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Abstract 

Cancer cells require extensive metabolic reprogramming in order to provide the 

bioenergetics and macromolecular precursors needed to sustain a malignant phenotype.  

Mutant KRAS is a driver oncogene that is well known for its ability to regulate the ERK 

and PI3K signaling pathways. However, it is now appreciated that KRAS can promote 

tumor growth via upregulation of anabolic metabolism. We recently showed that 

oncogenic KRAS promotes a gene expression program of de novo lipogenesis in non-

small cell lung cancer (NSCLC). To define the mechanism(s) responsible, we focused on 

the lipogenic transcription factor SREBP1. We observed that KRAS increases SREBP1 

expression and genetic knockdown of SREBP1 significantly inhibited cell proliferation of 

mutant KRAS-expressing cells. Unexpectedly, lipogenesis was not significantly altered in 

cells subject to SREBP1 knockdown. Carbon tracing metabolic studies showed a 

significant decrease in oxidative phosphorylation and RNA-seq data revealed a significant 

decrease in mitochondrial encoded subunits of the electron transport chain (ETC). Taken 

together, these data support a novel role, distinct from lipogenesis, of SREBP1 on 

mitochondrial function in mutant KRAS NSCLC. 
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INTRODUCTION 

KRAS is the most frequently mutated oncogene in lung adenocarcinoma, present 

in up to 30% of cases (1-3). Lung cancer patients with tumors harboring KRAS mutations 

are associated with a poor prognosis and resistance to therapy (4). While there are 

covalent KRASG12C specific inhibitors and KRAS-SOS interaction directed therapeutics 

currently in clinical trials, there are currently no successful anti-KRAS therapies (5, 6). 

Accumulating studies have highlighted a potential for mutant KRAS to rewire cellular 

metabolism to promote tumor development. Substantial evidence shows that metabolic 

reprogramming is essential for tumor initiation and progression (7, 8). The “Warburg 

effect” describes a propensity for cancer cells to increase glucose uptake and convert the 

majority to of it to lactate even in the presence of oxygen (9). Originally, this increase in 

aerobic glycolysis displayed by cancer cells was attributed to damaged mitochondria. 

However, it is now appreciated that mitochondria remain functional in many tumors. In 

fact, mitochondrial metabolism is essential for providing the energy and precursors of 

protein, DNA, and lipids needed for the increased growth in cancer cells (10, 11). Despite 

growing evidence for altered metabolism in KRAS mutant NSCLC, how KRAS drives 

these changes is not clearly understood. 

Sterol element binding regulatory proteins (SREBPs) are key transcription factors 

involved in regulating lipid homeostasis in all vertebrates (12). There are three SREBP 

isoforms in mammals: SREBP1a, SREBP1c, and SREBP2. SREBP1a and 1c are 

encoded by a single gene with alternative transcription start sites, whereas a separate 

gene encodes SREBP2. SREBP1c enhances expression of genes involved in fatty acid 

uptake and synthesis while SREBP1a enhances gene expression of all SREBP-
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responsive genes (12). SREBP2 preferentially facilitates expression of genes required for 

cholesterol synthesis although it can also enhance expression of genes involved in fatty 

acid synthesis through upregulation of the other SREBPs (13). Accumulating evidence 

suggests that SREBP1 is a critical link between oncogene signaling and metabolism in 

cancer (14-18). SREBP1’s ability to regulate fatty acid and cholesterol metabolism 

provides tumor cells with the energy, biomass, and reducing equivalents required for 

tumor growth and survival. Accordingly, several studies have reported on the capacity of 

SREBP1 to support tumor growth via increased fatty acid synthesis.  For example, Guo 

et al. reported that SREBP1 signaling is required for survival of mutant EGFR-expressing 

glioblastoma (19). Several other studies have highlighted the importance of SREBP1 in 

cancers such as pancreatic, prostate, and colorectal cancers (17, 18, 20). However, the 

role of SREBP1 in NSCLC is not clear.  

We recently showed that mutant KRAS promotes a transcriptional program of de 

novo lipogenesis in NSCLC (21). Furthermore, mutant KRAS-expressing cells and tumors 

were sensitized to the growth inhibitory effects of FASN inhibitors. This prompted us to 

determine exactly how KRAS was driving this lipogenic transcription program. Here we 

show a novel function for SREBP1 in mutant KRAS-expressing NSCLC distinct from 

lipogenesis. We demonstrate that mutant KRAS promotes SREBP1 expression via 

MEK1/2 signaling, and loss of SREBP1 decreases growth. Despite this reduction in 

growth, de novo lipogenesis was not significantly altered. Importantly, reduction of 

SREBP1 led to decreased expression of the mitochondrial encoded subunits of the ETC. 

This decrease in mitochondrial gene expression led to impaired mitochondrial metabolism 

as made evident by decreased oxidative phosphorylation. These results delineate a link 
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between mutant KRAS and SREBP1 as well as highlight a novel role for SREBP1 on 

mitochondrial function distinct from lipogenesis in NSCLC. 

RESULTS 

Oncogenic KRAS increases SREBP1 expression 

Mutant KRAS promotes a gene expression program, which drives de novo 

lipogenesis in non-small cell lung cancer (21, 22).  In order to identify the transcriptional 

mechanism(s) responsible, we examined cDNA microarray data from studies of lungs of 

wildtype and KrasLSLG12D mice and observed a significant increase in expression of 

SREBP1 in lung tumors compared to normal lung (21). To confirm the effect of mutant 

KRAS on SREBP1, we transfected HEK 293T cells with full-length (FL) SREBP1 and 

increasing doses of mutant KRASG12V. KRASG12V induced a dose dependent increase in 

SREBP1 protein expression (Figure 1a, left panel). Classically, SREBP1 is retained in 

the endoplasmic reticulum. Activation of lipid sensing programs promote the cleavage of 

SREBP1 (cleaved SREBP1) which can then travel to the nucleus to activate transcription 

of its lipogenic targets. Interestingly, cleaved SREBP1 protein levels did not increase 

relative to full-length SREBP1 levels (Figure 1a, right panel) suggesting mutant KRAS 

is not affecting SREBP1 cleavage. To assess whether this was a mutant KRAS-

dependent effect, we transfected 293T cells with SREBP1 and equal amounts of either 

KRASWT or KRASG12V. While KRASWT induced SREBP1 expression slightly, the effect 

was much less pronounced than with KRASG12V (Supplemental Figure 1a).  

Next, we investigated whether oncogenic KRAS was necessary to induce SREBP1 

expression in NSCLC cells. Knockdown of KRAS in KRAS mutant H23 and A549 cells  
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(1, 23) led to a reduction in SREBP1 gene expression (gene name: SREBF1)  compared 

to non-target (NT) controls (Figure 1b). SREBP1 protein levels were similarly reduced 

(Figure 1c). In order to determine if KRASMUT was sufficient to induce SREBP1 

expression, we ectopically over-expressed exogenous KRASG12V in NSCLC cells, H1437 

and H1703, which are wild-type for KRAS. Ectopic expression of mutant KRAS did not 

significantly alter SREBP1 mRNA expression (Supplemental Figure 1b-d) compared to 

vector controls. However, endogenous SREBP1 protein expression was increased 

(Figure 1d). Similarly, in patient lung adenocarcinomas (TCGA Provisional) KRAS 

mutation with significantly correlated with SREBF1 mRNA abundance (p=0.03; 566 

samples).  

In order to identify which SREBP1 isoform (SREBP1a or SREBP1c) is 

predominately expressed in our NSCLC cell lines, we in-vitro translated SREBP1a and 

SREBP1c from plasmid DNA and subjected the products to SDS-PAGE in parallel with 

protein lysates for H23, A549, H137, H1703 (Supplemental Figure 1e). SREBP1a is 24 

amino acids bigger than SREBP1c and they can be distinguished by size on a western 

blot. SREBP1c (hereafter referred to as simply SREBP1) appeared to be the predominant 

isoform in all four NSCLC cell lines. 

Given that ectopic-overexpression of KRASG12V was not able to increase SREBP1 

mRNA levels, we wanted to determine whether mutant KRAS was regulating SREBP1 

expression post-transcriptionally. We inhibited protein synthesis using cycloheximide 

(CHX) in H1703 cells expressing either mutant KRAS (KRASG12V) or empty vector 

(Vector). CHX treatment of H1703  decreased SREBP1 protein levels to a greater degree 
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in H1703 cells expressing KRASG12V (Figure 1e). Together these results suggest that 

oncogenic KRAS increases SREBP1 protein translation in NSCLC.  

Loss of SREBP1 decreases cell proliferation in mutant KRAS NSCLC  

Next, we sought to determine the role of SREBP1 on cell expansion in NSCLC. 

We generated KRAS mutant and KRAS wild-type NSCLC cell lines, which stably 

expressing lentiviral based NTshRNA or one of two different shRNAs targeting SREBP1, 

shSREBP1 # 1 and shSREBP1 # 2. We confirmed reduced expression of full length 

SREBP1 in shSREBP1-expressing cells by western blot (Figure 2a, left panel). 

Strikingly, loss of SREBP1 resulted in a marked reduction in cell proliferation of KRAS 

mutant cells. (Figure 2b-c). In contrast to mutant KRAS-expressing cells, SREBP1 

knockdown (Figure 2c) had no effect or enhanced the proliferation of  KRASWT-

expressing cells (Figure 2e and 2f). These data  suggest that SREBP1 plays an essential 

role in the proliferation of mutant KRAS-expressing NSCLC cells.  

Oncogenic KRAS regulates SREBP1 protein expression via MEK1/2 signaling 

Our data demonstrate that mutant KRAS increases SREBP1 expression in NSCLC 

and in turn, SREBP1 promotes growth in  mutant KRAS-expressing NSCLC cells. KRAS 

asserts many of its effects through the MEK/ERK pathway (24, 25). Previous studies 

showed that MEK/ERK regulate translation (26). Therefore, we treated 293T cells 

transfected with SREBP1 and KRAS with the MEK inhibitor AZD6244 (27-29). MEK 

inhibition greatly blunted the effect of KRAS on SREBP1 protein expression compared to 

vehicle control (Figure 3a). In contrast, MEK inhibition did not alter SREBP1 protein levels 

in 293T cells not expressing KRASG12V (Figure 3b). Given that MEK inhibition reduced 
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SREBP1 protein expression in a mutant KRAS preferential manner, we next sought to 

determine whether activation of the MEK/ERK pathway alone would suffice to increase 

SREBP1 protein levels. We transfected 293T cells with a constitutively active 

MEK1D218,D222 allele (MEKDD) or KRASG12V (30). MEKDD expression led to increased 

SREBP1 protein expression mimicking the effect of KRASG12V (Figure 3c).  To further 

confirm that KRASG12V is regulating SREBP1 protein expression through the MEK/ERK 

pathway in NSCLC, we compared the effect of AZD6244 on SREBP1 levels to KRAS 

knockdown in H23 and A549 cells. MEK inhibitor treatment led to a significant decrease 

in protein levels of SREBP1 comparable to KRAS  knockdown cells (Figure 3d). While 

the effect of knocking down KRAS on FL-SREBP1 was more striking in H23 than in A549, 

densitometry of A549 western blot confirms that MEK inhibition is decreasing SREBP1 

expression to a greater degree in the mutant KRAS expressing cells (Figure 3d bottom 

panel). Collectively, these data strongly suggest that mutant KRAS increases SREBP1 

protein expression via the MEK/ERK pathway.  

Knockdown of SREBP1 does not decrease lipogenesis in NSCLC  

SREBP1 is known to induce the expression of key lipogenic enzymes including 

ATP Citrate lyse (ACLY), Acetyl-CoA carboxylase (ACC), and Fatty Acid Synthase 

(FASN), which in turn, promote cell growth by providing fatty acids, which are essential 

for the synthesis of membranes, energy storage, and signaling in cancer cells (12, 16, 

31). Our lab has previously shown that mutant KRAS promotes the expression of these 

genes in NSCLC (21). We sought to determine whether SREBP1’s canonical role in 

lipogenesis might explain the decrease in cell proliferation observed following KRAS 

knockdown in KRASMUT-expressing cells. We began by examining the expression of 
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lipogenic genes in mutant KRAS cells with stable SREBP1 knockdown. Surprisingly, 

knockdown of SREBP1 did not cause a significant decrease in ACLY, ACACA1 (ACC) or 

FASN in H23 or A549 (Figure 4a-d). We next investigated the functional effect of 

SREBP1 knockdown on de novo lipogenesis by performing 13C stable isotope analysis to 

measure the incorporation of 13C glucose into palmitate, which requires ACLY, ACC and 

FASN (Figure 4e). 13C enrichment into palmitate was not reduced following SREBP1 

knockdown, demonstrating reduced SREBP1 levels neither altered lipogenic gene 

expression nor lipogenesis (Figure 4f-g).  We also measured total levels of palmitate and 

saw no significant difference in palmitate levels in SREBP1 knockdown cells compared 

to non-target controls (Figure 4h-i). Although SREBP2 preferentially activates expression 

of genes involved in cholesterol biosynthesis, it has been shown to activate expression 

of genes involved in fatty acid synthesis (32, 33). Importantly, we did not observe a 

compensatory increase in SREBF2 levels (Supplemental Figure 2c, left) to rescue de 

novo lipogenesis in shSREBP1 expressing cells. Finally, KRAS wild-type cells subject to 

stable SREBP1 knockdown did not exhibit altered lipogenic gene expression or de novo 

lipogenesis (Supplemental Figure 2). Together, these data argue that SREBP1 

maintains cell proliferation in mutant KRAS-expressing cells independent of its canonical 

role in lipogenesis.  

Loss of SREBP1 decreases mitochondrial-encoded electron transport chain (ETC) 

genes in mutant KRAS cells 

The lack of changes to lipogenic gene expression in SREBP1 knockdown cells 

prompted us to performed RNA-seq analysis in NTshRNA and SREBP1 knockdown cells.  

Strikingly, we observed significant decreases in mitochondrial-encoded –  but not nuclear-
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encoded – electron transport chain (ETC) genes (Figure 5a) and confirmed these findings 

by qRT-PCR (Figure 5b-e). Geneset enrichment analysis (GSEA) showed significant 

association (q<0.001) with TCA cycle and oxidative phosphorylation signatures (data not 

shown).  Protein levels for mitochondrial-encoded cytochrome c oxidase I (MT-CO1) were 

also reduced in H23 and A549 cells expressing shSREBP1, whereas protein levels for 

nuclear-encoded ATP5A did not change (Figure 5f). In contrast, SREBP1 knockdown in 

KRASWT cells resulted in only minor declines to mitochondrial-encoded ETC gene 

expression  in H1437 (Figure 5g) and significant increases in H1703 (Figure 5h). This 

suggests that SREBP1’s effect on mitochondrial gene expression might be facilitated by 

mutant KRAS.  

Loss of SREBP1 does not alter mitochondrial mass and slightly decreases copy 

number 

Our data suggested that SREBP1 plays a role in mitochondrial biology specifically 

in KRAS mutant NSCLC cells. Indeed, mitochondrial transcription factor A (TFAM), which 

is required for mitochondrial DNA replication and transcription (34, 35) was significantly 

reduced following SREBP1 knockdown in H23 and A549 (Figure 5i). To determine if the 

loss of ETC gene and protein expression was due in part to a decrease in number of 

mitochondria, we stained cells with Mitotracker Green, a cell permeable dye which 

localizes and binds to mitochondria. There was no difference in GFP intensity, quantified 

by flow cytometry, between NTshRNA control and shSREBP1 cells (Supplemental 

Figure 3a). To further confirm that reduced SREBP1 expression is not affecting 

mitochondrial number, we measured mitochondrial copy number relative to nuclear DNA 

using RT-PCR, as previously described (36). There was a ~17% decrease in 
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mitochondrial DNA copy number in SREBP1 knockdown cells compared to NTshRNA 

controls (Supplemental Figure 3b). Suggesting the decrease in mitochondrial gene 

transcription could be in part due to lower mitochondrial DNA content. Taken together, 

these data suggest that SREBP1 knockdown results in decreased expression of 

mitochondrial-encoded ETC genes and mitochondrial DNA copy number. Furthermore, 

there were no alterations to mitochondrial mass suggesting SREBP1 knockdown is 

affecting transcription not mitochondrial biogenesis. Lastly, nuclear encoded genes that 

make up subunits of the ETC do not significantly change, suggesting this is not due to 

SREBP1’s transcriptional activity in the nucleus. 

Loss of SREBP1 decreases oxidative phosphorylation in mutant KRAS-expressing 

NSCLC cells 

Given the effect of SREBP1 knockdown on mitochondrial ETC gene expression, 

we wanted to determine the effects on mitochondrial function. Knockdown of SREBP1 

resulted in a significant decrease in basal oxygen consumption rate (OCR) (~80%) and 

maximal respiration (~70%) (Figure 6a-c) compared to NTshRNA cells expressing 

mutant KRAS. In contrast, we did not see any difference in basal OCR in KRASWT cells 

(H1437) with stable knockdown of SREBP1 (Supplemental Figure 4a-b). A major fuel 

for oxidative phosphorylation via the TCA cycle is glucose. Therefore, we performed 13C 

glucose tracer analysis to determine whether SREBP1 knockdown alters glucose 

utilization by the TCA cycle. We measured enrichment of m+2 metabolites into the TCA, 

since they would be derived from labeled glucose (Figure 6d). We observed a significant 

decrease in m+2 citrate (~56%), fumarate (~43%), and malate (~40%) when SREBP1 

was knocked down in H23 cells (Figure 6e). By contrast, we did not see a significant 
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change in these metabolites in KRASWT cells (H1437) with SREBP1 knockdown (Figure 

6f). These data suggest that knockdown of SREBP1 impairs oxidative phosphorylation 

from glucose in mutant KRAS-expressing cells. 

Given the increased expression of SREBP1 in NSCLC, we examined the effect of 

SREBP1 transcript levels on overall survival in patients with lung adenocarcinoma using 

Kmplotter (37). Kmplotter is an online survival analysis software that allows for the meta-

analysis of patient data from an integrative lung cancer microarray database. Overall 

survival was significantly lower in patients with tumors that have high expression of 

SREBP1 (p<0.01) (Supplemental Figure 5). It is important to note however that the 

survival curve does not consider mutant KRAS expression. Nonetheless, these data 

suggest SREBP1 expression is negatively associated with survival in patients with lung 

adenocarcinoma. 

DISCUSSION  

Activating mutations of KRAS drive metabolic alterations that promote tumor 

growth in NSCLC (21, 22, 24, 38-41). However, the detailed molecular mechanisms by 

which KRAS regulates metabolism in NSCLC are not well understood.  Here, we report 

a novel role for SREBP1 distinct from lipogenesis in KRAS-expressing NSCLC. 

Oncogenic KRAS increases SREBP1 expression and loss of SREBP1 leads to decreased 

cell proliferation independent of its role in lipogenesis. Importantly, high SREBP1 

expression correlates with poor survival in patients with lung adenocarcinoma. Most 

interestingly, we report for the first time, to our knowledge, that loss of SREBP1 in mutant 

KRAS-expressing NSCLC leads to reduction of mitochondrial-encoded ETC subunits, 

resulting in deficient mitochondrial metabolism.  
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Mutant KRAS activates over a dozen downstream targets to assert its pro-

tumorigenic effects and the RAF/MEK/ERK pathway is among one of the most well-

characterized (15). In fact, many approaches to targeting mutant KRAS cancers involve 

the utilization of MEK/ERK inhibitors (27-29, 42-44). Our work revealed that KRAS 

regulates SREBP1 expression via MEK/ERK activation. MEK inhibition using AZD6244 

greatly reduced the effect of mutant KRAS on SREBP1 protein expression in 293T cells. 

Furthermore, activation of MEK pathway with constitutively active MEK1 mutant, MEKDD, 

was sufficient to increase SREBP1 protein expression. Similarly, MEK inhibition in 

NSCLC cells (H23 and A549) reduced SREBP1 levels similar to KRAS knockdown. 

Multiple ERK1/2 phosphorylation sites have been mapped on SREBP1 (45), and ERKs 

1/2 are the only known targets of MEKs 1/2, implicating ERK in mutant KRAS mediated 

regulation of SREBP1. Interestingly, mutant KRAS does not appear to regulate SREBP1 

cleavage, suggesting KRAS controls SREBP1 activity independent of cleavage. 

However, additional inhibitor studies need to be performed to fully elucidate the 

mechanism(s) responsible for KRAS regulation of SREBP1. Beyond characterizing 

ERK1/2 phosphorylation sites on SREBP1, further work should also include proteomic 

analysis to map out all major post-translational modifications on SREBP1 in the presence 

and absence of mutant KRAS.  

Our results support the notion that SREBP1 is important for mutant KRAS- 

expressing NSCLC cell viability (16-18, 46); however we were surprised to find that loss 

of SREBP1 did not significantly alter gene expression of classic lipogenic targets ACLY, 

ACACA1, and FASN (21). Furthermore, using 13C tracer analysis with GC/MS, we found 

that mutant KRAS-expressing NSCLC with reduced levels of SREBP1 could still make 
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sufficient levels of saturated fatty acids such as palmitate. Williams et al. showed that an 

essential requirement for SREBP1 is to maintain the ratio of monosaturated vs 

monounsaturated fatty acids (47). In their study, loss of SREBP1 did not lead to 

decreases in palmitate but instead a significant decrease in monounsaturated fatty acids 

such as oleate which ultimately resulted in lipotoxicity and cell death. However, these 

studies were carried out in glioma cells, which are not mutant KRAS dependent. 

Additionally, oleate levels did not decrease in our models when SREBP1 was knocked 

down (data not shown), suggesting an alternative mechanism for loss of cell proliferation.  

Earlier studies focused on SREBP1’s role in lipid homeostasis and regulation via 

cleavage in low-cholesterol environments (12, 14, 19, 48). Recently, however, multiple 

studies have unraveled novel roles for SREBP1 in unexpected pathways linked to 

diabetes, cancer, the immune system, and autophagy (15, 49-53). Using RNA-seq 

analysis, we discovered loss of SREBP1 resulted in decreased mitochondrial gene 

expression in NSCLC cells. Loss of SREBP1 also reduced protein levels of mitochondrial 

transcription factor A (TFAM), which is one of three key transcription factors required for 

mitochondrial DNA replication and transcription (34). Interestingly, the effect of SREBP1 

on TFAM appeared to be translational since we did not see a difference in TFAM 

transcript in our RNA-seq analysis of SREBP1-knockdown cells. This suggests that 

SREBP1 is playing a role downstream of TFAM transcription. Decreased mitochondrial 

gene expression resulted in impaired mitochondrial function characterized by reduced 

TCA cycle flux and oxygen consumption. It is not clear whether decreased proliferation in 

SREBP1 knockdown cells is due to SREBP1’s effects on the mitochondria. Furthermore, 

our work did not establish whether SREBP1’s effect on the mitochondria is strictly mutant 
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KRAS-dependent. While mutant KRAS expression was sufficient to enhance SREBP1’s 

effect on the mitochondria as shown by genetic knockdown and overexpression 

experiments, further studies are required to determine to what extent KRAS is important 

in SREBP1-mediated mitochondrial metabolism and transcription. Additionally, it remains 

to be seen whether other prominent oncogenes in lung cancer, such as mutant EGFR 

which also activates ERK1/2, similarly alter SREBP1 function. Our results also suggest 

an alternative pathway for KRAS mediated lipogenesis in NSCLC since loss of SREBP1 

showed no significant decrease in de novo lipogenesis. Further studies are required to 

illuminate how KRAS is regulating fatty acid synthesis which could potentially be via other 

lipogenic transcription factors implicated in cancer such as carbohydrate responsive 

element–binding protein (ChREBP) (54). Finally, the finding that SREBP1 plays a role in 

mitochondrial homeostasis presents a novel opportunity for targeted therapy in KRAS 

mutant lung cancers. 

Materials and Methods 

[13C] isotopomer analysis 

Cells were seeded in 6-cm culture dishes (800,000 cells per dish) overnight. The 

following day, cells were washed twice with warm 1X PBS, and medium was changed to 

RPMI with 10 mM [U-13C6] glucose (Cambridge Isotopes) as the only glucose source and 

10% dialyzed FBS and 2 mM glutamine for 6-16 hours.  

Lipid extraction and GCMS analysis: Cells were harvested in 0.9% NaCl and 

centrifuged at 10,000 RPM at 4°C. The pellet was re-suspended in 2:1 

chloroform:methanol. Before drying down under nitrogen, 50 nmoles of heptadecanoic 

acid was added to all samples as an internal control. Fatty acids were then saponified as 
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previously described (21). Following saponification, metabolites were dried down under 

nitrogen again and methylated with boron trifluoride (Sigma, 15716). Mass spectral data 

were obtained on an Agilent 7890B Gas Chromatograph coupled with an Agilent 5977A 

MDS. The settings were as follows: GC inlet 230 °C, transfer line 280 °C, MS source 230 

°C MS Quad 150 °C. An HP-5MS column (30 M length, 250 µm diameter, 0.25 µm film 

thickness) was used for fatty acid analysis and palmitate and its isotopomers were 

monitored at 270-286 m/z.  

TCA cycle metabolite extraction: Intermediate metabolites were harvested in 

80% methanol in water with 10 nmoles adonitol per sample as internal control. 

Metabolites were dried down under nitrogen and derivatized as previously described (55). 

In brief, cells were frozen and thawed three times, and centrifuged, and the supernatant 

was collected. The supernatant was then dried down and methoximated using MOX 

(Thermo Scientific, TS-45950) and derivatized with BSTFA (TCI, B3402). All metabolite 

data was analyzed using Mass Hunter and abundance corrected using ISOCOR.  

Analysis of SREBP1 expression 

Publicly available data from the The Cancer Genome Atlas (TCGA) were analyzed 

for SREBP1 expression in 720 lung tumors. Overall survival and the hazard ratio were 

graphed and calculated using an online tool called KmPlotter (37). All cases analyzed 

were adenocarcinomas. 

Cell culture and reagents 

All cells were purchased from American Type Culture Collection (Manassas, 

Virginia, United States) and cultured under recommended conditions. Specifically, H23, 

A549, H1437 and H1703 cells were cultured in Roswell Park Memorial Institute (RPMI) 
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1640 medium (Corning) and Beas-2B and 293T cells were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) (Corning). All media were supplemented with 10% 

fetal bovine serum (FBS) (Gemini) unless indicated. Delipidated media (DL) was RPMI 

media supplemented 10% delipidated FBS (Gemini). Cells were transfected using 

Attractene reagent as per manufacturer’s suggestions (QIAGEN). Plasmids used in all 

transfections are listed in Table 6.2. The cell lines were routinely tested for mycoplasma 

contamination (56). All cells were incubated at 37° C with 5% CO2. 

Genetic manipulation of KRAS in vitro. 

H1437, H1703, H858, and H1299 cells were tranduced with retrovirus expressing 

KrasG12V (pBabe KRASG12V) or either green fluorescent protein (GFP) vector control 

(pCMV-GFP) or empty vector (pMSCV-Puro) to serve as controls. Retrovirus was 

generated using CaP transfection into phoenix cell. Cells were transfected with 

expression vectors for vsv and gag-pol with the retroviral vector of interest. A549 and H23 

NSCLC cells were transduced with lentivirus expressing non-target short hairpin RNA 

(NTshRNA) pLKO (NTshRNA) or shRNA against Kras (shKRAS;TRCN0000033262, 

MilliporeSigma, Burlington, MA, USA). Lentivrus was prepared as described above. 

Following infection, cells were selected in puromycin (1 µg/ml) for one week to establish 

stable pools. 

Genetic manipulation of SREBP1 in vitro 

For stable SREBP1 knockdown, H23, A549, H1437 and H1703 cells were infected 

with non- target shRNA lentivirus (NTshRNA) or lentivirus with one of two different 

commercially available shRNAs against SREBP1 (shSREBP1 #1:TRCN0000020605, 

shSREBP1 #2: TRCN0000020607) (MilliporeSigma, Burlington, MA, USA). Following 
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infection with virus, H23, A549, and H1703 cells were selected in 1 µg/ml of puromycin. 

H1437 were selected in 2 µg/ml of puromycin. All cells were grown in indicated doses of 

puromycin for one week to establish stable pools.  

In vitro translation 

 In vitro translation of full-length SREBP1a and full-length SREBP1c was carried 

out using the TNT rabbit reticulocyte lysate translation kit (Promega, Wisconsin, USA) as 

per the manufacturer’s instructions. In brief, plasmids with the open reading frames of 

SREBP1c and SREBP1a were mixed separately with the components of the TNT rabbit 

reticulate lysate kit and incubated at 30°C for 90 mins. Following incubation, the product 

was diluted 1:5 in water and subjected to SDS-PAGE alongside lysates of H23, A549, 

H1437, and H1703 cells. 

Mitochondrial DNA copy number 

 Mitochondrial DNA copy number was measured as previously described (36). In 

brief, H23 cells expressing NTshRNA or shSREBP1 # 1 were seeded in triplicate in a 6-

well culture dish (Corning). Genomic DNA was isolated using a commercially available kit 

(Invitrogen, K182001) as per the manufacturer’s instructions. Isolated DNA was subjected 

to PCR using primers for nuclear DNA (B2M) or mitochondrial DNA (ND1). The relative 

mitochondrial DNA content was then determined as follows: 

a. ΔCT = (nuclear DNA CT – mito DNA CT) 

b. Relative mitochondrial DNA content = 2 × 2ΔCT 

 

Mitochondrial oxygen consumption 
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Oxygen consumption rates were measured using a Seahorse Bioenergetic Flux analyzer 

(XFe96). Basal respiration and ATP-coupled respiration, represented as OCR, were 

measured using a Mitochondrial Stress Test assay as per manufacturer’s instructions 

(Agilent, 103015-100).  

Proliferation studies 

Growth Curves: Cells were seeded into 6-well dishes (Corning) with an initial seeding 

density of 30,000-50,000 cells per well and counted on days indicated using a Countess 

Automated Cell Counter (Thermo Fisher Scientific, Waltham, MA, USA) cell automated 

countess (Invitrogen). For treatment with inhibitors, ROS, and nutrients, cells were treated 

the morning after plating and final counts were performed 3 days later. 

Real-time RT-PCR 

Total RNA was extracted from tumors and cells with the RNeasy Kit (Qiagen, 

Hilden, Germany). The reverse-transcription reaction was performed with a high-capacity 

cDNA Synthesis Kit (Applied Biosystems). Real-time quantitative PCR analyses of human 

genes were performed, as previously described (21). All primers used are listed in Table 

6.3. One of three housekeeping genes, 18s, HPRT, or β-ACTIN was used for 

normalization. 

RNAseq analysis 

RNAseq was performed by Novagene (Novagene Sacramento, CA). Illumina 

HiSeq RNA sequencing of triplicate FASTQ file reads passing Illumina purity filter were 

aligned using TopHat2 and Cufflinks, with statistical analysis performed by CuffDiff, 

generating files of normalized counts for detected genes and transcripts (UCSC hg38). 
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The Galaxy server at UCLA (galaxy.org) was used for FASTQ alignment and analysis 

(57). Aligned RNAs passing QC thresholds were used to calculate transcript abundance 

ratios followed by log2 linear scaling. Functional association with RNA abundance 

changes was assessed by gene set enrichment (GSEA). As expected, multiple signatures 

associated with mitochondrial function were significantly enriched with normalized 

enrichment score (NES) p value <0.05 and the false discovery rate (FDR) q value <0.05.  
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Figure Legends 

Figure 1: Oncogenic KRAS increases SREBP1: a) Protein expression for 293T cells 

transfected with full length (FL) SREBP1 in the presence or absence of increasing 

amounts of KRASG12V. Protein was harvested 48 hours after transfection and analyzed 

via western blotting for SREBP1 and loading control, β-ACTIN. Densitometry analysis of 

FL-SREBP1 vs cleaved SREBP1 protein increase. Blots were analyzed using ImageJ. 

Values for SREBP1 were normalized to ACTIN values. SREBP1 expression for b) mRNA 

and c) protein in H23 and A549 stably expressing either NTshRNA or shKRAS. N=3 per 

group. Bars represent mean ± SD.*** p  < 0.001. d) Protein expression for FL-SREBP1 

and cleaved SREBP1 in H1437 and H1703 expressing either control vector, or KRASG12V. 

Proteins were analyzed via western blotting. e) Protein expression for H1703 cells treated 

with vehicle control or 10 µM of cyclohexamide (CHX) for 1 or 3 hours (hr). Cells were 

expressing either vector control or KRASG12V. Proteins were analyzed via western 

blotting.   
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Figure 2: Loss of SREBP1 decreases cell proliferation in mutant KRAS-expressing 

NSCLC cells. a) SREBP1 protein expression for H23 (left), A549 (right) and f) H1437 

(left), H1703 (right). Cells expressed either NTshRNA or one of two shSREBP1. 

Proteins were analyzed via western blot analysis. Cell number for mutant KRAS-

expressing cells a) H23, b) A549 and KRASWT expressing cells c) H1437 d) H1703. H23 

were expressing either NTshRNA or one of two shRNAs against SREBP1; shSREBP1 

#1 or shSREBP1 #2. All other cells expressed either NTshRNA or shSREBP #2. Cells 

were seeded in 6 well plates on day 0 and counted on indicated days using an automatic 

cell counter. N=3 per group. Bars show ± SD. *p<0.05, ***p<0.005.  

 

Figure 3: Oncogenic KRAS regulates SREBP1 protein expression via MEK1/2 

signaling. a) Protein expression for 293T treated with 2.5 µM of MEK inhibitor, AZD6244, 

for 16 hours. 293T were transfected with either control vector or FL-SREBP1 in the 

presence or absence of KRASG12V, 24 hours prior to drug treatment. b) Protein expression 

for 293T transfected with FL-SREBP1 and treated with AZD6244. Cells were treated 24 

hours post transfections and collected 16 hours after treatment. c) Protein expression for 

293T cells transfected with FL-SREBP1 and either KRASG12V or MEKDD. d) Protein 

expression for H23 (left) and A549 (right) treated with 10 µM of AZD6244 for 16 hours. 

Cells were stably expressing either NTshRNA or shKRAS. e) densitometry of A549 

western blot from (d). FL-SREBP1 was normalized to ACTIN. Blots were analyzed using 

ImageJ. 

 

Figure 4: SREBP1 knockdown does not decrease de novo lipogenesis in mutant 

KRAS expressing NSCLC cells. Gene and protein expression for SREBP1 and its 

lipogenic targets ACLY, ACC, and FASN in a) H23, b) A549. Cells expressed either 

NTshRNA or one of two different shSREBP1. N=3 per group. Bars indicate mean ± SD. 

***P< 0.005. e) Schematic for 13C glucose tracer analysis on de novo lipogenesis. Total 
13C glucose labeled palmitate in f) H23, g) A549. Total palmitate levels in h) H23 i) A549 

cells. Palmitate was measured via GS/MS and total counts were normalized to protein 

concentration of cells on day of collection (µg/µl). Cells expressed NTshRNA or one of 

two different shSREBP1 for all metabolite tracing experiments. N=5 per group. Bars 

indicate mean ± SD. * p <0.05, ***P< 0.005. 

 

Figure 5: Loss of SREBP1 decreases expression of mitochondrial encoded ETC 

genes in mutant KRAS NSCLC cells.  a) RNA seq analysis for mitochondrial encoded 

and nuclear encoded mitochondrial proteins in H23 cells expressing either NTshRNA, 

shSREBP1 #1 or shSREBP1 #2. shSREBP1 values were normalized to their NTshRNA 

expressing controls. N=3 per group. ± SD.*q <0.05 **q<0.01. Gene for mitochondrial 

encoded ETC genes in b) H23, and c) A549 cells expressing either NTshRNA shSREBP1 
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#1 or shSREBP1 #2. N=3 per group. Bars indicate ±SD. *p< 0.05. Gene expression for 

nuclear encoded ETC genes in d) H23 and e) A549 cells expressing either NTshRNA or 

one of two different shSREBP1. N=3 per group. Bars indicate ±SD. *p< 0.05. f) Protein 

expression for H23 (left) and A549 (right) cells expressing either NTshRNA or shSREBP1 

#2. Proteins were analyzed via western blotting. Gene expression for mitochondrial 

encoded genes in KRASWT g) H1437 and h) H1703 cells expressing either NTshRNA or 

shSREBP1 #2. N=3 per group. Bars indicate ± SD. ** p <0.01.  

 

Figure 6: Loss of SREBP1 decreases oxidative phosphorylation in mutant KRAS-
expressing NSCLC cells. a) Representative mitochondria stress test performed on H23 
expressing NTshRNA or shSREBP1 #2. The stress test provides b) basal respiration and 
c) maximal respiration. OCR was measured using a Seahorse Bioenergetic Flux 
Analyzer. N≥10 per group. Bars indicate mean ± SE. ****p < 0.0001. d) Schematic of 
glucose utilization by the TCA cycle into m+2 intermediates. Relative amount of 13C 
labeled m+2 citrate, fumarate, and malate in e) H23 and f) H1437 cells. Cells expressed 
NTshRNA or one of two different shSREBP1. Cells were labeled with 13C [U6] glucose, 
and harvested after 6 hr, and analyzed by GC/MS for TCA cycle metabolites. N=5 per 
group. Bars indicate ± SD.  * p <0.01, ** p <0.001. 
 

Supplemental Figures 

Supplemental Figure 1: Oncogenic KRAS increases SREBP1 expression: a) Protein 

expression in 293T cells transfected with FL-SREBP1 in the presence of either KRASWT 

or KRASG12V. SREBP1 mRNA expression for b) 293T, c) H1437, and d) H1703 cells. 

Cells were expressing empty vector (Vector) or KRASG12V. N=3 per group. Bars indicate  

± SD. * p <0.01 e) Full length (FL) SREBP1a and SREBP1c were produced via in vitro 

translation and subjected to SDS-PAGE alongside lysates of H23, A549, H1437, and 

H1703 cells.  

Supplemental Figure 2: SREBP1 knockdown does not decrease lipogenesis in 

NSCLC. Gene and protein expression for SREBP1 and its lipogenic targets ACLY, ACC 

(gene name: ACACA1), and FASN in KRASWT expressing cells. a) H1437, b) H1703. 

Cells expressed either NTshRNA or shSREBP1 #2. N=3 per group. Bars indicate ± SD. 

c) SREBF2 gene expression for H23 (left) and A549 (right). Total 13C glucose labeled 

palmitate in d) H1437, e) H1703. Total palmitate levels in f) H1737, and g) H1703. 

Palmitate was measured via GS/MS and total counts were normalized to protein 

concentration of cells on day of collection (µg/µl). Cells expressed NTshRNA or 

shSREBP1 #2 for all metabolite tracing experiments. N=5 per group. Bars indicate mean 

± SD. * p <0.05, ***P< 0.005. 

Supplemental Figure 3: Loss of SREBP1 does not alter mitochondrial mass and 

slightly decreases copy number. a) Mean fluorescence intensity (M.F.I) of H23 cells 

stained with MitoTracker Green. Cells were stably expressing either NTshRNA or 

shSREBP1 #2. Fluorescence was measured via flow cytometry. b) Mitochondrial DNA 
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content relative to nuclear DNA content in H23 expressing either NTshRNA or shSREBP1 

#2. DNA was harvested and subjected to qRTPCR. AU= Abitrary units. N=3 per group. 

Bars indicate mean ± SD. 

 

Supplemental Figure 4: Loss of SREBP1 decreases oxidative phosphorylation in 
mutant KRAS NSCLC cells. a) Representative mitochondria stress performed on H1437 
cells expressing NTshRNA or shSREBP1 #2. Test provides b) Basal OCR. N≥10 per 
group. Bars indicate mean ± SE. OCR was measured using a Seahorse Bioenergetic Flux 
Analyzer.  
 

Supplemental Figure 5: High SREBP1 expression correlates with poor survival in 
LUAD patients: a) Kaplan-Meier analysis of an integrative lung cancer microarray 
database showing expression levels of SREBP1 transcript (red:high, black:low) and 
association with overall survival. Data obtained from Km-plotter website. *p<0.05. 
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Figure 1: Oncogenic KRAS increases SREBP1 expression
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Figure 2: Loss of SREBP1 decreases cell proliferation in mutant KRAS expressing NSCLC 

cells
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Figure 3: Oncogenic KRAS regulates SREBP1 protein expression via MEK1/2 signaling
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Figure 4: SREBP1 knockdown does not decrease lipogenesis in NSCLC
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Figure 5: Loss of SREBP1 decreases mitochondrial-encoded electron transport chain (ETC) 

genes in mutant KRAS NSCLC cells 
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Figure 6: Loss of SREBP1 decreases oxidative phosphorylation in mutant KRAS NSCLC 
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