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ABSTRACT

Shallow subtidal rocky reefs in the Northeast Pacific host frequent physical and 

biological disturbances as well as multiple competing algal species, including kelps and 

algal crusts. Kelps serve a critical role in local ecosystems by generating primary 

productivity and essential fish habitat. While kelp forests rank among the best 

understood ecosystems in the marine environment, protected and subarctic systems 

remain largely ignored. Because of the importance of kelp habitat in Southeast Alaska, 

and the susceptibility of kelps to both disturbance and competition, I estimated the 

variability in kelp community structure of subtidal, kelp dominated reefs in the Lynn 

Canal and quantified kelp recruitment in response to both competing algae and bare space 

which included clearings, artificial reefs, and settlement tiles installed at different periods. 

Surveyed communities varied most within rather than among reefs. Kelps exhibited 

strong, rapid, variable and apparent taxa specific colonization potential to clearings, 

artificial reefs and settlement tiles installed from summer to late fall. Algal crusts 

imposed a near 100% inhibition of kelp recruits in the field and lab; however the strong 

colonization potential of kelps facilitated recruitment in the face of strong inhibition by 

algal crusts.
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GENERAL INTRODUCTION

Kelp forests rank among the most productive ecosystems on the planet (Dayton 

2003) and provide critical habitat for fish, invertebrates, and other species of economic, 

ecological, and intrinsic value (Dayton 1985; Steneck et al. 2002). Beyond their 

productivity and genesis o f structural habitat, they provide a model system for ecological 

research. Their rapid dynamics (Steneck et al. 2002), diversity with approximately 30 

genera of kelps (Lane et al. 2006), accessibility, and their important functional role in 

nearshore ecosystems (Duggins et al. 1989; Britton-Simmons et al. 2009) makes them 

well-suited to serve as model ecosystems. Although kelp forest ecosystems rank among 

the most extensively studied systems in the marine environment, many fundamental 

questions concerning which factors regulate their productivity remain unanswered or 

debatable (e.g. Foster et al. 2006; Halpem et al. 2006).

Kelp forests provide enormous productivity and experience immense competition 

and disturbance. Though canopy and sub-canopy kelp species can preempt light as adults, 

they also undergo ontogenetic shifts in their dominance as recruiting life stages in which 

they may succumb to various perturbations and competition. This susceptibility to both 

disturbance and competition as recruiting life stages provides challenges to kelp forest 

productivity and leads to fundamental questions regarding how kelp populations 

regenerate following deforestation, how they propagate following the introduction of bare 

space, and how they replace senescing adult individuals.

Because a large variety of factors influence kelp recruitment dynamics (Dayton 

1985; Steneck et al. 2002), understanding which processes regulate recruitment can



provide a daunting challenge. Gradients of water motion (Hurd 2000), UV and light 

availability (Liming et al. 1990), temperature (Dieck 1993), nutrient availability (Dayton 

1985), salinity (Buschmann et al. 2004), and other chemical properties of the 

microclimate composition can all have dramatic impacts on recruitment success. Beyond 

physical influences, herbivory by mesograzers (Sala & Graham 2002) or urchins 

(Simenstad et al. 1978; Estes & Duggins 1995) can influence microscopic kelps or kelp 

recruits. Lastly, competition resulting from high settlement densities or the influence of 

pre-existing competitors can strongly influence recruitment success (Reed 1990). Efforts 

of investigation, conservation or restoration of kelp forest habitats can have very different 

results in different places, times and conditions because of the sensitivity to biotic and 

abiotic factors that can vary over space and time.

Artificial reefs have been utilized to restore kelp forests in subtidal habitats 

around the world (Buckley & Hueckel 1985; Carter et al. 1985; Reimers & Branden 

1994; Svane & Petersen 2001; Steimle et al. 2002; Rule & Smith 2005; Wyllie- 

Echeverria et al. 2005; Bortone 2006; Perkol-Finkel et al. 2006; Reed et al. 2006). 

Artificial reefs have successfully been used to generate large scale kelp communities with 

dense recruitment occurring within one year (Reed et al. 2004; Wyllie-Echeverria et al. 

2005). Yet recruitment of many benthic species on artificial reefs is often non-linear 

(Reed et al. 2000; Reed et al. 2005; Wyllie-Echeverria et al. 2005), spatially variable 

(Reed et al. 2005), dependent upon variable processes of succession and biological 

interactions (Buckley & Hueckel 1985) and some models predict that full benthic



community maturation on reefs may take as long as a decade or more (Aseltine-Neilson 

et al. 1999).

The establishment of biological communities on artificial reefs has received 

considerable attention in temperate kelp forests; subarctic kelp habitats and colonization 

o f artificial reefs remain understudied, especially in the protected waters of Southeast 

Alaska (Lindstrom 2009). Kelp forests in this region host spawning herring, salmonids 

(Murphy et al. 2000; Johnson et al. 2003), gadids (Murphy et al. 2000; Johnson et al. 

2003), juvenile shellfish, sea otters (Estes & Duggins 1995), sea lions (pers. obs.) and 

other marine mammals. Kelp forests in this region, in particular, may serve as a unique 

system for investigation not only because of the species which they support but also the 

changing subarctic environment in which they inhabit. Kelps lie at the apex of marine, 

terrestrial and freshwater ecosystems, influenced by processes o f all three as well as 

anthropogenic influences to the coastline.

This collection of studies aims to understand two fundamental processes in 

subarctic kelp forests. In the first chapter I address the capability o f kelps to recruit to 

bare space and associated variability depending on the location and timing of space 

availability. In the second chapter I investigate the role of algal crusts in inhibiting 

recruitment of coexisting kelp species. Collectively, these studies provide novel, basic 

information concerning the dynamics of kelp forests in this subarctic climate, and reveals 

new insights regarding fundamental interactions in productive, functionally diverse plant 

ecosystems.
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ABSTRACT

The capability for colonizing newly available substrata represents a critical 

component o f population persistence in competitive and disturbance prone environments. 

Knowledge of such potential, its timing, and its local constraints remain limited for many 

kelp species. In a Southeast Alaskan fjord, we 1) surveyed several subtidal understory 

kelp reefs to determine patterns of variability, 2) empirically determined colonization 

potential o f kelps to newly available substrata, including small clearings and artificial 

reefs in comparison to undisturbed habitats and 3) determined how timing of space 

availability influenced kelp recruitment. In this fjord, kelps and algal crusts (kelp 

competitors) existed at all six surveyed sites and varied most within transects rather than 

among transects or reefs, with some exceptions. At two study locations on either side o f 

a single cove, kelp recruits (< 6 cm tall) appeared within several months to both small 

clearings and small plots on artificial reefs in greater densities than in undisturbed, 

control plots with established kelp canopies and algal crusts. However, these differences 

were not consistent at each location, and highly variable. Moreover, treatment effects 

differed by size class. Laminariaceae (Saccharina bongardiana f. subsimplex and 

Laminaria yezoensis) juvenile kelps (< 20 cm tall) occurred in consistently greater 

densities at one location. Juvenile density also differed by species. Our results show A. 

clathratum juveniles occurred in only 4% of plots in contrast to Laminariaceae juveniles 

which occurred in 52% of plots, despite the fact that dense adult stands o f A. clathratum

and Laminariaceae kelps rested within several meters of cleared plots and artificial reef

* 2 2plots (averaging 4.1 m' & 9.5 m' respectively). While sediment covered an average of



35% of plots, sediment did correlate significantly with kelp recruit or juvenile densities 

which suggests a robustness of kelp recruitment to sedimentation. Larger plots showed 

artificial reefs consistently hosted far more kelp recruits than natural reefs. Lastly, kelps 

recruited in consistent densities to settlement tiles placed in the water between July and 

mid-December, but none recruited to tiles introduced the following March, indicating 

settlement ends sometime beforehand. Our results demonstrate that understory kelps in 

this region have immense capacity to rapidly colonize clearings and artificial reefs, and 

bare space introduced from summer to late fall, with large variability and potentially 

dramatic differences among species.



INTRODUCTION

The magnitude o f species’ colonization potential can dramatically influence how 

populations respond to both competition (Tilman 1994, Amarasekare 2003) and 

disturbance (Sousa 1980, Tilman 1988). In temperate through polar seas, intense 

disturbance regimes and competition often characterize shallow-subtidal environments 

with high potential for productivity. For kelp forests in particular, a variety o f small and 

large scale disturbances such as storm events (Dayton et al. 1992), urchin grazing 

(Steneck et al. 2002) or shifts in oceanographic conditions (Dayton et al. 1999, 

Matsunaga et al. 1999) can destroy adult kelp stands. Kelps thrive in disturbance-prone 

environments, exemplified by their production of massive amounts o f organic carbon 

(Duggins et al. 1989, Simenstad et al. 1993, Bustamante & Branch 1996), amplification 

o f secondary productivity (Duggins et al. 1989, Bustamante & Branch 1996, Duggins & 

Eckman 1997) and subsidization of external consumers (Britton-Simmons et al. 2009). 

Yet such productivity results in competition for light (Reed & Foster 1984) and primary 

space (Reed 1990). Because of their susceptibility to disturbance and intense 

competition, colonization potential for kelp forests represents a critical feature of their 

dynamics and productivity.

Much of the literature concerning kelp forest recruitment in response to 

competition and disturbance comes from open coast, temperate regions (see Steneck et al. 

2002 for review, but see Dayton 1975, Duggins 1980, Leinaas & Christie 1996); thier 

productivity regimes differ substantially from those in protected, subarctic waters. In the 

f]ords of Southeast Alaska, seasonality in water column stratification and temperature



regulate productivity (Bruce et al. 1977, Weingartner et al. 2009), in contrast to 

California or other areas where seasonal upwelling is primarily responsible (Bakun 

1990). Southeast Alaska hosts high nutrient concentrations during fall and winter until 

spring runoff and warming-induced stratification trigger phytoplankton blooms. Blooms 

in turn deplete nutrients throughout the summer to depths of 90 m until fall mixing events 

reintroduce water column homogeneity (Iverson et al. 1974, Bruce et al. 1977, 

Weingartner et al. 2009). Such oceanographic differences, in combination with strong 

seasonal variation in daylength, the presence of (receding) glaciers, and precipitation 

ranging from 116 to 215 cm per year near Juneau, Alaska (Wing et al. 2006) indicate 

Southeast Alaskan benthic macroalgae inhabit a physical environment which abides by 

different dynamics than those in temperate regions, and thus may invest in different 

strategies of colonization with respect to rate and timing. Documenting colonization and 

recruitment dynamics can serve as a first step in understanding the adaptation of these 

ecologically valuable, habitat-generating, primary producers to this environment.

In Southeast Alaska, forecasted climatic changes include large increases in 

precipitation along Alaska’s coastline (Meehl et al. 2005) and the disappearance of 

glaciers (Larsen et al. 2007) which serve as major community drivers in nearby benthic, 

marine environments (Camey et al. 1999, Wlodarska-Kowalczuk et al. 2005). Southeast 

Alaska’s glaciers discharge exceptionally high sediment loads (Hallet et al. 1996), which 

may induce significant mortality of kelp recruits (Dayton 1985) or invertebrates and other 

algae which compete with kelps for space, but may facilitate increased diversity or 

individual algal abundances (Airoldi & Cine Hi 1997). Silt laden glacial discharge can



dramatically decrease transmittance of UV radiation (Hanelt et al. 2001) which may 

impact Laminaria saccharina spore release (Makarov & Voskoboinikov 2001) and 

decrease its primary productivity (Apprill & Lesser 2003). Yet subtidal phycology in this 

region remains a wholly unstudied realm (Lindstrom 2009) despite such impending 

changes in Southeast Alaska’s protected waters, the importance o f subtidal kelp forests in 

this region and the discrepancies between subarctic and temperate waters.

In Southeast Alaska, the productivity o f understory kelp forests provides the 

foundation for many rocky, nearshore ecosystems, generating nursery, spawning, and 

foraging environments for fish (Murphy et al. 2000, Johnson et al. 2003) invertebrates, 

and marine mammals (Estes & Duggins 1995). Because of such productivity, biological 

interactions often control kelp recruitment densities or survival. Biological constraints to 

kelp recruitment and survival include recruitment inhibition by algal crusts (Okamoto et 

al. 2009), grazing by benthic mesograzers (Duggins et al. 2001, Sala & Graham 2002), 

light reduction from surface and subtidal canopies (Reed & Foster 1984) and algal 

whiplash by prostrate kelps and other benthic macroalgae (Kennedy 1987, Britton- 

Simmons 2004). Because of the diversity of negative impacts from the biological 

community on young kelps, recruitment to bare space provides the best index of 

colonization potential. Yet many benthic species often require not only bare space for 

successful recruitment, but require that its availability is adequately timed for seasonal 

reproduction and growth (Levin 1984).

Many high latitude, perennial, subtidal canopy species exhibit seasonal life 

histories and reproductive cycles. In Southeast Alaska in Laminariaceae kelps, including

14



Saccharina bongardiana f. subsimplex (Setchell & N.L. Gardner) and Laminaria 

yezoensis (Miyabe) exhibit pseudoperennial life histories (Okamoto, pers. obs, but see 

Druehl et al. 1987) in which the adult meristem and stipe persist, and thalli begin 

regrowth in the winter, persist through summer and senesce in the fall (Liming 1969). 

Other kelps including the perennial kelp Agarum clathratum (Dumort) retain their thallus 

through the winter (Dayton 1975). On S. bongardiana and L. yezoensis a single 

reproductive sorus appears at the base of the thallus above the meristem in the fall 

(Figure 1.1). In contrast, A. clathratum displays fertile sori from mid-summer through 

winter (Okamoto, pers. obs.). These different life histories suggest that seasonal variation 

in competition, sporulation, timing of settlement and recruitment occur. Thus, the time in 

which space becomes available (either through disturbance or artificial introduction) 

likely influences recruit abundance. In subtidal habitats, timing of space availability 

may alter the order in which species settle (Levin 1984, Reimers & Branden 1994) or 

upon growth conditions when space becomes available (Airoldi 2000). While Stekoll & 

Else (1992) document when kelp recruits appear throughout the year in Southeast Alaska, 

appearance of kelp recruits does not indicate when settlement timing occurs. In fact, 

some subtidal macroalgal microscopic life-stages can overwinter when the adult thallus is 

gone (Edwards 2000). Moreover kelp gametophytes may grow slowly in light limited 

conditions but when stimulated with light they can produce viable sporophytes.

Therefore appearance of recruits does not necessarily indicate the timing of settlement. 

Understanding how timing of space availability influences recruitment can provide basic



information regarding when species recruit and a qualitative evaluation o f how certain 

experimental results may change if experiments were performed at different times.

Objectives for this study included documenting kelp colonization potential on 

newly available substrata, revealing the influence of timing of space availability on kelp 

recruitment and documenting general patterns o f kelp community composition and 

variability for contextual purposes. Surveys of natural reefs provide context by 

demonstrating average species densities, as well as how species and communities vary 

among and within reefs. By surveying newly installed artificial reefs and clearings in 

paired natural reefs, we estimated recruitment densities to those large bare areas, to small 

gaps in understory kelp communities and within undisturbed kelp communities. Lastly, 

we investigated the timing of kelp settlement and the influence of timing of space 

availability by evaluating recruitment on substrate deployed at different times. These 

experiments and observations provide novel, basic information regarding the colonization 

potential and variability of understory kelps in this glaciated, subarctic fjord.

METHODS 

Lynn Canal Reef Surveys

We evaluated understory kelp community structure and variability in Lynn Canal, 

Southeast Alaska by surveying six shallow subtidal, exposed, rocky reefs supporting 

productive understory kelp communities (Figure 1.2). At each site, divers laid two 30 m 

transects parallel to shore at 6 m below mean low low water (MLLW) in series and 

separated by 10 m. We placed 1 m2 quadrats systematically every 5 m along each 

transect line. In each 1 m2 quadrat we enumerated the density of each kelp species by
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counting stipes, and then percent understory canopy cover by Agarum clathratum and 

Laminariacaean kelps (Saccharina bongardiana and Laminaria yezoensis) from above 

the quadrat. We could count the two Laminariacaean kelp species individually for stipe 

densities; however because the two Laminaraiceaen kelps are only differentiable by the 

holdfast we lumped these species as Laminariaceae for estimates o f percent cover by 

blades. Within each 1 m quadrat, we placed a 50 x 50 cm quadrat strung with a 10 x 10 

grid and estimated percent of cover by red algae and other upright algal species as well as 

enumerated kelp recruits and juveniles. We then estimated percent cover of the benthos 

by encrusting algal species and other sessile species, as well as sand, silt, and rock using 

point-contact with 20 systematically determined points on the 9 x 9  grid.

Statistical Analyses

We evaluated variability of the kelp community in two ways: first by addressing 

kelp species collectively in a multivariate setting and then by addressing each kelp 

species, kelp recruits, and kelp competitors individually using analysis of variance 

(ANOVA). For multivariate analyses and univariate ANOVAs we treated site and 

transect as random effects. We nested transect within site because each transect belongs 

only to the reef in which it rests. We natural log transformed ( + 1 ) all response 

variables to meet assumptions of normality and heterogeneity of variance in these and all 

subsequent analyses unless otherwise noted. For these and subsequent ANOVA models 

we tested model assumptions using Shapiro Wilk’s W test and Levene’s test.

We evaluated variability of the kelp assemblages as a whole with two multivariate 

analyses with variables including log (+1 ) density of each o f the kelps Laminaria



yezoensis, Saccharina bongardiana, and Agarum clathratum as well as kelp recruits.

Prior to these analyses, we standardized variables by the maximum observed value for 

each, and then calculated a matrix of Bray-Curtis similarities. Using this matrix, we 

performed an ordination via non-metric multidimensional scaling (nMDS) and plotted the 

first two axes. With the same matrix, we generated components of variation for the 

different scales (among site, between transect within site, and residual (among replicate 

plots within transects)) using PERMANOVA (permutational analysis o f variance) 

(Anderson 2001). PERMANOVA estimates components of variation analogous to 

variance components from univariate ANOVA (Anderson et al. 2008), and allowed us to 

test whether variability among sites and between transects within site differed 

significantly from zero. Because PERMANOVA assumes homogeneity o f multivariate 

dispersion (Anderson 2001), we tested for violations using PERMDISP. We performed 

these analyses using PRIMER (Clarke & Gorley 2006).

For univariate analyses, we estimated variance components using ANOVA output 

as in Sahai and Ageel (2000) for reef, transect within reef, and residual to determine how 

communities vary with regards to these factors. Individual response variables included 

density of each kelp species, percent cover by Laminariaceae canopy, percent cover by 

Agarum clathratum canopy, density of kelp recruits, and percent cover o f the rock by 

brown algal crusts, non-calcified red algal crusts, and calcified algal crusts. We 

performed these and all subsequent analyses in R (R Development Core Team 2009) 

unless otherwise noted.



Kelp Recruitment on Natural Reefs, Disturbed Habitat and Artificial Reefs

We quantified kelp recruitment in 30 x 30 cm flat, horizontal plots at 

approximately 5 m below MLLW which included three treatments: 1) undisturbed 

natural reef plots (controls), 2) cleared natural reef plots and 3) artificial reef plots at the 

East and West Yankee Cove locations. Artificial reef plots included newly installed 

artificial reefs at Yankee Cove in the southern Lynn Canal near Juneau, Alaska (Figure 

1.2). On either side o f the peninsula bordering Yankee Cove (Figure 1.2, Figure 1.3), 

natural rocky habitats descend to flat, sandy substrate at approximately 6 - 8 m below 

MLLW. In December, 2007 two artificial reefs were introduced on these East and West 

sandy habitats (Figure 1.2), with a gap o f 1 -5 m separating each artificial reef from the 

nearby natural reef. Artificial reefs are composed of granite quarry rock 0.5-1.0 m in 

diameter stacked one to three rock layers thick (Figure 1.4 A) with dimensions of 30 m x 

10 m. We surveyed all natural reef plots in September 2007. In December, 2007 we 

cleared natural reef plots by removing non-encrusting algae, encrusting algae, and sessile 

animals using chisels, hammers, and scraping implements. We surveyed all plots in June, 

2008 for density of kelp recruits (defined as kelps < 6 cm total length), kelp juveniles 

(defined as < 20 cm total length) as well as percent cover of other macroalgae, sessile 

invertebrates and sediment.

While these small plots (0.09 m2) provided a manageable size for removal of 

encrusting algae, they may overestimate variability in the event of patchy recruitment and 

their isolation to flat, horizontal substrata may not accurately represent general 

recruitment patterns to the heterogeneous habitat. For this reason we also surveyed larger

19



quadrats (0.25 m2) on each artificial and natural reef by systematically placing six 50 x 50 

cm quadrats every 5 m along each of two 30 m transects per reef in July, 2008. Use of 

larger quadrats allowed for better estimates of true recruitment densities, as recruits often 

occur patchily rather than uniformly. These systematic surveys allowed for illustrating 

overall recruitment densities on artificial versus natural reefs which included more than 

just horizontal, flat substrata portrayed in the 30 x 30 cm fixed plot experiment. We laid 

transects on natural reefs in series, separated by approximately 20 m while we laid 

artificial reef transects in parallel, separated by approximately 5 m.

Statistical Analyses

In evaluating kelp recruit and juvenile densities in our 30 x 30 cm experimental 

plots, we tested for effects of location (East versus West), treatment (undisturbed, cleared 

and artificial reef), and location-treatment interaction on recruit density and juvenile 

density with two-way crossed ANOVAs. In the case of a significant interaction, we 

utilized Tukey’s HSD for comparisons of cell means to describe the interaction. We then 

estimated relationships between 1) kelp recruits and 2) juveniles with other species and 

sediment percent cover in these plots using linear regression. In analyzing our systematic 

transect surveys of Yankee Cove natural and artificial reefs, we tested for effects of 

location (East versus West), reef type (natural vs. artificial), location-reef type interaction 

and transect nested in reef type at each location on recruit density using a two-way, 

partially nested ANOVA.



Kelp Recruitment Timing Experiment

We measured the timing of kelp recruitment by deploying 6 x 6 cm ceramic tiles 

in July, August, September, October, and December, 2007 and March, 2008 to stations at 

5, 6, 7, 8, 9 and 10 m below MLLW along the East and West Yankee Cove locations.

We placed all stations at the edge where the rocky reefs meet sand. Each station 

consisted o f a large cinder block that anchored two plastic, perforated pipes stretched 

horizontally. We suspended tiles 0.5 m above these pipes with monofilament and floats 

to minimize the effect of consumers, local variation in water motion and adult kelp 

canopies (Figure 1.5). We deployed two tiles per station in July 2007 and December 

2007 because July represents the earliest period where reproductive kelps were observed 

and December corresponded to artificial reef installation. In other periods we deployed 

only one tile per station due to effort limitations and the difficulty of tile deployment. 

Winter storms destroyed the shallowest station at the West location and some individual 

tiles on other stations resulting in a slightly unbalanced design. Because kelp recruits 

emerged over a period of several months in the spring and early summer, we surveyed 

tiles in September, 2008 to allow kelp recruit emergence and facilitate comparison 

between tiles. Because of the high density of kelp recruits on tiles, divers counted only 

larger recruits ( 3 - 6  cm) and then photographed tiles in situ for quantifying smaller 

recruits ( 0 - 3  cm) in from photos. We analyzed photos by counting all identifiable kelps 

smaller than 3 cm without magnifying the photograph to ensure consistency in 

enumeration. We then combined counts o f both size classes for total number o f kelp 

recruits.
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Statistical Analyses

Because of a high abundance of zeros, we tested the effect of tile deployment time 

on recruit abundance using two analyses. We first tested the effect of timing of 

deployment (as a continuous variable) on the presence or absence o f kelp recruits using 

logistic regression. With this model we generated predicted probabilities of observing one 

or more recruits following deployment with 95% confidence intervals. We then 

eliminated periods where recruitment probability approached zero, and tested for 

differences in density between sites and among months of deployment (nominal) using a 

repeated measures analysis with the functoin Ime (linear mixed effects model) in R (R 

Development Core Team 2009), including station as the random factor. This method, 

while similar to repeated measures ANOVA, uses restricted maximum likelihood 

estimation and allows use of our unbalanced design.

RESULTS 

Lynn Canal Reef Surveys

We found the kelps Saccharina bongardiana and Agarum clathratum as well as 

recruits at all reefs, while Laminaria yezoensis was absent from two reef (Figure 1.6 A

D). PERMANOVA results show that collectively, the kelp community varied 

significantly between transects within reefs (Figure 1.7 B, Table 1.1), varied least among 

reefs, and exhibited the greatest degree of variability among replicate plots within each 

transect, hereafter referred to as residual variation (Figure 1.7 B, Table 1.1). Graphical 

depiction o f the dispersion of the kelp community via ordination (nMDS) illustrates 

separation o f reef point clouds (Figure 1.7 A), but it remains minor in comparison to
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overall dispersion. Thus, despite L. yezoensis ’ absence from two reefs, the kelp 

assemblage (all kelp species plus recruits) variation between replicate plots and transects 

within reefs was greater than reef variation.

On a univariate scale, Saccharina bongardiana, Agarum clathratum, and kelp 

recruits exhibited mostly residual variation rather than variation among transects within 

reef or among reefs as indicated by the magnitude of estimated variance components 

(Figure 1.6 E-G). For these variables, we could not reject that variance among reef or 

transect within reef differed from zero at a = 0.05 (Table 1.2). In contrast, the fact that 

we found the kelp Laminaria yezoensis (Figure 1.6 D) at only four of the six sites made 

estimates of variance components through ANOVA unreliable (because of a high 

abundance of zeros). Kelp canopies and algal crusts covered a large percentage of 

surveyed plots on average ( x kelps = 59% ± 35 SD and xcrusts = 46% ± 27 SD when

combining taxa; n = 72, Figure 1.8 A-E). Most o f the variance for algal crusts and 

canopies of Agarum clathratum and Laminariaceae rested in the residual, with some 

variation for brown and red crusts among reefs, albeit not statistically different than zero 

(Figure 1.8 G-K, Table 1.2). The other major space occupier at some reefs, the barnacle 

Balanus crenatus existed only at the two reefs without L. yezoensis (Figure 1.8 F, Figure 

1.6 D).

Kelp Recruitment on Natural Reefs, Disturbed Habitat and Artificial Reefs

Artificial reef plots and cleared natural reef plots hosted greater kelp recruit 

density at both locations when compared to control plots (non-cleared plots on natural
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reefs) ( x clear = 231 m'2 ± 303 SD and x AR =116 m"2 ± 112 SD versus xcnnlrn, = 13 m"2 

± 26 SD, with n = 20, 20, and 14, respectively, Figure 1.9 A, Table 1.3). The West 

locations had fewer recruits ( x  = 89 m -2± 110 SD) than Eastern locations (x  = 171

m'2 ± 274 SD, and 28, Table 1.3), yet a significant interaction between treatment and 

location (Table 1.3) shows an inconsistency where far more kelps recruited to East 

cleared plots than West cleared plots, but fewer kelps recruited to East artificial reef plots 

than West artificial reef plots (Figure 1.9 A).

We found a distinct species specificity in juvenile kelp density in our control, 

cleared, and artificial reef plots (Figure 1.9 B, C). While adults of Agaum clathraum, 

Saccharina bongardiana and Laminaria yezoensis were present at both natural reef 

locations (Figure 1.6 A-D), we found only 4% of plots hosted A. clathratum juveniles (on 

one East and one West natural reef scraped plots, n = 4 and 3, respectively, Figure 1.9 C) 

and 54% of plots hosting Laminariaceae (lumping S. bongardiana and L. yezoensis) 

juveniles. When examining Laminariaceae juvenile density among plot types and 

location, a very different pattern emerged than we saw for the recruits. We observed 

significantly more Laminariaceae juveniles on the West plots (x  = 111m'  ± 6 0  SD) 

than on the East plots (x  = 11 m'2 ± 28 SD; Figure 1.9 B, Table 1.3), but no effect of 

treatment or interaction between the two.

Sediment covered all treatments at all locations (Figure 1.9 F), with average 

percent cover of 36 % ( ± 27 SD) of cleared and artificial reef plots with a range of 0 to 

95 % cover. Neither kelp recruits nor juveniles showed significant linear correlation with
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percent sediment cover (Fi;52 = 0.22 and 0.09, p = 0.64 and 0.75, respectively, Figure 

1.10 A, B). Green algae (Ulvaceae, Figure 1.9 D) recruited in large quantities at the West 

artificial reef; barnacles (Balanus crenatus, Figure 1.9 E) recruited in all treatment type 

and location combinations except at the West artificial reef; and red algal recruitment was 

negligible (1.5 % ± 3.5 SD for Odonthalia setaceae, the red algal species with the 

greatest average percent cover). Neither kelp recruit nor juvenile density correlated with 

percent cover of any of these taxa.

In systematically surveying larger 50 x 50 cm quadrats that were not restricted to 

flat, horizontal plots, we observed significantly more recruitment to the new artificial

reefs (x  = 66 m'2 ± 48 SD) versus natural reefs (x  = 4 m"2 ± 7 SD, Figure 1.11, Table

  2
1.4). Recruits occurred in slightly higher densities in the West locations (x  = 40 m' ±

50 SD) versus those along East locations (x  = 30 m'2± 42 SD, Figure 1.11, Table 1.4). 

We observed no significant interaction between location and reef type, but found 

significant differences between transects within each reef (Figure 1.11, Table 1.4).

Kelp Recruitment Timing Experiment

Kelps settled on tiles deployed in July through December, 2007 but not on those 

installed in March, 2008 (Figure 1.12, Figure 1.13) which remained bare throughout the 

summer o f 2008. The probability o f recruitment (1 or more recruits) remains consistent 

from July through December when we prepared our experimental plots and deployed 

artificial reefs, but drops to zero by March (deviance = 43.27, d f = 2, p < 0.001, Figure 

1.12). When excluding March, 2008 tiles, recruitment abundance on tiles showed no 

difference with regards to period (F4>5 3 = 0.98, p = 0.43, Figure 1.12), or location (East



vs. West, F i;9  = 2.88 p = 0.124). Surprisingly recruitment on tiles far exceeded that in 

artificial reef and cleared natural reef plots by several orders of magnitude, averaging 82 

recruits per tile which translates to 7000 recruits m '2 ± 8400 SD with 93% of non-March 

tiles with recruits. In contrast we saw an average of 0.8 juveniles per tile, with only 17% 

of non-March tiles with kelp juveniles.

DISCUSSION

This study focused on documenting patterns of kelp recruitment in neighboring 

locations on bare versus occupied space, and on bare space introduced in different 

periods in time. Our results show that while understory kelps colonize small clearings 

and artificial reefs within several months, colonization occurred with dramatic variability 

and apparent differences among kelp taxa. Although a plethora of literature exists 

concerning the recruitment dynamics of benthic, subtidal species in temperate regions 

and open coast systems, this study provides a novel quantitative description of the 

variable colonization potential of kelps in this high latitude ijord.

Providing context for our experiments, Lynn Canal reef survey results 

demonstrate that kelps and algal crusts maintain consistent presence across reefs and that 

reefs provide accurate (although not necessarily precise) representations o f one another 

with regards to the algal community. No significant variation in the kelp assemblage as a 

whole occurred among reefs, but rather occurred among transects within reef and in the 

form or residual variation. These results support the use o f Yankee Cove reef habitats as 

generally representative of the structure of understory kelp dominated reef in the region 

in terms o f the algal assemblage. An interesting exception to the overall pattern, one kelp
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and one space occupier existed patchily among reefs; Laminaria yezoensis existed at only 

four of six reefs with the barnacle Balanus crenatus at two of six. These two species only 

appeared in reefs lacking the other, suggesting a possible interaction or perhaps opposite 

population responses to external factors such as current or exposure differences.

At Yankee Cove, kelps recruited to bare areas in densities exceeding that in 

undisturbed communities indicating a dramatic influence of established biological 

communities. This rapid colonization of large bare areas agrees with previous temperate 

studies in California and Washington, where native kelps colonized newly available 

artificial reef habitats within one year (Reed et al. 2004, Wyllie-Echeverria et al. 2005). 

Similar phenomena occur following the disappearance of urchins from barren habitats in 

Nova Scotia (Johnson & Mann 1993) open coast areas of Alaska (Estes & Duggins 

1995), California (Ebeling et al. 1985) and other regions (Steneck et al. 2002). It was 

surprising in our study that patterns o f kelp recruitment varied at the East and West 

locations. Kelps recruited in the highest densities at the artificial reef at the West location 

but at the highest densities on the cleared plots at the East location. The combination of 

patchy recruitment densities and small plot sizes combined to provide large variability. 

Although we minimized the distance spores must travel in reaching artificial reefs and 

selected for homogeneous plots, zoospores can settle in highly variable densities within 

or near an adult stand (Reed 1990, Reed et al. 1997). Our systematic, larger 50 x 50 cm 

quadrats better accounted for this variability and show artificial reefs consistently hosted 

significantly more recruits than natural reefs at both locations. Collectively, these results 

illustrate the strong potential of kelps to colonize bare space in this region.
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Our results show large differences both in Laminariaceae juvenile densities by 

location, despite only 100-200 meters of separation. Laminariaceae juveniles occurred in 

consistently greater densities on the West natural and artificial reef plots than on East 

natural and artificial reef plots. We suspect increased growth rates at the West locations 

resulting from environmental differences facilitated faster transition to the larger size 

class. West reefs lie approximately 100 m from the East reefs, yet because East reefs lie 

protected from the northern exposure, they may occupy slightly different physical 

habitats. West and East sites showed no difference in temperature profiles and only slight 

differences in salinity profiles through the photic zone (Figure 1.14). However, other 

water column properties such as turbidity or current velocity may cause such site 

differentiation. Water motion in particular can significantly alter growth and nutrient 

uptake (see Hurd 2000 for review) and development of microscopic or macroscopic 

sporophytes (Gordon & Brawley 2004). We speculate that the greater density o f kelp 

juveniles and percent cover o f Ulvaceae on the West artificial and natural reefs results in 

part from increased water motion and less turbidity around the West reefs. Moreover, 

because the East location lies on the protected side of the cove and the West location on 

the exposed side, we expect inconsistencies in the physical environment between the two 

locations may contribute to differences in propagule distribution as well as reproduction 

and development. Such differences were not isolated to kelps; both green algae and 

Balanus crenatus exhibited spatially explicit patterns. Thus, highly variable patterns of 

recruitment may arise from a combination of differential settlement, growth parameters, 

and rates o f mortality induced from grazing or physical stress and other biological



interactions. Such stochastic, location specific differences underscore not only strong 

variability in recruit densities, but also in size distributions associated with location.

Such different size distributions can result from factors such as grazing or density 

dependent effects (Dean et al. 1989). Greater density may increase competition among 

kelp recruits and depress transition rates to juvenile stages. Cleared plots on the East 

natural reef hosted more recruits but fewer juveniles that on the artificial reef 30 x 30 cm 

plots. Similarly, we saw high densities of recruits but few juveniles on settlement tiles. 

We show a vast discrepancy between the densities o f recruitment on settlement tiles and 

in experimental plots. Because we minimized the influence o f grazers on tiles, their 

increased densities may result from decreased grazer abundance in comparison to the 

benthos. Reduced recruitment from grazing may alleviate interspecific competition.

Thus, the magnitude of colonization on tiles may provide an index of propagule supply, 

but does not represent true magnitudes of recruitment on the benthos.

While we could not differentiate kelp recruits of the three primary kelp species, an 

apparent taxa specificity in juvenile kelp abundance occurred in our experimental plots. 

Agarum clathratum juveniles ( < 20 cm) occurred in only 4 % of plots in comparison to 

the 52% of plots where we found Laminariaceae juveniles (including Saccharina 

bongardiana and Laminaria yezoensis). Such a difference may originate from 

differences in recruitment timing, growth rates, and/or reproductive output. Considering 

that L. yezoensis, S. bongardiana and A. clathratum adults existed consistently at both of 

our Yankee Cove natural reefs, we infer that propagule availability and environmental 

conditions are sufficient for sustaining populations o f all three species. Marine benthic
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species frequently employ alternative strategies for competitively colonizing and 

retaining space (Levin 1984, Airoldi 2000). In northern Norway following removal of 

urchins, the annual kelp Saccharina latissima colonized quickly followed by a slow 

subsequent colonization by the dominant perennial Laminaria hyperborea (Leinaas & 

Christie 1996). Considering the different perennial life histories o f Agarum clathratum 

and our Laminariaceae kelps, observed differences in juvenile abundance may result from 

different reproductive output in terms of timing of recruitment or overall quantity of 

propagules produced, a common occurance in sympatric kelps. For example, in 

California, Pterygophora californica only produces spores from November through April 

(Reed et al. 1996) but sympatric Macrocystis pyrifera produces spores year round (Reed 

et al. 1996). But unlike M. pyrifera and P. californica, the coexistence of Agarum  spp. 

and Laminariaceae kelps in both the north Atlantic and north Pacific provides a uniquely 

provocative dynamic as these persist perennially, coexist and compete for the same 

location in the water column. Previous studies qualitatively support our observations of 

quick colonization by Laminariaceae kelps and slower recruitment of Agarum spp. in the 

San Juan Islands, Washington (Vadas 1968) and Nova Scotia (Johnson & Mann 1988). 

However, such regional comparisons of genera should be made carefully as species 

within individual genera may exhibit different patterns of reproduction in different areas, 

as shown by California M. pyrifera reproducing year round but not Macrocystis 

integrifolia in Alaska (Stekoll & Else 1992). Considering that Laminariaceae often 

dominate Agarum spp. in competition (Dayton 1975, Duggins 1980), the difference in



juvenile density between A. clathratum and Laminariaceae is intriguing and worthy of 

further study.

While sediments can decrease attachment capabilities of spores and induce 

gametophyte mortality by burial (Devinny & Volse 1978), in our experiment we saw no 

meaningful impact of sediment on kelp recruits or juveniles. Glacially fed riverine 

discharge in Southeast Alaska, which can serves as a proxy for glacial sedimentation, 

runs high in spring and summer months, but drops to near zero when kelps settle in late 

fall (Figure 1.15) near Juneau Alaska (Figure 1.2). Recruiting kelp stages may avoid the 

negative influence o f sedimentation with early settlement, reproduction, and development 

of susceptible stages during the season of low freshwater discharge and sedimentation.

We were not able to quantitatively assess sedimentation over time. It is possible that 

sedimentation could be important in later stages of kelp colonization and is a topic 

worthy of further study.

While our field experiment included the introduction of bare space in December, 

our settlement tile experiment demonstrates that space made available between summer 

and late fall holds a consistently high probability of hosting recruits the following spring 

(Figure 1.12), assuming adequate growth conditions exist. The density of recruitment 

remained homogeneous so long as the timing of space availability took place in that 

window, with settlement finishing before spring (although when settlement commences 

remains unknown). This pattern of late-fall settlement is similar to that found by Reed et 

al. (1988), who demonstrate a distinct spike in Macrocystis pyrifera and Pterygophora 

californica wintertime settlement. Several seasonal factors make late fall or early winter
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settlement advantageous in this cold marine environment. Storm intensity often increases 

in late fall and winter, which may significantly increase the availability o f suitable habitat 

for colonization, particularly by displacing boulders covered with inhibitory algal crusts. 

Wintertime reduction in kelp canopies may free light to the benthos which becomes 

scarce at these latitudes in winter. Additionally, kelp gametophytes’ capability to 

withstand extremely low temperatures and low light (Dieck 1993) allows them to survive 

when temperatures drop to lows of around 3° C (Figure 1.15). While some benthic taxa 

require disturbances which coincide precisely with abundance o f their recruiting life 

stages for successful colonization (Levin 1984), we demonstrated that kelps can take 

advantage of space made available through half of the year.

The recruitment capabilities of species in disturbance prone, competitive 

environments can represent a critical component of population persistence. In this study, 

kelps rapidly colonized both artificial reefs as well as small clearings liberated from 

established competitors, and may do so as long as space becomes available during a large 

window from the summer through late fall. Moreover, differences between kelp taxa in 

patterns of recruitment exist. Such differences raise questions concerning what different 

strategies of reproduction or growth different kelp species employ and how these 

contribute to the interaction of these coexisting of kelp competitors Lynn Canal.

Although we demonstrated a large colonization potential for kelps in this region, overall 

recruitment depends upon stochastic factors that can vary considerably by location and 

from plot to plot. These results illustrate that kelps are highly adapted to take advantage



of bare space in many forms, albeit with dramatic variability in space with large 

differences among kelp species in this high latitude Alaskan fjord. 
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Figure 1.1: Saccharina bongardiana sloughing sorus tissue.
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Figure 1.2: Map of the location of Lynn Canal, reef survey sites and Yankee Cove 

artificial reefs offshore of the low water shoreline at Yankee Cove. Black circles 

represent survey sites, and crosses represent river drainages. Artificial reef (AR) sites are 

indicated by black rectangles, natural reef (NR) sites are approximated by brackets, and 

East and West locations are denoted.



Figure 1.3: Yankee Cove.



Figure 1.4: The West Yankee Cove artificial reef in January, 2008.



Figure 1.5: Settlement tiles installed in March, 2008 before kelp recruits appeared.
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Figure 1.6: Density o f Lynn Canal kelps, kelp recruits, and associated variance 

components. (A-D) Mean density of kelp recruits and adult kelps in the Lynn Canal by 

reef from surveys. Error bars represent 1 SD. (E-H) Proportion of variance from 

individual ANOVAs for recruit and adult kelp density (In ( +1 ) transformed) from each 

spatial scale (reef, transect and residual). The sum of all variance components for each 

response variable is displayed in each figure. Inestimable indicates that we could not 

estimate variance components due to serious violations of homogeneity o f variance and 

normality. Statistical tests for variance components are reported in table 1.2. *variance 

components rounded to zero because of negative estimates.
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Figure 1.7: nMDS and PERMANOVA results showing (A) Non-metric multidimensional 

scaling (nMDS) plot based upon densities (m‘2) of three kelp species and kelp recruits 

from Lynn Canal reef surveys at six sites, calculated from a Bray-Curtis matrix of 

similarities using In ( +1 ) transformed and standardized (by maximum) variables.

Shown are the first two o f three nMDS axes, stress = 0.12. Site abbreviations represent 

the following: SI = Shaman Island, Cl = Colt Island, SST = Shrine of St. Therese, Al = 

Aaron Island, YCE = Yankee Cove East, YCW = Yankee Cove West. (B) Proportions of 

sum of components of variation from different spatial scales (reef, transect within reef 

and residual) estimated using PERMANOVA.
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Figure 1.8: Percent cover and variance components of Lynn Canal benthic taxa. (A-F) 

Mean percent cover of kelp blades and competitors for by reef from surveys. Error bars 

represent 1 SD. (G-L) Proportion of variance from ANOVAs for recruit and adult kelp 

density (In ( +1 ) transformed) representing reef, transect in reef, and residual. The sum 

of all variance components for each response variable is displayed in each figure. 

Inestimable indicates that we could not estimate variance components due to serious 

violations of homogeneity of variance and normality. Statistical tests for variance 

components are reported in Table 1.2. *variance components rounded to zero because of 

negative estimates.
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Figure 1.9: Density and percent cover of flat, horizontal 30 x 30 cm plots. Mean density 

of (A) kelp recruits (< 6 cm tall) with common letters indicating no statistical difference 

from Tukey pairwise comparisons, (B) Laminariaceae juveniles (< 20 cm tall), and (C) 

Agarum clathratum juveniles; percent cover by (D) Ulvaceae, (E) Balanus crenatus and 

(F) sediment in undisturbed control plots, cleared plots and artificial reef plots Error bars 

represent 95% Cl.
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Figure 1.12: Kelp recruitment on settlement tiles. Mean number of kelp recruits (grey 

squares, left axis) on settlement tiles in September, 2008 versus the month in which they 

were deployed with the sample size denoted above with black error bars representing 

95% CI. Proportion of tiles with recruits (dark circles, right axis) in September, 2008. 

Predicted probability of a tile hosting one or more recruits (grey triangles, right axis) 

from logistic regression with dashed error bars representing 95% CI o f the model 
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Figure 1.13: Kelp recruits on a settlement tile along with the barnacle Balanus crenatus 

and Margarites pupillus in June, 2008.
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Figure 1.14: Temperature and salinity profiles at Yankee Cove East (grey) and West 

(black) locations by depth taken from a single CTD cast at a tidal height o f 3 m, 

recording both on descent and ascent at each location .
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Figure 1.15: Daily minima in temperature and mean Mendenhall River discharge./
Temperature data comes from a logger at 6 m below MLLW at Yankee Cove; discharge 

data provided by the United States Geological Survey (USGS 2009).
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Table 1.1: Results of PERMANOVA testing for variation in structure o f kelp 

assemblages among reef and transect within reef. Analyses based on Bray-Curtis 

dissimilarities from log (+1) transformed and standardized (by the maxiumum x 100). 

Each term was tested using 999 random permutations. Estimates o f components of 

variation are provided for reef, transect, and residual. ** p < 0.01, ns: not significant.

Source
df MS F Com ponent of 

variation

R eef 5 2619.1 1.7 ns 86.3
Transect in R eef 6 1583.4 2.2 ** 145.7
Residual 60 709.2 709.2
Total 71
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Table 1.2: Individual ANOVAs from survey data testing whether variance from spatial 

scales differs from zero for kelp species, kelp recruits, and encrusting algae, segregated 

by density ( n f 2 ) and percent cover data. +p <0.1, ns: not significant.

Response

Source

2
#  per m 

M S F

Location Transect Residual Location Transect

S. subsimplex 1.05 1.35 0.62 0 .78 ns 2 .17  ns +

A. clathratum 1.67 0.78 0.39 2 .16 ns 1.98 ns +

Kelp Recruits 6.50 3.75 1.79 1.73 "s 2.10  ns +

df 5 6 60

% Cover

Response MS F

Source Location Transect Residual Location Transect

Lam inariaceae 7.66 4 .98 4 .85 1.54 ns 1.03 ns

A. clathratum 8.32 11.64 5.51 0.72 ns 2.11 ns +
Red Crust 11.27 2.84 1.69 3.97 ns + 1.68 ns
Brown Crust 7.18 2.19 1.92 3 .28 ns + 1.14 ns

Encrusting Coralline 1.84 3.48 1.97 0 .53 ns 1.77 ns
df 5 6 60
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Table 1.3: Yankee Cove experiment ANOVA table. Tests of hypotheses o f no difference 

in density ( m '2 ) of kelp recruits and Laminariaceae juveniles (In ( + 1 ) transformed) 

among treatments (artificial reef plots, cleared natural reef plots, and undisturbed control 

plots) or location (East and West Yankee Cove locations) or location and treatment 

interaction. * p < 0.05, *** p < 0.001, ns: not significant.

Source Recruits Lam inariaceae Juveniles

Df M S F Df M S F

Location 1 15.83 12.20 ** 1 13.47 5 .16 ***
T reatment 2 14.64 11.28 *** 2 1.01 1.18 ns
Location x Treatm ent 2 19.39 14.94 *** 1 0.31 0 .36  ns
Residual 48 1.30 48 0.86
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Table 1.4: Yankee Cove transect survey ANOVA table. Tests of hypotheses o f no 

difference in density ( m-2 ) of kelp recruit (log +1 transformed) on 50 x 50 cm quadrats 

along transects on artificial and natural reefs, with factors including reef location, reef 

type, reef location and type interaction, and transect within location and reef.

Source

Df MS F

Location 1 6 .96 6.72 *
R eef Type 1 86.94 83.98 ***
Location x R eef Type 1 0.00 0.00 ns
Transect in (Location x R eef Type) 4 4.58 4.42 **
Residuals 40 1.04
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COEXISTENCE BETWEEN SUBTIDAL ALGAL CRUSTS AND KELPS1
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Chapter 2

'Okamoto, D.K., M.S. Stekoll & G.L. Eckert. 2009. Recruitment inhibition, reproductive 

inundation and coexistence between subtidal algal crusts and kelps. Prepared for 

submission in Ecology Letters.
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ABSTRACT

Understanding coexistence among dominant plant groups requires identifying the 

mechanisms of interactions between coexisting competitors. Southeast Alaskan kelp 

forest host abundant canopy species and encrusting algae which dominate the rock 

beneath. We combined field surveys with laboratory and field experiments to investigate 

the role o f subtidal encrusting algae in preempting recruitment o f coexisting kelp species. 

Saccharina bongardiana f. subs implex failed to recruit on brown and red non-calcified 

crusts, although brown crusts hosted both settlement and germination. In field plots, 

clearing space by scraping algal crusts drastically increased kelp recruitment success. In 

unscraped plots only non-crust surfaces hosted kelp recruitment. Preemption o f kelp 

recruitment by crusts may explain the reduction of kelps in crust-dominated habitats. The 

ability o f kelps to take advantage of small amounts of bare space likely compensates for 

the competitive space-occupancy advantage o f crusts, and possibly explains why this 

interaction did not translate to competitive exclusion in nature.



INTRODUCTION

The presence o f multiple species functional groups (e.g. canopy, understory, or 

space occupying species) in plant communities can substantially increase productivity in 

terrestrial (Tilman 1999) and marine environments (Griffin et al. 2009), amplify 

ecosystem services (Diaz et al. 2007) and generate invasion resistance (Britton-Simmons 

2006). While common anatomical and morphological characteristics define functional 

groups, competition for resources frequently occurs among coexisting functional groups. 

Much controversy exists concerning how species coexist when species compete for 

identical resources (Silvertown 2004). In the event of functional differences between 

competitors, models which incorporate ontogenetic shifts in competitive capability 

among species (Loreau & Ebenhoh 1994) or relax assumptions of preemption (Calcagno 

et al. 2006) can allow for coexistence. Interactions between canopy species and space 

monopolizers provide a provocative case where contrasting functional groups may co- 

dominate despite strong competitive relationships.

Established adults of canopy forming species hold competitive advantage with 

respect to light, yet their recruiting stages lack such advantage and must compete with 

other space-occupying species. In several cases interactions between canopies and space 

occupiers may range from facilitation to competitive exclusion depending upon 

circumstance. Examples include trees and grasses in Savannas (Scholes & Archer 1997), 

bryophyte mats and conifers in temperate forests (Nakamura 1992), coral reefs and 

macroalgae (McCook et al. 2001), and understory and canopy corals (Connolly & Muko 

2003). Most research concerning these functional groups, especially in the marine



environment, focuses on how space occupiers persist beneath the canopy, rather than how 

space occupiers influence canopies and how the canopy can persist in the face o f space 

preemption.

Temperate, nearshore marine habitats often host several dominant, coexisting 

functional groups of macroalgae (Steneck & Dethier 1994). Kelps (order Laminariales) 

which form surface and subtidal canopies can dominate light (Reed & Foster 1984), alter 

water flow & increase particulate deposition (Eckman et al. 1989), and erode and 

suppress benthic species via physical abrasion (Irving & Connell 2006b). Yet lying 

beneath the canopy, an epithelium of calcified and non-calcified algal crusts often forms 

a skin over the benthos, transforming an abiotic surface into living substrate (Figure 2.1).

Algal crust-dominated, kelp free communities establish frequently in nature 

(Steneck et al. 2002) and may persist for decades without regenerating formerly dense 

kelp stands (Matsunaga et al. 1999; Martinez et al. 2003). Such barren areas may result 

from grazing (Bulleri et al. 2002), runoff from coastal anthropogenic activity (Matsunaga 

et al. 1999), as well as oceanographic changes which can cause deforestation (Martinez et 

al. 2003) and cyclical fluctuations in kelp abundance (Dayton et al. 1992). Morevoer, 

algal crusts can withstand partial overgrowth by understory canopies and algal turfs 

(Airoldi 2000; Dethier & Steneck 2001; Bulleri 2006; Underwood 2006) and thrive 

despite high rates of sedimentation (Connell 2003, 2005). In some cases canopies can 

facilitate the presence of crusts (Irving et al. 2004; Irving & Connell 2006b).

While kelps’ canopy forming life-stage often monopolizes light, they also release 

millions of vulnerable, microscopic, reproductive stages which settle on the benthos,
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where germination, fertilization and sporophyte development occur (Steneck et al. 2002). 

Kelps’ high reproductive potential can lead to rapid colonization (within one year) up to 

several km from a source of propagules, (Reed et al. 2004; Wyllie-Echeverria et al.

2005). While subtidal canopies can affect survival of successful recruits (Reed & Foster

1984), algal crusts may inhibit recruitment altogether, as shown with the invasive fucoid 

Sargassum muticum (Britton-Simmons 2006). Some algal crusts exhibit antifouling o f 

turfs (Johnson & Mann 1986; Bulleri et al. 2002) and invasive macroalgae (Britton- 

Simmons 2006; Britton-Simmons & Abbott 2008). Proposed antifouling mechanisms 

include epithelial sloughing (Johnson & Mann 1986, Littler & Littler 1999) or allelopathy 

as exemplified by inhibition of cultured sporophyte production by extracts from the 

calcified crust Lithophyllum (Suzuki et al. 1998). Moreover, various characteristics of 

the benthic boundary layer can influence settlement of zoospores, including chemical 

microclimate and surface properties (Amsler et al. 1992). Thus crusts may pose a 

considerable threat to the vulnerable recruiting stages of kelps through preemption.

Despite these facts and the potential ecosystem impact of algal crust preemption 

on kelps, a gap remains in the literature detailing the direct influence o f encrusting 

species on native canopy species in nature and impacts on their coexistence. Potential 

negative impacts o f crusts may include direct inhibition of recruitment or crusts 

facilitating increased abundances o f herbivores (Day & Branch 2002). If crusts can 

reduce recruitment of coexisting kelps, they will increase the thresholds of recruit 

survivorship required for population maintenance. Moreover, in the event that kelps 

cannot recruit upon algal crusts dominating the substrata, and kelp zoospores rely upon



chance in locating the remaining suitable substrata, then threshold levels of zoospore 

abundance required of populations will also increase. Therefore demonstrating the effect 

of crusts on kelp settlement and recruitment can provide insight into inter-guild 

competition and coexistence and provides a step towards quantitative predictions of 

sensitivity and resiliency in this ecosystem.

In this study we utilized multiple approaches to understand the effect of algal 

crusts on kelps and kelps’ recruitment response in the face of algal crust dominance. We 

documented how the benthic community of crusts influenced densities of adult kelps and 

kelp recruits using field surveys. We assessed the nature of the interaction between 

crusts and kelp recruits using manipulations in the field. Lastly, we conducted laboratory 

assays to determine the direct influence of algal crust taxa on recruitment of sporophytes 

and settlement and germination of zoospores.

METHODS 

Field Surveys and Field Plot Experiment

R eef Surveys

We investigated the relationship between algal crusts, kelp recruits and adult 

kelps using field surveys. All subtidal surveys, collections and experiments were 

conducted using SCUBA. In southern Lynn Canal near Juneau, Alaska, USA, exposed 

rocky reefs host mixed stands of kelps (Laminariales), algal crusts (Figure 2.1), other 

benthic algae, and encrusting invertebrates. Reef composition includes bedrock, 

boulders, as well as large cobble.
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To document patterns of community structure, we surveyed six subtidal rocky 

reefs (Figure 2.2). We selected reefs that were similar to our field experiment site (see 

Experimental Manipulations below) with respect to exposure, gentle slope and mixed 

bedrock, boulder habitat. At each reef, we surveyed two 30 m transects at 5 m below 

mean lower low water (MLLW). This depth represents the approximate median depth 

range o f Saccharina bongardiana f. subs implex, the most abundant understory kelp

(Okamoto, pers. obs.). Along each transect we first quantified all adult kelps within six 1

2 2 m quadrats and then within 0.25 m of the larger quadrat enumerated kelp recruits and

percent primary cover (using point-contact methods) of the benthos occupied by

encrusting algal species as well as sand and bare rock.

Experimental Manipulations

To evaluate the interaction between crusts and recruiting kelps in the field, we 

manipulated crust abundance at one of the survey reefs, the west reef at Yankee Cove 

(58.58970 N, 134.90556 W; NAD 83, Figure 2.2) near Juneau, Alaska. In May 2007 we 

selected 23 flat, horizontal, 30 x 30 cm plots along the two surveyed 30 m transects at 

this site (the same transects but different plots than in surveys detailed above). Outside 

each plot we fixed two evenly spaced, labeled PVC markers to the rock with marine 

epoxy (Z-Spar™ Splash Zone Compound A-788, Z-Spar, Los Angeles, CA). These 

markers also served as anchor points for a square PVC quadrat which snapped into place 

over the plot markers for consistent repeated measurements. We surveyed plots prior to 

plot manipulation in November, 2007 for erect algae, kelp recruits, and percent primary 

cover by encrusting algal taxa and other encrusting taxa. On December 5th, 2007, we



randomly assigned and applied one of three treatments to each plot, including 1)9 plots 

cleared o f all non-encrusting algae, encrusting algae, and sessile animals using chisels, 

hammers, and scraping implements, hereafter referred to as “scraped” plots; 2) 5 plots (a 

reduced sample size due to logistical constraints) cleared of upright algae and non

encrusting organisms with crusts wiped clean using a neoprene pad, hereafter referred to 

as “cleared” plots; and 3) 9 unmanipulated plots, hereafter referred to as “control” plots. 

In April, 2008 we quantified kelp recruitment in all plots and recorded whether kelp 

recruits occurred on crusts or on other substrata, and recorded primary percent cover of 

algal crust taxa (red crust, brown crust, and calcified red crust).

Statistical Analyses

We examined the relationship between abundance of kelps, kelp recruits, crust

cover and bare rock from reef survey data using a linear regression of the square root of 

2 .
adult kelp density (m‘ ) with respect to percent crust cover, and linear regressions of the 

square root of kelp recruit density (m'2) with respect to percent crust cover, percent bare 

rock, and number of adult kelps. For the field plot experiment we utilized a one-way 

analysis of variance (ANOVA) testing the hypothesis of no difference in mean kelp 

recruit density among treatments. We then used planned contrasts in testing our a priori 

hypotheses of 1) no difference in means between cleared and control plots and 2) no 

difference in means between the latter groups (combined) and scraped plots (adjusting a 

using the sequential Bonferroni method for our two hypotheses). In the experimental 

plots we examined the relationship between algal crusts and kelp recruitment with linear 

regression of the square root of recruit density with respect to percent crust cover.



Lastly, we compared kelp recruitment density on crust and non-crust substrata within 

each experimental plot using one-sided, paired t-test. We performed all analyses using R 

(R Development Core Team 2009).

Laboratory Assessment of Recruitment on Algal Crust and Bare Substrata

We investigated recruitment of microscopic Saccharina bongardiana sporophytes 

on three major crust taxa or bare rock in a laboratory assay in which we exposed spores 

to paired bare rock and crust treatments within small aquaria, allowed settled spores to 

germinate, and enumerated juvenile sporophytes 35 days after settlement. We collected 

rocks (20 cm diameter maximum) from Yankee Cove near Juneau, Alaska at 

approximately 5 m below MLLW. Each rock had a horizontal surface ubiquitously 

covered by at least 15 x 15 cm of either a single brown crust, a non-calcified red crust, or 

a calcified crust. We transported the rocks in seawater and placed them in flowing 

seawater at our lab. We protected an 8 x 15 cm flat crust section on each rock using 

sponges and paper towels wetted with sterile seawater and cleaned the remainder o f the 

rock by sterilizing it with a butane torch 3 cm outside of the protected region. Epiphytes 

were removed from all rock surfaces by gently brushing each crust surface with paper 

towels moist with sterile seawater. We then divided the protected 8 x 1 5  cm crust surface 

and cleared one half using a fine wire brush leaving the other half unmanipulated. 

Therefore, each rock served as a replicate with a cleared and crust treatment (n = 4, 5 & 7 

for brown, non-calcified red, and calcified crusts respectively). Though we began with 

eight replicates for each taxa, introducing live crusts to our mesocosms lead to 

contamination by filamentous brown algae of several replicates. Thus we utilized only
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those replicates with no sign of contamination. We created an individual mesocosm 

around the isolated 8 x 15 cm experimental surface on each rock by attaching a square 1 1 

plastic food storage container with an 8 x 15 cm section removed. Containers were 

sealed to the rock using a combination of HoldFast™ non-toxic aquarium epoxy 

(Aquarium Systems, Sarrebourg, France) and hot glue such that mesocosms did not leak. 

During all preparations we kept crust surfaces wet with sterile paper toweling saturated 

with enriched seawater (see Experimental Application and Analysis o f  Laboratory Assay 

below). These rock-container aquaria then served as mesocosms for our experiment. We 

provided fresh air through a submerged air stone and a portable aquarium pump. 

Coverslips were attached to the horizontal surfaces o f the food container to monitor 

microscopic settlement before kelps could be seen under a dissecting scope.

Experimental Application and Analysis o f  Laboratory Assay

To obtain kelp spores, we collected reproductive S. bongardiana from Yankee 

Cove in October, 2007. We prepared fertile sori by scrubbing S. bongardiana with paper 

towels, rinsing with sterile seawater several times, wrapping them with moist, sterile 

paper towels and then placing them in the dark at 4 °C for 12-24 h (Stekoll & Else 1992). 

Thereafter we provided light, temperature, and osmotic shock by immersing them in 10 

°C sterile, modified Provasoli Enriched Seawater (PES) created with filtered seawater 

(Millipore, 0.45 pm pore size) as detailed in Stekoll & Else (1992). After 1-2 h sori 

released a dense cloud of spores. We quantified spore densities using a hemocytometer 

and standardized spore solutions to 10,000 spores m l'1. Typical spore densities released 

were 200,000 to 1,000,000 spores m l'1. Final spore solution consisted o f modified PES



treated with 0.66 mg 1 _1 GeC>2 to reduce diatom contamination as well as 0.02 g 1 

Penicillin G to reduce bacterial contamination (Stekoll & Else 1992).

We provided each rock container with 1 1 of spore solution and left them 

incubating in the dark for 48 h at 10-13 °C; after which we changed to a photoperiod of 

16:8 (light:dark) and exchanged PES medium weekly. We randomized the orientation (to 

the right or left in the incubator) o f treatments within the incubator in order to avoid a 

confounding influence of orientation with treatment effects. Monitoring o f coverslips 

took place weekly until all visible female gametophytes (excluding those which produced 

extensive vegetative growth rather than eggs) under multiple fields of view produced 

sporophytes large enough for visualization under a dissecting scope. At this point (35-37

-y
d after spore settlement), we photographed five 3 mm sections of each crust and bare 

rock patch, selected haphazardly, through a dissection scope, as well as photographing 

sections from the horizontal sides of each container adjacent to each treatment surface, 

and three sections from each of two coverslips. Where feasible all sporophytes were 

counted in each photograph. In photographs where sporophytes clearly exceeded several 

hundred, we subsampled using a frame with 8 rectangular subsamples each consisting of 

1 /64th of the photograph placed over each photo and scaled up (8x) to an estimate o f the 

total abundance in the photograph.

Statistical Analyses

We tested the hypotheses of no effect of taxa, treatment, or taxa*treatment 

interaction with the individual aquaria and patch nested within each aquaria serving as 

random factors in a repeated measures analysis with a linear mixed effects model with the
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function Ime in R (R Development Core Team 2009). We used the square root of 

sporophyte densities (mm'2) for each photograph as a subsample within each replicate 

patch.

Laboratory Assessment of Settlement and Germination on Algal Crust and Bare 

Substrata

We collected rocks containing crusts as described above, and chipped off small 

sections (approximately 5 mm in diameter) of the rock which contained a single algal 

crust or bare rock using a hammer and chisel. These chips served as replicates within an 

experiment testing the hypothesis that kelps settle and germinate upon algal crusts. We 

placed each chipped rock section, after being stored for 24 h in sterilized sea water, into 

well plates (24 wells) with 3 ml modified PES medium in each well. We also placed 

glass coverslips into some wells as controls for any staining effect.

In order to determine the stage at which inhibition of kelp recruitment occurred, 

we used epi-fluorescence and fluorescent stains as a unique method to track cell presence 

and fate upon non-transparent or irregular surfaces. We employed this tool to determine 

whether pre-stained spores settle and germinate upon brown algal crusts at the same 

densities as upon bare rock. Other crust taxa produced excessive background 

autofluorescence that prevented visualization of microscopic epiphytes with fluorescent 

microscopy. We exposed a 255,000 spores ml"1 spore solution for 3 h to different 

concentrations (0, 5, and 22.5 pM in filtered seawater) of CellTracker™ green CMFDA 

(provided from a stock solution at lOmM in anhydrous DMSO, Invitrogen, USA) in 

independent glass vials kept on ice which kept spores from settling during staining. We
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then injected each well in the well plates with 60 pi of the appropriate spore solution and 

placed the well plates into an incubator at 10°C for 24 h in the dark. We used three stain 

concentrations to test the effect of the stain on settlement and germination o f spores.

Spore settlement was evaluated on the substrata with light and/or epifluorescence 

microscopy after the 24 h incubation period. We compared mean abundance of settled 

and germinated spores on substrata placed in wells (coverslips, bare rock, and crust 

chips), and we tested for differences between stain concentrations (0, 5 and 22.5 pM).

Statistical Analyses

For the evaluation of CellTracker™ Green CMFDA on spore settlement and 

germination, we used a one-way ANOVA with our three concentrations as treatments.

We used a one-way ANOVA to test the hypothesis of no mean difference in spore 

abundance on crust, bare rock, and coverslip treatments.

RESULTS

Field Surveys and Field Plot Experiment

R eef Surveys

In systematic reef surveys, understory adult kelp density correlated positively 

with algal crust percent cover of the benthos (r2 = 0.19, F ijo = 16.72, p < 0.001, Figure 

2.3 A). All three major algal crust taxa inhabited each site, with crusts taxa cumulatively 

occupying between 0 and 100% of points (Figure 2.3 A). Kelp recruit density was highly 

variable (56 m"2, SD = 110) and not significantly related to adult kelp abundance, adult 

kelp canopy cover, or crust cover (Figure 2.3 B), but correlated positively with
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availability o f bare rock (r2  = 0.12, F 1 7 0  = 9.26, p = 0.003). Okamoto & Eckert (2009) 

describe fully individual densities and percent cover by kelp species and other taxa at 

these locations.

Experimental Manipulations

Kelp recruit densities in scraped plots exceeded that in control plots and cleared 

plots (removal of everything but crustose algae) by more than 500% (F];2o = 7.15, p = 

0.015, Figure 2.4 A), whereas densities in control plots and cleared plots did not differ 

(Fi,2 o= 0.09, p = 0.77, Figure 2.4 A). Despite this pattern kelps managed to recruit to the 

small amount of non-crust spaces in plots with nearly 100% crust cover (Figure 2.4 B). 

Strikingly, kelps recruited almost exclusively on non-crust substrata rather than upon 

crusts in the field (Figure 2.4 B, t i 7 = 8.83, p < 0.001). Despite this inhibition, kelps 

exhibited a strong, though variable, capability to recruit to even minute spaces 

uncolonized by algal crusts or where invertebrates (primarily spirorbid and serpulid 

worms as well as encrusting bryozoans) had colonized on top of crusts. Within plot 

variation correlated with percent of the substrate covered by crusts, with density of 

recruits decreasing with crust abundance (Figure 2.4 B, r = 0.33, F ij7o = 10.25, p = 

0.0043). Prior to clearings, non-calcified red and brown crusts occupied a high 

percentage o f the exposed rock, while calcified crusts, invertebrates, and bare rock 

occupied less than 14% on average (Figure 2.5). When we conducted surveys, we 

observed recruits in nearly all plots.
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Laboratory Assessment of Recruitment on Algal Crust and Bare Substrata

In laboratory mesocosms we observed a 97% reduction in cultured microscopic S. 

bongardiana sporophyte densities upon brown crust patches in comparison to bare rock 

and a 99% reduction upon non-calcified red crust patches in comparison bare rock 

(Figure 2.6). However, we saw no difference in sporophyte densities upon calcified crust 

patches versus bare rock treatments. Despite significant effects o f treatment (scraping)

(F 1 , 1 2  = 29.63, p < 0.001), and crust taxa (F2 , 9  = 6.22, p = 0.02), the effect o f scraping 

differed with taxa as indicated by a significant treatment-taxa interaction (F2 ,i2  = 6.92, p 

= 0 .01).

Laboratory Assessment of Settlement and Germination on Algal Crust and Bare 

Substrata

Kelp spores settled and germinated in equal densities on brown crusts (x  = 230 

mm "2 ± 38 SE, Figure 2.7), bare rock (x  = 237 mm ~2 ± 41 SE, Figure 2.7) and 

coverslips (x  =231 mm '2 ± 25 SE, F 2 , 2 4  = 0.01, p = 0.98). There was no effect of the 

stain Cell-Tracker Green among concentrations (0, 5, or 22.5 pM) on the settlement and 

germination of S. bongardiana spores (F2,n = 0.13, p = 0.88).

DISCUSSION

Our results demonstrate that algal crusts can inhibit recruitment o f the sub

canopy; yet despite strong preemption, the small amounts of bare space left unoccupied 

proves sufficient for sub-canopy recruitment. These experimental and observational 

results show that algal crusts can directly inhibit kelp recruitment where the two groups 

coexist in the field. Our laboratory mesocosm revealed that recruitment inhibition occurs
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on the microscopic scale as a direct preemption by algal crusts, and our staining 

experiment suggests that settlement upon brown crusts is indiscriminant and thus 

inhibition occurs post-settlement. In experimental field plots this influence of crusts 

scaled up to dramatically reduce recruit densities in the field. Despite this fact, adult kelp 

densities correlated positively with algal crusts suggesting that immense preemption by 

crusts has little effect on adult kelp abundances.

We observed near complete exclusion of kelps from crust substrata in the field, 

and almost 100% microscopic sporophyte inhibition by brown and non-calcified red 

crusts in the laboratory; however, our laboratory results for calcified crusts (the least 

abundant in the field) show no immediate inhibitory effect. This preemption by algal 

crusts resonates with suggestions from previous studies. In the San Juan Islands, removal 

o f algal crust communities of mixed taxa increased recruitment of the invasive brown 

alga Sargassum muticum (Britton-Simmons 2006; Britton-Simmons & Abbott 2008). 

However algal crust antifouling literature focuses mainly on calcified crusts. In Nova 

Scotia boulders covered in the calcified crust Phymatolithon hosted less than 50% of the 

biomass of recruited fleshy algae than bare granite, regardless of species (Johnson & 

Mann 1986). Moreover, testing of the influence of calcified crust extracts on kelp 

recruitment (Denboh et al. 1997; Suzuki et al. 1998) demonstrates inhibitory chemical 

effects on kelp gametophytes and sporophyte production. In addition to chemical 

defenses, proposed mechanical antifouling by calcified crusts include epithelial sloughing 

(Keats et al. 1997; Littler & Littler 1999) and epithelial instability (Johnson and Maim 

1986). The latter may require a mechanical stimulus such as wave action, a factor which

77



we did not apply in the laboratory but may exist in nature. Moreover, because our 

experiment only took place over 37 days, calcified crusts may not have been given 

enough time for a mechanically based defense against kelp recruits. While one should 

consider such evidence when making conclusions from our calcified crust treatments, 

crusts can also affect species differentially. Near Livorno, Italy, calcified crusts reduced 

the abundance of the green alga Acetabularia acetabulum, but not filamentous algae or 

the small brown alga Padina pavonica (Bulleri et al. 2002). Because the habitat in our 

field manipulations hosted mostly non-calcified crusts, our focus lies principally with the 

most abundant groups, which our lab and field experiments indicate reduce the suitable 

habitat available for kelp recruits through preemption.

While algal crusts covered a large majority of our experimental plots and showed 

strong preemption of kelp recruits, they never completely monopolized the surface. In 

addition, Okamoto & Eckert (2009) show that complete monopolization never occurs but 

rather abundance varies highly within reefs. Algal crusts can recruit quickly (Buckley

1985), yet substratum monopolization may take far longer given their slow growth rates, 

ranging from 2-16 mm per year for some taxa in the northeast Pacific (Dethier 1994; 

Dethier & Steneck 2001). Moreover, grazers may influence not only growth rates of 

crusts (Dethier & Steneck 2001) but also facilitate overgrowth by invasive macroaglae 

(Britton-Simmons & Abbott 2008). Additionally, other organisms can easily overgrow 

crusts, such as neighboring macroalgae or settling encrusting invertebrates. Thus, while 

space occupancy by algal crusts provided limited opportunity for kelp recruitment in our



studies, such preemption proved insufficient for total exclusion of kelp recruits in the 

field.

In addition to utilizing bare space, some of the kelp recruits we observed in our 

experimental field plots recruited on top of the sparsely distributed encrusting 

invertebrates, such as encrusting bryozoans, Serpulid and Spirorbid worms, and basal 

plates of the barnacle Balanus crenatus. These encrusting organisms, in some cases, had 

settled on algal crusts. Invertebrates often hold competitive advantage over encrusting 

algae (Sebens 1986; Konar & Iken 2005), although the invertebrates can quickly 

disappear because o f predation. Despite their rarity, even minute recruitment of 

encrusting invertebrates upon crusts may alleviate preemption by crusts by providing 

small amounts o f substrate suitable for settling kelp zoospores. In this manner, 

nontransitive (cyclical) networks of competition may exist and facilitate coexistence in 

this system. Moreover, the presence of kelps can positively benefit algal crust 

communities (Irving et al. 2004; Irving & Connell 2006a), indicating that, perhaps, algal 

crusts inhibit direct overgrowth but depend upon kelp canopies for persistence. We 

suggest that future studies explore this possibility. Yet such a scenario remains contingent 

upon kelps’ large colonization potential and capability to take advantage of minute 

amounts o f bare space.

Modified competition-colonization trade-off models indicate that, despite strong 

preemption and strong competitive asymmetry, coexistence of competitors can occur so 

long as colonization potential by one player remains considerably high (Calcagno et al.

2006). In our field experiment (as well as in Okamoto & Eckert 2009) kelps demonstrate
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such colonization potential, taking advantage of even minute amounts o f bare space and 

demonstrating successful recruitment in the midst o f algal crusts competitive advantage 

for space. Thus, despite the presence of strong preemption, recruitment o f the sub

canopy can occur in densities observed in healthy sub-canopy populations, but depends 

upon a combination of high colonization potential and the availability o f small amounts 

o f bare space.

In our experiment we observed similar rates o f kelp colonization in the presence 

of preemptive crusts as we observed in our reef surveys (Figure 2.3 B, Figure 2.4 B). Yet 

in light of these data, we suggest sub-canopy kelps may not always overcome the 

competitive advantage held by primary space occupiers, especially with shifts in 

availability o f reproductive propagules or survival of recruits. We showed that S. 

bongardiana zoospores settle indiscriminately on bare space and on at least one algal 

crust group in our fluorescence experiment. We thus assume that zoospores settle 

indiscriminately at least between brown crust substrata and bare rock, if  not others, and 

thus colonize bare substrata in part by chance (although zoospores show some capability 

for nutrient chemotaxis (Amsler & Neushul 1989) and nutrient induced settlement 

preference (Amsler & Neushul 1990). In the scenario of indiscriminant settlement, 

decreases in reproductive propagule availability (for example as a result o f local 

deforestation by urchins), which might prove inconsequential in the absence o f algal 

crusts, and may instead, in the face of such preemption, decrease the probability of 

settlers locating bare space and decrease the probability of reconolization. Moreover, 

experimental plots with algal crusts hosted some kelp recruits, but such recruitment may



not always prove sufficient. Shifts which slightly decrease survivorship, such as 

unfavorable hydrological properties (Matsunaga et al. 1999), increased grazing of recruits 

(Duggins et al. 2001) or increased consumption of microscopic sporophytes (Sala & 

Graham 2002) may require greater recruit densities for persistence. Thus, the algal-crust 

preemptive influence we demonstrated likely decreases the threshold levels of recruit 

mortality kelp populations can tolerate and increases threshold levels o f reproductive 

output required for recruitment, thereby reducing their overall resilience.
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Figure 2.1: Algal crusts underneath Laminariayezoensis. Letters indicate brown (B), 

non-calcified red (R) and calcified (C) algal crusts.
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Lynn Canal near Juneau, Alaska
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Figure 2.3: Kelps and kelp recruits versus algal crust cover; A) Square root of adult kelp
• -2density (m" ; S. bongardiana, A. clathratum and L. yezoensis) as a function o f algal crust 

cover in survey quadrats from six surveyed sites in Southeast Alaska. The regression line 

represents the relationship between kelps and algal crust cover (r2 = 0.19, p < 0.001); B) 

kelp recruit density (m"2) as a function of algal crust cover from the same sites. No 

significant correlation existed between kelp recruits and algal crust cover.
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recruits (m'2) in experimental plots of three treatments: unmanipulated control, removal 

of non-algal crusts, and removal of all organisms. Error bars represent 1 SE with n = 5, 9, 

and 9, respectively. B) Square root of the kelp recruit density (n f2) in each plot against 

percent cover by algal crusts, segregated by those growing on non-algal substrate (bare 

rock, encrusting invertebrates, etc.; dark circles) and on algal crusts (grey triangles). The 

regression line represents the relationship between kelp recruits on hard substrate and 

algal crust cover (r2= 0.33, p = 0.0041).
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Figure 2.7: Germinated Saccharina bongardiana gametophytes stained with 

CellTracker™ green CMFDA and settled onto a brown crust chip (red fluorescing cells) 

and a bare rock chip (black background) as viewed under epi-fluorescence.



CONCLUSIONS

This field and lab research documents the resilience of a group of Southeast 

Alaskan kelps by demonstrating their strong recruitment capability when presented with 

bare substrata as well as the inhibitory effect of algal crust taxa. Kelps rapidly and 

densely colonized unoccupied substrata, ranging in size from small cracks and crevices to 

large artificial reefs. Although we initiated these field experiments at one point in time, 

kelps also settled onto tiles which we installed at different periods throughout the summer 

and late fall. Studies in Chapter 1 show that such colonization potential can rapidly 

benefit restoration or mitigation efforts such as the Yankee Cove artificial reefs. In 

contrast, studies in Chapter 2 illustrate such colonization potential facilitates kelp 

recruitment into remaining bare cracks and crevices in plots where inhibitory algal crusts 

covered up to 95% of the rock.

Kelps worldwide inhabit the apex of terrestrial and marine ecosystems and thus 

succumb to biological, physical and anthropogenic disturbance. In many habitats kelps 

recover from such disturbances rapidly (Johnson & Mann 1988; Dayton et al. 1992; Estes 

& Duggins 1995). Often they may recover from storm events (e.g. Dayton et al. 1992) or 

urchin deforestation (e.g. Johnson & Mann 1988) within one to several years. Studies in 

Chapter 1 show similar results, but with the caveats that such recovery appears species 

specific and highly variable in space. Recolonization of disturbed areas or colonization 

of newly installed artificial reefs such as those at Yankee Cove may occur in this region 

within one year. However as we demonstrate, the small scale spatial variability exhibited



between artificial reefs and clearings in natural reefs demonstrates that even comparisons 

among reefs separated by a few meters can yield large unexplained differences.

Experiments in Chapter 2 reveal that algal crusts, which occur in kelp forests 

worldwide, may dramatically reduce the magnitude of recruitment by the light 

monopolizing kelps; such a result occurs, in part, because of post-settlement and post

germination mortality. Foundation species such as kelps generate both the biomass and 

structure in an ecosystem and thus control much of the productivity of species dwelling 

around them (Barrales & Lobban 1975; Power et al. 1996). However, in addition to 

studying the single species dynamics of these organisms, it is in part the quest of 

ecologists to reveal those taxa whose influence comes not as a result of massive biomass 

or productivity, but through interactions which impact the dynamics of foundation 

species (Power et al. 1996). In this case, algal crusts, which may benefit substantially 

from kelp canopies (Melville & Connell 2001; Irving et al. 2004), can also strongly 

influence kelp recruitment dynamics despite their typical subordinate position in the 

water column. While many suspect algal crusts inhibit recruitment dynamics o f kelps 

(Suzuki et al. 1998), this study provides empirical data linking algal crusts directly to 

inhibition of kelps.

This stable coexistence of competitors for the same resources provides a 

conundrum (Silvertown 2004). Yet our results show that slight limitations in substratum 

monopoly can provide avenues for recruitment given the enormous colonization potential 

of kelps demonstrated herein. These studies thus emphasize that this colonization 

potential facilitates resilience of kelp species to both disturbances and to an
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inconspicuous group of algal competitors that covers the substratum beneath the kelp 

canopy. However, our results show dramatic spatial differences in recruitment and 

apparent species specific patterns of recruitment, raising questions concerning whether 

these patterns hold true over space, time and among different kelp species in this 

subarctic fjord.
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APPENDIX

The following details methods and results from an independent experiment not 

included in the previous chapters which serves as part of an attempt to understand the 

mechanisms of algal crust inhibition o f microscopic Saccharina bongardiana f. 

subsimplex sporophytes.

METHODS

I tested whether algal crusts inhibited development of Saccharina bongardiana f. 

subsimplex oogonia and early developing sporophytes (less than 200 pm in length) 

through indirect (chemical) means. I covered algal crusts and bare rock with porous 

dialysis tubing, settled Saccharina bongardiana spores into the individual containers 

hosting each rock, and enumerated oogonia density and microscopic sporophyte density 

upon the dialysis tubing after 21 days.

In August and September of 2008 I collected cobble sized rocks covered in 

various algal crust taxa from Yankee Cove between 6 and 10 m below mean low low 

water and transported them to flow through seawater systems at the Juneau Center o f the 

School o f Fisheries and Ocean Sciences. I selected rocks covered in a single algal crust 

(either calficied crust, non-calcified red crust, or brown crust) and broke off one 6-8 cm 

wide section of each rock using a rock chisel while keeping the rock and crust 

submerged. I selected 10 rock pieces with each algal crust taxa in addition to 10 bare 

rock pieces of the same size with flat surfaces.

I covered each rock surface with a single thin film of 1 cm dialysis tubing using 

zip ties and electrical tape such that dialysis tubing contained no wrinkles and lay flush



with each algal crust or rock surfaces with no bubbles. Before use, I prepared dialysis 

tubing by rinsing it in running distilled water for 24 h, then soaked it in a 0.3% (w/v) 

solution of sodium sulfide at 80 °C for 1 minute, following by a rinse in hot distilled 

water (60 °C) for 2 minutes, then by soaked it in a 0.2% (v/v) solution o f sulfuric acid. I 

then rinsed the tubing with hot water for 10 minutes to remove the acid and soaked it for 

another 48 hours in cold, distilled running water. I placed each dialysis tubing covered 

rock in a single 118 ml container filled with sterile PES medium as detailed in Chapter 2 

of this work, covered them with a transparent lid and bubbled in air continuously to each 

container. I placed containers on a slow gyrating table for 24 h on-24 h off cycles within 

an incubator with a 16:8 h light dark cycle. I then I collected, released and cultured 

Saccharina bongardiana spores within these containers with identical culture 

methodologies as detailed in Chapter 2, with settlement initiated on September 15, 2008.

After 21 days I removed the dialysis tubing from rocks, placed them upon 

microscope slides and immediately photographed a 2.25 - 3 mm area of the upward 

facing tubing under light microscopy for later enumeration of oogonia and sporophytes. I 

analyzed for differences in oogonia and sporophyte densities among treatments using 

analysis of variance (ANOVA).

RESULTS

Brown crusts yielded 6.5 ± 7.8 SD oogonia mm ~2 (n = 8); red crusts 3.8 ±3.1 (n 

= 9); calcified crusts 11.2 ± 3.8 (n = 10); and controls 9.8 ± 5.0 (n = 10). Brown crusts 

yielded 1.6 ± 2.1 SD sporophytes mm ~2; red crusts 0.2 ± 0.4; calcified crusts 3.6 ± 2.8; 

and controls 2.3 ± 3.4. Significant differences existed in both the density of developing



eggs and microscopic sporophytes among treatment means (F 3 329 = 3.55, p = 0.026, In ( 

+1 ) transformed), but after analysis with Tukey pairwise comparisons, no crust 

treatments differed from the controls in either egg or sporophyte density. The only 

differences in treatment means occurred between red crusts and calcified crusts (p = 

0.035 for eggs and p = 0.014 for sporophytes).


