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Risk assessment for areas prone to flooding and

subsidence: a case study from Bergen, Western Norway

Guri Venvik, Ane Bang-Kittilsen and Floris C. Boogaard
ABSTRACT
Bergen city centre is prone to both subsidence and flooding. With a predicted increase in

precipitation due to climate change, a higher proportion of rainfall becomes surface runoff, which

results in increased peak flood discharges. In addition, it has been predicted that sea-level rise and

increasing storm surges will result in coastal flooding. In this study, the dual hazards of flooding and

subsidence are analysed to exemplify possible risk assessment maps for areas most prone to the

combination of both. Risk assessment maps are a support tool to identify areas where mitigation of

subsidence and adaptation for surface water management will be most efficient and measures can

be implemented. The results show that dual hazard assessment, like that described in this paper, can

be a useful tool for decision-makers when prioritizing areas to implement measures such as

Sustainable Urban Drainage Systems.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY 4.0), which permits copying,

adaptation and redistribution, provided the original work is properly cited
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INTRODUCTION
It is expected that 60% of the world’s population will be

living in urban areas by 2030, and most of this area has

yet to be built (UN ). The pace of urban growth may

be overwhelming and exert tremendous pressure on the

catchment hydro(geo)logy in general and urban drainage

in particular (Marsalek et al. ). The built urban infra-

structure, with asphalt and concrete-covered ground

surfaces, alters hydrologic abstractions and water flow

found in natural catchments (Bolund & Hunhammar

). It has been predicted that climate change will increase

precipitation (Hanssen-Bauer et al. ), and a higher pro-

portion of rainfall will become surface runoff, which, in

turn, will result in increased peak flood discharges and
degraded water quality (Haughton & Hunter ). In

addition, the sea level is predicted to rise by up to 1 m by

2090 (Hanssen-Bauer et al. ). Changes in the urban

environment due to growth in addition to climate change

put the urban water cycle out of balance, thereby affecting

other surface and subsurface processes, such as flooding

and subsidence.

Urban areas are, to a large extent, built environments,

and from that view constitute a unique environmental chal-

lenge. As Pregnolato et al. () point out, cities are

particularly vulnerable to flooding and rapid and intense

rainfall due to the impermeable surfaces that dominate

areas with high concentrations of people, buildings and

infrastructure. As a result of the increasing flood damage

in Europe, there has been a shift in attention from flood pro-

tection to flood risk management (Albano et al. ), where

risk assessment with tools, such as maps, are central. This
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shift is also valid for risks other than flooding, such as

subsidence.

Both pluvial and coastal flooding can be related to subsi-

dence (Dixon et al. ; Miller et al. ; Yin Yu & Wilby

). For the Bryggen Wharf, in central Bergen, western

Norway, there is a strong link between water and subsidence,

due to reduction in water in the subsurface cultural layers, as

well as lowering of the groundwater levels leading to the

decay of organic layers as well as historical wooden foun-

dations and thereby subsidence (de Beer et al. ; de Beer

& Seither ; Matthiesen et al. ; Rytter & Schonhowd

b). Other geological processes commonly linked to subsi-

dence include tectonic structures, land and rock slides,

gravitation (Berardino et al. ; Lauknes et al. ; Eriksen

et al. ) and subsidence due to groundwater depletion

(Chaussard et al. ; Castellazzi et al. ; Motagh et al.

).

In order to provide communities with urban infrastruc-

tures that are durable and well-functioning, climate change

impact and adaptability assessments are vital (Pregnolato

et al. ). Flood modelling is a useful tool for planning flood-

ways, identifying areas for mitigation measures and for

bringing awareness of water issues into decision-making pro-

cesses in urban areas (Fletcher et al. ; Albano et al. ;

Boogaard et al. a, b; Lyu et al. ). Hence, risk

assessment mapping can be further used for identifying

areas for the implementation of Sustainable Urban Drainage

Systems (SuDS), such as swales, to infiltrate water into the

ground and to sustainably manage surface water in urban

areas. More knowledge is needed to understand the urban

water balance and the processes connected to water to pre-

vent and counteract subsidence that can cause damage and

unforeseen expenses.

Increased knowledge and understanding of the urban

water cycle in the transitional zone between the built and

natural environment is necessary. In the case of Bergen city

centre, past research has shown that the subsidence to a

large degree is driven by the depletion of water in the under-

lying organic-rich cultural layers (Harvold et al. ;

Matthiesen et al. ). For a complete understanding of the

urban water cycle, hydrological and hydrogeological studies

should be included (Wakobe et al. ). Hence, we combine

datasets for flood risk and subsidence to develop a risk assess-

ment map for areas prone to damage. The case study is set in
Bergen city centre (Figure 1), on the west coast of Norway.

Bergen is a coastal city where the annual precipitation is

high, 2,250 mm/year (NMI ). The city is therefore

prone to water-related damage caused by pluvial flooding,

storm surges and stormwater flooding.

The subsidence data are computed using satellite-based

persistent scatterer interferometry (PSI; Crosetto et al.

). PSI has long been used to compute subsidence,

especially related to groundwater depletion (e.g. Schmidt

& Bürgmann ; Teatini et al. ). In this study, data

from the Sentinel-1 satellites have been used as an input.

Further, subsidence data have been correlated with an

LiDAR DEM (Norwegian Mapping Authority )-based

urban flood model result.

Dual hazard analyses have been carried out by two

different analysis methods using ArcGIS (ESRI ). In

both methods, the resulting map is a grid, which is a

common areal unit when synthesizing multiple variables

(Carver ; Damoom et al. ). The first method is a

simple grid overlay, recording the occurrence of input data

within the grid cells. The second method uses Getis-Ord

G* statistics (Getis & Ord ) commonly called ‘hot spot

analysis’ (ESRI ), which automatically detect clusters

of incident data within the bounding area of flood data. As

an example, Lu et al. () use the ‘hot spot analysis’ to

detect slow-moving landslides from InSAR data. Geographi-

cal Information System (GIS)-based analysis for risk

assessment is widely used to investigate various hazards,

such as flooding (Albano et al. , ; Lyu et al. )

and for multi-criteria decision-making analysis (Erbas ̧ et al.
; Damoom et al. ). As pointed out by Damoom

et al. (), when combining different datasets GIS allows

the user to visualize, inquire, analyse and interpret the vast

amount of (geological) data for a better understanding and

problem-solving. Therefore, the risk assessment analysis pre-

sented in this paper aims to identify areas prone to the dual

hazards of both flooding and subsidence. Dual hazard

assessment maps, based on existing flooding and subsidence

data, were executed using overlay and ‘hot spot’ analysis in

the GIS. Results can be used as a tool to select areas that

need mitigation and damage prevention measures, both for

buildings and urban infrastructure. Risk assessment, shown

in this case study, may be applied in urban (or rural) areas

where data, such as subsidence and flooding, are available.



Figure 1 | Bergen city centre viewed towards the southeast with steep hillside and lower lying area along the shoreline (Google Earth, 2019). Please refer to the online version of this paper

to see this figure in colour: http://dx.doi.org/10.2166/nh.2019.030.
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STUDY AREA AND DATA

Bergen is the second-largest city in Norway, located on the

west coast, with an area of 464 km2 and a population of

278,556 (SSB ). The city has an annual average tempera-

ture of 8.6�C and an annual precipitation of 2,250 mm (NMI

). The climate is predicted to become wetter with more

intense and frequent downpours, which will increase the

pressure on surface water runoff and stormwater management

(Hanssen-Bauer et al. ). The topography of Bergen city

centre, as well as the surrounding areas, encompasses

steep hillsides covered with forest vegetation on thin soil
cover, down to flat-lying former shorelines with thicker

natural sediments and anthropogenic layers. A 1 km relief

goes from Fløyen (at 320 m a.s.l.) to Bryggen (at 1 m a.s.l.)

(Figure 1). These natural conditions make surface runoff

water abundant.

The study area has been constrained to the city centre,

including the Medieval city and its surrounding area. In the

city centre, the anthropogenic cultural heritage layers are

thick with a rich organic content locally more than 10 m

thick (Figure 2). The old shoreline from the 12th century

(Hansen ) is shown in Figure 2. Since Bergen has close

to no isostatic land uplift (Mangerud ), the progressing

http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030


Figure 2 | In Bergen city centre, the subsurface consists of exposed bedrock in the hillside (light grey colour), anthropogenic material (dark grey colour) and up to 10 m of cultural layers

(brown colour), on top of beach sand, clay and till before reaching bedrock below. (Directorate for Cultural Heritage, 2018, Norwegian Map Authority, 2018). Please refer to the

online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/nh.2019.030.
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shoreline of today is due to filling of the anthropogenic

material such as waste into the bay area, Vågen. These

layers are more prone to destruction due to lack of infiltration

of surface water; therefore, the Bryggen project was initiated

in 2010 to save the UNESCOWorld Heritage site of the Han-

seatic League Wharf (Ersland ; Rytter & Schonhowd

a). Rytter & Schonhowd (a) document the connec-

tion between soil moisture, groundwater level and the

decay or preservation of organic anthropogenic material.

The lack of soil moisture and very low groundwater

levels can lead to the higher oxygen concentration in the

organic matter and acceleration of disintegration. The

organic layers then collapse and compact (Matthiesen et al.

), resulting in subsidence of the ground and damage

to buildings and infrastructure (Jensen ; Rytter &

Schonhowd b). Bryggen is an example where measures

have been taken by implementing SuDS to infiltrate surface

water into the subsurface to increase soil moisture and

groundwater level and thereby preserve the cultural layers

and stabilize the ground (de Beer et al. ; Boogaard ;

de Beer & Seither ).
Drainage system in Bergen city

To handle the surface water and stormwater, Bergen city has

a drainage system with the purpose of transporting water

effectively out of the city. In the greater parts of the city,

especially in the inner centre, the stormwater is brought

together with the wastewater from the industry and house-

hold (Figure 2; Bergen Kommune ). When intense

rainfalls occur, the capacity of the drainage system is

strained, which may cause the emission of wastewater.

Since the relief in the city centre is steep (Figure 1) and the

surface has low permeability, flooding arises when large

and intense rainfalls occur in short time spans. Due to climate

change, events with downpour will be more intense and fre-

quent. This, in addition to predicted sea-level rise, will give

more frequent and intense flooding where there are topo-

graphic depressions (Hanssen-Bauer et al. ), as seen in

Figure 3.

For this study, we included a dataset of the pipelines for

wastewater and sewage. It should be noted that the sewage

system may be a combined stormwater and sewage, or a

http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030


Figure 3 | Pluvial flood model result of Bergen city based on DEM and rainfall input, where terrain and depressions control the flow path and accumulation of surface water. Increase in

colour intensity with the increasing surface water depth. The inserted photo shows the area in front of Bryggen Wharf prone to pluvial flooding. Please refer to the online version

of this paper to see this figure in colour: http://dx.doi.org/10.2166/nh.2019.030.
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separate system: these are not differentiated in the dataset

(Bergen Kommune ).

Flood modelling

Pluvial, urban flooding has received increased attention over

the last decade (Mignot et al. ), due to the costly damage

on infrastructure and society (Miller & Hutchins ;

Sörensen & Mobini ). There are many tools for urban

stormwater flood modelling as pointed out by Balstrøm &

Crawford (), which have been improved after the July

2011 Copenhagen event with close to a 100 mm/h rainfall

(Miller & Hutchins ; Sörensen & Mobini ; Mignot

et al. ). The flood modelling itself is not the scope of

this work but the dual hazard of flooding and subsidence.

The flood map was created as a case study of Bergen in

the INXCES project described in Boogaard et al. (a,

b), and the results are further used for analysis in this

study. The urban flood modelling was created using the

Calamity Levels of Urban Drainage Systems (CLOUDS by
Tauw bv) method with the aim of modelling and simulating

water flow and water accumulation (Kluck et al. ;

Boogaard et al. a, b, ). The simulation was run

with a precipitation of >60 mm/h, where 20 mm/h is esti-

mated to run in the sewer system and 40 mm/h on the

surface. This represents an extreme storm or a 100-year

event (Kluck et al. , ). With this assumption, the digi-

tal elevation model (DEM; Norwegian Mapping Authority

) and rainfall distribution serve as the main input. The

flood simulation was done to increase the understanding

of which urban areas are most prone to flooding as well as

indicating runoff flow paths for surface water (Figure 3).

The Bryggen Project is a best management practice that

demonstrates the linkage between infiltration of surface

water, recharge of groundwater, preserving cultural layers

and preventing subsidence (de Beer et al. ; Boogaard

; de Beer & Seither ; Matthiesen et al. ; Rytter

& Schonhowd a). This flood simulation indicates areas

where infiltration of surface water will be most advan-

tageous with regard to reducing flooding as well as

http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030
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subsidence. This can further be used to plan floodways for

the city.

The resulting map shows stormwater accumulation,

where the darkest blue colour indicates a greater water

depth (Figure 3) (the colour figure can be viewed online).

The DEM was created from LiDAR data produced from

the FKB-Laser (Felles KartdataBase/common map data-

base) dataset consisting of 1 point per m2 (Norwegian

Map Authority/Kartverket ). A detailed description of

method, calculations and results from the flood modelling

is presented in Boogaard et al. (a) and Kluck et al.

(). For a complete comprehension of the urban water

balance, hydrological and hydrogeological studies should

be included (Wakode et al. ).

Present-day storm surge

In November 2018, the Norwegian Mapping Authority

launched an open access web service with models of current

and future (2090) sea-level rise and storm surges. The data,

map tool and services are aimed at the planning of coastal

areas (DSB ). The storm surge height intervals are

mean high water, 20-year, 200-year and 1000-year return
Figure 4 | Areas prone to coastal flooding during a 200-year storm surge are indicated with blue

sehavniva/). Please refer to the online version of this paper to see this figure in co
periods. One of the Mapping Authority’s datasets entitled

‘200-year storm surge’ (Figure 4) shows sea level under

these extreme conditions. In Bergen, there are small differ-

ences in sea-level heights for the different return periods of

storm surges (https://www.kartverket.no/sehavniva/). The

dataset for present-day 200-year storm surge was chosen as

the most relevant occurrence for further analysis and was

incorporated into the dataset of pluvial flood for further

use (Figure 4). Some of the pluvial flooded areas (Figure 3)

coincide with the storm surge flooded areas.

Subsidence data

The subsidence data used in this study were produced by the

Norwegian Ground Motion Service (Figure 5; www.insar.

no). Using radar images from the Copernicus Programme’s

Sentinel-1 satellites, the service provides over two billion

deformation measurements over the entire Norwegian

mainland. At each point, both the average velocity (along

the satellite-to-ground line-of-site) and a cumulative defor-

mation time series are provided. The Sentinel-1 satellites

provide full coverage of Europe every 6 days. The wide

acquisition swath (250 km), along with Norway’s northern
areas on land. Data from the Norwegian Map Authority (2018) (https://www.kartverket.no/

lour: http://dx.doi.org/10.2166/nh.2019.030.

https://www.kartverket.no/sehavniva/
https://www.kartverket.no/sehavniva/
http://www.insar.no
http://www.insar.no
https://www.kartverket.no/sehavniva/
https://www.kartverket.no/sehavniva/
https://www.kartverket.no/sehavniva/
http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030


Figure 5 | PSI data from Sentinel-1 for the time period 2015–2018 collective ground movement, subsidence (vertical velocity) in mm/year. Data from the Norwegian Map Authority (2018).

Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/nh.2019.030.
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latitude, results in multiple overlapping datasets for each

area on the ground. For this study, four independent datasets

were used, two from ascending (north-going) orbits and two

from descending (south-going) orbits. The input data cover

the time period 2015–2018, where two datasets are from

2015 to 2018, while two datasets are from 2016 to 2018

(Figure 5). Only data from June to October were used to

reduce the possible effects of snow cover. The PSI technique

does not return any data from vegetated areas. In the built

environment, datapoints commonly represent buildings

and other surface constructions.

One advantage of multiple, independently processed PSI

datasets is that they can be compared with each other as a

basic quality control step. In our study, the datasets were

self-consistent. For a smaller area, at the site of the Hanseatic

Wharf ‘Bryggen’, the PSI data have been controlled by

comparison with ground-based monitoring of movement

(Jensen , ; Haukedal ). These studies show that

both measuring techniques reveal similar patterns of move-

ment and the order of subsidence within the same time

period. However, ground-based measurements are time-

consuming and costly compared to satellite data collection.

For this study, a threshold for the PSI data was set to

�1 mm, only negative vertical movement, subsidence, from
�1 mm and larger was included. All data with values 0 mm

or more, positive (þ) vertical movement was discarded.
METHODOLOGY – RISK ASSESSMENT APPROACH

The Geographical Information System tools such as ArcGIS

and ArcGIS Pro (ESRI ) were used for the analysis in this

study, with the aim of detecting areas with a risk of both sub-

sidence and flooding. To prepare the datasets for analysis, the

results from the flood model were georeferenced and vector-

ized and clipped against the shore. The original flood model

consisted of many small and scattered polygons. Since the

focus was on areas with severe flood problems, flood poly-

gons spaced closer than 3 m were aggregated, while the

areas smaller than 10 m2 were removed. Then, the results

from the pluvial flooding were merged with the 200-year

storm surge data. Only PSI points with more than 1 mm/

year subsidence were used (Figure 5). The uncertainties

connected with these datasets will be discussed later.

The first and simplest overlay is a plain visual overlay of

the input data, showing flood data (blue areas in Figure 6(a))

with subsidence data (red points in Figure 6(b)) on top

(Figure 6(c)) (the colour figures can be viewed in the

http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030


Figure 6 | Top row: the datasets used in the analysis: (a) flooding, (b) subsidence and (c) the combination of the two datasets. Bottom row: results from methods. (d) Method 1 with grid

cells with 10 × 10 m, (e) method 1 with 20 × 20-m grid cells and (f) method 2, the ‘hot spot analysis’ of subsidence within the flooded area. This method uses 20 × 20-m grid and

the three different colours displaying 90%, 95% and 99% confidence levels. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/

nh.2019.030.
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online version of the article). A visual overlay is useful

both to evaluate results from automatic tools and as a

complementary map for detailed insights. For planning pur-

poses, pre-selecting areas for action lead to more effective

decision-making (Campbell et al. ; Hooimeijer et al.

; Hanssen ). This work uses grids to synthesize the

input data. Grid maps reduce the degree of detail and are

expected to give the impression of data uncertainty because

it clearly does not follow the pattern of flooding nor the built

infrastructure. Two methods were used (Figure 6): The first

method does not take the spatial clustering of subsidence

into account (Figures 6(d) and 6(e)). The second method

analyses the clustering of subsidence within areas prone to

flooding (Figure 6(f)).

Description of the simple grid overlay method (1)

In the first method, grids of different sizes are created followed

by a selection of grid cells that cover areas with a risk of both

flooding (Figure 6(a)) and subsidence (Figure 6(b)). See

Figures 6(d) and 6(e) for selected areas, respectively, for
grids of 10× 10 m and 20 × 20 m. The method followed two

manual operations:

(I) Two different grids were made with grid size set to 10×

10 m (Figure 6(d)) and to 20 × 20 m (Figure 6(e)). The flood

data map extent was used as the template extent. (II) Grid

cells containing both flood and subsidence data are given the

colour orange in the map, as shown in Figures 6(d) and 6(e).
Description of the ‘hot spot analysis’ with aggregated

flood areas method (2)

This method uses the optimized ‘hot spot analysis’ tool to

create a grid showing hot spots of subsidence data within

areas with a risk of flooding (Figure 6(f)). This tool uses

the Getis-Ord Gi* statistic to identify statistically significant

hot spots (ESRI ). For this method, we went through the

following parameters: the main input was the subsidence

data and grid cells of 20 × 20 m were selected. Aggregation

was selected to count incidents of subsidence within the

grid cells within areas prone to flooding. The result was a

http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030
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map with grid cells showing statistically significant hot spots

of subsidence that also are at risk of flooding, as shown in

Figure 6. A visual comparison of the results with the carto-

graphic overlay as shown in Figures 6(c) and 7 was done

to ensure that the areas with the highest values of subsi-

dence were represented.
RESULTS AND DISCUSSION

The areas identified to be at dual risk in this study could

further be targeted for mitigation measures that allow sur-

face water to infiltrate the subsurface. Firstly, such

measures would help maintain the anoxic conditions

necessary to impede the decay of the rich organic layers.

Secondly, mitigation measures could help stabilize the

groundwater levels and assist in preventing further subsi-

dence. Participants of the Bryggen Project demonstrated

that the groundwater levels could be stabilized by introdu-

cing SuDS for retaining, storing and further infiltrating

surface water (de Beer et al. ; Boogaard ; de Beer

& Seither ; Matthiesen et al. ; Rytter & Schonhowd

b; Boogaard et al. ). Large areas of impermeable
Figure 7 | The PSI data indicates that subsidence is shown in red and the flooded areas in blue.

for areas prone to flooding. Please refer to the online version of this paper to see t
surface in the city centre also contributed to the risk of

flooding. Natural water management practices, like the

implementation of SuDS, help increase the infiltration of

floodwater to subsurface soils and groundwater. This study

gives an example from Bergen city but is relevant for cities

having similar challenges related to flooding and subsidence.

Datasets and selected methods for analysis

A visual analysis of the input data reveals an image of a city

widely affected by subsidence and flooding after heavy rain-

fall or storm surges, as shown in Figure 7. To make visual

analysis easier, the PSI data are shown with points of

increasingly darker red for higher degrees of subsidence

(the colour figures can be viewed in the online version of

the article). The flooded areas are shown in blue. Areas

most prone to flooding and subsidence become prominent

in this visualization (Figure 7).

Subsidence data

It should be noted that PSI datapoints may represent

points on the ground or points on the city infrastructure,
With an overlay of the two datasets, the map shows a city widely affected by subsidence as

his figure in colour: http://dx.doi.org/10.2166/nh.2019.030.

http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030
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such as buildings. Any hard object on the surface may

reflect a signal. As such, there is always the possibility

that individual points are measuring the deformation of

the city infrastructure or in the building itself, and

not ground subsidence. Additionally, the PSI technique

does not return any measurement in vegetated areas,

such as yards or parks. Nonetheless, more than 300,000

datapoints were used in this study providing orders of

magnitude more information than could have been

obtained using traditional surveying techniques. Although

there are many historic buildings in the area, most have

been rehabilitated in the last decade and we do not

expect that building deformation is a significant part of

what is measured. Therefore, we have great confidence

that PSI data are suitable for the risk assessment. In

this study, all PSI points with more than 1 mm subsidence

are included. The exact value of vertical velocity is

not used in either of the analyses, only the presence in

the simple grid overlay (method 1, Figure 8) and the

cluster of points in the ‘hot spot analysis’ (method 2,

Figure 9). For method 2, a visual control of the result

shows that areas of high value are also selected as hot

spot areas.
Figure 8 | Simple overlay analysis with 20 × 20-m grid shows where both subsidence and flood

dx.doi.org/10.2166/nh.2019.030.
Flood data

Results from the urban flood modelling, used in this study,

emphasize the areas prone to flooding (Boogaard et al.

a). The flood modelling is based on the DEM and on

the rainfall distribution where depressions in the terrain

will control the flooded areas. Manmade constructions,

including roads, will create sinks where the flooding will

occur (Kluck et al. , ; Boogaard et al. a, b;

Balstrøm & Crawford ). For the flood results presented

here, this is regarded as inevitable because the study is in an

urban and built environment.

Planners are interested in surface water flood modelling

and simulation at a coarser and more overall level (Balstrøm

& Crawford ) for the purpose of prioritizing and

decision-making (Campbell et al. ; Hanssen ). For

a complete flood risk assessment analysis, hydrological

and hydrogeological studies (Wakode et al. ), an

updated flood model, based on an updated DEM, topo-

graphic data and flow parameters should be included. The

flood risk due to storm surge is based on the estimated high-

est level of storm surge at present day (Norwegian Mapping

Authority; www.Kartverket.no). The storm surges are
ing occur. Please refer to the online version of this paper to see this figure in colour: http://

http://www.Kartverket.no
http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030
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modelled with 20-year, 200-year and 1000-year intervals

(Map Authority). For Bergen city centre, the differences

are minor. The 100-year design precipitation (Kluck et al.

, ) for the pluvial flooding is therefore combined

with a 200-year storm surge, as an extreme event. In further

steps for risk assessment, this dataset should be updated and

include the worst-case scenario of sea-level rise (IPCC ).
Simple grid overlay – method 1

For the simple grid overlay with grid sizes of 10 × 10 m and

20 × 20 m, the result is numerous small areas as shown in

Figure 8. It is clearly illustrated in the case of the city

centre that a simple grid overlay method gives minimal gui-

dance for authorities as to which areas should be prioritized

for dual hazard mitigation. Due to the characteristics of

the two datasets; flooded areas in streets and PSI data on

buildings and grid cells of 10 × 10 m and smaller give a

result of scattered patches and no area of significance. How-

ever, when the grid cells are 20 × 20 m, areas prone to both

flooding and subsidence are distinguished, as shown in

Figure 8.
Figure 9 | ‘Hot spot analysis’ where clusters of subsidence are within areas of pluvial or coastal

this figure in colour: http://dx.doi.org/10.2166/nh.2019.030.
‘Hot spot analysis’ - method 2

The hot spot analysis, method 2, does the narrowest selection

of areas, using the aggregated flood data and a count of sub-

sidence hot spots within each 20 × 20 m grid cell (Figure 9).

The results show that within our study area, there are several

areas of significance. For a decision-making process, it would

be easier to prioritize areas for mitigation using the ‘hot spot

analysis’ for risk assessment mapping, as shown in Figure 9.
Risk assessment map combined with the existing

drainage system

As an example of usability, the risk assessment maps from

the simple overlay analysis (method 1, 20 × 20 m grid cells)

and the ‘hot spot analysis’ (method 2) have been combined

with the existing drainage system. A ‘near-analysis’ with 3 m

radii of areas in dual hazard and pipelines intersect shows

areas where the drainage system is under great pressure

when heavy and rapid rainfall or a storm surge occurs

(Figure 10). This is standard procedure within water man-

agement (Marsalek & Chocat ; Marsalek et al. ).

However, this study shows the connected drainage pipes
flooding. The grid cells are 20 × 20 m. Please refer to the online version of this paper to see

http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030


Figure 10 | A ‘near-analysis’ of pipelines shows all pipes affected by both subsidence and risk of flooding within 3 m distance (red lines). The results from the simple overlay analysis

(method 1) with 20 × 20-m grid cells and the ‘hot spot analysis’ (method 2) are included in the map. Please refer to the online version of this paper to see this figure in colour:

http://dx.doi.org/10.2166/nh.2019.030.
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and manholes that in addition to high water pressure and

excess surface water are prone to ground subsidence that

may cause damage and disconnect the pipes (Figure 10).

In these areas, it is expected that the drainage system has

a greater need for maintenance and thereby costs.

Figure 11 compares all methods, where (A) displays the

raw data where blue colour shows flooding and red colour

shows subsidence (the colour figures can be viewed in the

online version of the article). This visualization indicates

that the larger parts of the city are influenced by flooding or

subsidence, or both. Comparing the two methods: (1)

simple grid overlay and (2) ‘hot spot analysis’ (Figure 11),

the best choice of the method depends on the end-use.

Method 1 uses input data raw and has no regard to the size

of areas flooded or the density or degree of subsidence. Con-

sequently, the result for Bergen marks areas on almost all

buildings in the study area (Figures 8 and 11(b)). When

using small grid sizes and without consideration of nearby

objects, there is a risk of overlooking relevant areas. There

is no prioritizing, and one can argue whether this map

result is of any benefit to Bergen’s decision-makers other

than seeing that there are large areas of dual hazard. It may

also contribute to a loss of information due to the
cartographic overlay of the input dataset (Figure 11(a)). None-

theless, the result does suggest that there is a need for general

guidelines for city management and building owners. At this

level of detail, and if the target user group was property

owners, the method can focus on buildings that are prone

to flood and subsidence. A ‘near-analysis’ would possibly be

a better alternative as exemplified with pipelines in Figure 10.

The results from the ‘hot spot analysis’ (method 2) are more

selective and areas are clearly prioritized (Figure 11(c)). For

scientific research on the relationship between flooding and

subsidence, or for the municipality to select areas for greater

follow-up, this method gives significant results for the clearest

selection of areas (Figures 9 and 11).

Risk assessment as a tool for end-users

Subsidence in urban areas is often related to water. A lack of

water in the subsurface may lead to compactions of sedi-

ments and where organic matter is present, decay and

decomposition (Chaussard et al. ; de Beer & Seither

; Matthiesen et al. ; Castellazzi et al. ; Motagh

et al. ). Excess water causes flooding and increased ero-

sion (Dixon et al. ; Miller et al. ; Yin et al. ).

http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030


Figure 11 | Comparing the methods. (a) The input data are shown in blue for flooded areas and red for subsidence by PSI data. (b) In method 1, the 10 × 10 (dark orange colour) and 20 × 20

(light orange colour) metre grid cells are all containing both flood risk and subsidence. (c) In method 2, fewer areas are selected based on a ‘hot spot analysis’ on subsidence

bounded by the existence of aggregated flood data. The colour nuance reflects 99%, 95% and 90% confidence levels as displayed in Figure 9. Please refer to the online version

of this paper to see this figure in colour: http://dx.doi.org/10.2166/nh.2019.030.
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The subsurface of any city is complex, and in Bergen, it can

be roughly divided into three layers: natural ground consist-

ing of bedrock and sediments on top, cultural layers

consisting of domestic waste, with up to 100% organic

matter (Matthiesen et al. ; Rytter & Schonhowd b)

and anthropogenic materials, such as agglomerate, asphalt

and material for drainage. The subsidence occurring is not

constrained by geological structures and cannot be

explained by geological processes alone. However, water,

both surface water and groundwater, plays an important

part in the process.
Pregnolato et al. (), in their risk assessment of roads

in Newcastle, UK, show that roads are prone to flooding

during heavy rainfall. Similarly, the risk assessment pre-

sented in this study can help the municipality prioritize

areas for mitigation or that need on-going surveillance. A

current discussion in Norway is how to implement climate

adaptation into best management practice for municipalities

(Hanssen ). Hanssen () shows how well flood risk

maps function to translate natural science information into

local planning and decision-making. This shows that maps

are credible and essential tools, but that they need to be

http://dx.doi.org/10.2166/nh.2019.030
http://dx.doi.org/10.2166/nh.2019.030
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brought to the table by planners and interpreted in a local

context. Hanssen () conclude that local climate adap-

tion is dependent on well-functioning interaction between

multiple levels as well as disciplines and emphasis on

strengthening the role of the government agencies as ‘knowl-

edge translators’ (‘kunnskapsoversettere’; Hanssen ).

The risk assessment map methodology presented in this

study aims to translate knowledge into maps to assist the

end-user to select areas for implementation of, for example,

SuDS by identifying areas prone to the dual hazard of flood-

ing and subsidence. Resilience of the built environments has

not been well studied (Thornbush et al. ), and results

from this study may help the Bergen Municipality to plan

mitigation and further adaptation to prevent areas of flood-

ing, by increasing infiltration of surface water and

decreasing flooding, as well as the processes causing subsi-

dence. Managing stormwater is not just important for

protecting water resources and aquatic ecology but also to

restore urban water cycle processes that are critical to the

health of urban watersheds. These include infiltration and

groundwater recharge, evapotranspiration and chemical/

biological transformations, especially due to more frequent

and intense rainfall and flooding (UN-Water ).
CONCLUSIONS

There is a link between areas that suffer from subsidence and

areas with an excess or shortage of water. The aim of this study

was to locate areas in Bergen city centre that are prone to the

dual hazard of subsidence and flooding. This was achieved by

processing existing data and maps that identify areas prone to

PSI data for risk of subsidence, a flood model map and a storm

surge map for areas prone to flooding.

We have demonstrated that a ‘hot spot analysis’, for the

subsidence data within areas prone to flooding, provides an

effective means of selecting areas for further field evalu-

ation. Data for climate adaptation analyses are increasing

and open access. The method can easily be repeated with

updated PSI and flood data. The areas selected are con-

strained and could serve as a starting point in prioritizing

areas by the municipality for detailed hydrological and

hydrogeological studies of the urban water cycle and further

implementation of water management solutions, like SuDS.
The subsurface in cities is complex due to a mixture of

natural and built environments. The processes causing sub-

sidence are not easily understood but are commonly

related to water. Increasing infiltration of surface water

may prevent the processes causing subsidence. Managing

stormwater in this way is not only important for protecting

water resources and the aquatic environment – it can help

restore and maintain urban water cycle processes critical

to making cities resilient to the effects of climate change.

Further work

The increased availability of data, both large datasets and

timeseries, makes analyses, such as the risk assessment pre-

sented here, much more achievable. The Copernicus

program is revolutionary in that it promises this type of

data for decades to come, free and open. Risk assessment

similar to that conducted in this study is relevant for all

cities that are prone to coastal and/or pluvial flooding or

possible the combination of flooding and subsidence. The

www.InSAR.no service is an open access portal, displaying

data used in this study, and is an example of possibilities

with the upcoming EU Ground Motion Service.

The latest available PSI data and a new and updated flood

model based on the latest and most detailed DEM and topo-

graphic data should be used before selecting areas in a

potential follow-up of this study. This risk assessment should

be also followed up by hydrological and hydrogeological

field investigations to evaluate the results and to find the

best management practices for the given location and problem.

This study will be expanded to categorize PSI data indi-

cating subsidence by trends in timeseries and combining

them with other datasets. This would increase the knowl-

edge of the subsurface processes and the effects of

interventions, and thereby ultimately identify effective

actions to decrease effects related to the urban water cycle.

Further, end-users should be involved in the development

of risk assessment maps, for example in the evaluation of the

usability of prototypes, like the ones presented here. Choosing

an adequate method for risk assessment with the end-user

tasks in focus is important and will give more applicable

results. Trying out multiple methods for analysis and visual

analysis for quality control of map results was emphasized in

this study and is strongly recommended in further studies.

http://www.InSAR.no
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