakutat (e.g..
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Figure 2.3. Cartoon map .showing faults in the Yakutat area. The bold arrow at Yakutat 
shows the direction o f  the velocity at Yakutat relative to the Pacific plate (approximately 
perpendicular to the Fairweather fault). Faults (a), (b). (c). and (d) were tested to deter­
mine whether such structures could account for this velocity difference. The smaller arrows 
indicate the sense.' o f  motion on the faults.
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structures (a) and (h) in Figure 2.3). however elastic strain accumulation on locked faults 

inboard o f  Yakutat (structures (c) and (d) in Figure 2.3) could cause a small amount o f  

elastic deformation at Yakutat.

The nearest major mapped thrust faults to Yakutat tire a minimum of  45 km to the north 

and dip northwards, thus Yakutat is in the footwall block. We used a fault dislocation model 

based on the equations o f  Okada [1985] to determine the maximum effect on the velocity 

at Yakutat o f  an east-west striking locked thrust fault 45 km north o f  Yakutat (Figure

2.3. fault (c)). As expected, we find that such a fault cannot account for the difference 

between the Pacific plate velocity and the GPS-derived velocity at Yakutat: the model 

result o f  1 m m /yr  o f  elastic deformation is much smaller than the 21±3  m m /yr  velocity 

difference between the Fairweather fault-normal components, even if the fault is located 

much closer to or farther from Yakutat than the model fault. To satisfy uplift, data from 

the 1899 earthquake. Plafker and Thatcher (W. Thatcher, personal communication. 1998) 

constructed a fault model involving a thrust fault oriented parallel to the Fairweather fault. 

20 km north o f  Yakutat. and dipping to the northeast (Figure 2.3. fault (cl)). Again. Yakutat 

would be in the footwall block and the elastic deformation at Yakutat due to such a fault 

is small. Note that slip on faults o f  this orientation would cause the velocity of Yakutat 

relative to North America to be more northerly than we observe.

2.4.2 Possible Offshore Structures and Implications

We cannot resolve uniquely which offshore structures accommodate the Yakutat-Pacific 

motion as we do not have enough data, although the T Z  is an obvious candidate (Figure

2.3. fault (a)). Using Okada's [1985] elastic dislocation equations, we constructed a model 

for the T Z  as a fault oriented at N60: W . dipping 5 degrees NE. and locked to a depth 

o f  25 km. The results o f  this modeling are shown in Figure 2.4. presented in Fairweather 

fault-normal and fault-parallel orientations.

The crosses indicate the difference between the Pacific plate velocity and the GPS- 

derived velocity at Yakutat. The three lines show the surface displacement per year due to 

the elastic effects o f  the modeled fault for three different cases: the dotted line for a fully 

coupled T Z  (i.e.. the fault is fully locked and does not slip between earthquakes), the dashed 

line for a T Z  with a degree o f  coupling o f  0.25. i.e.. 259c locked (meaning that the fault may
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Offshore fault contribution to Yakutat velocity
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Figure 2.4. The surface displacement per year due to a modeled Transition Zone, oriented 
Y60~\V. dipping 5 degrees .YE. The incident velocity is the Pacific plate velocity normal to 
the Fairweather fault. 19.5 rnrn/yr. The crosses are the difference between the Pacific platp 
velocity at Yakutat predicted by YUYEL-1A and the GPS-derived velocity at Yakutat. 
The dotted line is for a fully locked Transition Zone, the dashed line is for a 25% locked 
Transition Zone, and the solid line is for a freely slipping Transition Zone.
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slip aseismically ar 75'X o f  the long-term slip rate), and the solid line for a freely slipping 

TZ (degree o f  coupling equal to zero). Using this model, a completely uncoupled T Z  can 

accommodate all o f  the 21—2 mm yr Fairweather fault-normal component o f  the Pacific 

plate velocity, within the error limits. Any locking o f  the T Z  near Yakutat would cause 

a more northward and e;istward movement o f  Yaktfat than is observed. However, other 

offshore structures could take up some or all o f  the velocity difference which would reduce 

this convergence rate, and allow the fault to have some degree o f  coupling. The Pamplona 

and Kayak fold and fault zones likely have some convergence across them, but the velocity 

at Yakutat gives us no information about this. A scenario in which the Yakutat block is 

being pushed at its SE corner, but is fret' to rotate counter-clockwise above the TZ  would 

allow slip on tin' Fairweather fault ;ls well ;is a freely-slipping T Z  near to Yakutat (Figure 

2.A). We need data from more sites to test such a .'ID model.

Another possible candidate for motion offshore is the 250 km long north-south unnamed 

fault in the Pacific plate, situated south o f  the Yakataga seismic gap (Figure 2.5. fault (b)). 

Two A /. T.li dextral strike-slip earthquakes ruptured this fault in PJS7 and 1‘JSS Lullr or al.. 

19Ss . If all nf the north component o f  the plate velocity normal to the Fairweather fault 

is taken up .along this north-south fault, then it would have a right-lateral slip rate o f  11 

mm yr. and the T Z  would then have a convergence o f  l(j mm yr in an easterly direction. 

Our data cannot distinguish between a model in which the T Z  takes up all o f tin' Fairweather 

fault-normal convergence, .and one in which there is some right-hitend slip on a north-south 

striking offshore fault.

2 .4 .3  Fairweather Fault Constraints

Ekistic screw dislocation models are typically ust'd in determining fault slip rates from 

geodetic data near strike-slip faults. Such a model represents a physical model in which 

the upper portion o f  the fault is locked between earthquakes, and the lower ductile part 

slips steadily at the long-term slip rate o f  the fault. The depth o f  the locked part o f  the 

fault corresponds to the base o f  the soismogenie zone, and is termed the locking depth o f  

the fault. In two dimensions, the fault-parallel surface displacements from this model are a 

simple function o f  the long-term slip-rate o f  the fault, the locking depth, and the distance 

from tht' fault. Inversions to estimate fault properties from surface displacements have an
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inherent trade-off between the estimated slip rate and the locking depth o f  the fault if the 

data do not extend at least a few fault locking depths away from the surface trace o f  the 

fault e.g.. Jofmsim and Wyatt. 1994i

Lisouski et al. 1987 estimated the slip rate on the Fairweather fault from repeated 

surveys o f  small-scale geodetic networks spanning the fault. Their geodetic networks had 

no sires more than lo km from the fault, and so the authors could not determine the slip rate 

without assuming a locking depth. The authors report that the best fits o f  the dislocation 

fault model to their data are obtained with locking depths o f f  to (J km and corresponding 

slip rates o f  between 41 ~.‘i and 51=4 m m /yr. although any slip rate between .'17 m m /yr  and 

.">(] mm. yr (and locking depths between (i and 10 km) would fit their data almost as well.

The velocity at Yakutat was determined relative* to North America, so our dislocation 

model has to include slip on any faults which could contribute to strike-slip motion between 

Yakutat and stable North America. We use a model with two faults, the Fairweather and 

Denali faults, which we assume to be vertical and parallel to each other. We combine our 

GPS data with the line length data from Li.snirxki et al. l'JS7'. which are insensitive to 

slip on the Denali fault IP) km to the north, and the Fairweather fault-parallel Pacific 

plate velocity at Yakutat from NUYEL-1A. Using all this information, we can invert for the 

slip rate and locking depth on the Fairweather fault and the slip rate on the Denali fault. 

However, tin* solution is poorly constrained because we art' adding a third model parameter 

to the inversion, the slip rate on tin* Denali fault, with little data giving us information 

about this parameter. At present, therefore, some assumptions have to be marie in order 

to determine the slip rate on the Fairweather fault. The locking depth o f  faults is often 

determined from the depth o f  the current seismicity along the fault. Then ' are only 4 seismic 

stations within a 20.000 k n r  area around the Fairweather fault, so earthquakes in this region 

are not well detected or located and thus are of no help in delimiting the locking depth of 

the hairweatiier fault. The slip raie on the Denali fault is unknown: estimates range from 

8-12 m m /y r  average slip rate based on geornorphic evidence for Holoeene offsets [Plafker 

et al.. 1994] to no significant slip in the years 1975 to 1988 based on trilateral ion networks 

Saragr and Lisow.ski. 1991_. If a slip rate o f  0 m m /y r  is assumed on the Denali fault, then 

the slip rate o f  the Fairweather would be 48.6= 1.1 m m /yr. Taking the maximum estimate 

range for slip rate on the Denali fault. 8-12 m m /yr. we find the slip rate o f  the Fairweather

26
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Authors Slip Rate ! Locking Depth !

Plafker et al.. 1978 48 to 58

Lisowski et al.. 1987 41x3  to 51x4 7 to 9 (assumed) j

This study. Denali slip 0 m m /yr 48.6x1.1 ; 8 .9x0.7 ;

This study. Denali slip 8-12 m m /yr 35.7x1.0 to 40.0x1.0 6.1x0.6 to 7 .1x0.7

Table '2.1. Summary o f  calculated slip rates and locking depths for the Fairweather fault.

fault would be between 35.7 x  1.1) m m /yr  and 40.0x1.0 m m /yr. Estimated slip rates and 

locking depths are shown in Table 1.

Clearly the true uncertainty in the Fairweather fault slip rate is still controlled by the 

uncertainty in the Denali fault slip rate. Locking depths o f  strike-slip faults in northern 

California art' reported to be between 8 and 15 km for different faults [Castillo and Ellsworth. 

1993 . Compared with these estimates from seismicity, the locking depths estimated for the 

Fairweather fault are shallow, but not extreme. Re-me;isuring just one o f  the Lisowski 

et al. 1987 sites on the north side o f  the Fairweather fault with GPS would provide enough 

information to uniquely determine the slip rate and locking depth o f  the Fairweather fault 

and the slip rate on tin1 Denali fault using our model geometry. We hope to be able to 

further constrain these important parameters in the future.

2.5 Summary

The velocity at the town o f  Yakutat. on the Yakutat block is determined to be 44.1x1.9 

m m /y r  at N37 IT x  ~y relative to North America. The azimuth o f  this vector is almost 

exactly the same as the orientation o f  the Fairweather fault, and is significantly different 

from the azimuth o f  the Pacific plate vector relative to North America at Yakutat. The 

difference between the GPS-derived and Pacific plate predicted velocities at Yakutat is 

therefore essentially in a Fairweather fault-normal direction. We have determined that this 

difference in velocity must be accommodated by offshore faults. The Transition Zone is a 

likely candidate for raking up at least part o f  the motion between the Yakutat block and 

the Pacific plate.
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2.7 Appendix

Tin* GPS velocity at Yakutat litis a lower Fairweather fault-normal component o f  velocity 

than does the Pacific-North American plate velocity at Yakutat from NL'YEL-IA. The 

difference between the two vectors is 21 m m /y r  in a Fairweather fault-normal direction. In 

this chapter we explained that this must be accommodated offshore. Strain accumulation 

on locked thrust faults north o f  Yakutat might explain part o f  this slower Fairweather 

fault-normal velocity at Yakutat and so we modeled the effect of such a fault to determine 

its effect. A figure to illustrate this model was not included in the paper due to length 

constraints and so we add a figure to show the model results in this appendix. We used 

the dislocation equations o f  Ohula l lJ85j to construct a model fault 45 km to tlit* north 

o f  Yakutat. The fault dips to the north and is locked. We modeled a variety o f  dips and 

locking depths, but in all o f  our models the effect o f  a locked fault on the velocity at Yakutat 

was small, ranging from 0 m m /y r  for a shallow-dipping fault with low locking depth to 2 

m m /y r  for a steeply-dipping fault with a large locking depth. Figure 2.5 shows the model 

for an E-W  oriented fault dipping 80 degrees to the north and locked to 10 km depth (i.e.. 

the width o f  the locked part o f  the fault is 10/sin(30) =  20 km).

The figure shows that the Fairweather fault-normal component o f  velocity at Yakutat is 

reduced compared to the X l ’ Y E L -lA  Fairweather fault-normal component o f  motion, but 

only by 1 m m /yr  and thus a locked thrust fault north o f  Yakutat cannot cause the difference 

between the XL’ Y E L-IA  Pacific plate velocity and the GPS velocity we see at Yakutat.
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Distance from model thrust fault (km)

Fillin ’ 2.5. Fairweather fault-normal component o f  velocity. Velocity is due to a modeled 
thrust fault 45 km north o f  Yakutat. oriented E-\Y. dipping 50 degrees to the north. The 
vertical line indicates the position o f  Yakutat. The right side o f  the graph is stable north 
America (zero velocity at a far distance from the fault) and the left side o f  the graph is the 
Pacific plate (21 m m /yr  at a far distance from the fault).
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Chapter 3

New constraints on the motion of 
the Fairweather fault, Alaska, from 
GPS observations1

3.1 Abstract

GPS velocities from sites near the Fairweather fault in southern Alaska were combined with 

line length data from geodetic surveys by the L\ S. Geological Survey to estimate the slip 

rate and locking depth o f  the Fairweather fault using dislocation theory. We performed a 

weighted least-squares inversion o f  the geodetic data and obtained a best-fitting slip rate 

o f  38.2 — 3.1 mm yr and locking depth o f  7.0=0.1) km. The slip rate we estimate'll is higher 

than that observed across the San Andreas fault and is one o f  the highest observed across 

any strike slip fault. In 1U5S. a \[< 7.(J earthquake ruptured the Fairweather fault causing

3.5 meters o f  displacement in places. This displacement would be recovered in SO years 

given our estimated slip rati'. We also included the Dalton Creek segment o f  the Denali 

fault in our model and estimated a slip rate o f  10.7=2.4 inm /yr for this section o f  the faidt. 

' P rcp i iro i i  fur M ibm iss iun  in G>i>phy.-. Rrs. Lett.
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3.2 Introduction

Fi'\v direct measurements o f  crustal deformation have been made in southern Alaska, yet 

the plate interactions in this region are key to understanding the active tectonics o f  Alaska. 

Figure 3.1 shows the major active or potentially active faults in this region. The Pacific plate 

subducts under the North American plate at the Aleutian megathrust. while in southeast 

Alaska the Pacific-North American relative plate motion is accommodated along the Queen 

Chariotte-Fairweather transform fault system. The nature ami location o f  the boundary 

between the transform system and the Aleutian megathrust, is complex, due in part to the 

ongoing collision o f  the Yakutat terrane with southern Alaska [e.g.. Lahr and Plafkrr. 1980: 

Pi n z and Jamb. PJSO: Lahr at al.. 1088: Dosrr and Lomas. 2000;. The relative plate motion 

in this region is taken up by crustal shortening and strike-slip faulting offshore in the Gulf 

o f  Alaska .and in the Kayak Island and Pamplona fold and thrust belts. Deformation also 

occurs onshore in the Chugach-St. Elias Mountains and .along faults in the interior o f  Alaska 

such ;is the Denali fault.

T1h> Queen Chariot te-Fairweat her fault originates at the triple junction north o f  Van­

couver Island and extends 1200 km to southern Alaska. The fault is mimed the Queen 

Charlotte fault up to the southern end o f  Chatham Straight, when* it becomes the Fair- 

weather fault. The fault is offshore up to Icy Point and from there it stretches over 200 km 

to the northern end o f  Yakutat Bay. where it bends westwards and splays into several east- 

west oriented thrust faults, probably connecting with the Chugach-St. Eli;is fault system 

( Figure 3.1).

The onshore Fairweather fault bounds the Yakutat block to the east and is oriented 

N34~\Y. The offshore part o f  the Fairweather fault is oriented N21: \Y and so the fault 

bends about 13: between its offshore and onshore segments. The fault was ruptured by 

a .Us 7.0 earthquake in 1958 and the preferred nodal plane o f  the focal mechanism was 

consistent with right-lateral slip on the Fairweather fault [Stauder. I960]. Right-lateral slip 

o f  2 m was measured along the southern half o f  the fault, with a maximum well-documented 

slip o f  about 3.5 m Lisowski et al.. 1987:.

Plafkrr et al. .1978; reported a slip rate for the Fairweather fault o f  between 48 and 

58 m m /y r  based on geomorphic studies, although the lower limit is more likely since the
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Fillin ' 3.1. A map o f  the Yakutat area o f  southern Alaska. Geodetie stations are shown 
by solid blaek triangles. Fatdts shown as blaek lines are from Plafker e t al. [1994] and are 
faults that an1 known or suspected to be active. The dotted line shows the outline o f  the 
1958 rupture zone.
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now plato mot inn niodol o f  [Dr.Mots mid Dixon. 1999] (an updated version o f  XUYEL-1A. 

DrMrt.s- et al. ’ 1994]) gives a rate o f  only 50.9±1.4 m m /yr  in a direction X14.7: W ± 1 .4 ; 

for Pacific-North Anu'rican plate motion in this area. If the Pacific-North American plate 

morion was perfectly partitioned between strike-slip motion on the Fairweather fault and 

convergence normal to it. then it would have a slip rate o f  48.0 m m /yr . with 16.8 m m /yr  

convergence across it. Lisowski et al. 1987] estimated the slip rate to be 41 to 51 m m /yr  

from repeated surveys o f  small-scale geodetic networks spanning the fault, although any slip 

rate between 37 m m /yr  and 56 m m /yr  woidd fit their data almost as well. At a slip rate o f  

41 m m /yr. it would take 85 years to recover the 3.5 m o f  displacement that occurred in the 

1958 earthquake: for a slip rati* o f  51 m m /y r  this would be only 67 years (i.e.. by the year 

120*25). A more' precise knowledge' o f  the slip rate will aid in estimating the seismic hazard 

o f  the Fairweather fault and will also reveal the magnitude o f  slip that must be taken up 

by other faults.

The goal o f  this study w;is to improve the estimate o f  the slip rate of the Fairweather 

fault (Figure 3.1) by adding new GPS data to the geodetic data o f  Lisowski et al. ] 1987]. 

They used line-length measurements in 1967. 1983. and 1986 between stations in two net­

works that cross the Fairweather fault and computed a rate o f  change o f  line length between 

stations. The line lengths were measured using a Geodolite. a precise electro-optical dis­

tance measuring instrument (EDM ). In 199*2. GPS observations were made by the USGS 

at these EDM sites. We used GPS observations at a site in Yakutat as well .as repeat 

GPS observations at two o f  the EDM sites and the Fairweather fault-parallel component o f  

Pacific-North American plate velocity .at Yakutat from a recent plate motion model [DrMcts  

mid Dixon. 1999. to augment the EDM line length data and improve' the slip rate estimate 

for tht' Fairweather fault.

3.3 Data

GPS measurements were math' at Yakutat airport (Y K T T ) .  27 km south o f  the Fairweather 

fault, in 1992 by the United States Geological Survey (USGS) and in 1993 by the National 

Geodetic Survey (NGS). We carried out subsequent surveys in 1995. 1996. 1999 and 2001. 

The Lisowski et al. 1987 geodetic sites (Figure 3.1) were re-surveyed in 1992 using GPS.
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Figure 3.2. GPS velocities for sires in the Yakutat region. The white arrow is the Di'Mi'ts 
and Dixon PJ'J'J Pacific-North American plate velocity at Yakutat. Error ellipses .are 95l/f. 
DC = Dalton C’reek segment o f  the Denali fault: DR =  Duke River fault.

and in PJ'J'J we re-me.isured two o f  these sites. HIDD and CO M B . Metis tired perpendicular 

to the azimuth o f  the Fairweather fault. HIDD is 4 km southwest o f  the fault and COM B 

is 7 km away to the northeast. Other sites in the vicinity where we have measured GPS 

velocities are X7. with observations in 1992. 1999 and 201)0. and W H IT (.Whitehorse), which 

h;is been a permanent GPS site since 1995 (Figure 3.2).

The GPS data were analyzed using the G IP S Y /O A S IS  II software to obtain daily coor­

dinates in the ITRF97 reference frame Bouchrr o t al.. 1999: ;is well as covariance estimates 

for tlu' coordinates, using techniques described by Frri/munlh r ot al. 2000:. The daily so­

lutions were combined to estimate site velocities using a least squares inversion, weighted 

by the full covariance matrix o f  the coordinates. We were examining deformation in the 

Pacific-North American plate boundary region, so we estimated velocities relative to the 

North American plate to simplify our interpretation. We used the pole and rotation given by 

Srlhi et al. 2002 for IRTF97-North America relative motion to convert our GPS velocities
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Station Lar Lon Velocity Azimuth i

Y K T T 59.5107 -139.(5488 47.2=1.3 X 2 9 - i r = 2 -

HIDD 59.7055 -138.9455 35.1 =  1.4 X 3 ( r U ' = 3 ;

C O M B 59.(1098 -138.6393 20.9=1.5 N34' U" =  0 :

X7 00.8592 -137.0029 3.4= 1.4 X<i: i r  =  3S:

W HIT tiU.75o5 -135.2221 2.4=1.3 N t r i r  =  44:

Table 3.. 1. Site velocities in mm,/yr

Errors are lfT.

from thf ITRF97 reference frame to a North America-fixed reference framt'. The resulting 

velocities for each site relative to the North American plate (Table 1) were transformed into 

a local east-nortli-up coordinate system at each site.

Figure 3.12 shows velocities for the sites Y K T T . HIDD. C O M B . X7 and W HIT relative to 

North America. The light arrow shows tin' DiM rts and Dison  1999: Pacific-North Ameri­

can plate velocity at Yakutat. which is 50.9=1.4 mm, yr in a direction X14.7 W = l .4 \  It is 

clear that Y K T T . with a velocity o f  47.0=1.3 m m /yr  in a direction N2S.5: \Yr 1.8 relative 

to North America is moving at neither the Pacific plate velocity nor the North American 

plate velocity. Instead, the velocity at Yakutat is almost parallel to the Fairweather fault, 

which is oriented N34: W. The difference between the Dr.\[< ts and Dison 1999j Pacific- 

North American plate velocity at Yakutat and the GPS-derived velocity is therefore normal 

to the Fairweather fault. Fhtrhrr and Frr ipn nrlhr  1999 discuss possible structures which 

may accommodate this motion: in this paper we only discuss the Fairweather fault-parallel 

component o f  velocity. We note, however, that the lack o f  a significant Fairweather-normal 

component o f  velocity at any o f  these sites reinforces our earlier conclusion that this com ­

ponent is accommodated offshore, outboard o f  Yakutat. Sites X7 and W H IT have velocities 

that are close to zero relative to North America.
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3.4 Discussion

Elastic screw dislocation models are typically utilized to determine fault slip rate from 

geodetic data near the fault. Such a model is a mathematical representation o f  a physical 

model in which the upper portion o f  the fault is locked between earthquakes, and the lower 

ductile part slips steadily at the long-term slip rate o f  the fault. The depth o f  the locked 

part o f  the fault corresponds to the base o f  the seismogenic zone, and is termed the locking 

depth o f  the fault. In two dimensions, the fault-parallel surface displacements from this 

model are a simple function o f  the long-term slip-rate o f  the fault, the locking depth, and 

the distance from the fault. For an infiniteh long fault locked at the surface and slipping 

freely at a rate S' below depth D. the fault-parallel velocity o f  a site at a perpendicular 

distance r  from the fault at is Saraijc and Burfnrd. 1973c

This model does not account for material heterogeneities or viscoelasticity, but it has

strike-slip faults, e.g.. the San Andreas fault system e.g.. Lisowski et al.. 1991. Viscoelastic 

effects may be more important in the immediate post-seismic interval. However, the hist 

major earthquake was in 19aS and given our small data set we believe that using this simple 

two dimensional ukistie model is the best approach. Whilst we acknowledge that along-strike 

variations in coupling are likely, we do not have the density o f  data needed to investigate 

this variation. Paijr and Lahr 197b observed only a small amount o f  deformation within a 

40 tn wide geodetic network across the Fairweather fault and concluded that the fault is not 

creeping at the surface but is locked and accumulating strain. We therefore assume that 

the fault is fully-coupled down to a locking depth. D. Figure 3.3 illustrates the trade-off 

between fault slip rate and locking depth when inverting geodetic data using equation 3.1.

In this example, the velocity at a site 20 km away from the fault can be explained 

both by a model fault with a slip rate o f  2 cm /y r  and locking depth o f  20 km or a model 

fault with a slip rate o f  4 c m /y r  and locking depth o f  5 km. In order to resolve this 

trade-off. data must be obtained from sites far away from the fault as well as close to it. 

The maximum perpendicular distance from the Fairweather fault to a site in either o f  the

(3.1)

been shown to reasonably predict first-order features o f  deformation observed on other
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Figure 3.3. Plot to illustrate the trade-off between slip) rate and locking depth. The lines 
show how fault-parallel velocity varies along a line perpendicular to the fault. Solid lines 
are for a fault with locking depth o f  5 km and slip rates o f  2 to 5 cm /yr . dashed lines are 
for a locking deptth o f  20 km.
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Lisowski et al. 1987  ̂ EDM networks is about 15 kin. We measured the velocity at Yakutat. 

27 km to the south o f  the fault using GPS observations and. in addition, we made repeat 

GPS measurements at two o f  the EDM sites, thus obtaining independent velocities for these 

sites. We combined the GPS site velocities at Y K T T . HIDD. and C O M B  with the EDM 

line-length data, and also used the Fairweather fault-parallel component o f  Pacific-North 

American plate velocity at Yakutat from Dc.Mets and Diion.  19991. to invert for the slip 

rate and Kicking depth on the Fairweather fault.

I'nlike the EDM line length data o f  Lisowski et al. ,1987: the GPS site velocities arc1 

relative to North America. Therefore our fault model must include all structures between 

Yakutat and stable North America across which we might expect slip. The Denali fault 

is a major fault system lit) km to the north o f  the Fairweather fault (Figure 3.1). In the 

central and eastern Alaska Range, the McKinley section o f  the Denali fault, at the northern 

apex o f  tlu' Denali fault system, is thought to be one o f  the most active sections o f  the 

fault Lanphcn. 1978 . Hickman et al. 1977; reported 110 to 230 m o f  Holocene dextral 

displacement along the McKinley segment, which is equivalent to a slip rate o f  11 to 23 

mm. yr. although the accuracy o f  these rates depends on the uncertain dates o f  the Holocene 

features. To the southeast, the Dalton Creek section o f  the Denali fault is located inland 

o f  the Fairweather fault and 370 km of dextral slip have occurred on this segment since the 

Early Cretaceous Lowcy. 1998 . Plafker ox al. 1977 estimated a Holocene slip rate for this 

segment o f  20 mm yr. but lacked reliable dates for offset features. Present-day seismicity 

occurs along the Dalton Creek section o f  the Denali fault and along the Duke River fault, 

which lies slightly to the southwest o f  the Dalton Creek segment (Figure 3.2). We therefore 

believe that the Denali fault is a good candidate for accommodation o f  any slip inboard of 

the Fairweather fault.

We constructed a model with two faults, the Fairweather and the Denali, which we 

assumed to be vertical and parallel to each other. The GPS sites Y K T T . HIDD. and 

C O M B  are far enough from the Denali fault that they are not affected by elastic strain on 

the locked portion. Therefore it is not possible to estimate a locking depth on the Denali 

fault from our data. Site X7 is 50 km to the north o f  the Denali fault. This is not far enough 

from the fault to sou only the long-term slip rate. If we used the velocity o f  this site in the 

inversion, we would therefore need to add a fourth model parameter, the locking depth of
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the Denali fault. Since this is the only site with information about the locking depth o f  the 

Denali fault, the solution would be poorly constrained and so we do not include it.

The Fairweather fault-parallel components o f  the GPS velocities. ttre related to

the slip rate and locking depth <>f the Fairweather fault. Sp and Dp.  and the slip rate on 

the Denali fault. Sp. by:

=  Sp  -   ̂1 ^  ̂ -  ~  (3.21

This is modified from equation 3.1 I from Snvatjc mid Dnrford 11)73 ). which gives the 

velocity. Y (x).  relative to a fixed fault. The GPS velocities were calculated relative to North 

America and not relative to the fault. so we add the additional term Sp '2 to account for 

t his.

Lisowski et al. 1987 measured no significant dilation in either o f  their two networks 

across the Fairweather fault. We therefore ;ussumed no compression or extension across the 

fault, and thus the rate o f  change o f  line length. dL /d t .  is assumed to be tint* only to shear 

on the fault. The rate of change of line length can thus be written:

dL Sy  '  ( ( i i  — i p ) \  /(./•> ~ . r p )\'j
i r  = t  - ' a y  ) l  1:1:11

where L is tie' length of the line between two EDM sites at distances i\ and i-> from 

the fault.

Both the GPS velocity and the r.ate o f  change o f  line length .are nonlinear functions o f  

the locking depth Dp  (equations 3.2 and 3.3). We linearized the equation by Taylor series 

.about nominal values Dp  =  Dpi,. Sp =  Sp„ and Sp =  Sp,). We had 35 observations (31 

lino-length change observations. 3 GPS velocities and the DiMots mid Diion  1999' plate 

motion observation) .and three model parameters (slip rates on Denali and Fairweather faults 

and locking depth on the Fairweather fault), so we were dealing with an overdetermined 

problem. A weighted letist squares inversion can be set up as follows Menke 1984u

M  =  in v {G r \V G )G r \Yd (3.4)
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where M is chi' model parameter matrix. G is thi> model matrix (using tlio linearized equa­

tions). \V is the weight matrix (the inverse o f  the diagonal variance matrix), and d is the 

data vector.

In our case, we minimized the differences AN/.- =  Sp — A D y  =  Dp  — D/.-q and

A 5 / i  =  Sp — S p o (i.e. . \ / , =  A.\/ - M  -  A/,)). the same technique used by Hrrinsdottir 

et al. ‘2t )l 11 . Csiug reasonable starting values for Aft)- we iterated the inversion until the 

solution converged. Convergence occurred after 3 iterations, and we found no evidence o f  

multiple minima (solutions converge to the same final answer regardless o f  the starting value 

o f  D/.

Flrtrhrr and Fn i/inurllt r 1999d using the same model, combined the EDM  line length 

data o f  Lisowski et al. 1D87' with the GPS data from Yakutat (GPS velocities were not yet 

measured for C O M B  and HIDD) and the Fairweather fault-parallel component o f  velocity 

o f  the Pacific plate at Yakutat from NCYEL-1A Di .\h ts et al.. 11)91;. Despite the addition 

o f  data to the model. Flrtrhrr and Frrijniitrllrr 1999' found their inversion w ; l s  poorly 

constrained, so they were not able to improve upon the Lisowski et al. ’ 19S7' estimate 

o f  slip rate and locking depth o f  the Fairweather fault. The retison for this is that the 

model introduced a third model parameter, the Denali fault slip rate, with little data to 

give information about this parameter. We added the GPS velocities for the sites HIDD 

and C O M B  to the Flrtrhrr and Frrijrnurllrr 1999' model. These were determined relative 

to North America and so also contained a velocity signal giving information on the slip 

r.ate o f  the Denali fault. Inverting the GPS. line length and Pacific-North American plate 

motion data DrMrts and Dixon. 1999;. we estimated a slip rate on the Fairweather fault 

o f  3.N2 —3. 1 m ni/yr with a locking depth o f  7.0—0.9 km and a slip rate on the Dalton Creek 

segment o f  the Denali fault o f  10.7—2.4 m m /yr. The GPS data are plotted in Figure 3.4 

with the best-fit dislocation model.

The formal uncertainties in the model parameters are no better than in Flrtrhrr and 

Frri/rnurllrr 1999 . bur whereas those authors fixed the Denali fault slip rate to a specified 

value with no .assigned uncertainty, here1 we estimated the Denali fault slip rate and uncer­

tainty. The normalized \~ o f  the solution is 1.3. Figure 3.5 illustrates the rate at which \ ' 

increases from this minimum value for different fault parameters.

The graphs illustrate the correlation between slip rate and locking depth and comparing
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Figure 4.5. Confidence region ellipses for values o f  larger than the fitted minimum. The 
asterisk shows the best-fitting model. The curves correspond to A \ J =  2.50. 4.61. and
0.17 and are 08.5‘/<. DO(X. and 95.4% confidence regions, (a) is using the line length data
only, (b) is using line lengt.li and GPS data and the DvMrt.s and Dixon [1999] Pacific-North 
American plate velocity ;is a constraint.

Figure 4.5a to Figure 4.5b. we see that the addition o f  the GPS data to the EDM data 

significantly improve estimates o f  both the Fairweather slip rate and locking depth. The 

sum o f  the slip rates est imated across the Fairweather and Denali faults is 48.9x4.5 mm/yr. 

which is equivalent to the Fairweather fault-parallel component o f  Pacific-North American 

velocity in this region. —48 m m /yr  [DoMots and Dixon. 1999].

The slip rati> o f  10.7x2.4 m m /y r  estimated for the Denali fault is actually the total

velocity parallel to the Fairweather fault that must be accommodated by displacement 

inboard o f  the Fairweather fault. It is possible that this slip is not on the Denali fault but 

on thi' Duke River fault, for example, but wo do not have the data resolution to determine 

how this slip is distributed. GPS observations across sections o f  the Denali fault to the 

northwest o f  this region give a slip rate across the Denali fault o f  8-9 m m /yr  [Fletcher and 

Freymueller. 2002 in prep.], which agrees with our result. GPS observations at sites closer 

to thi' Denali and Duke River faults in this region are needed to determine how the slip is 

distributed on the faults.

W H IT is far enough away from the Denali fault that it should see no effect from slip 

on this fault.. In this model it should have a zero velocity relative to North America. The 

velocity o f  W H IT is only 2.4x1.5 m m /y r  relative to North America, which is only slightly 

different from zero. The fact that, it does have a small velocity relative to North America
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may indicate that structures other than the Fairweather and Denali fault have some motion 

across them. If we calculate velocities relative' to W H IT for the GPS data and Pacific plate 

velocity and invert this data set. we calculate a slip rati- o f  38.2x3.5 for the Fairweather 

fault with locking depth 7x1 km and a Denali fault slip rate o f  8.3x2.7. The slip rate’ and 

locking depth o f  the' Fairweather fault are not altered in this inversion, but the slip rate 

on the Denali fault is lowered. This suggests that the slip rate on the Denlai fault is the 

least constrained o f  the three model parameters and any comm on mode errors (e.g.. errors 

in reference frame) are likely to map directly into a change in the modeled Denali fault slip 

rate.

3.5 Conclusions

The slip rate o f  38.2x3.1 m m /yr  estimated for the Fairweather fault is similar to total slip 

rate o f  —3(J mm, yr on the San Andreas fault system in northern California [Frryninrllt r 

et al.. PJ'J’J . Such a slip rate makes the Fairweather fault one o f  the histest deforming 

strike-slip faults in the world. At this slip rate, it would take 92 years to build up the 3.5 

meters o f  maximum slip observed on the Fairweather fault after the 1958 A/>- 7.9 earthquake 

and only 52 years to build tip the 2 m o f  slip observed along the southern half o f  the 

1958 earthquake rupture zone. i.e.. enough slip would occur by the year 201(1 to allow a 

comparable earthquake. The locking depth o f  7 .0x0.9 km is reasonable for a strike-slip fault, 

although shallower than typically observed in California. The locking depth calculated by 

Fn i/Tnufllrr et al. 1999 for the San Andreas in northern California is — 15krn. Our results 

indicate that most o f  tin' Fairweather fault-parallel Pacific-North American relative plate 

motion is taken up on the Fairweather fault, but 11 m m /yr  must be accommodated on 

structures inboard o f  the Fairweather fault. The geologic history and present-day seismicity 

along the Denali and Duke River faults indicate' that these faults may be good candidates.
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Chapter 4

Using GPS to Unravel the 
Tectonics of Interior and Southern

Since 1993 we have made GPS observations in interior Ahiska. with the goal o f  using de­

formation information .is a tool to understand the present-*lay tectonics. Our observation 

network consisted o f 33 GPS sires in interior Alaska, the majority o f which were measured 

at le;isr four times. We found that sites within about 30 km o f Fairbanks show no significant 

motion with respect to Fairbanks, indicating a low rate o f  strain across this region, which 

spans three NE-SW  seismic Iineations between the Denali and Tintina faults. Sites further 

south have velocities consistent with right-lateral slip 011 the Denali fault. We constructed 

a model com bining counter-clockwise rotation o f  the block south o f the Denali fault with 

ekistic strain accumulation on the fault. Using this model, the data required a slip rate o f 

0-9 111111 vr on the Denali fault or distributed 0 11 the Denali fault and one or more faults 

within .93 km to the north o f the Denali fault.

After the model velocities were removed from the data, three sites showed an anomalous 

southward component o f  motion that was not explained by the block rotation model. We 

"Prepared fur submission m ./. Gfophys.  Acs.

4.1 Abstract
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suggest that this southward com ponent o f  velocity may be due to postseismic: response 

to the 19(i4 Greal Alaskan c'artluiuake and we derived a model o f  postseismic slip on the 

subducting slab that produced velocities consistent with the observations.

4.2 Introduction

Geologic maps o f interior Akiska. within 500 km o f  Fairbanks, show a high abundance' o f  

faults. Information about these faults Inis up to now been based mainly on geological obser­

vations in the field, and these1 observations are1 limited due1 to the' generally poor exposure. 

Seismicicity maps are a good source o f inform ation on the location and activity o f active 

faults, but the1 density o f seismic site's is far from ide'al. The tectonics o f Alaska are1 dom i­

nated by the1 Pacific-North American plate interaction, com plicated by the collision o f  the 

Yakutat block. The region o f interior Akiska betwt'en the Denali and Tintina faults expe- 

rie'iice'd at le;ist four .\I< 7 earthquakt's in the twentieth century. attribute'd to compre'ssion 

due to the collision further south. The magnitude' o f  this energy rele.ase is eejuivalent to 

that eif southern California over the* same time period, and yen there have be'e'u only a few 

detaili'd studies o f the> tectonic framework o f  the interior o f Alaska.

The1 most obvious tectonic feature in the interior o f  Akiska is the Denali fault, which 

extends in a broad arc for more than '2001) km and is interpreti'd to be a dom inantly right- 

lateral fault e.g.. Lnupht re. 1978: Stout and Chase. 1980 . Its present-day rate o f  motion, 

however, is uncertain, with estimates ranging from no significant displacement in the years 

1975 - 1988 Savaiji and Lisouski. 1991 to an 8-12 m m /yr average right-lateral slip rate for 

the Holocene Plafker et al.. 1994 . Another major tectonic feature in Alaska is the Tintina 

fault, a large dextral fault system 250 km to the north o f  the Denali fault. The seismicity 

in the region between these two fault systems defines a series o f  .YE-SW lineations. These 

seismic zones have been interpreted ;is edges o f  elongate, rotating crustal blocks [Page, et al.. 

1995 . We use our GPS observations to study the current deform ation in interior Akiska 

and com pare this to geological observations. In one end-m em ber tectonic model for the 

interior, all o f  the shear in the region is placed on the Denali fault and thus no strain is 

accumulated between the Denali and Tintina faults. Alternative models allow the shear 

to be accom m odated over a broader area. For example, in a block-rotation model the
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region between the faults is made up o f several elongate blocks, which rotate clockwise to 

accom m odate the north-south compression. \Ve evaluate the tectonic models proposed for 

interior Alaska and present our favored model based on the GPS deform ation results.

4.3 Tectonic background

4 .3 .1  Denali fault

The Denali fault has the most dram atic topographic expression o f all the large settle strike- 

slip faults in Alaska. ;ts it forms a deeply incised fault line valley which can be traced for 

several hundred kilometers through the Alaska Range and into the Shakwak Valley. Yukon 

Territory. Canada. The Denali fault is geologically important .as it separates the vast 

crystalline Yukon-Tanana terrain* from younger accreted terrain’s to the south, cuts rocks 

ranging from Preeambrian to Quaternary age. and displays geologic evidence o f recurrent 

right-lateral displacement over a relatively long span o f geologic time. Figure 4.1 is a map 

showing tin* geologic and geographic features discussed in this section.

Dextral displacements o f up to 401) km have been reported for some sections o f  the 

Denali fault e.g.. Forht.s et ah. 1973: Turner et ah. 1974: Xoklt In rg et ah. 19S5h Evidence 

for Holoeene slip on the Denali fault east o f 143 '\Y is absent Savage <iml Lisowski. 1991". 

Tin* Totschunda fault seems to replace the Denali fault as the active strand o f the fault 

oast o f the junction o f the two faults. Holoeene displacement has only been documented 

on the McKinley. Totschunda ami western Shakwak segments. Our region o f study is the 

central Denali fault system, which includes the Hines Creek and M cKinley strands. The 

Buchanan Creek pluton cuts the Hines Creek segment and is not apparently offset by 

the fault Wahrhaftig et ah. 1975]. although this has been recently disputed (hut not yet 

published). Wahrhaftig et ah 1975: reported K-Ar ages o f  95 Ma for the pluton. indicating 

that significant lateral displacement has not occurred along this strand in the last 95 million 

years. It is believed that the M cKinley branch o f the fault has short-circuited the older 

northern Hines Creek branch Page and Labr. 1971,. The M cKinley segment is one o f the 

most active portions o f  the Denali fault system during the Holoeene [Lanphere. 197S7 Offset 

Holoeene features and the sharp profile o f  m ajor scarps in unconsolidated sediments indicate 

m ajor movement along the M cKinley strand in the last few hundred years [Page and Lahr.
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Figure 4.1. Map o f interior Alaska showing the main segments o f  the Denali fault system 
and other connecting faults. A-B -  Farewell segment: B -C (north) =  Hines Creek fault: 
B -C(south) =  McKinley segment: C’-D — Shakwak segment: D-E =  Dalton Creek segment: 
E-F =  Chilkat River fault: F-G =  Chatham Strait fault: BG =  Broxson Gulch thrust: T  =  
Totsclmnda fault: DR =  Duke River fault (from Plafker et al. [1994]).
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1971j. Stout et al. T9T3] reported 50-60 in o f  Holoeene dextral displacement and 6-10 

m o f  vertical displacement, north side up. on the M cK inley segment near the Richardson 

highway. Further west near the Parks highway. Hickman et al. [1977] reported 110-230 m 

o f Holoeene dextral displacement and 3-5 in o f  vertical displacement, south side up. .along 

the M cKinley segment. The disparity in Holoeene displacement between the Richardson 

and Parks highway regions o f the M cKinley strand might be a geologic indicator o f  ftister 

slip at the western Parks highway end. but the timing o f the measured offsets is relatively 

unconstrained (Hickman  et al. [1977] give a maximum time for producing the offsets o f

11.000 yrs and a minimum o f a few hundred to a few thousand years) and so not much faith 

should be put into slip rati* estimates based on such 'H oloeene' offsets.

Present day m otion along the Denali fault is unclear. Seismicity has only been moderate 

on the Denali fault in recent years. The most recent, m ajor earthquake that might be 

associated with the Denali fault was a magnitude 7.4 event in 1912. A small geodetic 

triangulation network was established across the M cKinley branch o f the Denali fault in 

1967 and 196S and resurveved in 1969 [Page and Lahr. 1971]. The network consisted o f a 

cluster o f stations within less than 1 kilometer o f  the fault. The cumulative displacement for 

the interval 1967-1969 was less than 3 mm. Savage and Lisowski [1991] found no significant 

right-lateral shear strain accumulation from surveys o f trilateration networks in the vicinity 

o f both the Parks and Richardson highway crossings o f  the Denali fault (separated by 

about. 150 km). The authors estimated that the strain rates due to a fault slipping at 15 

mm yr with locking depth 15 km were well within the detection capabilities o f  their survey. 

However, a fault slip rate o f 5 m iii/yr with a locking depth o f  30 km might escape detection. 

Inversions to estimate fault properties from surface displacements have an inherent trade-off 

between the estimated slip rate and the locking depth o f  the fault if the data do not extend 

at least a few fault locking depths away from the surface trace o f  the fault [.Johnson and 

IVgatt. 1994;. The sites in both o f these networks were all within 20 km o f the fault. It 

is necessary to observe the motion o f sites in the far field, at a distance o f several locking 

depths, in order to com pute the full long-term slip rate o f  the fault.
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4 .3 .2  T intina fault

The right-lateral Tintina fault extends from the Yukon Flats area in Alaska southeast into 

the Yukon Territory and British Columbia. The Kaltag fault trends northeastward from 

Norton sound on the west eo;tst o f Akiska towards the Yukon Flats. The most widely 

aerepted possibility for the etistern end o f this fault is that it wraps around the southern 

edge o f tin' Yukon flats as the main splay from the Tintina fault [Estnbrook et ah. 1988]. 

The Tintina exhibits 4o() km or more o f mainly Late Cretaeeous to early Tertiary dextral 

displacement Gnhrn 1st. 1985'. but evidence o f Holocene movement is limited to a single 14 

km long scarp Plufkt r et ah. 199-1 . The current level o f seismicity is low. but a magnitude 

.-..I) earthquake in 1972 is consistent with right-lateral motion along the Tintina fault.

4 .3 .3  Interior Seism ic Zones

A seismicity map o f the region between the Denali and Tintina fault systems shows a 

clustering o f earthquake epicenters in northe.ist trending lineaments (Figure 4.2). Then* 

are three prominent zones, termed the Salcha. Fairbanks, and Minto Flats seismic zones 

DiMfus and Ti/ttjat. 1988 . A magnitude 6.2 left-lateral strike slip earthquake in 1995 

occurred along the Minto Flats seismic zone. This seismic zone can be traced southward to 

connect with a prominent group o f epicenters termed the Kantishna cluster (Figure’ 4.2).

In 19.47. a magnitude 7.4 earthquake with left-lateral strike slip motion occurred in 

the interior o f Akiska and is thought to have been associated with the Salcha seismic zone 

Fh tffn r and Chnsti nsi n. 199th. Pmjr et al. ,1995 have proposed that the seismic zones 

outline elongate fault-hounded blocks, which rotate clockwise similar to books on a book­

shelf. accom m odating the X-S crustal shortening across the region. In addition to the 

seismicity, aeromagnetic maps o f  the Fairbanks area show prominent X E -SW  lineations. 

Despite this additional geophysical data that is consistent with a series o f  X E -SW  striking 

faults, there is a lack o f mapped faults in the region. Pnwr et al. 19661 show a fault that 

cuts Quaternary deposits along the Minto Flats seismic zone, but it does not appear to 

have any docum ented Holocene movement. Poor exposure characterizes this entire region 

and this probably explains the paucity o f  mapped faults.
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Figure 4.2. Map o f interior Alaska showing the seismicity from 1990 to 1996. The epicenters 
fall along three XXE-trending lineaments. M FSZ =  Minto Flats seismic zone: FSZ 
Fairbanks seimir zone: SSZ =  Salcha Seismic Zone. The black lines are all o f  the faults 
shown by Plnfker e t al. 1994 in this region. Also shown are earthquakes with A/s- >  7.
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Figure 4.4. Map o f interior Akiska showing the Denali and Tintina faults. Triangles indicate 
th<‘ GPS sites.

4.4 Data

Our observation network consisted o f 55 GPS sites I Figure 4.4). the majority o f which 

were metisured at le;ist four times. In 1995. we established and started observing 6 sites 

within 51) km o f Fairbanks. Each year since then we repeated observations at these sites 

and established new sites. In 1997. we installed a dense profile o f  sires across the Denali 

fault along the Parks highway and a few sites along a second, more sparse profile across the 

fault along the Richardson highway. In 1997 and 1999. five sites off the road network were 

established with helicopter support in an attempt to measure the displacement across the 

M into Flats seismic zone (Figure 4.2). Figure 4.4 shows the location o f all the GPS sites 

for which we have at least two observations.

The sites FAIR and C LG O  are permanent sites and were in continuous operation for
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tlit* duration o f  this campaign. We installed the permanent site G R X R  in cooperation with 

L'XAYCO. It was in operation intermittently from 1997 to spring 2000 and has been running 

continuously since then. T he remaining campaign sites were occupied for a minimum o f 2 

eight-hour sessions each rime they were measured, and most sites were surveyed for multiple 

24-hour sessions each year. All measurements were made with dual frequency Trimble 4000 

SSE and SSi receivers using Trimble Compact Geodetic antennas.

Tin* GPS data were com bined with a subset o f the International GPS Service (IGS) 

network in daily solutions using the GIPSY-OASIS software and analysis techniques de­

scribed in Freymueller et al. 1999]. We tranformed all solutions into the global reference 

frame ITRF97 Boucher. 1999" ami estimated velocities o f all sites relative to FAIR. To 

calculate the velocity uncertainties we followed Mao et al. ’ 19991. who suggested that errors 

in GPS time series consist o f  colored (time-correlated) noise in addition to white noise. 

Time-correlated noise sources include mismodeled satellite orbits, m ismodeled atmospheric 

effects and monument instability. We thus added time-correlated or 'flicker' noise to the 

white noise estimate, using the empirical model from Man et al. [19991 given below:

12^:. na f (4.1)

where g is the number of metisurements per year. T is the total time span in years. rru. and 

rrf are the magnitudes of white and flicker noise in millimeters, and a and b are constants 

empirically estimated ;is a ' - 1.78 and b^-0.22. We neglected the random walk component o f 

the uncertainty because it is relatively small compared to white and flicker noise. For the 

magnitude o f rrj-. we used the mean value for Xorth America according to Mao et al. [19991. 

These values are 4.4 and 6.3 for the north and e;ist com ponents o f  rrj. respectively. The 

white noise magnitude was calculated separately for each individual station by averaging 

the formal signuis o f the coordinate estimates for each daily observation. Typical velocity 

uncertainties for the horizontal com ponents were 1-3 m m /year, which is 0.5-1 m iu/yr higher 

than tin* straight white noise estimate.
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Figure 4.-1. \elocities o f  all sites relative to FAIR. N’ote that velocities increase southwards 
across the Denali fault. Sites TALK . HL RR and \VO.\D have an anomalous southward 
component o f  velocity.

4.5 Results

Figure 4.4 shows our estimated GPS velocities relative to FAIR, with 95% confidence error 

ellipses. The velocity o f  FAIR relative to stable North America is 4.1 m m /yr E. 2.9 m m / 

yr S k'oijiui. 2000'.

Tin' velocities o f  the sites in this region range from about 0 m m /yr to 10 m m /yr relative 

to FAIR. Most sites were metis tired each year for four years, typically with two 24 hour 

observations, and the uncertainty in the horizontal velocity at such sites is 2-3 m m /yr. 

Some sites have only two sets o f  observations separated by one year and so the uncertainties
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tissociated with those velocities are large, up to 5 m m /yr. indicated by the large error ellipses 

at sites such ;is A T T . 0999 and 2999. We did not use the velocities at these sites in any o f our 

modeling. The velocities o f sites within 50 km o f Fairbanks are close to 0 m m /yr. indicating 

a low strain rate across the interior seismic zones. Velocities o f sites on the western profile 

across the Denali fault along the Parks Highway increase south o f  the fault to about S m m /yr 

relative' to Fairbanks, indicating right-lateral shear across the Denali fault. Sites south o f 

the fault on the profile along tin1 Richardson highway have a slightly lower velocity o f  (j 

m m /yr relative' to Fairbanks. Sites W O X D . H URR. and TA LK  show a southward motion 

relative to Fairbanks, .and we discuss a possible reason for this in section 4.7. Velocities o f 

sites to the north .and northeast o f Fairbanks have relatively large uncertainties ami show 

no clear system atic picture o f  deformation. W ithout further observations it is difficult to 

determine whether there is any shear on the Tintina fault.

4.6 Discussion

In this section we examine the GPS velocity results in more detail. We first discuss the 

results for the region between the Denali and Tintina faults, where we have GPS sites 

spanning three NNE trending seismic zones (Figures 4.2 and 4.5). In 1937. a ,\/> 7.3 

earthcpiake occurred in this region and is thought to have been associated with the Salcha 

seismic zone. We attempt to reconcile this with the low GPS velocities measured.

We then move to the Denali fault and discuss the modeling o f  our data. We first 

construct a simple 2D model in which the fault is considered to he straight and vertical 

and to slip at a long-term slip rate below a fixed locking depth. L’sing a mathematical 

representation o f this model, we invert the GPS velocities o f the sites along the Parks 

highway profile to estimate a slip rate and locking depth for this simple model o f  the Denali 

fault.

The Denali fault is not straight, however, and so we introduce a model in which the 

curved Denali fault is a northern boundary to a rotating southern Alaska block. We find 

the rotation rate o f  the southern Alaska block that best fits the GPS data from sites on 

both the Parks and Richardson highway profiles. To investigate the possibility o f  slip being 

distributed on more than one fault, we concentrate on the Parks highway profile, which has
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the must GPS sites and therefore the best spatial resolution. We use the same southern 

Alaska block rotation model to estimate the slip rate and locking depth o f  the Denali fault 

and one additional model fault in this region.

We conclude this section by discussing the southward velocity o f sites TALK . HL’ RR . and 

W OND that is not explained by tin* southern Alaska block rotation model. We propose 

that this southward motion could bo due to ongoing postseismic deformation after the 

1964 Great Alaska earthquake. Ztrrck et al. 2001: used GPS velocities from sites on the 

Kenai Peninsula to model the postseismic effect in terms o f varying slip distribution on 

the subduction interface. However, their model predicts a higher southward motion than 

observed at sites north o f TALK . We remove the effect o f  southern Alaska rotation and 

strain on the Denali fault from the Kenai Peninsula GPS velocities to produce a set o f 

residual velocities that we jissume to be entirely due to subduction o f the Pacific plate. We 

follow the procedure o f Zireek et al. _200lj using this new velocity set. and estimate a new 

slip distribution on the subducting plate interface.

4 .6 .1  Interior seismic zones

We first examine the region around Fairbanks, between the Denali and Tintina faults. The 

velocities of the 14 sites in this region are shown in Figure 4.5 and are small relative to 

Fairbanks, with a maximum of 6.9 —3.8 m m /yr at SPIL.

To further analyze the deformation o f this region we calculate the areally averaged strain 

rate from the GPS velocity field. Assuming uniform strain in the region, we calculate the 

extension o f baselines between all possible pairs o f stations (A L /'L ). where L is the line 

length and A L  is the change in length per year. Following the method outlined in Prescott 

et al. 1979;. we calculate the strain rate across that direction having the highest shear rate 

from changes in line length observations. We find that a maximum engineering shear strain 

rate o f  0.02—0.U1 //ra d /y r  produce's maximum left-lateral shear in a direction .\12cE n 3 3 '. 

This is small com pared with strain rates observed across m ajor faults, such as 0.11±0.06 

//rad /y r  on the1 Totschunda fault and 1.57—0.15 //rad /y r  on the Fairweather fault 'Lisowski 

et al.. 1987_. To test the assumption o f uniform strain, we divide the region into subsets o f 

sites and calculated the strain rates for these subsets. We try several subsets including all 

sites north o f  65: N. all sites south o f  65; N. all sites east o f  147.5"W . and all sites west o f
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Figure -1.5. Velocities relative to FAIR for sites in tlu> Fairbanks vicinity. Velocities are 
small with a maximum velocity o f tj.9 — 3.8 mm, yr at SPIL. 95‘X confidence ellipses are 
shown. M FSZ =  Minto Flats seismic zone: FSZ =  Fairbanks seimic zone: SSZ =  Salcha 
Seismic Zone.
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147.5’ W . The strain rare is not significantly different between subsets, with values ranging 

from (1.1)1—0.01 to 0.03 — 0.01 //rad yr. Given the large error associated with the azimuth 

o f the strike o f  the vertical plane with maximum left-lateral shear! XT2’ E — 3 3 ') . this value 

is not greatly different from the strike o f  the seismic zones, which is approximately X33~\Y.

The principal axes o f  strain (calculated following Prescott et al. [1979’ ) are oriented at

X57 \Y— 111 '(com pression) and X33 E —40"(extension). Again the error in the .azimuth is 

large. Ratchkoeski and Hansen 2002 found a systematic variation in the orientation o f 

stress axes ;is determined from seismicity in this region, but we do not have the density o f 

data to resolve such variation and the orientation o f the principal axes o f strain are simply 

an average over the entire region.

An examination of the far-held sites. TOLC) and PPLX  (Figure 4.4). gives us a first- 

order estimate of t lit' shear across all of the seismic zones. The sense of motion parallel to 

the seismic zones between these sires is right-lateral, with magnitude 0.5 — 0.4 mm yr. i.e.. 

not significantly different from zero shear.

To further investigate the deform ation o f this region, we construct a model o f bookshelf- 

type block rotation in interior Alaska. In this model o f  simple shear, the seismic zones are 

assumed to be faults bounding elongate blocks oriented X33 E. terminating .at the Denali 

fault to the south .and at the Tinrina fault to the north. The Denali and Tintina faults 

.are the reference boundaries in this model and do not rotate (Figure 4.6). The region was 

rotated about site FAIR and slip is applied oil the faults bounding the blocks (whore the 

faults .are assumed to be the best-fit lines through the seismic zones shown as dotted linos on 

Figure 4 .71 so that the reference boundaries do not rotate. The slip is calculated following 

Garfnnkel and Ron 1985 using the equation below:

> =  cot (a — 5 1 — cotn  11" (4.2)

where \Y is the width o f the block, s is the slip. 3 is the rotation and n is the initial angle

between the faults and the reference boundary.

However, the faults presumably are locked from the surface to the base o f  the seismogenic 

zone, and so the blocks do not simply slide past each other during the interseismic period 

considered here. The final step is therefore to incorporate the elastic behavior o f the faults
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Figure 4.t>. The bookshelf-type block rotation model that we apply to interior Alaska. 
Based on Garfunkt I and Ron 1985 .
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into the model. We consider the faults to he vertical with a locking depth D. below which 

the fault slips at the long-term slip rate 5 . Using elastic screw dislocation theory, the 

fault-parallel velocity o f  a site at a perpendicular distance x  from a fault (at position x j )  

is Sttragt and Bttrford. 1973 :

Locking depths o f  strike-slip faults are equivalent to the depth to the btise o f the seismogenic 

zone. Seismic .ami geodetic studies show that typical locking depths for strike-slip faults art' 

between U) and 15 km e.g.. Pn scott et al.. 1979 . Relocation o f seismic events in central 

Akiska by Ratrhkorski and Hansrn 21)02 showed that seismicity was limited to the top 10­

15 km o f  the crust. A retisonable locking depth o f 12 km was applied to each fault (best-fit 

lino through the seismic zones). The slip on each fault was calculated from equation 4.2. 

the velocity at each site due to the slip on each o f  the three faults was calculated using 

equation 4.3 and the contributions from each fault were summed. Figure 4.7 illustrates 

the com ponents o f the velocity modeled at each site for a rotation rate o f 2 ' million years 

(much larger than the best-fit rotation r.ate given below). Summing the velocity due to 

rotation about FAIR (black vectors in Figure 4.7) and the velocity due to slip on the locked 

faults (white vectors in Figure 4.7) gives us the model velocity at each site (gray vectors in 

Figure 4.7). The goal is to find the rotation rate (and thus slip on the faults) for our model 

that produces a set o f velocities that best fits the observed GPS velocities. We perform a 

grid search over different .angular velocities and find that the best-fitting angular velocity 

is l ) . l : million years. A rotation o f  0.1C ''million years gives a slip rate o f 0.2 m m /yr on the 

M into Flats seismic zone. 0.1 m m /yr on the Fairbanks seismic zone and 0.2 rnin/yr on the 

Salcha seismic zone (using equation 4.3).

In 1937. a M< 7.3 earthquake occurred in this region o f interior Alaska (Figure 4.2). 

Fit tchrr and Christfnsen 1996; digitized the analog teleseismic records from this earthquake 

and found that the data tire consistent with a left-lateral earthquake occurring on  the Salcha 

seismic zone. The authors calculated a unilateral rupture length o f 40-60 km for the event, 

but pointed out that a bilateral rupture is possible due to a second pulse o f moment release 

visible on the source time functions, which would produce a rupture length o f 80-120 km.

(4.3)
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Figure 4.7. Map showing the model velocities due to bookshelf-type block rotation about 
the site CLGC) in Interior Alaska. This example is for a rotation rate o f 2 : /m illion  years 
clockwise. Black vectors show the velocity due to the rotation: white vectors show the 
resulting deformation on the locked faults: gray vectors show the sum o f these effects.
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Fletcher and Christensen 1996 calculated a seismic moment o f  0.6 :r 0.2 x 10JO Nui for this 

earthquake. If wo .assume that the calculated strain rate is a reliable indicator o f the long­

term deformation in this region, then we can com pute the recurrence time for an earthquake 

such ;is the 1937 Salcha event. We first calculate the fault displacement from the relation 

.\/( j =  //D A . where A/() is the moment. // is the shear modulus, taken .us .'J x 10lu Pa. A 

is the fault area, which is about 10 km (locking depth) by 40-120 km (rupture length o f 

Salcha earthquake), .and D is tlit* displacement. Using these parameters a displacement o f 

1.7-5 m would be expected. Given .a slip rate o f  0.2 m m /yr. the recurrence time for a .!/>• 

7.5 earthquake is therefore on the order o f S.500-25.000 years.

Given such a huge recurrence time, how is it possible that in 1947 another largo. A/s 

7.2. earthquake occurred in this region (Figure 4.2)'.’ The focal mechanism for the 1947 

earthquake is a thrust mechanism, with the fault plane oriented perpendicular to the seismic 

/ones, leading Fit teln r and Christensen 1996" to postulate that tlit* 1937 event caused the 

1947 fault to b /1 loaded and thus. 10 years l.ater to rupture.

4 .6 .2  Denali fault 

Simple model

Our goal is to determine tin' slip rate and locking depth o f  the Denali fault from our GPS 

observations. We start with a simple model and constructed an elastic dislocation model 

for a fault locked at the surface .and slipping freely at a rate S below depth D. We use/l 

the fault-parallel velocities at sites .along our main Parks highway profile across the fault 

to invert for long-term slip rate and locking depth o f  tint fault. The modeled fault-parallel 

component o f velocity o f a sit(> at a perpendicular distance x  from the fault (at position Xf)

This is modified from Savatje and Burford .1973; (equation 4.3) by the addition o f  the 

term 5  2. Equation 4.3 assumes the velocity at a site is relative to the fault, whereas we 

calculated our GPS velocities relative to the site FAIR. FAIR is over 150 km north o f the 

fault and at such a distance it is not affected by strain on the fault at a level that we can

is:

(4.4)
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detect with GPS measurements. thus the fault-parallel com ponent o f  velocity at FAIR is 5 /2  

relative to the fault (and in an opposite direction to the fault-parallel velocity component 

o f sites far away to the south o f  the fault). We therefore add 5 /2  to equation 4.3 so that 

the model velocities art' also relative to FAIR.

For this simple 2D model we use data from only the denser Parks highway profile, and we 

dt) not include the velocities at the sites TALK. HURR. and W ON'D. :is those are anomolous. 

In section 4.7 we discuss the possibility that the southward com ponent o f  velocity at these 

sites is due to post-seismic effects from the 1UG4 earthquake. We calculate a slip rate o f  8=1 

nun yr and a locking depth o f 28 =  8 km with a reduced \~ statistic o f  1.43. The locking 

depth is w;is not well determined by the inversion and is also unretisonably large, which 

could be an artifact o f incorrectly assuming all o f the slip occurs on one fault rather than 

being partitioned over a series o f faults. Recent seismicity gives us reason to believe that 

some shear is being accom m odated on structures other than tin* Denali fault. The Hines 

Creek fault is a major fault that lies .about 30 km to the north o f  the Denali fault .along the 

P.arks highway, and while Wahrhaft iy et al.. 1073 believe it to be inactive in the Holoeene. 

other field geologists question this result (Figure 4.8).

However, seismic .activity continues today to the north o f  the Hines Creek fault. Two 

earthquakes in November and December 2000 (magnitudes 3.7 .and 5.0 respectively. Figure 

-1.8) were located to the north o f the Hines Creek fault .and had focal mechanisms consistent 

with right-lateral slip on an E-W  oriented fault, .although Ratrhkovski and Hansen 2002 

found the earthquakes more consistent with left-lateral slip on a NNE-striking fault (such 

.as the Minto Flats seismic zone). Significant background seismicity also exists on faults 

to the south o f  tht> Denali fault, and several mapped fault strands exist south o f the fault 

Plafki r et al.. 1(J‘J4 . We add a second fault to the model and restrict the locking depths o f 

tin1 two faults to be 12 km (an average estimate for the depth o f  seismicity in this region. 

Ratrhknr.ski mid Hansen 2002/). The location o f the second fault is varied from 50 km 

south o f the Denali fault to 50 km north o f it. I really like the Atlanta Braves. The optimal 

position for the second fault (the location giving tlit' lowest \J misfit value) is 35 km to the 

north o f the Denali fault. The estimated slip rates are 5= 2  m m /y r on the Denali fault and 

2=1 mm, yr on the second fault. The reduced statistic o f  the solution is 1.42. which is 

slightly lower than that for the one-fault model (1.43). If we fix a second fault at 35 km
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Figure -1.8. Map showing the Denali fault. Hines Creek fault and the location o f  magnitude 
■j earthquakes that occurred in November and December 2000. Also shown are the GPS 
velocities relative to Fairbanks.
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south o f  the Denali fault, for example, then the best-fit slip rate on the fault is zero and

all the slip was on the Denali fault, indicating that the data are not com patible with slip

on a fault 35 km south o f the Denali fault. We use the F-ratio test (see for example Stein 

and Gordon [1984]) to determine whether the improvement in fit o f the model to the data 

resulting from the addition o f  a second fault to the model is greater than expected purely 

by chance. The statistic is given below:

r> [\2(r) -  \ - ( p ) ] / ( P - r )
F  =   o ,  w t t :-------- :---------  ( 4 . o )\-(p)/(.\ -  p)

N =  number o f data: r =  number o f parameters o f one-fault model =  1: p =  number o f 

parameters o f  two-fault model =  2.

The F test revealed that the improvement in fit o f  the model to the data by adding a

second fault was not significant at the 95% confidence level (F =  1.10. from tables Fjr.-js =  

2.26).

Model involving block rotation south of the fault

The trace o f the Denali fault can be approxim ated by a small circle or a scries o f small 

circles. Stout and Chase [1980] observed that both  the M cKinley segment and the segment 

o f the Denali fault to the east (they refer to this as the Denali segment) have near perfect 

small circle geometries. This suggests that the Denali fault may bound a rotating block: we 

therefore include’ rotation o f  this block in order to move beyond the simple profile discussed 

in the previous section. The best-fit poles to these segments are 50.38CN. 154.02CW  for 

the Denali segment and 59.63; N. 147.3SWV for the M cKinley segment [Sfouf and Chase. 

1980]. Our GPS velocities are determined at sites that span the M cKinley segment o f 

the Denali fault, thus we allow the block south o f  the Denali fault to rotate about the 

pole o f  the M cKinley segment in our model. We assume that southern Alaska rotates as 

a coherent block, although active structures are known to exist within southern Alaska. 

Internal deform ation o f southern Alaska could have a large effect on our model results. The 

Denali fault is considered locked and so the m odeled site velocities are modified by the 

elastic strain accumulation on the locked fault (see Figure 4.9).

We divide the fault into a series o f  short straight fault segments and calculate the
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Model:

R o tatio n  a b o u t a pole 

+

Elastic strain a cc u m u latio n  on locked fault

Figure 4.9. Cartoon illustration o f  block-rotation model. It consists o f  block-rotation o f 
southern Alaska about a pole in Prince W illiam  sound plus the effects o f  elastic strain 
accum ulation on the Denali fault.
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surface velocity due to slip on each o f  the segments using Okada's [1985] elastic dislocation 

equations. Each fault segment is assigned a slip rate calculated from the angular velocity o f 

the rotating block to the south. The model fault is not an exact small circle but we constrain 

the slip rate on each segment to be the same. The locking depth o f  each fault segment is 

also constrained to be the same. We perform a grid search, allowing two parameters to 

vary: the angular velocity o f  the rotating block south o f  the fault (and therefore the slip 

rate on each fault segment) and the locking depth o f the Denali fault. The m odel velocities 

are com pared with all o f  the GPS velocities in the study area with the exception o f  TALK . 

HURR. and W OND because we believe these sites to have an anom olous com ponent o f  

southward velocity. The best-fitting angular velocity o f  the block is 0 .77°/m illion  years 

(Denali fault slip rate o f  6 m m /yr in the vicinity o f  the Parks highway profile) and locking 

depth o f  6 km. However, the locking depth is not well-constrained, as illustrated in the 

contour plot o f  reduced (Figure 4.10). again indicating that perhaps the slip is distributed 

on more than one fault.

Figure 4.11 shows the GPS-derived velocities and the velocities calculated using the best- 

fit model. The residual velocities after the model velocities were removed from the data are 

shown in Figure 4.12. The direction o f the residual velocities at H U RR and T A L K  are in 

better agreement with the velocities o f  sites further to the south (see Zweck et al. [2001]). 

The block rotation model underpredicts the velocities in the western. Parks highway, profile 

across the fault and slightly over-predicts the velocities in the eastern. Richardson highway, 

profile (illustrated in Figures 4.11 and 4.12).

In order to investigate whether the slip assigned to the Denali fault could be distributed 

on more than one fault, we focus on the Parks highway profile. This profile has a higher 

number o f sites than the Richardson highway profile and this high spatial resolution is 

necessary to distinguish between a one-fault model and .a two-fault model. Using the same 

southern Alaska block rotation model, we attempt to fit the data from sites along this profile 

and com pare the results with the 2D model. Once again we find that the locking depth is 

poorly constrained (Figure 4.13) and so we fix the locking depth at a reasonable value o f 

12 km (based on seismicity studies o f  Ratchkovski arid Hansen [2002]).

Performing a grid-search over different angular velocities we find a best-fitting angular 

velocity o f  1.253 ± 0 .6 5 "/m illion  years (and corresponding fault slip rate o f  9 ± 4  m m /yr) with
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Figure 4.10. Contour plot o f  reduced This illustrates that the locking depth o f  the 
model fault is poorly  constrained by the data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

Figure 4.11. GPS velocities and model velocities. Gray arrows are GPS velocities relative to 
Fairbanks (FA IR ), white arrows are model velocities relative to FAIR. Sites TALK . HURR. 
and W O X D  tire not accurately predicted by this model.
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Figure 4.12. Residual velocities after the m odel has been removed from the data. Also 
plotted are the 959c confidence error ellipses o f  the data. Note that the model underpredicts 
the velocities in the western (Parks highway) profile across the Denali fault and overpredicts 
the velocities in the eastern profile. The direction o f  the residual velocities at HURR and 
T A L K  are in better agreement with the velocities o f  sites further to the south.
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Contour plot of reduced x2

Figure 4.13. Contour plot o f  reduced \2 for the Parks highway data only. Again the plot 
shows the poor resolution o f  the locking depth o f the model fault
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Angular velocity, deg/My 

Figure 4.1-1. Variation o f  reduced with angular velocity, fixed locking depth o f  12 km

a reduced \J o f 1.9. The angular velocity is higher than the value obtained using all o f  the 

GPS data but the slip rate is in agreement with the rate obtained with the single-fault 2D 

model. However, the locking depth determined for the 2D m odel (28 km) was much greater 

than the assumed 12 km in this model. Figure 4.14 shows how the reduced \~ o f  the model 

fit varies with angular velocity.

Examining the fit o f  the model to the data (solid line in Figure 4.15). we see that data 

may be better fit with the addition o f a fault to the north o f  the Denali fault, as in the 2D 

model. We added a second fault to the model, allowing a second angular velocity around 

the same pole and fixed the fault locking depths to 12 km. We found that the best-fitting 

location for a second fault is 35 km to the north o f  the Denali fault (this location for the 

fault had the lowest reduced \2). The reduced x 2 misfit for the m odel with the fault 35
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Figure 4.15. Best-fitting one- and two-fault models using only the Parks highway data 
and fixed locking depth o f  12 km. Sites TALK. H l'R R . and VVOND were not used to 
calculate the best-fitting m odel since we believe the %'elocities at these sites are influenced 
by postseismic response to the 1964 Great Alaskan earthquake. The site %'elocities are 
plotted for illustration only.

km to the north o f the Denali fault was 1.8. which is slightly lower than for the one-fault 

model. Figure 4.13 illustrates the fit o f  the data to the one-fault and two-fault models. 

Note that there are some sites whose GPS %'elocities are not fit by either model. This could 

be due to the underestimation o f the error associated with the GPS %'elocity at that site, 

a measurement time series too short to estimate a reliable %'elocity. instability o f the mark 

(though this is unlikely gi%-en our fieldwork practices, see A ppendix C ). or an in%-alid model. 

Re-measuring the GPS sites in a year or two would help to resoh'e this problem.

The best-fit slip rates on the t%%'o faults are 5 m rn/yr on the Denali fault and 3 m m /yr 

on the fault to the north. W hile the statistic is lower for the two-fault model (\2 =  1.8)
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than for the one-fault model (\ - =  1.9). the F-ratio test reveals that the improvement in fit 

o f  the model to the data hv adding a second fault is not significant at the 95% confidence 

level (F =  1.0. from tables F\^M =  1.75). The addition o f a second fault to the model 

illustrates that the observed shear may be accom m odated on the Denali fault and one or 

more faults within about 35 km to the north o f  the Denali fault. This model has the lowest 

reduced and we use these model parameters in the next section to predict velocities due 

to southern Alaska block rotation at sites in the Kenai peninsula.

4.7 Postseismic Model

Sites TA LK . HURR and WO.N'D show a southward com ponent o f  motion that is not ex­

pected solely from strike-slip motion on the Denali fault. This observed motion could be 

cause* 1 by site instability, but it would be unusual to have 3 sites in the same region that 

all have the same com ponent o f  unstable motion. Also. HU RR and VVOND tire in bedrock 

and so we believe these sites to be extremely stable. The motion could be caused by 

left-lateral slip on a fault oriented N-S just to the east o f  HURR. However, there is no 

seismic evidence for such a fault and the fault would have to cut the Denali fault as the 

site W O X D  is to the north o f  the Denali fault and H U RR and TA LK  are to the south, 

and there is no geological evidence for any offset o f  the Denali fault in this region. Strain 

accumulation on local structures could cause the anomalous motion at the sites, but we 

have limited information on structures in this region due to lack o f  geologic investigation. 

Another possibility is that postseismic response from the 1964 Great, Alaskan earthquake 

could cause a southward component o f  motion o f sites in interior Alaska. Postseismic defor­

mation was proposed to explain tide gauge observations on the Kenai Peninsula [Cohen and 

Freymueller. 2001 j. Velocities on the Kenai Peninsula in southern Alaska show a com plex 

pattern o f  crustal motion that has been interpreted an indication o f  a continuing postseismic 

transient to the 1964 earthquake [Freymueller et al.. 2000: Zweck et al.. 2001]. Zweck et al. 

[2001] reproduced the observed Kenai Peninsula velocities using a three-dimensional elastic 

dislocation model. They modeled the observed GPS velocities as resulting from frictional 

locking on the Pacific-North American plate interface. T he plate interface was divided into 

20 km x 20 km discrete tiles and each tile was assigned a 'coupling ratio'. A ratio o f  1
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indicates full locking between the North American and subducting Pacific plate, a ratio o f 

0 indicates fully aseismic slip between the plates, and a negative coupling ratio indicates 

velocities directed towards the trench. The amount o f  slip on each tile was calculated from 

(1 — ci)vplaU,. where a  is the coupling ratio and ep(att is the plate velocity. They estimated 

the spatial distribution o f  plate* coupling that, using an elastic dislocation model, generated 

the best fit to the observed GPS velocities. Spatial variations in the degree o f  coupling o f 

the subducting slab have been studied by many researchers [e.g.. Dmowska and Lavison. 

1992: Kawasaki et al.. 2001;. Mazzotti et al. [2000] used a similar m odeling technique to 

that o f  Zweck et al. [2001] to invert for the distribution o f  coupling on the Nankai and 

Japan-west Kurile subduction zones. They found a similarly com plex pattern o f locking 

suggesting postseismic slip after the 1994 Sanriku-Oki M s  7.7 earthquake. We used the 

best-fit model o f  Zweck et al. _2001] to predict the velocities at our sites in interior Alaska 

due to the postseismic response (Figure 4.16).

We propose that postseismic deform ation could be responsible for the residual velocities 

in Figure 4.12. If this is the case, then the white arrows in Figure 4.16 (G PS velocities minus 

the Zweck et al. 2001; postseismic m odel) should be similar to the model velocities in Figure 

4.11. parallel to the Denali fault. Examining Figure 4.16. we see that the postseismic model 

model could help to explain the residual southward m otion o f  TALK . HL’ RR. and to some 

extent W O N D . However, the model overestimates the southward velocity o f  sites north o f 

HL'RR along the Parks highway profile across the Denali fault, which do not show any 

measured com ponent o f southward motion. The model o f  Zweck et al. [2001] therefore does 

not com pletely explain the southward com ponent o f our observed velocity field.

The postseismic model does result in southward velocities at the GPS sites TALK. 

W O N D . and HL’ RR and so some form o f postseismic deform ation may be affecting the 

velocities at these sites. We now take a different approach and assum e  that the residual 

velocities in Figure 4.12 are due to postseismic deform ation and see if we can construct a 

model o f  postseismic deformation that is consistent with the residual velocities. Zweck et al. 

[2001] noted that the downdip end o f  their postseismic slip zone was poorly  constrained. The 

location o f this model prameter has a large influence on the magnitude and distribution o f 

the southward com ponent o f motion o f  the m odel velocities in the interior. Could a modified 

version o f  the Zweck et al. 2001] postseismic m odel explain the southward com ponent o f
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Figure 4.16. GPS velocities minus postseismic model. Gray arrows axe GPS velocities 
relative to FAIR, white arrows are GPS velocities minus the Zweck et al. i‘2001] postseismic 
m odel relative to FAIR.
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velocity at the sites TALK . HURR. and W O X D  without requiring southward com ponent 

o f  motion at sites to the north o f H U RR? To answer this question we make the assumption 

that the GPS velocities are a sum o f  two effects: crustal block rotation south o f  the Denali 

fault (using the best-fit two fault block rotation model) and postseismic response after the 

1964 earthquake.

We first calculate velocities for all the GPS sites in Alaska using the best-fit two fault 

block-rotation model described in the previous section. These model velocities, relative to 

North Am erica (N O A M ), are then subtracted from the GPS-derived velocities relative to 

NOAM  for each site to create a set o f velocities that does not include the southern Alaska 

block-rotation. We assume that this set o f  residual velocities is due to subduction and post- 

seismic response to the 1964 earthquake. We use these residual residual velocities as input 

to the Ziveck et al. 2001] postseismic m odel and follow the singular value decom position 

m odeling procedure described in Zweck et al. [2001]. Figure 4.17 shows the GPS-derived 

velocities relative to NOAM  in gray, the velocities calculated using the southern Alaska 

block rotation model in white*, and the residual velocities in black. For most sites in this 

region, the velocity due to block rotation is small and roughly orthogonal to the direction 

o f  plate* motion, anei the* re*sidual velocities tire* similar to the GPS velocities. However, as 

the* distance from the pole o f  rotation o f the southern Alaska block increases (e.g.. for sites 

in the norrhwe*st corner o f Figure 4.17) the rt'sidual velocities are noticeably different from 

the* GPS velocitie-s.

The postseismic model requires the* plate convergence rate as input. Zurck  et al. [2001] 

use*d the Pacific-North America (P C F C -N O A M ) convergence rate at the Kenai Peninsula 

from Dt'Sifts and Dixon :1999]. The velocities calculated using our southern Alaska block 

rotation model define the motion o f  the southern Alaska block (SO A K ) relative to NOAM . 

The residual velocities are therefore velocities relative to SO AK , and so our input plate 

convergence velocity is the PC FC -SO A K  convergence rate at the Kenai Peninsula. The 

Kenai Peninsula is close to the pole o f  rotation o f SOAK (Figure 4.17) and so the velocities 

due to rotation about the pole are low. The PCFC plate velocity relative to SO A K  is thus 

close to the PCFC plate velocity relative to N OAM . To com pute the P C F C -SO A K  velocity, 

we choose a location close to the trench and central to the Kenai Peninsula (59CN. 146CW ). 

and com pute a velocity o f  2 m m /yr towards X42: E for SO AK  relative to N O A M  using
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Figure- 4.17. Velocities o f  sites on the Kenai Peninsula and vicinity relative to North Am er­
ica. Gray arrows are GPS site velocities, white arrows are velocities predicted by the best-fit 
southern Alaska rotation model, black arrows are the residual velocities, to be explained by 
subduction and postseismic response.
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our southern Alaska block rotation model. We then subtract this from the PCFC-N 'OAM  

velocity for the region used by Zweck et al. [2001] (57 m m /yr towards N19=W ) and use 

the resulting 56 m m /yr towards N '21'W  as input to our model. The PCFC plate velocity 

relative to SOAK at the trench adjacent to the southern end o f the Kenai Peninsula is 4 

m m /yr almost due east. Subtracting this from the PCFC-N 'OAM  velocity for the region 

results in a velocity o f  58 m m /yr towards .V22WV. We try the postseismic m odel with both 

o f  these input velocities and find that the output velocity sets did not differ significantly, 

so we use the central Kenai P C FC -SO A K  velocity as input to the model.

Our results show a pattern o f  plate locking very similar to that calculated by Zweck 

et al. [2001]. with a looked area beneath southwest Prince W illiam Sound and an area o f 

reverse postseismic slip beneath and north o f the western Kenai Peninsula (Figure 4 .IS). 

We refer the reader to Zweck et al. [2001! for a discussion o f the pattern o f plate locking 

and what it implies. Subtle differences between the two plate coupling models can be seen, 

in particular uur results show the region o f reverse postseismic slip located further to the 

northwest than shown by Zweck et al. [2001].

Velocities at the GPS sites were calculated according to this model o f slip distribution 

on the plate interface. The sum o f these velocities and the velocities due to the southern 

Alaska plate rotation (white vectors in Figure 4.19) have a misfit to the GPS velocities 

(gray vectors in Figures 4.19 and 4.20) o f  962 (sum o f squared weighted misfit). The misfit 

obtained from com paring the velocities from the Zweck et al. [2001] model (black vectors 

in Figure 4.20) with the GPS velocities is 1048. Thus, for the com plete set o f velocities 

the model o f southern Alaska block rotation plus variable coupling on the subducting slab 

thus fits the data better than a model that does not involve rotation o f  southern Alaska. 

We divided the velocities into two regions, the region north o f  63 =N (Figure 4.20) and the 

region south o f 63: X (Figures 4.19 and 4.20). Our m odel produces a lower misfit than that 

o f  Zweck et al. (2001] in the northern region (95 com pared to 125). This is expected because 

we are adding more data from this area. In the southern region, the misfits o f  the Zweck 

et al. (2001 j model and our m odel are similar, with our model having a slightly better fit 

(838 com pared to 953).

The black vectors in Figure 4.20 (from  the Zweck et al. [2001] m odel) are oriented 

more to the north than the white vectors in Figure 4.19 (from our m odel). This is mostly
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Zweck et al. [2000] slip distribution Slip distribution in this study

•4T*

Figure 4.18. ]

Comparison o f coupling distribution with that obtained by Zweck et al. [2001]. The veloc­

ities that were inverted in our study were those o f  Zweck et al. [2001] minus the velocities 

due to a rotating southern Alaska block model. Red colours axe locked regions and blue 

indicates creep.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.19. Map o f  the Kenai Peninsula showing GPS and our model velocities, all relative 
to Xorth America. GPS velocities are in gray: m odel velocities (sum o f  the velocities due 
to the slip distribution model and the rotation m odel) in white.
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Figure 4.20. Map o f  the Kenai Peninsula showing GPS and the Zweck et al. [2001] model 
velocities, all relative to North America. GPS velocities are in gray: m odel velocities in 
black.
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a consequence o f the block rotation we include in our model, but is also due to a slightly 

different slip distribution between the two models (Figure 4.18) on the subducting slab. The 

GPS velocities appear to lie between the two model velocity sets, with the western Kenai 

GPS velocities not being well fit by either model. Figure 4.19 shows the GPS velocities 

for the Denali fault region and those velocities with this new postseismic m odel subtracted 

(com pare to Figure 4.16 which shows the same but with the Zweck et al. [2001] postseismic 

m odel).

Southward velocities at TA LK . HL’ RR . and WON'D are reduced to a lesser extent than 

when subtracting the Zweck et al. [2001] postseismic model, and the postseismic effect at 

the remaining sites due to this m odel does not require southward motion at those sites. The 

results o f  this postseismic model are thus more consistent with the residual velocities shown 

in Figure 4.12. We therefore conclude that it is possible to construct a postseismic model 

that explains the residual velocities. We note, however, that the southern Alaska rotation 

model is not the final answer on central Alaska tectonics and that as this model improves 

the residual velocities that we are explaining by a postseismic model will also change. This 

is an iterative process and we hope to improve' upon both o f  the models in the future.

As a final step, we use the GPS velocities minus the new postseismic model as input 

into our southern Alaska block rotation model. The best-fitting rotation and locking depth 

are the same as we obtained previously, while the misfit is lower (\ 2 =  1.6). indicating a 

better fit with the new data set. Thus there is no need to iterate on the solution at present.

Our model is a work in progress. At present, we assume a pole o f  rotation for the 

southern Alaska block based on the work o f  Stout and Chase [1980]. who identified a pole 

to the M cKinley section o f the Denali fault by digitizing points on the fault and searching 

for a pole position that gives a minimum misfit to the fault trace. An approach we might 

take is to make a grid o f  potential pole positions and calculate the best-fitting rotation 

rate for each pole such that the misfit between our GPS data in the interior o f  Alaska 

and the model velocities due to rotation about the pole is a minimum. Then for each 

polo and rotation rate, we would remove the calculated velocities from the GPS velocities 

and run the model o f  Zweck et al. [2001] to obtain a best-fitting slip distribution on the 

subducting slab. Summing the velocity due to rotation and the velocity due to a variable 

slip distribution would give us a m odel velocity at each site for each pole o f  rotation in the
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Figure 4.21. Map o f  the Kenai Peninsula showing GPS and GPS minus postseismic model 
velocities, all relative to Fairbanks. Gray arrows are G PS velocities, white arrows are GPS 
velocities minus the new postseismic model.
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grid. Next, wo would calculate a misfit between these m odel velocities and the GPS velocities 

to obtain a best-fitting solution for a particular pole and rotation rate. The com putational 

time necessary to perform such a grid-search is unreasonable given the current modeling 

techniques and speed o f  computers. A significant improvement in the model will come from 

additional GPS data. More GPS data at more sites are being collected each year at sites 

on the Kenai Peninsula and on islands trenchward o f the Peninsula. These data will be o f  

immense value in constraining the slip distribution on the subducting slab.

4.8 Conclusions

The region between the Denali and Tintina faults appears to consist o f  elongate X X W - 

trending crustal blocks, bounded by zones o f  seismicity which are assumed to be faults. A 

model o f  simple shear strain accum ulation in this region shows that a small rotation o f the 

blocks o f  0.1 : /m illion  years best fits the GPS data, which implies a slip rate o f  only 0.1 - 0.2 

m m /yr on the seismic zones. Assuming that the low strain rate is indicative o f  strain in this 

region over the last century, then such a small slip rate corresponds to a recurrence time 

o f 3.500 years for a A/v 7 earthquake and so it appears that the 1937 Salcha earthquake 

with ,\fs 7.3 is a very unusual event and not likely to be repeated in the near future. We 

find a higher slip rate on the Denali fault, or distributed on the Denali fault and one or 

more faults within 35 km to the north o f the Denali fault, and conclude that, while present- 

day seismicity continues along the interior seismic zones, slip on the Denali fault is more 

important for accom m odation o f shear in our study region than bookshelf-type rotation o f 

X X  W-t rending elongate crustal blocks.

We construct a m odel for southern Alaska that involves rotation o f southern Alaska 

south o f  the Denali fault about a pole in Prince W illiam  Sound, and we impose elastic 

strain due to a locked Denali fault. We find that the GPS velocities are better fit if we 

introduce a second fault 35 km to the north o f  the Denali fault, and so we believe that the 

shear o f  6-10 m m /yr is likely accom m odated on the Denali fault and one or more faults 

within 35 km to the north o f  the Denali fault, with the m ajor slip o f  about 5 m m /yr 

occurring on the Denali fault.

We use this m odel to predict velocities at sites in southern Alaska and subtract the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

model velocities from the GPS velocities. We assume that the residual velocities are due to 

subduction and postseismic effects. Using these new velocities and following the m ethod o f 

Zweck et al. 12001]. we calculate a new postseismic model which is similar to that com puted 

by Zweck et al. [2001] but better predicts the postseismic effect at sites near the Denali 

fault. We therefore conclude that a model o f  postseismic response is consistent with the 

residual velocities.
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Chapter 5

High interseismic coupling of the 
Alaska subduction zone SW  of 
Kodiak island inferred from GPS 
data1

5.1 Abstract

We use Global Positioning System (G PS) measurements to make the first geodetic study o f  

the Semidi segment o f  the Alaska-Aleutian subduction zone. This segment, which sustained 

an A/u- 8.2 earthquake in 1938. lies between Kodiak Island where the subduction interface 

appears to presently be fully locked, and the Shumagin Islands segment where substantial 

aseismic slip occurs. We invert the GPS station velocity estimates using a nonlinear least 

squares algorithm to solve for the width o f  the locked zone, the dip. and the interseismic 

coupling o f  a model subduction interface. The data are consistent with a shallow plate 

interface dipping --6C. a locking depth o f  ~23 km (corresponding to a locked zone width o f 

up to --170 km), and high interseismic coupling o f  ~80% .

Published as Fletcher. H. J.. .1. Beavan. .1. T. Freymueller and L. Gilbert. Geophys.  Res.  Lett . .  28. 
443—146. 2001. "
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5.2 Introduction

In addition to the temporal variations in stress and deform ation associated with the earth­

quake cycle at subduction zones, along-strike variations in properties (e.g.. coupling, stress 

segmentation) have been the subject o f  much recent study. For example. Prawirodirdjo 

et al. [1997] used geodetic data to show nearly full interseismic coupling in the segment o f 

the Sumatra subduction zone south o f 0 .5 'S  and only half the coupling in the segment to 

the north. Kao and Chen [1991] analyzed earthquake focal mechanisms along the Ryukyu- 

Kyushu arc. and found that intermediate depth earthquakes make an abrupt transition 

from down-dip extension along the northern end o f  the arc. to down-dip compression along 

t in' rest o f  t.lu* arc.

The lateral segmentation o f the Alaska-Aleutian subduction zone has been examined 

by mapping aftershock zones o f great earthquakes [e.g.. Nishenko and McCann. 19S1] and 

distributions o f  asperities e.g.. Chi'istensen and Deck. 1994: Johnson and Satake. 1994], 

Lu and H ' i/.s .s [1996] determined stress directions along the Aleutian arc from earthquake 

fault plane solutions, and found stress segmentation boundaries that appear to correlate 

with fracture zones in the Pacific Plate and may be related to the asperity and aftershock 

distribution o f great earthquakes.

We have obtained surface velocity estimates from repeated GPS observations at a net­

work o f stations in the Semidi region o f  the Alaska subduction zone (Figure 5.1). and we 

use these velocities to invert for subduction interface parameters using dislocation m od­

eling techniques. The stations occupy part o f  the segment that was ruptured by a M\\-

8.2 earthquake in 1938. and which lies between the rupture zone o f the 1964 Great Alaska 

earthquake and the Shumagin segment o f the arc.

The westernmost region o f the 1964 Great Alaskan earthquake is accumulating strain 

in a manner that can be explained by a simple dislocation model o f  a plate interface that 

is fully coupled at —5-25 km depths during the interseismic period [Savage et al.. 1999]. In 

the Shumagin segment, the plate interface is estimated to be about 20% coupled based on 

geodetic data and historical earthquakes [Zheng et al.. 1996]. In the Sanak region further 

southwest, no strain is accumulating, which implies the plate interface is slipping freely at 

the plate convergence rate [Freymneller and Beavan. 1999].
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- 164"  - 162 '  - 160 '  - 158 '  - 156'  - 154 '  - 152 '  - 150'

F igu re  5.1. A map o f  the Alaska Peninsula showing the Semidi GPS stations. Outlined 
areas are aftershocks o f great earthquakes with their dates. The arrow shows the XU VEL- 
1A Pacific-North America relative velocity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89
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Figure 5.2. Velocities o f  Semidi GPS sites relative to North America. 95% confidence error 
ellipses are shown.

5.3 GPS Data

The Semidi GPS network (Figure 5.2) was established in 1993. with observations in 1993 

at all stations except CH IR and HEID. in 1995 at all stations, and in 1997 at CHIR and 

HEID. Stations were occupied for multiple 24-hour sessions.

We use the G IP S Y /O A S IS  II software to obtain daily coordinate and covariance esti­

mates o f  our stations and globally distributed stations [e.g.. Freymueller et al.. 2000]. We 

calculate velocities in the ITRE97 reference frame [Boucher  et al.. 1999] (Table 1) by fitting 

the daily estimates to the ITRF97 coordinates and velocities o f  a global set o f  stations, 

retaining full covariance information. Because stations LA TE and CH IR  are separated by
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1

Station Lat Lon

ITRF97

1 north 1 east

N AM -fixed

I  t r e n c h _  ^  trench ,

AS PE 56.85 -157.37 -18.0±1.S -13.5=2.3 6.5=1.7 -5.9=2.0

!  CHIR 55.83 -155.73 8.3=0.9 -22.4=1.2 32.1 =  1.3 -0.0=1.4

j  CLFF 56.21 -158.30 -17.6=1.9 -16.9=2.3 8 .2=  1.8 -9 .5=2.0

HEID 56.96 -158.61 -19.3=1.4 -6 .2±1.7 2 .2±1 .4 -0 .2±1.5

I  HUEY 56.79 -156.86 -16.3±2.4 -IS .9±3.3 10.3=2.1 -6.7=2.6

SEMI 56.05 -156.69 -4.4= 1.8 -24.5±2.3 22.4=1.8 -8 .6=2.0

i  W IK0 , 56.58 -157.11 -14.S=2.7 -16.3=3.6 10.4=2.4 -6.7=2.6

Tabic 5.1. Site velocities in m m /yr 

Errors are 1<t. \7r, rJ, /»_ is positive to the NNW . \'trmch is positive to the EN’ E.

only 4 km. we assume they do not move relative to each other, calculate a station tie using 

several overlapping days o f  the 1995 data, and thus estimate a velocity for CHIR over a 

4-yetir interval. Separate estimates o f  the velocities o f  CHIR and LATE are consistent with 

our assumption. Finally, we obtain site velocities in a North Am erica-fixed reference frame 

(Table 1. Figure 5.2) by constraining four stations (A LG O . NLIB. PE N T. YELL) within the 

assumed stable interior o f  North America to zero velocity, and station FAIR to the velocity 

(5.0 m m /yr at N125: E) found by Kogan '2000!. L’ ncertainties in horizontal velocities are 

typically 2-5 m m /yr. after scaling so that the reduced \" statistic o f  the velocity solution 

is 1.0.

5.4 Dislocation Model

Strain accum ulation at a subduction boundary can be m odeled using elastic dislocation 

theory. A simple m odel has the main thrust zone locked in the interseismic period while 

below the dow n-dip limit o f  the locked zone (the "locking dep th ") rock deforms steadily 

and the model fault moves at the long-term slip rate. The Earth is represented by a 

uniform elastic half-space, the plate interface is a planar fault, and the strain accumulation 

rate is assumed constant through the interseismic period. The deform ation is modeled by a
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superposition o f  steady slip on the plate interface at the plate convergence rate, with virtual 

normal slip at the plate rate on the locked part o f  the interface [Sai'age. 1983]. This results 

in no slip on the locked part o f the subduction zone and slip at the plate convergence rate 

on the remainder o f  the plate interface.

We use the term "locked zone" to refer to all that part o f  the plate interface between the 

steadily deform ing region at depth and the steadily deform ing region that may be present in 

the shallowest part o f  the interface. Interseismic coupling describes the spatial distribution 

o f slip taking place within the locked zone [e.g.. M azzotti et al.. 2000]. Here, we define 

interseismic coupling ;us the ratio o f the virtual slip rate [Savage et al.. 199S] estimated 

from geodetic data to the trench normal component o f  relative plate velocity given by the 

X U Y EL-1A  model [D cM ct.s et al.. 1994]. This is not the same as seismic coupling, which is 

tht' ratio o f  the rate o f  slip that occurs in earthquakes to the rate o f  relati%’e plate motion 

.e.g.. Pacheco et al.. 1993]. Seismic coupling is thus averaged over decades or centuries, 

while interseismic coupling is generally measured over just a few years (and may change 

during an interseismic period if. for example, viscoelastic effects are important ).

Due to the quantity and spatial distribution o f  our velocity estimates, a simple two­

dimensional model is the best approach. Viscoelastic effects, which tire not accounted for in 

this simple m odel, result in additional deformation especially in the immediate postseismic 

interval. However, the last m ajor earthquake in the region was in 1938. and results from 

simple elastic models provide a good approximation to results from models with more 

realistic rheologies in the main interseismic period [e.g.. Dragcrt et al.. 1994].

We fix the strike o f  our model fault to N’ 60CE based on the observed orientation o f the 

trench, and fix the depth o f  the up-dip end o f the locked zone at the trench to 5 km (from 

bathymetric charts). We model only the component o f  velocity perpendicular to the strike 

o f  the trench, as discussed in section 5.2. We formally invert the velocity data o f Figure 5.2 

using a nonlinear least squares inversion [Dennis et al.. 1981] to solve for the width o f  the 

locked zone, the dip. and the virtual slip rate. The full variance-covariance matrix o f  the 

velocity solution is retained in the inversion.

The inversion finds two minima. One solution is shown in Figure 5.3 and has a shallow 

dip o f 6 ; n  1 '. a locking depth o f  23:r4 km (im plying a width o f  ~170 km) and a virtual 

slip rate o f 47^5 m m /yr. The other solution has a slightly shallower d ip (5c ). larger width
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Figure* 5.3. Elastic dislocation model o f  partial locking o f plate interface. Model derived 
from nonlinear le;ist squares fit to trench-normal com ponent o f  observed velocities. Error 
estimates are ~\rr.

(200 km), and lower virtual slip rate (45 m m /yr). but is not statistically different from the 

first solution.

Our velocities assume that the overriding plate in the Semidi region is moving with the 

stable North American plate defined by sites east o f  the Rockies. If the overriding plate is 

in fact moving at a velocity closer to those o f FAIR and Siberian stations [see Kogan. 2000], 

then the plate normal velocities in Figures 5.2 and 5.3 will increase by several m m /yr. The 

m ajor effect on our model results is to increase the virtual slip rate by several m in /yr. The 

dip and locking depth are not significantly affected. The ~~170 km locked width inferred 

from our m odel may be an overestimate, since the spatial distribution o f  our data provide 

little control on any up-dip limit to the locking.
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5.5 Discussion

5.5.1 Derived Parameters

The Semidi region is in an interseismic period which we assume to he typical and we propose 

that the estimated interseismic coupling is a good  proxy for the seismic coupling in this 

region. The virtual slip rate in our model (Figure 5.3) is slower than the 59 nun/yr trench 

normal com ponent o f plate convergence from N 'U VEL-IA. This suggests —80% interseismic 

coupling, com pared with coupling o f up to 100% to the northeast in the vicinity o f  Kodiak 

Island 'Savage et al.. 1999) and —20% to the southwest in the eastern Shumagins [Zheng 

et al.. 1996]. A coupling o f lower than 100% implies either that some regions o f  the plate 

interface are slipping steadily at less than the plate convergence rate or that discrete patches 

on the interface are fully locked with slipping regions in between. Pacheco et al. [1993] find 

that almost 70% o f the subduction zones they studied have a seismic coupling below 25%. 

We are thus seeing relatively high coupling in the Semidi network.

In their inversion o f geodetic data in the Kodiak region. Savage et al. [1999] use a 

dip o f  5" from results o f the EDGE deep seismic reflection transect, while seismicity in 

the Shumagin segment o f the arc indicates a dip o f  10~-15= for the interplate thrust zone 

Ahers. 1992:. Our dip estimates o f —6; are close to the Savage et al. [1999] values, and 

to the 6 ; estimated from the ALBATROSS seismic reflection transect just south o f Kodiak 

I "onHiiene et al.. 1987’ .

Tichelaar and Ruff 1993] give a maximum depth o f seismic coupling in the Alaska 

subduction zone o f 37-41 km from depth estimates o f interplate events, and Oleskevich 

et al. [1999] suggest a depth o f  40 km for the dow n-dip end o f  the seistnogenic zone for 

southern Alaska (northeast o f  our region o f  interest) from seismic refraction studies and 

geodetic data. These values are deeper than our result o f  —23 km. Freymueller et al. 

_2000] estimate 20-25 km for the locking depth when they invert geodetic data from the 

eastern Kenai Peninsula, and a depth o f 23.4 km from a model o f  the coseismic plane o f 

the 1964 M\\- 9.2 earthquake, based on the aftershock zone and axis o f  maximum coseismic 

subsidence. Savage et al. [1999] find that an independently-determ ined depth o f  18 km to 

the base o f  the locked zone in the Kodiak region is consistent with their geodetic data. 

It is generally agreed that there is a transition zone between any strongly coupled zone
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and the continuous sliding zone below, and that large earthquakes may propagate into the 

transition zone. The effect o f the transition zone on surface displacements is subtle and we 

cannot model it in this case owing to the paucity o f  GPS sites above the dow n-dip end o f 

the locked zone.

5.5.2 Trench-Parallel Velocities

In the Semidi segment o f the arc. the N L 'Y E L-IA  plate convergence direction is towards 

335: . 5: more northerly than trench-normal. Trench-parallel velocities are thus expected to 

be small and to the northeast. However. Figures 5.2 and 5.3 show velocities at sites between 

CH IR and HEID rotated westward from trench normal, indicating that the region between 

these stations is being squeezed out to the southwest. The explanation o f  this intriguing 

observation is unclear, but the deform ation pattern cannot be matched using a conventional 

Savage-type model with virtual strike-slip m otion on the plate interface.

GPS-derived velocities at sites in the western Shumagin region show a similar trench- 

parallel com ponent relative to North Am erica 'Frvynmeller and Bcavan. 1999]. Very long 

baseline interferometry observations also indicate W SW - to SW -directed trench-parallel 

velocities at sites on Kodiak Island and in the Shumagin Islands, indicating that this phe­

nomenon covers a wider region than our network. A/a et al. [1990] attribute this to right- 

lateral shear strain associated with strike slip faults in the overriding plate. This explanation 

is not satisfactory for our observations since we observe both right-lateral and left-lateral 

shear.

5.6 Conclusions

Interseismic coupling varies along strike o f the Alaska-Aleutian subduction zone, from high 

coupling at Kodiak Island in the northeast to low coupling at the Shumagin and Sanak 

Islands in the southwest. For the Semidi region 150 km southwest o f  Kodiak, a nonlinear 

least squares inversion o f geodetically-m easured velocities using full covariance information 

estimates a model o f  strain accumulation with dip o f  the shallow plate interface o f ~ 6 ° . 

locking depth o f —23 km. and relatively high interseismic coupling o f  —80%. It is not 

possible to determine whether there is a sm ooth or abrupt transition in coupling between
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Kodiak and the Shumagin Islands.
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Chapter 6

Implications for the Tectonics of 
Alaska

Using GPS as a tool to measure crustal deformation has made im portant contributions to 

our knowledge o f  the tectonics o f  Alaska. Figure 6.1 is a map o f  all the sites in Alaska which 

have been me.isured by GPS (white dots are sites that were measured for this thesis).

This large number o f  GPS sites helps us to determine how the Pacific-North American 

plate boundary deform ation is distributed ami which structures are important in accom ­

m odating the relative motion o f  the plates. How do the results from the different regions 

studied in this thesis fit together? Clearly the motion o f  the Pacific plate relative to Alaska 

is driving the deform ation discussed in the chapters o f  this thesis, but it is not a simple 

tectonic picture. Figure 6.2 is a map showing all the faults mentioned in the discussion 

below.

Our goal is to construct a quantitative tectonic m odel for the region based on the results 

obtained in the various chapters o f  this thesis. Figure 6.3 shows the tectonic model o f  Lahr 

and Plafker [1980] for present deformation in southern Alaska. We m odify their model 

based on the GPS velocity data and estimate fault slip rates summarized below, from work 

presented in Chapters 2 to 5 o f  this thesis. We present three m odels, which are variations 

on the Lahr and Plafker [ 1980] model. The fundamental difference between our models and 

theirs is that we use measured slip rates rather than assumed rates. All three o f  our models 

involve the Yakutat block. Fairweather block (a m odified version o f  the Lahr and Plafker
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Figure 6.1. Map o f Alaska showing all GPS sites. W hite circles are sites measured for this 
thesis.
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Figure 6.2. Map o f Alaska showing faults relevant to tectonic model in this chapter. Faults 
are from Plafker e t al. il994|. \YD =  Western Denali fault: CD =  Central Denali fault (or the 
M cKinley section o f the Denali fault): ED =  Eastern Denali fault (or the Dalton-Chatham  
strait segment o f  the Denali fault): T  =  Totschunda fault: T F  =  Totschunda-Fairweather 
connecting fault: F =  Fairweather fault: T Z  =  Transition Zone: Q C =  Queen Charlotte 
fault: PZ =  Pam plona Zone: KZ =  Kayak zone: DF =  Denali-Fairweather connecting fault: 
D R  =  Duke River fault: LC =  Lake Clark fault: SE =  St. Elias fault: CM  =  Castle 
Mountain fault: BB =  Bruin Bay fault: AM  =  Aleutian megathrust.
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Figure 6.3. Proposed tectonic model o f  Alaska from Lahr and Plafker [1980]. M odel is for 
present crustal deformation along the Pacific-North American plate boundary in southern 
Alaska. Circled numbers give rates o f m otion (cm /yr) o f  Pacific plate. Yakutat block (Y B ). 
St. Elias block (SE). and Wrangell block (W B ) relative to North America. Numbers next 
to paired vectors give rates o f  motion across the indicated zone.

1980] St. Elias block), and the southern Alaska block (called the Wrangell block by Lahr 

and Plafker [1980]). Figure 6.4 shows these crustal blocks and their sense o f  m otion with 

respect to North America. The western boundary to the Southern Alaska block is the most 

speculative, and the nature and location o f  this boundary are the only differences between 

our three proposed models.

The first piece o f  the puzzle is the inform ation from Chapter 2 about the movement o f 

the Yakutat block. The GPS data tell us that the Yakutat block is not attached to the 

North American plate, nor is it moving at Pacific plate velocity. The velocity o f  Yakutat is 

parallel to the Fairweather fault, and so some other offshore structure must account for the 

difference in the slip rates between the Yakutat velocity and the Pacific plate velocity relative
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to North America. We found that if the Transition Zone is the structure accom m odating 

all the difference between the Pacific plate velocity and the Yakutat block velocity, then 

the fault must be freely slipping at 21+3 m m /yr in a direction N56°E. perpendicular to 

the Fairweather fault (i.e.. a com bination o f  thrust and left-lateral strike slip m otion). 

In all likelihood there are other structures which help to take up some o f this motion 

such as the 250 km long north-south fault in the Pacific plate south o f the Pam plona 

zone (see Figure 2.1). but it is not possible to determine which faults accom m odate the 

Fairweather fault-normal slip from onshore GPS data. GPS data from sites southeast 

o f  Yakutat on the Yakutat block also show Fairweather fault-parallel m otion (C . Larsen, 

personal com m unication. 2001). giving us confidence in our result.

The second piece in the tectonic puzzle comes from the work presented in Chapter 3. 

In this chapter. GPS data were used to study the deformation across the Fairweather fault. 

We found that this fault has a slip rate o f 38.2±3.1 m m /yr which accounts for the m ajority 

o f  the Pacific-North American plate velocity at this part o f  the plate boundary. The slip 

rate on the Denali fault system northeast o f Yakutat (henceforth called the eastern Denali 

fault) estimated from GPS data at sites in the Yakutat area is ~ 10 .7± 2 .4  m m /yr. The sum 

o f these slip rates gives us the rate at which the Yakutat block is moving relative to North 

America, as well as the direction.

Interior Alaska was studied in Chapter 4. and we proposed a tectonic model that involves 

the southern part o f  Alaska, south o f  the Denali fault, rotating anticlockwise about a pole 

off the coast o f  southern Alaska. Interpreting our GPS velocities in terms o f  this model, we 

found that the Denali fault system in the vicinity o f  the Parks highway (henceforth called 

the central section o f  the Denali fault) has a slip rate o f  8-9 mm across it and so is still 

important in present-day tectonics. This is similar to the slip rate estimated from Chapter 

3 for the eastern section o f  the Denali fault system.

How does the slip transfer from  the Fairweather-Queen Charlotte fault to the Denali 

fault? GPS sites across Chatham  Strait indicate no slip on this section o f  the Denali fault in 

this area (C. Larsen, personal com m unication. 2001). Sites to the east and west o f  Chatham 

Strait have velocities that do not move relative to North America. This implies that as far 

north as at least 58CN. the Fairweather-Queen Charlotte fault is the main Pacific-N orth 

Am erica plate boundary and accom m odates all o f  the motion between the plates. Lahr
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Figuro 0.4. M ap o f  crustal blocks proposed in our tectonic model o f southern Alaska. 
Arrows indicate the sense o f  motion o f  the blocks with respect to North America. SO AK  
=  southern Alaska block: YB =  Yakutat block: FB =  Fairweather block.

and Plafker ;19S0j proposed that the Fairweather fault is linked to the Totschunda fault 

by a connecting fault, which would provide a mechanism whereby some o f  the slip on the 

Fairweather fault could be transferred to the Denali fault. Our results show that the eastern 

Denali slip rate is similar to the central Denali fault, and so there must be a link between 

the Fairweather and Denali faults further to the east than the Fairweather-Totschunda fault 

proposed by Lahr and Plafker [1980]. Page et al. [1991] show plots o f  seismicity in this region 

and there appears to be a band o f seismicity that trends from Lituya Bay northwards to 

the Denali fault. We propose that this band o f  seismicity outlines a fault (D F in Figure 6.2) 

that links the Fairweather fault to the Denali fault and thus allows some o f  the slip on the 

Fairweather fault to be transferred to the Denali fault. In reality this boundary is likely to 

be diffuse, with slip occuring on more than one fault.
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6.1 Model 1

Our first model is a small modification to Lahr and Plafker [1980], the main differences being 

that the rates o f  the crustal blocks are based on GPS data and that the block motions are 

described by poles and rotation rates, not by linear velocities. In addition, the Fairweather 

block (FB) that we propose has a different southern boundary than the St. Elias block 

proposed by Lahr and Plafker [1980] and instead has the Denali-Fairweather connecting 

fault as its southeastern boundary. This block is bounded by the eastern Denali fault on 

the northeast, by the Fairweather-Totschunda system on the southwest and by the Denali- 

Fairweather connecting fault on the southeast. The Yakutat block (Y B ) is bounded by the 

Transition Zone, the Fairweather fault, the easternmost part o f  the St. Elias fault system, 

and the Pamplona zone (P Z ). To the north o f  the Pam plona zone, the Kayak zone, most 

o f  the Chugaeh-St. Elias fault system, and a variety o f  other structures accom m odate a 

com bination o f  thrust and strike-slip motion. Thus, this boundary is fairly diffuse, but 

for tin* purpose o f this simple model we choose the Pam plona zone as the main boundary. 

The slip assigned here to the Pamplona zone should be assumed to be distributed over the 

entire St. Elias orogen. SO AK  is bounded by the central Denali fault. Totschunda fault, and 

Totschunda-Fairweather connecting fault (T F ) on the northeast and by the Pamplona zone 

(PZ) and the Aleutian megathrust to the south. The western boundary o f  the southern 

Alaska block is not clear, but we discuss two possibilities. In M odel la. the boundary 

is the same as that presented by Lahr and Plafker [1980]. Those authors admit that this 

boundary is purely hypot het ical as it cuts across a variety o f  young features, but we evaluate 

the boundary using our results. In M odel lb  the boundary is similar, but does not go around 

Kodiak Island (Figure 6.3).

We calculate poles and rotation rates for all o f  the crustal blocks in our model using 

the fault slip rates estimated front GPS velocities presented in the previous chapters. Using 

these poles and rotation rates we estimate slip rates across the boundaries where we have no 

GPS information and and com pare these estimates with seismic and geologic observations 

to see if the estimates are reasonable. In all o f  our models, the Pacific plate moves relative 

to the North American plate with a rotation rate o f  0.78 c/m illion  years about a pole in 

eastern Canada located at 5 0 .5 'N. 75.8° W  [D eM ets and Dixon. 1999]. The wide vectors in
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Figure 6.4 show Pacific-North American relative plate motion, which varies in magnitude 

from about 50 m m /yr to 59 m m /yr across the region shown in the figure. The Yakutat block 

is not moving parallel to the Pacific plate, but instead moves parallel to the Fairweather 

fault. The Fairweather fault is a considered straight for all o f  its relatively short trace. This 

implies the pole o f  rotation o f  the Yakutat block is far from the fault, and we assume it is 

~ 9 0 c from the fault (as opposed to say. 75°) located at approxim ately 16°S. 161°E. some 

10.000 km away somewhere in the Pacific ocean. The velocity o f the Yakutat block relative 

to North America along the Fairweather fault is taken to be 48.9±4.3 m m /yr (the sum o f 

the Fairweather and Denali fault slip rates estimated in Chapter 3). This gives a rough 

estimate o f  0.44 : /m illion  years for the angular %’elocity o f  the Yakutat block relative to 

North America.

Stout and Chase [1980] determined a pole o f  rotation for the eastern Denali fault at 

5 0 .4 'N. 154.0C\V. In our model, the Fairweather block moves relative to North America 

about this pole. Given an eastern Denali fault slip rate o f  10.7±2.4 m m /yr (Chapter 3). 

then the angular rotation rate about the pole is ~0.41 : /m illion  years. The angular rotation 

rate o f  SOAK is ~1.25 /m illion  years about a pole located at 59.6 'N . 147 .4 '\V (Chapter 

4). Note that the rotation rates for the blocks depend on the assumed poles.

Having defined Euler poles and angular rotation rates for our proposed crustal blocks, 

the next step is to determine slip rates across the boundaries between the blocks. Figure 6.5 

shows the calculated rates. In the Pamplona zone region, the velocity o f  SO A K  is 6 m m /yr 

at N5; E relative to North America and the velocity o f the Yakutat block is 48 m m /yr at 

N37'\V. Thus the convergence across the Pamplona zone is 43 m m /yr towards N43CW. 

Slip on the Totschunda fault is due to the motion o f  SO AK  relative to the Fairweather 

block. Based on the pole and rotation rate o f  SO AK , the velocity o f SO AK  in the vicinity 

o f  the Totschunda fault is calculated to be 9 m m /yr parallel to the fault. The Fairweather 

block velocity here is 10 m m /yr oriented N 55°W . thus the motion o f SO AK  relative to 

the Fairweather block across the Totschunda fault is 4 mrn/vr oriented N67°E (i.e.. mostly 

com pression).

SO A K  has a velocity o f  9 m m /yr relative to North America along the proposed Totschunda- 

Fairweather connecting fault in a direction N10CW . and the Fairweather block has a velocity 

o f  10 m m /yr in a direction N45=W . Thus the slip rate on the Totschunda-Fairweather fault
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(oriented approximately N30CW ) predicted by this model is 2 m m /yr o f  right-lateral strike 

slip m otion and about 5 m m /yr o f  convergence. This proposed fault extends across the St. 

Elias mountains and. while it is not m apped as a single fault, it is likely that this region 

experiences some convergence.

The Fairweather block luus a velocity o f  10 m m /yr relative to North America along the 

proposed Denali-Totschunda connecting fault in a direction N 32°W . The zone o f seismicity 

shown in Page et al. [1991] is diffuse, but in general trends N-S. The 10 m m /yr Fairweather 

block velocity could therefore be partitioned as 8 m m /yr right-lateral slip and 5 m m /yr ex­

tension across the proposed connecting fault. D oser and Lomas [2000] observe no extension 

in this region from their studies o f  seismicity, and we believe that such m otion is unlikely in 

this com pressional regime. If the connecting fault had a more northwest orientation then 

the amount o f  extension across it would be reduced. We also note that the pole o f  the 

Fairweather block luus a large uncertainty [Stout and Chase. 1980]. and that if the pole were 

closer to the Denali fault then the extensional com ponent o f  motion across the Fairweather- 

Denali connecting fault would also be reduced, but in either case some extension is required 

by the model.

Is it necessary to have a Fairweather block? If we assume that the region between 

the Fairweather and Denali faults is not a separate Fairweather block but instead part 

o f  SO AK , what would the slip rates be across the Denali and Fairweather faults? We 

calculate the velocity o f SOAK relative to North America along the eastern Denali fault 

and the velocity o f  SOAK relative to the Yakutat block along the Fairweather fault and see 

how these velocities compare with the G PS results. The velocity o f  SO AK  relative to North 

America in the vicinity o f  the eastern Denali fault is is 12 m m /yr oriented northwards. The 

Denali fault is oriented N34CW  in this region and this velocity could be partitioned into 10 

m m /yr o f  right-lateral slip on the fault and 7 m m /yr o f  convergence across the fault. In 

Chapter 3 we find that the eastern Denali fault has a slip rate o f  11 m m /yr. which agrees 

with that predicted from the rotation o f  SO AK . 7 m m /yr o f  convergence across the Denali 

fault, is not evident from seismicity data [D oser and Lomas. 2000]. although the Duke River 

fault may have accom m odated convergence in Late Cretaceous and early Tertiary time 

[Muller. 1967]. The velocity o f  SOAK relative to the Yakutat block in the vicinity o f  the 

Fairweather fault is 41 m m /yr oriented N44° W . This is equivalent to 40 m m /yr right-lateral
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slip on the Fairweather fault and 7 m m /yr extension. Such extension is highly unlikely in 

this compressive region.

We therefore believe it is necessary to involve a Fairweather block in our model. However, 

the pole location (and therefore rotation rate) o f  this block are somewhat unreliable. The 

boundaries o f  this block are also unclear. The southern boundary, the proposed Denali- 

Fairweather connecting fault is based upon a band o f  diffuse seismicity and we believe the 

slip across this boundary is not accom m odated on one fault but a variety o f structures. The 

northern boundary is proposed to be the Totschunda fault on the northwest and the Denali 

fault on the northeast. However, the Duke River fault connects the southern Totschunda to 

the Denali fault further east (Figure (j.2) and it is possible that this fault could accom m odate 

some slip. If the Duke River were the northern boundary o f  the Fairweather block, then 

slip on the Totschunda fault would be due to the rotation o f  SO AK  relative to North 

America and the right-lateral slip rate would be 9 m m /yr parallel to the fault. Holocene 

displacements across the Totschunda fault do show right-lateral slip [e.g.. Page et al.. 1991]. 

and so it is possible that this fault has a right-lateral com ponent o f  slip. In reality, the 

northern boundary to the Fairweather block probably consists o f the Totschunda. Denali. 

Duke River, and even other faults.

Now we com e to the western boundary o f  SOAK. Lahr and Plafker [1980] speculate 

that the boundary o f  their Wrangell block diverge's southward from the Denali fault, passes 

through Cook Inlet., around Kodiak Island, and back to the Aleutian megathrust southwest 

o f  Kodiak Island (Figure G.3). We use this as our boundary in M odel la. and for Model 

lb  we m odify the boundary so that it does not go around Kodiak Island. The path o f this 

western boundary is speculative. There are no mapped faults that follow the boundary 

from the Denali fault to the Aleutian trench. However, we do not have any GPS data 

to the west o f  this proposed boundary and so we start by assuming that their proposed 

boundary is the western boundary o f  SOAK. We use our pole and rotation rate to calculate 

the relative motion across the boundary, assuming that west o f  the boundary is the North 

American plate. Note that M ackey  et al. [1997] propose a Bering block that rotates about 

a pole in northern Chukotka and in their model western Alaska is moving westwards with 

respect to North America. This will be addressed in M odel 3. At the northern end o f  the 

western SO A K  boundary, the rotation o f  S O A K  would produce convergence at ~ 9  m m /yr.
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The velocity o f  SOAK relative to North America is greatest at its northern boundary and 

becomes progressively smaller nearer the pole o f  rotation.

SO AK  moves at about 6 m m /yr in a direction S50C\V in the vicinity o f  the Castle 

Mountain fault. This fault trends approxim ately N60CE and so the slip could be partitioned 

as almost 6 m m /yr o f  right-lateral slip, with 1 m m /yr extension. Across upper Cook Inlet, 

just to the south o f the Castle Mountain fault, the velocity o f  SOAK would be about 

5 m m /yr in a direction S35; \Y. Given that C ook Inlet trends approxim ately N30°E. the 

right-lateral com ponent o f  m otion along Cook Inlet would be 5 m m /yr with a convergence 

o f less than 1 m m /yr. In M odel la. the proposed boundary northwest o f  Kodiak Island 

would be a normal fault, with a slip rate o f  9 m m /yr towards S152°E. and the section o f the 

boundary connecting to the Aleutian trench would be a right-lateral strike slip fault with 

slip rate 12 m m /yr in a direction X48; \V. Model lb  is identical to M odel la  except that 

the boundary joins southern C ook Inlet to the Aleutian trench northwest o f  Kodiak Island, 

so this model does not require a normal fault along the northwest coast o f  Kodiak Island 

and the slip rate on the fault join ing southern C ook Inlet to the Aleutian trench would have 

a slip rate o f 5 m m /yr. Figure 6.5 shows the sense o f motion o f  the faults bounding the 

proposed blocks for Models la  and lb .

Are these slip rate's plausible'? There are a few mappeei thrust faults that eliverge 

from the Denali fault to the south in the vicinity o f  the proposed western boundary (see 

Figure 4.1). and while there is limited evidence for young activity (probably due to difficult 

access and consequent lack o f  study). it is possible that the 9 m m /yr o f convergence in 

this region predicted by the m odel could be partitioned on a variety o f  thrust faults in this 

area. Page et al. [1991] show a diffuse zone o f seismicity that connects the Denali fault to 

northern C ook Inlet, and state that this band o f seismicity may mark a deformational zone 

accom m odating northwest-southeast compression between the crust south o f  the Denali 

fault and the interior o f  Alaska. Earthquakes as large as the 1943 M s  7.4 event (located 

at 6 1 .9 0 'N. 150.84' W ) may originate in this band. Analysis o f  seismic waveforms and 

first motions o f  the 1943 earthquake and com posite fault-plane solutions for a few shallow 

microearthquakes in 1980 (W oodw ard-C lyde Consultants. 1980. 1982) suggest that reverse 

faulting with west to northwest oriented compressional axes may characterize this seismic 

belt. Given our lack o f other inform ation about this region, we propose that this boundary
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Figure 6.5. Slip rates o f  boundaries o f proposed crustal blocks in M odels la  and lb . The 
arrows show the sense o f  motion across the boundaries between the crustal blocks proposed 
in the two models. The faults are identified on Figure 6.2. The numbers are slip rates 
in m m /yr across the boundaries. The the dotted line that goes around the northwest o f 
Kodiak Island before rejoining the Aleutian trench is Model la  and the dashed line between 
lower Cook Inlet and the Aleutian trench is the boundary for M odel lb .
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consists o f  a network o f faults that runs from the Denali fault to the north end o f Cook 

Inlet following the path suggested by Lahr and Plafker [1980].

The Castle Mountain fault, which passes 40 km north o f Anchorage, also exhibits ge­

ologic evidence o f  Holocene offset. [Detterm an  et al.. 1974] and seismic evidence o f current 

activity [Lahr et al.. 1980]. Thus the 6 m m /y r  right-lateral slip that our m odel predicts on 

the Castle Mountain fault could be possible. In our model, the eastern Castle Mountain 

fault is not assigned a significant slip rate, while the western part (west o f  northern Cook 

Inlet) accom m odates some o f the SO A K  rotation by right-lateral slip. Note that this model 

does not yet attempt to deal with faults that have small slip rates. An Mb 5.6 earthquake 

in 1984 is ;issociated with right-lateral rupture o f  the eastern part o f  the Castle Mountain 

fault [Lahr et al.. 1986], so perhaps the zone o f  deform ation trending southwards from the 

Denali fault joins the Castle Mountain fault further eastward than suggested by our model, 

and it is highly likely that SOAK is subject to internal deformation.

Diffuse shallow seismicity occurs in northern C ook Inlet. Some buried folds in the upper 

Cook Inlet area are cored with blind reverse faults, indicating convergence across C ook Inlet 

Haeussier et al.. 2000]. Our model predicts up to 5 m m /yr o f right-lateral strike slip motion 

across upper Cook Inlet and 1 m m / yr o f  convergence. M oving southwards down Cook Inlet, 

the velocity o f SOAK relative to North Am erica remains about the same magnitude (about 

4 m m /yr in m id-Cook Inlet) but changes orientation. The velocity o f SOAK in lower C ook 

Inlet is oriented almost due south and it is possible that this may be accom m odated by 

right-lateral transform faulting on north-south oriented faults in the southern inlet.

Sites on the Kenai Peninsula show a southwest com ponent o f  motion, part o f  which we 

believe is due to the rotation o f  SO A K  (Figure 4.12 and Chapter 4). South o f the pole 

o f  rotation, the velocity o f  SO AK  is directed to the southeast. This implies either right- 

lateral slip on a fault that joins lower C ook Inlet to the Aleutian trench between Kodiak 

Island and the Kenai Peninsula (M odel lb . Figure 6.3). or normal faulting on a structure 

northwest o f  Kodiak Island that connects to the trench by a right-lateral fault (M odel la . 

Figure 6.4). There is an absence o f m apped structures oriented perpendicular to the trench 

both  southwest o f the Kenai Peninsula (as would be needed in Model lb ) and southwest 

o f  Kodiak Island (as called for in M odel la ). The SO A K  velocity would be lower in the 

southern Kenai Peninsula region as it is closer to the pole. The velocity along a fault joining
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lower C ook Inlet to the trench would he 5 inm /vr in M odel lb . com pared to 12 m m /yr for 

a trench-normal fault southwest o f  Kodiak Island in Model la . M odel la  also requires a 

normal fault north o f Kodiak Island with a large. 9 m m /yr. opening rate. There is no 

seismic evidence for large extension in the Alaska Earthquake Information Center (AEIC) 

catalog, nor is any geologic evidence for such extension available. The southwest boundary 

in M odel lb  is therefore the preferred SOAK boundary, though we note that this part o f 

the model is the least reliable. GPS velocities do in fact show a right-lateral sense o f  motion 

between sites in the southern Kenai Peninsula and sites on northern K odiak Island [Zweck 

et al.. 2001]. However, the GPS velocit ies are a com bination o f  SO AK  velocity and the much 

larger subduction signal and the apparent right-lateral motion is attributed to variable slip 

on the subducting interface due to ongoing postseismic response to the 1964 Great Alaskan 

earthquake as discussed in Chapter 4. based on work o f Zweck et al. [2001].

No matter what structure accom m odates the SO AK  velocity south o f  the pole o f  rota­

tion. it is clear that this southeastward SO AK  velocity would contribute a small amount to 

the convergence rate across the trench. In Chapter 5. the region o f  study is the Semidi seg­

ment o f  rlit' Alaska subduction zone, between the fully-coupled segment to the northeast and 

the slipping Shumagin segment to the southwest. We find that this region, which sustained 

a magnitude 8.2 earthquake in 1938. is highly coupled and accumulating strain, but we also 

find an unexplained trench-parallel com ponent in many o f the site velocities. Figure 5.2 

shows that all o f  the sites between CH IR (nearest to the trench) and HEID (furthest from 

the trench) exhibit southwestward motion that cannot be explained by the simple strain 

accum ulation model proposed in Chapter 5. Perhaps the additional compression between 

the southern Kenai Peninsula and the trench due to the rotation o f SO A K  helps to cause 

material to be extruded to the southwest. M apped faults o f  the Kodiak Shelf fault zone 

south o f  Kodiak Island parallel the trench. These faults are seaward o f  Kodiak Island to the 

southeast [Plafker et al.. 1994] and perhaps this fault zone supports left-lateral slip. This 

hypothesis also requires a right-lateral strike slip fault between the northwest and south­

east coasts o f  the Alaska Peninsula. Faults and folds along the axis o f  the peninsula could 

potentially have young activity (W . Wallace, personal com m unication). The features are 

mainly compressional. but they could accom m odate a strike-slip com ponent. Sites in the 

western Shumagin region show a similar trench-parallel motion relative to North America
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r Freymueller and Bear an, 1999], and so it, appears that the southwestward com ponent o f 

m otion continues for some distance.

6.2 Model 2

Model 1 does not explain the southwestward motion o f GPS sites in the Semidi region 

presented in Chapter 5. In M odels 2 and 3 we present possible scenarios to explain this 

motion. In Model 1 we assumed that there is no slip on the western Denali fault. Very 

little is known about the Denali fault system  in western Alaska. Plafker et al. [1977] find 

no evidence that the Denali fault to the west o f  this region has been active in the Holocene. 

although the Plafker cl al. [1994] neotectonic map shows one segment with Holocene activity 

and several sections ;us "suspicious". The main problem with geological estimates o f  activity 

on the western Denali fault is lack o f study and a paucity o f  young features necessary to 

observe offset features. It is likely that this boundary is diffuse, with slip occuring on more 

than one fault. There are numerous faults both south and north o f  the western Denali fault 

that could accom m odate young motion (\V. Wallace, personal com m unication). Model 2 

tissumes that there is a small amount o f  slip on the fault and we look at the consequences 

o f this. If we define the same boundary for SO AK  as in Model lb . then the region south o f 

the Denali fault and to the west o f  SO A K  would be a separate crustal block moving relative 

to North America. W ry little is known about this region o f  western Alaska, and we have no 

idea where the western and southern boundaries o f a western Alaska crustal block might be. 

We can estimate a pole for this block from  the trace o f  the western Denali fault. The fault 

is fairly straight in this region and so the pole is far away from the block, we can therefore 

make the approximation that all points on the block move to the southwest parallel to the 

strike o f  the Denali fault at velocities similar to the slip rate on the western Denali fault.

If the Alaska Peninsula is part o f  the western Alaska block, then the slip rate on the 

western Denali fault would be limited by the trench-parallel velocity o f  the sites in the 

Semidi profile. The average trench-parallel motion o f  these sites (including HEID) is 5 

m m /yr to the southwest. Given the assum ption that these sites are on the western Alaska 

block and that the Euler pole is far away from  the western Alaska block, then the slip rate o f 

the western Denali fault would also be 5 m m /y r  (the western Denali fault is approxim ately
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parallel to the trench in the Semidi region). This would require opening between the Kenai 

Peninsula and Kodiak Island at a rate o f 5 inm /vr and right-lateral slip at 5 m m /yr (7 

m m /yr total slip rate). Little inform ation is available regarding structures in this area, but 

there is no obvious indication o f such deformation in the seism icity data from the Alaska 

Earthquake Information Center (A E IC ) database. The deform ation across C ook Inlet would 

be reduced to a 1 m m /yr extension rate.

If the Alaska Peninsula is not part o f the western Alaska block, then there must be 

a southern boundary to the western Alaska block that lies to the north o f the Alaska 

Peninsula. This would allow the Denali fault to have a slip rate that is independent o f the 

Alaska Peninsula velocity because the difference in motion betwt'en the western Alaska block 

and the Alaska Peninsula could be accom m odated along the boundary between the blocks. 

In Model 2 wo choose the Lake Clark fault (the westward extension o f  the Castle Mountain 

fault), as the southern boundary o f  the western Alaska block. We have no information 

to draw on in order to estimate the slip rate on either the western Denali fault or the 

Lake Clark fault. Seismicity is low and there is no evidence o f  Holoeene offset on the 

faults (although, as stared previously, this is perhaps due to the paucity o f  young features 

necessary to docum ent displacements). The slip nite on the boundary between the western 

Alaska block and Alaska Peninsula block depends on the m otion o f  both o f these blocks. 

We start by assuming that the western Denali fault slip rate is low. say 2 m m /yr. and that 

the Alaska Peninsula block moves at 5 m m /yr to the southwest relative to North America 

(from the Semidi GPS data). Figure 6.6 shows the relative m otions across the boundaries 

between SO A K , the western Alaska block, and the Alaska Peninsula block for this model.

For a Denali fault slip rate o f  2 m m /yr. the convergence necessary across the deformation 

zone betwet'n the Denali fault and Cook Inlet would be reduced to a maximum o f  7 m m /yr 

in the north. The slip on the Lake Chirk fault would be right-lateral at a rate o f  3 m m /yr. 

A higher Denali fault slip rate would reduce the convergence across this deformation zone 

and lower the slip rate on the Lake Clark fault. For a western Denali fault slip rate higher 

than about 6 m m /yr. there would be extension across the southern part o f  the deformation 

zone and the Lake Clark fault would need to accom m odate left-lateral motion.
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Figure 6.6. Slip rates associated with boundary between SO AK . W AB. and APB. The 
arrows show the sense o f  motion across the boundaries between SO AK , the western Alaska 
crustal block (W A B ). and the Alaska Peninsula block (A P B ) proposed in Model 2. The 
numbers are slip rates in m m /yr relative to North America.
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6.3 Model 3

M odel 1 assumed that western Alaska is stable with respect to North America, and M odel 

2 assumed that a small amount o f slip occurs on the western Denali fault. The seismicity in 

western Alaska is apparently low. but this could be due in part to the low seismic station 

density. We have no GPS data or quantitative fault slip rates from this region to provide 

further information. M arkey  et al. [1997] proposed the existence o f  a Bering block that 

rotates clockwise about a pole in northern Chukotka (Figure 6.7). They based their model 

on observed seismicity and focal mechanisms. The eastern boundary o f their proposed 

Bering block follows the western boundary o f  the Wrangell block as proposed by Lahr and 

Plafker ’ 1980], thus western Alaska is moving westward with respect to North America.

Markvy et al. [1997: give no rate o f rotation for the Bering block in their model, but it 

is believed to be low. Given a pole in northern Chukotka, the velocity o f the Bering block 

relative to North America should be highest along the Aleutian Arc. In general terms, 

a rotating Boring block would reduce the convergence necessary across the deform ation 

/on e  that trends south from the Denali fault to Cook Inlet in our model and would add 

a com ponent o f  extension across the boundary that connects southern C ook Inlet to the 

Aleutian trench. The sense o f rotation o f the Bering block predicts a southwestward trench- 

parallel com ponent o f velocity at sites along the eastern Aleutian arc. consistent with that 

observed in the data presented in Chapter 4. We take the location o f the Bering block 

pole to be about 68 'N . 176; E from Figure 3 in M ackey et al. [1997]. The average trench- 

parallel velocity o f the sites in the Semidi region (including HEID) is 5 m m /yr. which gives 

a rotation rate o f  I). 16: /m illion  years (again, this rate depends on the exact location o f  the 

p o le ).

Given tins pole and rotation, we can now calculate the slip rate across the Bering block- 

SO AK  boundary. The calculated slip rates and directions are shown in Figure 6.7. A long 

the Kaltag fault, this model predicts 3 m m /yr o f  northeast directed slip, which could be 

partitioned as 2 m m /yr right-lateral slip on the Kaltag fault and lm in /y r  extension across 

it. The Kaltag fault has 140 km o f right-lateral displacement across it since the Late 

Cretaceous [Patton and Hoare. 1968]. is currently seismically active [Estabrook et al.. 1988] 

and has visibly offset stream beds. The magnitude and direction o f  model slip on the Kaltag
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fault thus seems to be not unreasonable. Between the T in tinaand  Denali faults (e.g.. across 

the seismic zones o f  interior Alaska), the model predicts 5 m m /y r  left-lateral slip, oriented 

.\283E. which is close to the N33°E oriented seismic zones (Chapter 4). The sense o f  m otion 

is the same its that found in Chapter 4 for slip on the seismic zones, but the magnitude 

o f the slip rate predicted bv this model is much larger than the total rate o f  slip on the 

seismic zones estimated in Chapter 4 from GPS data. Between the Denali fault and upper 

C ook Inlet, this m odel predicts 3 m m /yr right-lateral slip on the deform ation zone, which 

is certainly possible. Finally, this model predicts 7 m m /yr extension at N 80°W  along the 

boundary joining lower C ook Inlet to the trench.

6.4 Summary

W hilst none o f  the three models discussed above provide a fully satisfactory explanation for 

western Alaska tectonics, the models provide a first step towards a coherent framework for 

understanding the tectonics o f a large part o f Alaska. W ith no GPS data, low seismicity 

and little geological information on western Alaska, it is hard to put constraints on this 

region o f the model. The three models proposed are certainly simplifications o f reality, but 

armed with these quantititative models we have a starting point for further investigations. 

Reality probably includes some aspects o f  each o f  the three models.

The main problems with the models are summarized below. M odel la requires 9 m m /yr 

o f  extension on a fault along the northwest side o f  Kodiak Island, and 12 m m /yr o f  right- 

lateral slip on the section o f the boundary that joins the Aleutian trench, both o f  which 

are hard to explain given current geologic and seismic observations. M odel lb  requires 

5 m m /yr along a boundary joining southern Cook Inlet to the trench, and again there 

is no obvious indication o f such motion. M odel 2 requires 5 m m /yr extension along the 

boundary joining lower Cook Inlet to the trench, and model 3 requires 7 m m /y r extension 

along this boundary. It is likely that SO AK  is not a rigid block as proposed in the models, 

bur deforms internally by slip on faults that are not addressed in our models. This might 

help to eliminate some o f  the problems with the western boundary o f  SOAK.

T he slip rates we calculated for the Denali and Fairweather faults provide good  con­

straints to the models and the slip rates estimated for the remaining boundaries can be
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Fi^un* 0.7. Slip rates associated with boundary between SO A K  and the Bering block. The 
arrows show the sense o f motion across the boundaries between SO A K  and the Bering block 
crustal block (W AB) proposed in Model 3. The numbers are slip rates in m m /yr relative 
to North America.
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tested by further GPS studies. The questions we need to answer are: 1) Is there any slip on 

the Fairweather-Denali connecting fault? If so. how much? This measurement, plus a reli­

able estimate o f  slip rate on the western Denali fault would greatly help our understanding 

o f southern Alaska tectonics. 2) Is there any motion across the proposed boundary between 

the Denali fault and northern C ook Inlet, and if so is it convergence as predicted by Model

2. or is it right-lateral slip as predicted by M odels 1 and 3? 3) Is there any slip on the 

Castle Mountain and Lake Clark faults? 4) What is the slip rate across C ook Inlet? Is 

there convergence, as predicted by M odel 2. right-lateral slip as predicted by Models 1 and

3. or some other m otion? 5) Is there any slip across the proposed boundary between lower 

Cook Inlet and the Aleutian trench? M odels I and 2 predict right-lateral slip and M odel 3 

predicts extension. 6) Is there any slip on the western Denali fault, and if so what is the 

slip rate*? An estimate o f  slip rate would help to constrain our estimates o f  slip on the Lake 

Clark fault in M odel 2. 7) Does the Bering block exist? We observe trench-parallel slip at 

sites in the Semidi region. Model 3 partially explains this observation by proposing that 

these sites lie on the Bering block.

As with all tectonic studies, the work is never truly com pleted. Data from more sites 

will help to determine more accurately the spatial distribution o f crustal deform ation in 

Akiska. and data over longer time periods will be invaluable in studying the deformation 

associated with an entire earthquake cycle.

This thesis has presented the results o f  a direct study o f  surface deform ation in a variety 

o f places in Alaska using GPS observations. The measured surface velocities were used to 

estimate slip rates and locking depths on the Denali fault. Fairweather fault and the Semidi 

segment o f  the Aleutian subduction zone. The velocity field was also used to constrain the 

Yakutat block motion and the proposed southern Alaska block m otion. To tie together all 

the observations reported in this thesis, three quantitative tectonic models were presented in 

this chapter. In reality, some com bination o f all three models is likely. The work presented 

in this thesis has made important steps forwards in our understanding o f  the tectonic 

framework o f Alaska.
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How GPS works

GPS is funded by and controlled by the U. S. Department o f  Defense (D O D ). W hile there 

are many millions o f civil users o f  GPS world-wide, the system was designed for and is 

operated by the I '. S. military. The Space Segment o f  the system consists o f  the GPS 

satellites which send radio signals from space. The nominal GPS constellation consists o f 

24 satellites at an altitude o f  20.000 km that orbit the earth in 12 hours. There are often 

more than 24 operational satellites as new ones are launched to replace older satellites. The 

orbit altitude is such that the satellites repeat the same track and configuration over any 

point approxim ately each 24 hours (4 minutes earlier each day). There are six orbital planes 

(with nominally four SVs in each), equally spaced (60 degrees apart), and inclined at about 

fifty-five degrees with respect, to the equatorial plane. This constellation provides the user 

with up to twelve SVs visible from any point on the earth.

GPS satellites transmit two carrier frequencies. LI at 1.57542 GHz and L2 at 1.22760 

GHz (with wavelengths o f  19cin and 24.4 cm. respectively). Each carrier is modulated by 

lower frequency signals. Each carrier is m odulated by the Precise (P ) code and in addition 

carrier LI is m odulated by a lower frequency Coarse Acquisition (C /A )  code. A receiver 

with knowledge o f the code structure and an internal clock can recover an estimate o f signal 

transit time by eogenerating the code sequence and performing a cross-correlation between 

the received signal and its internal code, determining the time delay necessary to match the 

two sequences. The receivers used for the work in this thesis can recover the phase o f  the 

carrier as a by-product o f  the correlation process, with knowledge o f  the signal transit time
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(difference between transmit time. t.s and receive time. tr ). the range, p between satellite 

and receiver is simply c (tr - ts ). where c is the speed o f  light. However, the satellite and 

receiver clocks are not perfectly synchronized and so the pseudorange (so called because o f 

the satellite and clock errors in the range estimate), is more accurately defined as:

where A t r is the receiver clock offset from true GPS system time. A ts is the satellite 

clock offset, and A /p is the delay associated with all other error sources.

A higher precision GPS measurement is achieved using the carrier phase information 

on LI and L2 ami it is this observable that allows us to obtain GPS measurements at the 

precision needed to observe crustal deformation. Once the receiver has begun to track a 

satellite, it precisely measures the fractional part o f the phase, after which it continually 

tracks the phase. Assuming perfect clocks and ignoring propagation effects.

where n is the number o f  integer carrier wavelengths at signal acquisition (initially un­

known). o  is the phase in cycles. A is the wavelength, f is the frequency and v0 is the phase 

velocity. Since the wavelength o f  the carrier is considerably shorter than that o f  the lower 

frequency code m odulations, the resulting length measurement, though ambiguous by the 

initial number o f  wavelengths, is considerably more precise than a pseudorange measure­

ment. Determining the correct initial integer number o f  wavelengths is called ambiguity 

resolution and several techniques are available. In general, bv observing several satellites 

over long periods o f  time (a few hours) and by knowing the approximate position of the 

GPS antenna (often through use o f  the P code), it is possible to estimate the range bias to 

better than half a carrier wavelength and then fix the bias to the nearest integer value.

Sources o f  error in GPS positioning include clock errors, the atmosphere, including 

the frequency-dispersive ionosphere and the nondispersive troposphere, tropopause. and 

mesosphere, all o f  which affect signal velocity and thus our estimate o f  satellite-receiver 

distance, uncertainties in the satellite position at the time o f  signal transmission, and. as

R =  p -r c (A ir — A ts +  A tp) (A .l)

(A .2)
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discussed above) carrier phase cycle ambiguities. For a single satellite-receiver pair, the 

phase can be defined as:

p
o  va/'( — —  t r - r  t.tr0p)  T  Oion  ( A . 3 )

c

where ^  is frequency, t s and tr . the satellite and clock errors, and t.trop. the sum o f 

the delays due to the troposphere, tropopause. and mesosphere, are non-dispersive. The 

ionospheric delay. Oum. is frequency-dispersive and with dual frequency receivers, this iono­

spheric term can be eliminated.

Relative positioning involves simultaneous observation o f a group o f satellites by a net­

work o f  receivers and this enables many o f the aforementioned errors to be reduced or 

eliminated, resulting in the few millimeter-level precision required for the work in this the­

sis.

By simultaneously tracking a single satellite with two receivers, one can form a "single 

difference". This linear com bination o f  observables is sim ply the difference between the 

phase observable at stations 1 and 2. 0 \ and o-j. which yields:

A o  =  0 \  ~  <>’  — u,' ------ -r A ffr o p  -b A f r j ( A . 4)

The satellite clock error is removed. Bv tracking two satellites with two receivers the

di mble difference observable is formed:

Ao(snfl) — Ao(saf2) =
(A p (sn fl) — A p (sa t2 )

+  A f , rop(.safl)  -  A t t r o p ( * a t 2 ) (A .5)

which eliminates the receiver clock errors. The software used to process the GPS data 

used in this thesis does not perform this differencing technique but instead estimates the 

receiver and clock errors as part o f  the solution.

The nondispersive atmospheric delay is m odeled in order to remove or greatly reduce 

the effect. Roughly three-quarters o f  the delay and most o f  the variability is associated 

with the troposphere. All com ponents o f  the atm osphere contribute to the delay, but it is 

convenient to separately consider the "dry " delay, associated with molecular constituents
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o f  the atmosphere in hydrostatic equilibrium, and the "w et" delay, associated with water 

vapor not in hydrostatic equilibrium. The dry delay is typically about 2 m equivalent path 

length (delay time multiplied by the speed o f  light) at zenith at altitudes near sea level, 

while the zenith wet delay is an order o f  magnitude lower. The delay at other elevation 

angles is larger and so an elevation dependence must be included in any model.

The orbital error is now the largest, remaining error to be reduced. For millimeter-level 

accuracy on baselines longer than 100 kin. meter-level precision in satellite orbit estimates 

is required. Tracking stations (stations for which we have an accurate position) define 

an Earth-fixed reference frame. These stations simultaneously track many satellites and 

instead o f  solving for the receiver position we solve for satellite position relative to the 

known position o f  the tracking sites. Once the satellite positions are known, it is possible 

to determine the positions o f  the GPS sites that do not form part o f the tracking network.
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Fieldwork procedures

Appendix 1 describes the steps necessary to enable millimeter-level precision in the estima­

tion o f  the phase center o f  the GPS antenna. These steps are invalidated if the antenna is set 

up incorrectly over the site mark, or if the height o f  the antenna is measured incorrectly or 

if the mark is unstable with respect to the ground. Here I describe the fieldwork procedures 

undertaken while collecting data for this thesis.

B .l Site selection

A good GPS site is one that is solidly em bedded in bedrock and has a good  unobstructed 

view o f the sky. Fur my work it w;is also beneficial to use sites that were easily accessible 

but not within view from roads and footpaths. I used several sites that were already in 

place, most often U. S. Coast and Geodetic Survey bench marks but I was careful to ensure 

that the sites were stable. In many places I could not use previously existing marks and so I 

installed my own bench marks. All the marks I installed were in bedrock or large boulders. 

A rock drill was used to drill a hole in the rock and a monument mark was fixed in the hole 

using epoxy.

B.2 Antenna set up

A tripod or spike mount is used to hold the antenna directly above a marked point on 

the monument. W ith both types o f  set up it is absolutely essential to have the antenna
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com pletely levelled and oriented towards North. The phase center o f  the antenna, the point 

o f  the antenna at which the position is determined, is not exactly at the center o f the 

antenna and so we correct for this later, but the programs assume a level antenna oriented 

correctly. The antenna is screwed directly on to the spike mount, which has a known height, 

while an optical plumbing device called a tribrach is necessary to attach the antenna to the 

tripod. The slant height o f  the antenna on a tripod is measured by placing one end o f 

a measuring rod on the marked point on the monument and reading the length at the 

point where the rod touches the rim o f the antenna. This is measured at 3 different places 

arround the antenna rim and the average is noted. Typically  these values are within 1 mm 

o f each other. The antenna dimensions are known and so we can convert the slant height 

to a vertical height. Assuming no blunders in the set up and assuming a well-calibrated 

tribrach, errors in the set up should be no larger than 1 mm.
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Position and velocity data for all 
sites used in this thesis

Appendix C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

Table C .l. Site velocities in m m /yr

1 ITRF97 NO AM -fixed

Station Lat Lon ^ north t •v east  ̂ north  ̂ east

C E X A 65.4982 -144.6776 -0.S4±0.05 -2 .49x0.04 0.03±0.14 -0 .4 7 ± 0 .14

CLG O 64.8738 -147.8605 -0.72±0.01 -2.40x0.01 0.04x0.13 -0.34x0.13

i FAIR 64.9780 -147.4992 -0.73±0.01 -2.27x0.01 0.05±0.13 -0.22+0.13

G R N R 63.8358 -148.9783 -0.72=0.02 -2.37±0.02 -0.00x0.13 -0.29x0.13

i W H IT 60.7505 -135.2221 -1 .15± 0 .0 l -1.56x0.01 -0.03±0.13 0 .2 8 ± 0 .13

: 0999 63.6650 -142.2748 -1 .11x0.55 -2.49x0.41 -0 .18±0.57 -0.52+0.43

; 2999 64.0287 -142.0761 -1 .24x0.68 -3 .65x0.50 -0.30x0.69 -1.68x0.52

7297 62.6880 -145.4261 -1.25x0.04 -1.90x0.03 -0.42x0.14 0.12±0.13

AS PE 56.8538 -157.3721 -1.22x0.22 -1.64±0.17 -0.79x0.25 0.52±0.21

ATT 63.5025 -145.8472 -0.83x0.61 -2 .68x0.45 -0.01x0.62 -0.66±0.47

BRW N 64.1707 -149.2951 -1.09x0.21 -2 .3 6 ± 0 .12 -0.38x0.25 -0 .2 8 ± 0 .17

BSB4 63.9065 -145.7891 -0.65x0.21 -1.99x0.16 0.17x0.25 0.04x0.20

C A R L 63.5515 -148.8089 -1.05x0.29 -2 .35x0.20 -0.33±0.32 -0.28x0.24

; C G LO 63.3883 -148.9496 -0.60x0.18 -2.02x0.14 0.12x0.22 0.06x0.19

CH IR 55.8259 -155.7285 i -2 .27x0.07 1.00x0.06 -1.79x0.15 3.15x0.14

CLFF 56.2115 -158.2992 -1 .55x0.22
|

-1 .65x0.17 -1.16x0.25 0.53+0.21

C O G H 61.0704 -147.9471 i -2 .25x0.23j 1.11x0.16 -1 .51x0.27 3.17x0.21

C O M B 59.6699 -138.6393 -2.17x0.10 -0.17x0.08 -1.16x0.16 1.73x0.15

| DFLY ! 63.7936I -148.9198 -0 .87x0.10 -2.32±0.08 -0.15±0.17 -0.24+0.15

DH97 j 63.2652 -147.8551 -1 .54±0.13 -2.34x0.11 -0.79x0.18 -0 .2 7 ± 0 .17

DNLY 63.6951 -145.8876 -1.05±0.15 -2.41x0.11 -0.23x0.20 -0.38x0.17

EGL2 ‘ 65.4909 -145.3876 1 -1 .1 1 x 0 .IS -2 .24x0.13 i -0.26x0.22 -0.22x0.19
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1
ITRF97 N OAM -fixed

Station Lat Lon I  north ^ east ^ north

EST1 64.8793 -148.0549 -1 .0 4 ± 0 .1 1 -2.39±0.09 -0.29±0.17 -0.33±0.16

FAIT 65.3471 -146.2610 -1.20x0.19 -2 .4 3 ± 0 .14 -0.3S±0.23 -0.39±0.19

FC RK 63.0907 -145.4753 -1.27±0.06 -2.02±0.04 -0.44±0.14 0.01±0.14

G R IZ 63.6524 -148.8330 -1.17 ±0 .12 -2.28±0.11 -0.44±0.18 -0 .21±0.17

HEID 56.9639 -158.6123 -1 .04x0.07 -1.96±0.05 -0.66±0.15 0.21±0.14

HIDD 59.7055 -138.9455 -3.06x0.08 0.93±0.06 -2.06±0.15 2.84±0.14

HIVVA 63.4556 -148.7787 -0.86x0.11 -2.42 ±0 .10 -0.14±0.17 -0 .3 5 ± 0 .16

HUEY 56.7944 -156.8554 -1.77±0.31 -1.47±0.23 -1.33±0.34 0.70±0.27

HURR 62.9993 -149.6089 -0.81x0.06 -2.76x0.05 -0.11 ±0.14 -0.67±0.14

L2CG 63.3828 -148.8662 -0.99x0.12 -2.49x0.10 -0 .2 6 ± 0 .18 -0.42±0.17

; LOG! 63.0226 -143.3455 -1.24x1.65 -2.59x1.03 -0 .34± 1.66 -0 .59±  1.04

i LU K Y! 64.9267 -148.5157 -0.61 ±0.08 -2.43x0.06 0 .1 4 ± 0 .15 -0.36±0.14

m h o 63.3055 -148.1870 -1.51x0.23 -2.42x0.15 -0.76±0.26 -0.36±0.20

M AC 65.8262 -144.0624 -0.70x0.21 -2.12±0.16 0.19±0.25 -0 .12±0.21

M D PK 64.9529 -148.3553 -0.79x0.05 -2.30x0.04 -0 .0 4 ± 0 .14 -0.24±0.14

; MEN 62.9095 -143.7954 -1.05x0.72 -1.94±0.52 -0 .16±0.73 0.06±0.54

| M INT 65.1006 -148.9009 -0.72x0.09 -2.43x0.07 0.01 ±0.16 -0.36±0.15

NENA 64.5794 -149.0798 -0.89x0.11 -2.63±0.09 -0.17±0.17 -0 .5 6 ± 0 .16

O R T T 62.9610 -141.9364 -0.59x0.21 -2.08 ±0.13 0.35±0.25 -0.11 ±0 .18

PAN A 63.4838 -148.8204 -1.25x0.16 -2 .5 3 ± 0 .1 1 -0.53±0.21 -0 .45±0.17

PANS 62.9673 J  -145.4517 -1.14x0.06 -1.97±0.05 -0.31 ±0.15 0.06±0.14

P E D R 65.0434 S -147.4147 -0.60x0.11 -2.27±0.09 0.18±0.17 -0.21±0.16
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ITRF97 N OAM -fixed

Station Lat Lon ^ north I fast I north I east

PISA 63.2847 -149.2105 -1.24±0.14 -2.48±0.12 -0.53=0.19 -0.40=0.18

PPLN 64.1549 -145.S461 -0.80=0.08 -2.3S=0.06 0.03±0.15 -0.35=0.14

R109 63.3953 -148.6468 -1.23=0.15 -2.54±0.12 -0.50=0.20 -0.47=0.18

REFL 64.9864 -147.5988 -0.85=0.15 -2.37=0.12 -0.08±0.20 -0.31±0.17

SEMI 56.0481 -156.6921 -2.16=0.22 -0.37=0.17 -1.72=0.25 1.79=0.21

SLCH 64.4768 -146.9764 -0.90=0.07 -2.37=0.05 -0.11=0.15 -0.33=0.14

SLIM 63.5120 -148.8041 -1.05=0.15 -2.59=0.12 -0.33=0.20 -0.51=0.18 j
SSW B 63.3413 -149.0902 -1.31=0.14 -2.39=0.11 -0.59=0.19 -0.31=0.17 |

STRI 63.3334 -142.9531 -0.89=0.15 -2.18=0.11 0.03=0.20 -0.19=0.17 !

SW B4 65.5622 -145.0266 : -0.75±0.26 -2.82=0.17 0.11=0.29 -0.80±0.21

TALK 62.2986 -150.1057 ; -0.43=0.05 -3.19=0.04 0.25=0.14 -1.10=0.14

TO LO 65.0543 -149.5041 -0.48=0.18| -2.49=0.14 0.23=0.22 -0.41=0.19

TW LY 65.4090 -145.9845 ! -0.75=0.17 -2.48=0.13 0.08=0.22 -0.45±0.18

W ICK 65.1827 -148.0662 -0.40=0.20 -2.49=0.15 ; 0.36=0.24 -0.43=0.20

W IK 56.5765 -157.1086 | -1.53=0.34 -1.28=0.25 -1 .10±0.37 0.88=0.28

W OND 63.4912 -150.8737 -0.55=0.18 -3.04=0.14 0.11=0.22 -0.94=0.19

XT 60.8592 -137.0629 -1.03=0.11 -1 .48±0.07 0.04=0.17 0.39=0.15

Y K T T 59.5107 -139.6488 -3.24=0.03 2.23=0.02 | -2.26=0.13 4.15=0.13

YU K O 65.6762 -149.0930 I -0.47=0.51i -2.56±0.38 0.26=0.52 -0.48=0.40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

Alters. G. A.. Relationship between shallow- and intennediate-depth seismicity in the East­

ern Aleutian subduction zone. Geophys. Res. Lett.. 19. 2019-2022. 1992.

Biswas. N. N. and G. Tytgat. Intraplate seismicity in Alaska. Seismol. Res. Lett.. 59. 227 

2:3:3. 1988.

Boucher. C.. Z. Altamimi. and P. Sillard. The 1997 International Terrestrial Reference 

Frame (ITRF971. in IERS Technical Sate 27.. Observatoire de Paris. France. 1999.

Brocher. T . M.. G. S. Fuis. M. A. Fisher. G. Plafker. M. J. Moses. .1. .1. Taber, and N. I. 

Christensen. M apping the megathrusts beneath the northern G u lf o f  Alaska using wide- 

angle seismic data. ./. Geophys. Res.. 99. 11663-11686. 1994.

Bruns. T . R.. M odel for the origin o f the Yakutat block, an accreting terrane in the northern 

Gulf o f  Akiska. Geoloyy. 1 1 . 1 li i21. 1983.

Castillo. D. A. and \Y. L. Ellsworth. Seistnotectonics o f  the San Andreas fault system 

between Point Arena and Cape Mendocino in Northern California: implications for the 

development and evolution o f a young transform. J. Geophys. Res.. 98. 6543-6560. 1993.

Christensen. D. H. and S. L. Beck. The rupture process and tectonic implications o f the 

Great 1964 Prince W illiam Sound earthquake. Pure Appl. Geophys.. 142. 9-53. 1994.

Cohen. S. C. and .1. T . Freymueller. Crustal uplift in the south central Alaska subduction 

zone: New analysis and interpretation o f tite gauge observations. J. Geophys. Res.. 106. 

11259-11270. 2001.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

DeMets. C. and T. H. Dixon. New kinematic m odels for Pacific-North American motion 

from 3Ma to present. I: Evidence for steady state motion and biases in the NUVEL-1A 

model. Geophys. Res. Lett.. 26. 1921-1924. 1999.

DeMets. C.. R. Gordon. D. Argus, and S. Stein. Effect o f recent revisions to the geomagnetic 

reversal time scale on estimates o f current plate m otions. J. Geophys. Res.. 21. 2191-2194. 

1994.

Dennis. J. E.. D. M. Gay. and R. E. Welsch. A lgorithm  573 NL2SOL - an adaptive non-linear 

least-squares algorithm [E4], A C M  Trans. Math. Software. 7. 369-383. 1981.

Detterman. R. L.. G. Plafker. T . Hudson. R. G. Tysdal. and N. Pavoni. Surface geology and 

Holocene breaks along the Susitna segment o f  the Castle Mountain fault. Alaska. i'SGS  

M isc. Field Studies Map MF-61S. 1 sheet, scale 1:24.000. 1974.

Dmowska. R. and L. C. Lovison. Influence o f asperities along subduction interfaces on the 

stressing and seismicity o f adjacent areas. Tectonophysics. 211. 23 43. 1992.

Doser. D. I. and R. Lomas. Transition from strike-slip to oblique subduction in southeastern 

Alaska. Tectonophysics. 116. 45 65. 2000.

Dragort. H.. R. D. Hyndman. G. C. Rogers, and K. Wang. Current deformation and the 

width o f the seismugeiiic zone o f  the northern Cascadia subduction thrust. J. Geophys. 

Res.. 00. 653 668. 1994.

Estabrook. C. H.. D. B. Stone, and .1. N. Davies. Seismotectonics o f  Northern Alaska. ./. 

Geophys. Res.. 02. 12.026 12.040. 1988.

Estabrook. C. H.. .1. L. Nabelek. and A. L. Lerner-Lam. Tectonic model o f  the Pacific-North 

American plate boundary in the G ulf o f  Alaska from broadband analysis o f  the 1979 St. 

Elias. Alaska, earthquake and its aftershocks. ./. Geophys. Res.. 97. 6587-6612. 1992.

Fletcher. H. .1. and D. H. Christensen. A determination o f the source properties o f large 

intraplate earthquakes in Alaska. PAGEOPH . 146. 21-41. 1996.

Fletcher. H. J. and J. T . Freyinueller. GPS constraints on the motion o f  the Yakutat Block. 

Geophys. Res. Lett.. 26. 3029-3032. 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

Forbes. R. B.. D. L. Turner. T. E. Smith. J. H. Stout, and F. R. Weber. The Denali fault 

offset problem . U. S. Geol. Sun'. Alaska Program. U. S. Geol. Sun'. Circ.. 683. 46. 1973.

Freymueller. J. T . and .1. Beavan. Absence o f strain accum ulation in the Western Shumagin 

segment o f  the Alaska subduction zone. Geophys. Res. Lett.. 26. 3233-3236. 1999.

Freymueller. J. T .. M. H. Murray. P. Segall. and D. Castillo. Kinematics o f  the Pacific-North 

American plate boundary zone, northern California. ./. Geophys. Res.. 104- 7419-7441. 

1999.

Freymueller. .1. T .. S. Cohen, .and H. Fletcher. Spatial variations in present-day deformation. 

Kenai Peninsula. Alaska, and their implications. J. Geophys. Res.. 105. 8097 8101. 2000.

Gabrielse. H.. M ajor dextral transparent displacements along the northern Rocky Mountain 

Trench and related lineaments in northcentral British Columbia. Geol. Soc. Am. Bull.. 

96. 1 14. 1985.

Garfunkel. Z. and H. Ron. Block rotation and deform ation by strike-slip faults 2. The 

properties o f  a typo o f  macroscopic discontinuous deform ation. ./. Geophys. Res.. 90. 

8589 8602. 1985.

Haeussler. P.. R. L. Bruhn. and T. L. Pratt. Potential seismic hazards and tectonics o f  the 

upper Cook Inlet basin. Alaska, based on analysis o f  Pliocene and younger deformation. 

Geological Society o f  America Bull.. 112. 1414 -1429. 2000.

Hickman. R. G.. C’ . Craddock, and K. W . Sherwood. Structural geology o f  the Nenana 

River segment o f  the Denali fault system, central Alaska Range. Geol. Soc. .4m. Bull.. 

88. 1217 1230. 1977.

Hreinsdottir. S.. P. Einarsson. and F. Sigmundsson. Crustal deformation at the oblique 

spreading Reykjanes Peninsula. SW  Iceland: GPS measurements from 1993 to 1998. ./. 

Geophys. Res.. 106. 13.803-13.816. 2001.

.Johnson. H. O. and F. K. W yatt. G eodetic network design for fault-mechanics studies. 

Alanu. Geod.. 19. 309-323. 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

Johnson. J. M. and K. Satake. Rupture extent o f  the 1938 Alaskan earthquake as inferred 

from tsunami waveforms. Geophys. Res. Lett.. 21. 733-736. 1994.

Kao. H. and \Y. Chen. Earthquakes along the Ryukyu-KyushuArc: strain segmentation, 

lateral compression, and the thermomechanical state o f the plate interface. J. Geophys. 

Res.. 96. 21.443 21.485. 1991.

Kawasaki. I.. Y. Asai. and Y . Tamura. Space-time distribution o f interplate moment release 

including slow earthquakes and the seismio-geodetic coupling in the Sanriku-oki region 

along the Japan trench. Tectonophysics. 230. 267-283. 2001.

Kogan. M. G.. G eodetic constraints on the rigidity and relative m otion o f  Eurasia and North 

America. Geophys. Res. Lett.. 27. 2041-2044. 2000.

Lahr. J. C. and G. Plafker. Holocene Pacific-North American Plate interaction in southern 

Alaska: Implications for the Yakataga seismic gap. Geology. S. 48.3 486. 1980.

Lahr. J. C.. R. A. Page. C. D. Stephens, and K. A. Fogelman. Sutton. Alaska, earthquake 

o f 1984: Evidence for activity on the Talkeetna segment o f  the Castle Mountain fault 

system. Bull. Sets. Sac. Am .. pp. 967-983. 1986.

Lahr. J. C.. R. A. Page. C. D. Stephens, and D. H. Christensen. Unusual earthquakes in the 

G u lf o f  Akiska and fragmentation o f  the Pacific plate. Geophys. Res. Lett.. 15. 1483-1486. 

1988.

Lanphere. M.. Displacement history o f the Denali fault system. Alaska and Canada. Can. 

./. Earth Sci... 15. 817 822. 1978.

Larson. K. L.. J. T . Freymueller. and S. Plilipsen. Global plate velocities from the Global 

Positioning System. ./. Geophys. Res.. 102. 9961-9981. 1997.

Lisowski. M.. J. C. Savage, and R. O. Burford. Strain accumulation across the Fairweather 

and Totschunda faults. Alaska. J. Geophys. Res.. 92. 11.552-11.560. 1987.

Lisowski. M.. J. C . Savage, and \Y. H. Prescott. The velocity field along the San Andreas 

fault in central and southern California. J. Geophys. Res.. 96. 8369-8389. 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

Lowev. G. \V.. A new estimate o f the amount o f  displacement on the Denali Fault system 

based on the occurrence o f  carbonate megaboulders in the Dezadeash Formation (Jura- 

Cretaceous). Yukon, and the N’ utzotin Mountains sequence (Jura-Cretaceous). Alaska. 

Bull. Can. Petr. Geo/.. 4t>. 379 3S6. 1998.

Lu. Z. and M. W yss. Segmentation o f  the Aleutian plate boundary derived from stress 

direction estimates basedon fault plane solutions. .7. Geophys. Res., pp. S03-816. 1996.

Lundgren. P.. F. Saucier. R. Palmer, and M. Langon. Alaska crustal deform ation: Finite 

element modeling constrained by geologic and very long baseline interferometry data. .7. 

Geophys. Res.. 100. 22.033 22.046. 1995.

Ma. C.. J. M. Sauber. L. J. Bell. T. A. Clark. D. Gordon. W . E. Himwich. and J. W . Ryan. 

Measurement o f  horizontal motions in Alaska using very long baseline interferometry. .7. 

Geophys. Res.. 95. 21.991 22.011. 1990.

Mackey. K. G.. K. Fujita. L. V. Gunbina. Y. N. Kovalev. Y. S. Imaev. B. M. Kozrnin. and 

L. P. Imaeva. Seismicity o f the Bering Strait region: Evidence for a rotating Bering block. 

Geology. 25. 979 982. 1997.

Mao. A.. C. G. A. Harrison, and T. H. Dixon. Noise in GPS coordiante time series. .7. 

Geophys. Res.. 104 . 2797 2816. 1999.

M azzotti. S.. X. L. Pichon. P. Henry, and S.-I. Miyazaki. Full interseismic locking o f the 

Nankai and Japan-west Kurile subduction zones: An analysis o f  uniform elastic strain 

accumulation in Japan constrained by permanent GPS. .7. Geophys. Res.. 105. 13.159­

13.177. 2000.

Menke. \Y.. Geophysical Data Analysis: Discrete Inverse Theory. Academ ic Press. San 

Diego. C A . 1984.

Minster. J. B. and T. H. Jordan. Present-day plate motions. J. Geophys. Res.. 83. 5331­

5354. 1978.

Muller. .]. E.. Kluane Lake map-area. Yukon Territory, in Geological Survey o f  Canada. 

M em oir, %’olume 340. 1967.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Nishenko. S. P. and \Y. R. M cCann. Seismic potential for the worlds m ajor plate boundaries, 

in D. W. Simpson and P. G. Richards (eds.). Earthquake Prediction: An International 

R enew . Maurice Ewing Series, vol. 4- pp. 20-28. AGU. W ashington. D. C. 1981.

Xokleberg. W . .!.. D. L. .Jones, and N. J. Siberling. Origin and tectonic evolution o f the 

Maclaren and Wrangellia terranes. eastern Alaska Range. Alaska. Geol. Soc. Am. Bull.. 

96. 1251 1270. 1985.

Okada. Y .. Surface deform ation due to shear and tensile faults in a halfspace. Bull. Seis. 

Soc. Am.. 75. 1135 1154. 1985.

Oleskevich. D. A.. R. D. Hvndman. and K. Wang. The up and downdip limits to great 

subduction earthquakes: Therm al and structural models o f  Cascadia. South Alaska. S.W . 

Japan, and Chile. ./. Geophys. Res.. 104- 14.695 14.991. 1999.

Pacheco. J. F.. L. R. Sykes, and C. H. Scholz. Nat ure o f seismic coupling along simple plate 

boundaries o f  the subduction type. ./. Geophys. Res.. 98. 14.133 14.159. 1993.

Page. R. and J. Lahr. Measurements for fault slip on the Denali. Fairweather. and Castle 

Mountain Faults. ./. Geophys. Res.. 76. 8534 8543. 1971.

Page. R. A.. N. N. Biswas. J. C. Lahr. and H. Pulpan. Seismicity o f  continental Alaska, in

D. B. Slemmons. E. R. Engdahl. M. D. Zoback. and D. D. Blackwell (eds.). .Xeotectonics 

o f .Xort.h America, volume Decade Map Volume 1. Boulder. Colorado. Geol. Soc. Am.. 

1991.

Page. R. A.. G. Plafker. and H. Pulpan. Block rotation in east-central Alaska: A framework 

for evaluating earthquake potential?. Geology. 23. 629-632. 1995.

Patton. W. and J. M. Hoare. The Kaltag fault, west central Alaska. U. S. Geol. Sure. Prof.

Pap.. 600-D. 1968.

Perez. O. J. and K. H. Jacob. Tectonic model and seismic potential o f  the eastern G ulf o f 

Alaska and Yakataga seismic gap. ./. Geophys. Res.. 85. 7132-7150. 1980.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

Pewe. T . L.. C. Wahrhaftig. and F. W eber. Geologic map o f  the Fairbanks Quadrangle. 

Alaska, in M iscellaneous Geologic Investigations Map. Reston. VA. U. S. Geological Sur­

vey. United States. 19(16.

Plafker. G.. Regional geology and petroleum potential o f  the northern G u lf o f  Alaska con­

tinental margin, in D. W . Scholl. A. Grantz. and J. G. Vedder (eds.). .4 workshop on 

evaluation o f  regional and urban earthquake hazards and risk in Alaska. U.S. Geological 

Survey Open-File Report 86-79. pp. 76-82. 1987.

Plafker. G.. T . Hudson, and D. H. Richter. Preliminary observations on late Cenzoic dis­

placements along along the Totschunda and Denali fault systems, in K. M. Blean (ed.). 

The United States Geological Survey Circular 751-B. pp. B67 B69. 1977.

Plafker. G.. T . Hudson. T . Bruns, and M. Rubin. Late Quaternary offsets along the Fair- 

weather fault and crustal plate interactions. Can. ./. Earth Sci.. 15. 805 816. 1978.

Plafker. G .. L. M. Gilpin, and .1. C. Lahr. N'eotectonic map o f  Alaska, in G. Plafker and 

H. C. Berg (eds.). The geology o f  North America, pp. v .G l. plate 12. scale 1:2.500.000. 

Geol. Soc. Am.. Boulder. Colorado. 1994.

Prawirodirdjo. L.. V. Bock. R. McCaffrey. J. Genrich. E. Calais. C. Stevens. S. S. O. Pun- 

todewo. C. Subarya. .J. Rais. P. Zwick. and Fauzi. G eodetic observations o f  interseismic 

strain segmentation at, the Sumatra subduction zone. Geophys. Res. Lett... 21. 2601 2604.

1997.

Prescott. W . H.. .J. C. Savage, and W. T . Kinoshita. Strain accum ulation rates in the 

western L’ nited States between 1970 and 1978. ./. Geophys. Res.. 84- 5423-5435. 1979.

Ratchkovski. X. A. and R. Hansen. New constraints on tectonics o f  interior Alaska: Earth- 

cpiake locations, source mechanisms and stress regime. Bull. Seis. Soc. Am.. in press. 

2002.

S a v a g e .  .J. C .. A dislocation model o f  strain accumulation and release at a subduction zone. 

./. Geophys. Res.. 88. 4984 4996. 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134

Savage. .1. C. and R. O. Burford. G eodetic determination o f relative plate m otion in Cali­

fornia. ./. Geophys. Res.. 78. 832-845. 1973.

Savage. .1. C. anti M. Lisowski. Strain accum ulation along the Denali fault at the Nenana 

river and Delta river crossings. ./. Geophys. Res.. 96. 14.481 -14.492. 1991.

Savage. J. C.. .1. L. Svarc. W . Prescott, and \Y. K. Gross. Deformation across the rupture 

zone o f  the 1964 Alaska earthquake. 1993-1997. ./. Geophys. Res.. 103. 21.275-21.283.

1998.

Savage. .1. C.. .1. L. Svarc. and \Y. H. Prescott. Deformation across the Alaska-Aleutian 

Subduction Zone near Kodiak. Geophys. Res. Lett.. 26. 2117 2120. 1999.

Sella. G.. T . H. Dixon, and A. Mao. REVEL: a model for recent plate velocities from space 

geodesy. J. Geophys. Res., in press. 2002.

Stauder. \Y.. The Alaska earthquake o f July 10. 1958: Seismic studies. Bull. Seis. Soc. Am.. 

50. 293 322. 1960.

Stein. S. and R. G- Gordon. Statistical tests o f additional plate boundaries from plate 

motion inversions. Earth Planet. Sci. Lett.. 69. 401 412. 1984.

Stephens. C. D.. J. C. Lahr. K. A. Fogelman. and R. B. Horner. The St.Elias. Alaska, 

earthquake o f February 28. 1979: Regional recording o f aftershocks and short-term, pre­

earthquake seismicity. Bull. Seis. Soc. Am .. 70. 1607-1633. 1980.

Stout. J. H. and C. G. Chase. Plate kinematics o f  the Denali fault system. Can. J. Earth 

Sri.. 17. 1527 2537. 1980.

Stout. .J. H.. J. B. Brady. F. W eber, and R. B. Page. Evidence for Quaternary movement 

on the M cKinley strand o f  the Denali fault in the Delta River area. Alaska. Geol. Soc. 

Am. Bull.. 84. 939 948. 1973.

Tarr. R. S. and L. Martin. Earthquakes at Yakutat Bay. Alaska, in September. 1899. U. S. 

Geological Survey Professional Paper. 69. 135. 1912.

Thatcher. W . and G. Plafker. The 1899 Yakutat Bay. Alaska earthquake. IA SPE I and 

IA Y C E I Assembly Abstracts with Programs, p. 54. 1977.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

Tichelaar. B. W. and L. J. Ruff. Depth o f  seismic coupling along subduction zones. J. 

Geophys. Res.. 98. 2017-2037. 1993.

Turner. D. L.. T . E. Smith, and R. B. Forbes. Geochronology o f  offset along the Denali 

fault system in Alaska. Geol. Soc. Am. Abstracts with Programs. 6. 268-269, 1974.

VonHuene. R.. M. A. Fisher, and T. R. Bruns. Geology and evolution o f the Kodiak margin. 

G ulf o f  Alaska, in D. W . Scholl and J. G. V. A. Grantz (eds.). Geology and Resource P o ­

tential o f  the Continental Margin o f  W estern North Am erica and Adjacent Ocean Basins 

- Beaufort Sea to Baja California, pp. 191 212. Circum -Pacific Council for Energy and 

Mineral Resources. Houston. Texas. 1987.

Wahrhaftig. C'.. D. L. Turner. F. R. Weber, and T. E. Smith. Nature and timing o f  movement 

on the Hines Creek strand o f  the Denali fault system. Geology. 8. 463 -466. 1975.

Zheng. G.. R. Dmowska. and J. R. Rice. M odeling earthquake cycles in the Shumagin 

subduction segment. Alaska, with seismic and geodetic constraints. Geophys. Res.. 

It)I. 8383 8392. 1996.

Zweck. C.. .1. T . Freymueller. and S. C. Cohen. Three dimensional elastic dislocation m od­

eling o f tilt' postseismic response to the 1964 Alaska earthquake. ./. Geophys. Res., sub­

mitted 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


