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Abstract
We call a set of n points in the Euclidean plane “wide” if at most

√
n of its points are

collinear. We show that in such sets, the maximum possible number of trapezoids is
�(n3 log n) and O(n3 log2 n) while for deltoids we have �(n5/2) and O(n8/3 log n).

Keywords Trapezoid · Deltoid · Order of magnitude

Introduction

Given a class C of geometric objects in R
2, it is natural to ask the question: for a

carefully selected set P of n points, at most how many of the subsets of P can be in
C?

The first such question was posed by Erdős [2] on the number of unit distances (i.e.,
if C is the class of all unit segments in R

2) and it is still one of the most challenging
problems in Combinatorial Geometry (if not “the” most challenging one).

The systematic study of triangles was initiated by Pach and Sharir [5] and it resulted
in several nice results and new problems, see [1] or [3]. It is also natural to consider
polygons with more than three vertices.

The goal of this paper is to study classes C of quadrilaterals. Many of these types
are easy to settle (or reduce to similar questions on triangles): squares, rectangles,
rhombi, parallelograms and symmetric trapezoids. (A trapezoid is a quadrilateral with
at least one pair of parallel sides.) However, two further classes produce interest-
ing phenomena. For general, i.e., not necessarily symmetric trapezoids and also for
deltoids (quadrilaterals whose four sides can be grouped into two pairs of adjacent
equal-length sides), it makes a significant difference whether we allow arbitrary point
sets or just wide (or “grid–like”) ones in the sense that we do not allow for more than√
n collinear points. Our main results for this case (Theorems 1 and 2) can be summed

up as follows.
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Theorem Consider all sets of n points inR2 such that at most
√
n of them are collinear.

Then

(a) the maximal number of trapezoids is �(n3 log n) and O(n3 log2 n);
(b) the maximal number of deltoids is �(n5/2) and O(n8/3 log n).

Here and in what follows, for functions f , g > 0 we write f (n) = O(g(n)) if
f (n) ≤ Bg(n) for a constant B > 0 and all n; and f (n) = �(g(n)) if g(n) =
O( f (n)), i.e., if f (n) ≥ βg(n) for a constant β > 0 and all n.

Actually we shall also prove some more general results, e.g. we consider arbitrary
bounds λ(n) ≤ n in place of

√
n above (see Theorems 1 and 2).

Known Results for Triangles and Quadrilaterals

Triangles

Proposition Among n points in the Euclidean plane, we have the following bounds on
the maximum possible number of various triangles.

(a) equilateral: �(n2), e.g., in regular �–lattice.
(b) right triangles (no shape prescribed): �(n2 log n) [5].
(c) isosceles triangles (no shape prescribed): �(n2

√
log n) and O(n2.136) [3].

Remarks on the Proposition.

(a) In (a), the upper bound is obvious since two points cannot determine more than
two equilateral triangles.

(b) Pach–Sharir show an order of magnitude of �(n2 log n) for a dense set of angles
in place of 90◦.

(c) A bound of O(n2λ(n)) would imply a lower bound of �(n/λ(n)) for the number
of distinct distances (for arbitrary λ(n)). That is why the former order ofmagnitude
must be superquadratic, see [2] for an example with only O(n/

√
log n) distinct

distances.

Simple Quadrilaterals

Number of points Quadrilateral Bound(s) Example or source
that determine it

2 Square �(n2) � lattice
“2.5” Rectangle �(n2) � Lattice

O(n2 log n) Proposition 1.(b)
“2.5” Rhomb �(n2) � Lattice

O(n2.136) Proposition 1.(c)
3 Parallelogram �(n3) � Lattice
3 Symm. trapezoid �(n3) Regular n–gon
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Trapezoids and Deltoids

Object General bound Example: points on ≤ O(
√
n) Pts collinear. Example or source

few parallel lines

Trapezoid �(n4) n/2 + n/2 pts O(n3 log2 n) �(n3 log n) Theorem 1
on two parallel lines Lemma 1.1

Deltoid �(n3) n/3 + n/3 + n/3 pts O(n8/3 log n)�(n5/2) Theorem 2 � lattice
on three parallel lines

Remark: It is not difficult to see that a
√
n × √

n square lattice contains cn3 log n
trapezoids (see the forthcomingLemma1.1).Moreover, ifwe exclude lineswith at least
three points (i.e., we require that the point set be in general position) then a bound of
Cn3 is easy to demonstrate. This can even be attained, e.g., for the vertices of a regular
n–gon. Moreover, for deltoids and in case of three parallel lines, n/6 + 2n/3 + n/6
points are better than the uniform distribution.

Our Theorems do not hold in finite affine planes: it is easy to see that the number
of trapezoids is asymptotically as large as n3.5 in such a plane of n points, with

√
n

points/lines; while the number of deltoids (if defined appropriately) is ∼ n3. That is
why we need some tool specific to the Euclidean plane. It is the following.

Theorem 0 (Szemerédi–Trotter) For any n points of the Euclidean plane and for any
2 ≤ k ≤ n, the number of straight lines with ≥ k points cannot exceed{

C0 · n2

k3
, if k ≤ √

n;
C0 · n

k , if k ≥ √
n;

where C0 is an absolute constant (shown to be between 0.4 and 2.6 in [4]).

1 Trapezoids

Let λ(n) ≤ n be given, and assume that in a set of n points in the Euclidean plane, at
most λ(n) are collinear. Denote by T (n) the maximum possible number of trapezoids
(we prescribe no specific shape for them) in such sets.

Theorem 1

T (n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(n3), for all λ(n);
�(n3 log n), if

√
n ≤ λ(n) ≤ √

n log n;
O(n3 log2 n), if λ(n) ≤ √

n log n;
�

(
n2λ2(n)

)
, if

√
n log n ≤ λ(n) ≤ n.

The first lower bound is trivial: as mentioned before, a regular n–gon contains this
many (even symmetric) trapezoids.
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The second lower bound for
√
n ≤ λ(n) ≤ √

n log n is stated as the following
lemma.

Lemma 1.1 A
√
n × √

n square lattice contains �(n3 log n) trapezoids.

Proof Given a
√
n × √

n square lattice, we shall only estimate the number of those
trapezoids whose parallel edges have positive slope i/ j less than 1. (The total would
be more than four times this quantity.) We shall call this fraction i/ j the slope of
the trapezoid. (If it is a parallelogram, we just pick one pair of parallel edges; at
the end this will cost at most a factor of 1/2.) Moreover, in order to have several
such trapezoids for j fixed, we only consider j ≤ √

n/2. Finally, to avoid multiple
counting, we assume that i and j are coprime. In other words, for each pair (i, j) with
1 ≤ i < j ≤ √

n/2 and gcd(i, j) = 1, we estimate the number of trapezoids of slope
i/ j .

In what follows, we shall use that �x� ≥ x/2 if x ≥ 2 (here �x� is the lower integer
part of x). E.g., for i , j fixed as above, there are at least

⌊√
n · j
2

⌋
≥

√
n · j
4

lines of slope i/ j with

⌊√
n

j

⌋
≥

√
n

2 j
points on each.

Of these, the number of possibilities to pick 2+2 vertices of a trapezoid of slope i/ j
is at least

(√
n · j/4
2

)
·
(√

n/2 j

2

)2

≥ nj2

64

(
n

16 j2

)2

= �

(
n3

j2

)
.

The number of i < j coprime to j is given by Euler’s function φ( j). Summing for all
j in question, we get the required lower bound:

�(n3) ·
∑

2≤ j≤√
n/2

φ( j)

j2
= �

(
n3 log(

√
n/2)

)= �
(
n3 log n

)
.

	

The third lower bound (hidden in the � notation) is, again, not difficult, not even for
arbitrary λ(n) ≤ n: draw n/λ(n) equally spaced horizontal straight lines and place
λ(n) points on each, with all n horizontal coordinates independent over the rationals.
This, on the one hand, guarantees that only horizontal triples can be collinear. On the
other hand, the number of possibilities for first picking two of the lines and then two
points on each is

(
n/λ(n)

2

)
·
(

λ(n)

2

)2

≈ 1

8
· n2

λ2(n)
· λ4(n) = �(n2λ2(n)),

as required. 	

The upper bounds in Theorem 1will be proven by showing an essentially equivalent

incidence result. To have simple notations, we first apply a projection that maps the
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line at infinity to a finite line e while all n given points remain finite. In what follows
we only work with these (projected, finite) points.

Let P denote the set of these n points (note that e ∩P = ∅) and let {�1, �2, . . .} be
the at most n(n − 1)/2 distinct straight lines that connect them (their actual number
will be irrelevant). For each �i put

ki := |P ∩ �i |.

Moreover, for each D ∈ e we define

w(D) :=
∑

�i ,� j •| D
i �= j

k2i k
2
j ,

as an obvious upper bound on the number of trapezoids whose parallel edges (before
they were projected) had had common direction that, after the projection, corresponds
to D ∈ e. Actually, with

(ki
2

)(k j
2

)
in place of k2i k

2
j we would get the exact count—but

our bound w will be easier to use.
The upper bounds in Theorem 1 obviously follow from (actually they are equivalent

to) the following.

Lemma 1.2 If, in a set P of n points, at most λ(n) are collinear and e ∩ P = ∅ then,
using the foregoing notations,

W (e) :=
∑
D∈e

w(D) ≤
{
O(n3 log2 n), if λ(n) ≤ √

n log n;
O

(
n2λ2(n)

)
, if

√
n log n ≤ λ(n) ≤ n.

Proof For each D ∈ e and 2 ≤ K ≤ n put

nD(K ) := |{�i |• D ; ki = K }|.

Using this notation we have

W (e) =
∑
D∈e

w(D) =
∑
D∈e

∑
2≤K1≤B

√
n

∑
2≤K2≤B

√
n

nD(K1)nD(K2) · K 2
1K

2
2 .

For a fixed pair 2 ≤ K ′, K ′′ ≤ n, the contribution of the pairs (�i , � j ) of lines with
K ′ ≤ ki < 2K ′, K ′′ ≤ k j < 2K ′′ is

WK ′,K ′′(e) :=
∑
D∈e

∑
K ′≤K1<2K ′

∑
K ′′≤K2<2K ′′

nD(K1)nD(K2) · K 2
1K

2
2

≤ 16(K ′)2(K ′′)2
∑
D∈e

ND(K ′)ND(K ′′),
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where

ND(K ′) :=
∑

K ′≤K1<2K ′
nD(K1) and ND(K ′′) :=

∑
K ′′≤K2<2K ′′

nD(K2).

By Cauchy–Schwartz, we have the upper bound

WK ′,K ′′ (e) ≤ 16(K ′)2(K ′′)2
√∑

D∈e
N2
D(K ′) ·

√∑
D∈e

N2
D(K ′′)

≤ 16(K ′)2(K ′′)2
√
max
D

ND(K ′) ·
∑
D∈e

ND(K ′) ·
√
max
D

ND(K ′′) ·
∑
D∈e

ND(K ′′). (1)

Lemma 1.3 The total contribution of the pairs (�i , � j ) of lines with ki , k j ≤ √
n is

O(n3 log2 n).

Proof We use inequality (1). On the one hand, for lines through D with at least K
points each, ND(K ) ≤ n/K is obvious. On the other hand, for K ≤ √

n, by the
Szemerédi–Trotter Theorem 0(i) (and since each line only intersects e in one point),
we have

∑
D∈e

ND(K ) ≤ C0 · n2

K 3 .

Thus our bound (1) becomes

≤ 16(K ′)2(K ′′)2
√

n

K ′ · C0 · n2

(K ′)3
·
√

n

K ′′ · C0 · n2

(K ′′)3
= 16C0 · n3,

Summing for the log2(
√
n) ≤ log2 n pairs K ′, K ′′ = 1, 2, 4, . . . , 2i , . . . ≤ √

n, we
get the required inequality. 	

Lemma 1.4 If λ(n) ≥ √

n log n then the total contribution of the pairs (�i , � j ) of lines
with

√
n ≤ max{ki , k j } ≤ λ(n) is O

(
n2λ2(n)

)
.

Proof We use inequality (1) again. ND(K ) ≤ n/K is still obvious. Now we must
distinguish two cases.

(a) If
√
n ≤ K ′, K ′′ ≤ λ(n) then we use (ii) of the Szemerédi–Trotter Theorem 0:

∑
D∈e

ND(K ) ≤ C0 · n

K
.

Thus our bound (1) becomes

≤ 16(K ′)2(K ′′)2
√

n

K ′ · C0 · n

K ′ ·
√

n

K ′′ · C0 · n

K ′′ = 16C0 · n2K ′K ′′.

Summing first for K ′ = 1, 2, 4, . . . , 2i , . . . ≤ λ(n), and then for the same values
of K ′′, we get the required bound.
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(b) If, say, K ′ ≤ √
n ≤ K ′′ ≤ λ(n) (the symmetric case is equivalent), we use both

parts (i) and (ii) of the Szemerédi–Trotter Theorem 0 once:

≤ 16(K ′)2(K ′′)2
√

n

K ′ · C0 · n2

(K ′)3
·
√

n

K ′′ · C0 · n

K ′′ = 16C0 · n5/2K ′′.

Summing first for K ′′ = 1, 2, 4, . . . , 2i , . . . ≤ λ(n), and then for the log n values
K ′ = 1, 2, 4, . . . , 2i , . . . ≤ √

n, we get the bound O(n5/2λ(n) log n)—smaller
than required. 	

This also finishes the proof of Theorem 1.

2 Deltoids

Let 2 ≤ λ(n) ≤ n and assume that a set of n points in the plane contains ≤ λ(n)

collinear points. Denote by D(n) the maximum possible number of deltoids (we pre-
scribe no specific shape for them) in such sets.

Theorem 2

D(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
(
n2λ(n)

)
, for all such λ(n);

O
(
n2λ2(n)

)
, for λ(n) ≤ n1/3 · √

log n;
O(n8/3 log n), for n1/3 · √

log n ≤ λ(n) ≤ n2/3 log n;
�

(
n2λ(n)

)
, for n2/3 log n ≤ λ(n).

Proof To show the general lower bound, assume without loss of generality that
λ(n) ≤ n/3 and draw m := �n/λ(n)� lines through the origin such that the angle
between any consecutive pair is π/m. Place λ(n) (or λ(n) − 1) points on one line
such that the distances from the origin be algebraically independent transcendental
numbers. Finally, rotate this point set repeatedly by 2π/m to copy the points to every
other line. On the one hand, only triples of points from one line can be collinear by
transcendentality. On the other hand, each line can be the axis of at least

(
λ(n) − 1

2

)
· n − λ(n)

2
≥ λ2(n)

8
· n
3
,

deltoids, yielding a total of

m · nλ2(n)

24
≥ n

λ(n)
· nλ2(n)

24
= n2λ(n)

24
.

Remark (a) For n = 3k and λ(n) = k, the configuration placed on three concurrent
lines at 60◦ apart yields 3 · (k

2

) · k ≈ 3k3/2 = n3/18 deltoids, which is better (by
a factor of 3/2) than the best distribution on three parallel lines.
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(b) For λ(n) = √
n, this construction gives the same order of magnitude n5/2 as a√

n × √
n square lattice (where a similar way of counting works).

As for a general upper bound we show the following.

Lemma 2.1 For any λ(n) ≤ n, we have D(n) = O
(
n2λ2(n)

)
.

Indeed, every pair of points can form the axis of at most λ2(n) deltoids. 	

We are left to show the upper bounds for the last two cases of the Theorem. To

this end, as usual, for every line � that connects two points, we denote the number of
points on � by k� := |P ∩ �| and by σ� the number of pairs that are mapped to each
other if we apply the reflection through �. Then, in a maximal configuration, we have

D(n) =
∑

�

(
k�

2

)
· σ� ≤

∑
�

k2� · σ�.

For a fixed pair (k, σ ), the contribution to D(n) of those lines � with k ≤ k� < 2k and
σ ≤ σ� < 2σ , is bounded by

Dk,σ :=
∑

k≤k�<2k
σ≤σ�<2σ

k2� · σ� ≤ 8k2 · σ · L(k, σ ), (2)

where L(k, σ ) denotes the number of lines in question.

Lemma 2.2 The lines � with k� ≤ √
n cannot contribute to D(n) by more than

O(n8/3 log n).

Proof We have two bounds for L(k, σ ). On the one hand, it is ≤ n2/σ since
∑

� σ� ≤
n2 while, on the other hand, it is ≤ C0n2/k3 by Theorem 0(i). Hence, in (2),

Dk,σ ≤ 8k2 · σ · min

{
C0

n2

k3
,
n2

σ

}
= 8n2 · min

{
C0

σ

k
, k2

}
≤ 8n2(C0σ)2/3,

with equality in the last inequality iff k = (C0σ)1/3. Summing for σ = 1, 2, . . . , 2i ,
. . . ≤ n, we get

∑
σ

Dk,σ = O(n2) ·
∑
2i≤n

(
2i

)2/3 = O(n2) · O(n2/3) = O(n8/3).

Summing for the ≤ log n values k = 1, 2, 4, . . . , 2i , . . . ≤ √
n we conclude that

D(n) = O
(
n8/3 log n

)
.
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1/2

3

0 1

3

2

8/3

1/3 2/30 1

Fig. 1 For λ(n) = nx we have (a) T (n) ∼ ny for trapezoids or (b) D(n) ∼ ny for deltoids

Remark This order of magnitude could only be attained if we had “many”, more
specifically,�(n) straight lines �with σ� ∼ n and k� ∼ 3

√
n simultaneously. However,

this is unlikely since so many σ� being so large seems to force “many”,∼ n concurrent
lines—which contradicts k� ∼ 3

√
n.

Lemma 2.3 The lines � with
√
n ≤ k� ≤ λ(n) can only contribute to D(n) by at most

O
(
n2λ(n)

)
.

Proof Again, we have two bounds for L(k, σ ). On the one hand, it is still ≤ n2/σ
while, on the other hand, we use part (ii) of Theorem 0 to get L(k, σ ) ≤ C0n/k.
Hence, from (2),

Dk,σ ≤ 8k2σ · min

{
C0

n

k
,
n2

σ

}
= 8nk · min{C0σ, nk} ≤ 8C0nkσ = O(n2λ(n)),

as required. 	

This, finally, finishes the proof of Theorem 2, as well. 	


Concluding Remarks

Apart from powers of log n, the order of magnitude of T (n), i.e. the exponent of n
in T (n) is quite well understood. This is not the case for deltoids where, for λ ≤
n2/3 log n, even the best possible exponent is unknown. (We believe that it must be
closer to the lower bound, see the Remark after Lemma 2.2) (Fig. 1).
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