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Abstract 
Geckos are the only major lizard group consisting mostly of nocturnal species. Nocturnality is presumed to have 
evolved early in gecko evolution and geckos possess numerous adaptations to functioning in low light and at low 
temperatures. However, not all gecko species are nocturnal and most diurnal geckos have their own distinct 
adaptations to living in warmer, sunlit environments. We reconstructed the evolution of gecko activity patterns 
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using a newly generated time-calibrated phylogeny. Our results provide the first phylogenetic analysis of 
temporal activity patterns in geckos and confirm an ancient origin of nocturnality at the root of the gecko tree. 
We identify multiple transitions to diurnality at a variety of evolutionary time scales and transitions back to 
nocturnality occur in several predominantly diurnal clades. The scenario presented here will be useful in 
reinterpreting existing hypotheses of how geckos have adapted to varying thermal and light environments. 
These results can also inform future research of gecko ecology, physiology, morphology and vision as it relates 
to changes in temporal activity patterns. 
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INTRODUCTION 
Temporal niche partitioning early in a clade's evolutionary history has profound effects on behaviour, ecology, 
reproduction, physiology and morphology (Duellman & Pianka, 1990; Webb et al., 2002; Vitt et al., 2003; Vitt & 
Pianka, 2005). Reconstructing the history of temporal activity patterns can provide insight into the evolution of 
associated traits and the structuring of ecological communities. Geckos, for example, are the only primarily 
nocturnal lizard clade; 72% of the 1552 described species are active at night (Table S1). Geckos possess 
numerous adaptations to low light and low temperatures, suggesting nocturnality evolved early in their 
evolution. These adaptations include the evolution of vocalization and acoustic communication, olfactory 
specialization, enhanced capability for sustained locomotion at low temperatures, shifts in diet and foraging 
mode, and the absence of the parietal foramen and pineal eye (Ralph, 1975; Gundy & Wurst, 1976; Marcellini, 
1977; Pianka & Huey, 1978; Schwenk, 1993; Autumn et al., 1999; Vitt & Pianka, 2005; Bauer, 2007; Daza, Bauer 
& Snively, 2013). Geckos also have acute vision and have many adaptations for seeing in low light including large 
eyes, pupils capable of an extreme degree of constriction and dilation, retinas without foveae, short visual focal 
length, multifocal colour vision, and rod-like photoreceptor cells in the retina that lack oil droplets (Underwood, 
1951a, 1970; Kröger et al., 1999; Röll, 2000b, 2001a; Roth & Kelber, 2004). However, not all gecko species are 
nocturnal; there are over 430 diurnal species (Table S1). Many of these diurnal lineages have their own 
adaptations to living in warmer, photopic environments including round pupils, UV-filtering crystallin lens 
proteins, smaller eyes, partial to complete foveae, cone-like photoreceptor cells in the retina and a return to 
higher energetic costs of locomotion (Walls, 1942; Pianka & Huey, 1978; Autumn, 1999; Röll, 2001a, b; Werner 
& Seifan, 2006). Geckos are thought to be ancestrally nocturnal and diurnality evolved multiple times (Walls, 
1942; Autumn, 1999; Röll, 2001b). However, this hypothesis has never been tested in a phylogenetic framework. 
We performed comparative analyses using a newly generated gecko phylogeny and examined the evolution of 
temporal activity patterns to: (1) test the hypothesis of an early origin of nocturnality in geckos; (2) verify 
repeated subsequent transitions to diurnality; and (3) determine whether the evolution of temporal activity 
patterns has influenced diversification rates. 

Materials and Methods 
We estimated phylogenetic relationships among 264 gecko species and 16 outgroups including exemplars from 
119 of 120 recognized gecko genera (Table S2). We sequenced fragments of five nuclear protein-coding 
genes: RAG1 (1074 bp), RAG2 (366 bp), C-MOS (384 bp), ACM4 (477 bp) and PDC (397 bp); and one 
mitochondrial fragment: the protein-coding ND2 gene and associated tRNAs (1414 bp). Details concerning 
primers, PCR, Sanger sequencing and alignment are discussed elsewhere (Gamble et al., 2008; Jackman et al., 
2008). Newly generated sequences have been deposited in GenBank (Table S2). 
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We estimated phylogenetic relationships and divergence times simultaneously in a Bayesian framework using 
BEAST 1.7.4 (Drummond et al., 2012). Partitioned data were analysed with an uncorrelated relaxed clock and 
Yule prior on speciation rates (Drummond et al., 2006). The optimal partitioning scheme, determined using 
Bayesian information criterion (BIC) in PartitionFinder v1.0.1 (Lanfear et al., 2012), had three partitions: one 
partition consisting of all nuclear gene data; another partition comprising first and second codon positions of the 
mtDNA dataset plus tRNAs; and a third partition with the third codon position of the mtDNA dataset. The 
optimal models of sequence evolution, also calculated by PartitionFinder, were GTR + G for all partitions. We ran 
two replicate Markov Chain Monte Carlo (MCMC) analyses each with 20 million generations retaining every 
5000th sample. We used seven calibrations to constrain the minimum ages of nodes in the time tree analyses. 
The most recent common ancestor (MRCA) of Gekkota, minimum age – (fossil calibration) Hoburogekko 
suchanovi, Aptian–Albian, 112 Mya (Daza, Alifanov & Bauer, 2012; Daza, Bauer & Snively, 2014). MRCA 
of Teratoscincus scincus + Teratoscincus roborowskii – (biogeographical calibration) Tien Shan-Pamir uplift in 
western China, 10 Mya (Tapponnier et al., 1981; Abdrakhmatov et al., 1996; Macey et al., 1999). MRCA of 
extant Sphaerodactylus species – (fossil calibration) Sphaerodactylus dommeli and S. ciguapa, 15–20 Mya (Kluge, 
1995; Iturralde-Vinent & MacPhee, 1996; Daza & Bauer, 2012). MRCA of Paradelma orientalis + Pygopus 
nigriceps – (fossil calibration) Pygopus hortulanus, 20 Mya (Hutchinson, 1997; Jennings, Pianka & Donnellan, 
2003; Lee, Oliver & Hutchinson, 2009). MRCA of Helodermatidae + Anguidae, minimum age – (fossil 
calibration) Primaderma nessovi, 99 Mya (Nydam, 2000). MRCA of Lepidosauria (Squamata + Sphenodon), 
minimum age – (fossil calibration) Polysphenodon and Brachyrhinodon, 225 Mya (Evans, 2003). Root 
(Lepidosauria + Archosauria), normal distribution – (secondary calibration) 252–257 Mya (Reisz & Müller, 2004). 
Output files were checked for convergence using Tracer (Rambaut & Drummond, 2007), and both runs, minus 
burn-in, were combined to estimate topology and divergence times. 

We initially categorized temporal activity as three character states, diurnal, nocturnal or crepuscular/cathemeral 
with data from the literature (Table S1), hereafter called the three-character dataset. Definitions follow Schmitz 
& Motani (2010). Some analytical methods, such as the binary-state speciation and extinction (BiSSE) model 
with a terminally unresolved phylogeny, require binary characters and species categorized as 
crepuscular/cathemeral were recoded as diurnal or nocturnal based on the time when the preponderance of 
foraging activity occurs. We called this the binary dataset. Both datasets were used to infer the evolution of 
temporal activity patterns in geckos. 

We analysed both datasets using two methods: Bayesian ancestral state reconstruction and stochastic mapping. 
A third method, the BiSSE model, was also used to analyse the binary dataset alone. Bayesian ancestral state 
reconstruction was performed using BayesTraits v2.0 (Pagel, Meade & Barker, 2004). We incorporated 
phylogenetic uncertainty by analysing a set of 5000 trees drawn from the posterior distribution of trees inferred 
by the BEAST analyses. Deviations in rates were estimated using the AutoTune function and a hyper prior on all 
parameters was set to a value between 0 and 1. Analyses were run for 11 million generations, sampled every 
1000 generations, and the first 1 million generations discarded as burn-in. We investigated whether a single-rate 
model (Lewis, 2001) fit either of the datasets better than an asymmetric multi-rate model (Schluter et al., 
1997; Pagel, 1999). We also compared alternative root states in both datasets using the ‘fossil node’ command. 
Alternative hypotheses were compared using log Bayes Factors (logBF) with marginal likelihoods calculated via 
stepping stone sampling and the optimal transition rate model. Each stepping stone analysis used 100 samples 
with 10 000 iterations per sample. 

We counted the number of transitions among states via stochastic mapping with the simmap function in 
Phytools 0.4-31 (Huelsenbeck, Nielsen & Bollback, 2003; Revell, 2012). We mapped characters onto the 
maximum clade credibility tree from the BEAST analysis. We used the transition model that best fit the data as 
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estimated by maximum-likelihood (ML) with the ace function in the R package APE 3.1-4 (Paradis, Claude & 
Strimmer, 2004). Transitions were summarized using the describe.simmap function in Phytools. 

We concurrently estimated character transition rates and state-specific extinction and speciation rates using the 
BiSSE model (Maddison, Midford & Otto, 2007). We converted our phylogeny into a terminally unresolved 
generic-level tree to accommodate unsampled taxa (FitzJohn, Maddison & Otto, 2009). The phylogeny was 
pruned to 102 taxa, roughly equivalent to genera, to which we could assign all 1552 described gecko species. 
There were several instances where multiple genera, whose collective monophyly was strongly supported, were 
grouped together, as well as several instances where genera were split due to generic paraphyly. We calculated 
BiSSE model parameters and compared alternative models from the terminally unresolved generic-level tree 
with both ML and Bayesian methods with Diversitree 0.9-7 (FitzJohn et al., 2009; FitzJohn, 2012). Priors for each 
parameter used an exponential distribution and estimated ML model parameters were used as a starting point 
for the Bayesian analyses. Posterior distributions for each model parameter were estimated from a single MCMC 
chain run for 10 000 generations, with the first 10% discarded as burn-in. Three initial MCMC chains, run for 
1000 generations each, converged almost immediately and were consistent with each other and the single 10 
000 generation run. Finally, ancestral states were estimated for the terminally unresolved generic-level tree 
under a BiSSE model using the ‘asr-bisse’ command in Diversitree. 

Results 
Phylogenetic relationships and divergence times among gecko families and genera (Fig. 1) were consistent with 
previous estimates at well-supported nodes (Gamble et al., 2011, 2012; Heinicke et al., 2012). Activity patterns 
were conserved within most genera and only seven of 120 genera had both diurnal and nocturnal species (Table 
S1). All ancestral state reconstructions recovered an ancient origin of nocturnality at the root of the gecko tree 
(Figs 4). Bayesian hypothesis testing confirmed the robustness of these results and favoured a nocturnal root 
state in all comparisons (Fig. 2, binary data: nocturnal root = −83.330741, diurnal root = −89.726172, logBF = 
12.79; three-character dataset nocturnal root = −128.909312, diurnal root = −135.344277, 
crepuscular/cathemeral root = −135.909323, logBF nocturnal root vs. diurnal root = 12.87, logBF nocturnal root 
vs. crepuscular/cathemeral root = 14.00). 



 
Figure 1. Time-calibrated phylogeny of geckos estimated from a Bayesian analysis of the concatenated nuclear and 
mitochondrial gene dataset. Nodes with posterior probabilities > 0.50 are labelled. Time scale, in millions of years, is shown 
at the bottom of the tree. Node bars represent 95% highest posterior density (HPD) interval of divergence times. Gecko 
families and outgroups are labelled to the right of species names. 



 
Figure 2. The evolution of temporal niche in geckos. Bayesian ancestral state reconstructions of temporal niche mapped 
onto a time-calibrated phylogeny of geckos using the one-rate model. Circles at the tips of branches indicate the temporal 
niche for each included species. Pie charts on internal nodes indicate the posterior probability of that ancestor having a 
particular temporal niche. A, results using the binary dataset; species are categorized as diurnal (white) or nocturnal (black). 
B, results with the three-character dataset; species are categorized as diurnal (white), nocturnal (black) or 
crepuscular/cathemeral (grey). 

 



 
Figure 3. The evolution of temporal activity mapped onto a time-calibrated phylogeny of geckos. Circles at the tips of 
branches indicate the temporal niche for each included species. Circles at internal nodes indicate reconstructions from 1000 
stochastic mapping simulations. Gecko families are labelled. A, results with the binary dataset and equal rates (ER) model; 
species are categorized as diurnal (white) or nocturnal (black). B, results with the three-character dataset and all rates 
different (ARD) model; species are categorized as diurnal (white), nocturnal (black) or crepuscular/cathemeral (grey). 

 



 
Figure 4. A, ancestral activity patterns inferred using the six-parameter BiSSE model mapped onto a time-calibrated 
phylogeny of gecko genera. Some genera have been combined for convenience. Circles at the tips of branches indicate 
temporal activity patterns of species in each genus. Rectangles at internal nodes represent probabilities of ancestral activity 
patterns inferred using the six-parameter BiSSE model. Time scale, in millions of years, is below the tree. Horizontal lines to 
the right indicate the number of species in each clade. B–I, representative gecko species showing variation in eye size and 
pupil shape as it relates to temporal activity. B, Stenodactylus sthenodactylus – nocturnal; C, Phelsuma grandis – diurnal; 
D, Sphaerodactylus macrolepis – diurnal; E, Teratoscincus roborowskii – nocturnal; F, Pristurus carteri – diurnal; 
G, Eublepharis macularius – nocturnal; H, Correlophus ciliatus – nocturnal; I, Lialis burtonis – crepuscular/cathemeral. 

 

Transitions between activity patterns occurred across the phylogeny at a variety of timescales. Comparisons of a 
1- to 2-rate model using the binary dataset in a Bayesian framework preferred the 1-rate model (1 rate = 
−83.305361; 2 rates = −87.187184; logBF = 7.76). A model comparison with ML found no difference between the 
two models (Table 1). A comparison of the three-character dataset in a Bayesian framework showed a 
preference for the simpler 1-rate model (1 rate = −128.911706; multiple rates = −142.306639; logBF = 26.79). 
This contrasts with the ML comparison that found no difference between a single-rate model and a model with 
all rates different (ARD model, Table 1). 

Table 1. Comparison among transition rates models used in the maximum-likelihood ancestral state 
reconstruction 

Model  Binary dataset    Three-character dataset     
d.f.  ln likelihood  AIC  d.f.  ln likelihood  AIC  

ARD  2  −76.193  156.386  6  −117.31  246.6107  
SYM  n/a  n/a  n/a  3  −122.32  250.6396  
ER  1  −76.983  155.9665  1  −122.49  246.9797  

The number of parameters (d.f.) for each model is listed. The likelihood scores were produced using two datasets: the 
binary dataset, with species categorized as diurnal or nocturnal; or the three-character dataset, with species categorized as 
diurnal, nocturnal or crepuscular/cathemeral. Models were compared using the Akaike Information Criterion (AIC) and AIC 
scores of the best fitting model for each dataset are in bold type. The following models were compared: all rates different 
model (ARD); symmetrical rates model (SYM); and equal rates model (ER). 
 



Stochastic mapping of binary data with a single-rate model counted 20 transitions between nocturnal and 
diurnal activity patterns (median = 20, min. = 18, max. = 28). More transitions from nocturnality to diurnality 
were counted (median = 12, min. = 10, max. = 19) than the reverse, that is from diurnality to nocturnality 
(median = 7, min = 4, max = 13). Stochastic mapping with the three-character dataset with the ARD model 
counted 40 transitions among activity patterns (median = 10, min. = 31, max. = 53). Most transitions were from 
nocturnal to crepuscular/cathemeral (median = 13, min. = 9, max. = 22) or from crepuscular/cathemeral to 
diurnal (median = 12, min. = 6, max. = 18). There were fewer transitions from nocturnal to diurnal (median = 3, 
min. = 0, max. = 7), from diurnal to nocturnal (median = 5, min. = 4, max. = 12), and from 
crepuscular/cathemeral to nocturnal (median = 6, min. = 1, max. = 15). There were no transitions counted from 
diurnal to crepuscular/cathemeral. These estimates should be considered a minimum count, as only 17% of 
described gecko species were included in our stochastic mapping analysis and some recent transitions, 
particularly within Cnemaspis and Sphaerodactylus, were not included. 

BiSSE analysis indicated no influence of temporal activity patterns on speciation or extinction rates (Fig. 5). We 
found the model constraining equal speciation and extinction rates to have the best Akaike information criterion 
score, whereas the full, six-parameter model had the poorest model fit (Table 2), a result also supported by the 
broad overlap in posterior distributions of speciation and extinction parameters (Fig. 5). 

 
Figure 5. Bayesian parameter estimates inferred using the six-parameter BiSSE model. Zero (0) indicates nocturnality and 
one (1) indicates diurnality. Estimates of: A, trait-specific speciation rates (lambda); B, trait-specific extinction rates (mu); C, 
transition rate parameters (q01 = nocturnal to diurnal, q10 = diurnal to nocturnal); D, net diversification rates calculated as 
the difference between speciation (lambda) and extinction (mu) rates for nocturnal and diurnal genera. The 95% credibility 
intervals are shaded and indicated by horizontal bars along the x-axis. 

 

  



Table 2. Comparison of full and constrained maximum-likelihood binary-state speciation and extinction (BiSSE) models 
Model  lambda0  lambda1  mu0  mu1  q01  q10  d.f.  ln Likelihood  AIC  ΔAIC  
Full model  0.07095  0.07984  0.02537  0.03588  0.00074  0.00160  6  –818.60  1649.2  4.0  
Equal lambda  0.06690  –  0.01963  0.02040  0.00068  0.00163  5  –818.62  1647.2  2.0  
Equal mu  0.06918  0.06870  0.02270  –  0.00068  0.00165  5  –818.61  1647.2  2.0  
Equal q  0.06514  0.08886  0.01763  0.04681  0.00098  –  5  –819.49  1649.0  3.8  
Equal lambda & mu  0.06919  –  0.02286  –  0.00068  0.00168  4  –818.62  1645.2  0.0  
Equal lambda & q  0.07384  –  0.02827  0.03081  0.00090  –  4  –820.09  1648.2  3.0  
Equal mu & q  0.06816  0.06633  0.02088  –  0.00087  –  4  –820.15  1648.3  3.1  
Equal lambda, mu, & q  0.06971  –  0.02355  –  0.00088  –  3  –820.36  1646.7  1.5  

Trait 0 is nocturnal and trait 1 is diurnal. Lambda, trait-specific speciation rates; mu, trait-specific extinction rates; q, transition rate. Constrained models are compared 
using the Akaike Information Criterion (AIC).  
  



Discussion 
We confirmed the long-held hypothesis that nocturnality evolved early in gecko evolutionary history (Walls, 
1942). Furthermore, we identified multiple transitions to diurnality at a variety of evolutionary time scales. 
Several transitions occurred deep in the phylogeny, including ancestors to the Pygopodidae, the New World 
sphaerodactyl geckos and the Phelsuma plus Lygodactylus clade. More recent transitions occurred 
in Rhoptropus, within New Zealand and New Caledonian diplodactylids (Naultinus and Eurydactylodes), and 
within Gymnodactylus, Ptyodactylus and Mediodactylus. Both Asian Cnemaspis clades seem to include multiple 
transitions, although additional taxonomic sampling is needed to confirm this. We also identified several well-
supported reversions to nocturnality within otherwise diurnal clades, 
including Sphaerodactylus, Gonatodes, Phelsuma and the Pygopodidae. 

Results of the ancestral state reconstructions were mostly concordant across datasets and methodologies. 
However, phylogenetic uncertainty and differences among datasets contributed to ambiguity in the 
reconstructions at some nodes. The MRCA of the Sphaerodactylidae, for example, was either: nocturnal, as 
estimated from BiSSE and stochastic mapping using the binary dataset; diurnal or crepuscular/cathemeral, as 
estimated by Bayestraits and stochastic mapping analyses of the three-character dataset; or equivocal as 
estimated by the Bayestraits analysis of the binary dataset. How this node is reconstructed determines 
whether Quedenfeldtia, Pristurus and New World sphaerodactylini are independently derived diurnal lineages or 
the nocturnal sphaerodactyl geckos such as Teratoscincus, Aristelliger and Euleptes are reversals to nocturnality 
from a diurnal ancestor. Further work that better resolves the phylogeny plus examination of independent 
evidence for activity pattern evolution and visual morphology will be necessary to resolve reconstructions at 
these ambiguous parts of the tree. 

The comparative phylogenetic hypothesis presented here will be useful for interpreting or reinterpreting 
adaptations to different thermal and light environments in geckos. For example, rod-like visual cells that lack oil 
droplets are characteristic of nocturnal geckos, whereas most diurnal lizards, including many diurnal geckos, 
have cone-like visual cells with oil droplets (Walls, 1942; Underwood, 1951b; Röll, 2000b; Bowmaker, 2008). The 
small oil droplets found in visual cells are thought to filter light and aid in spectral tuning (Bowmaker & Knowles, 
1977). Cone-like visual cells with oil droplets have evolved independently in diurnal geckos across the phylogeny 
and are present in Gonatodes, Phelsuma, Quedenfeldtia and Pristurus (Underwood, 1951b; Röll, 2000a). There 
are several exceptions to this trend, and the diurnal 
Pygopodidae, Sphaerodactylus, Rhoptropus, Naultinus and Lygodactylus all lack oil droplets and have visual cells 
more typical of nocturnal geckos (Underwood, 1951b, 1957; Röll, 2000b). Further insight into visual adaptations 
to diurnality comes from examining the composition and amount of certain lens proteins called lens crystallins 
(Röll, 2001b). Sphaerodactylus and Narudasia have lens crystallin composition similar to nocturnal geckos (Röll, 
2001b). However, many other diurnal genera have recruited the CRBPI protein to bind with 3,4-didehydroretinol 
(vitamin A2) to filter harmful ultraviolet light (Werten, Roll, van Aalten & de Jong, 2000). The presence of CRBPI 
in the lens is unique to Lygodactylus, Phelsuma, Pristurus, Gonatodes, Quedenfeldtia and African Cnemaspis, and 
is not found in the lenses of any other vertebrates (Röll, Amons & deJong, 1996; Röll & Schwemer, 1999; Röll, 
2001b). The presence and amount of other lens crystallins also varies among different diurnal gecko lineages 
(Röll, 2001b). Understanding the curious phylogenetic distribution of oil droplets and lens crystallins will require 
detailed examination of a gecko species' visual environment, including intensity and wavelengths of light. 
However, it is clear that visual adaptations to diurnality are repeatedly gained across the phylogeny. 
Furthermore, it does not seem that the age of a diurnal lineage corresponds to the acquisition of vision-related 
adaptations. Some older diurnal lineages exhibit apparently plesiomorphic traits, whereas some young diurnal 
lineages exhibit a large number of derived visual adaptations to diurnality. Reinterpreting these and other traits, 



in light of the comparative phylogenetic hypothesis presented here, will provide a better understanding of the 
evolution and function of visual adaptations in geckos. 

Our results indicate frequent shifts in temporal activity patterns in geckos at a variety of evolutionary timescales. 
Determining what factors initiate shifts in individual clades is beyond the scope of the current paper, but there 
are, very broadly, three possible causes: climate, predators and competition. Some shifts in activity pattern may 
be related to thermoregulation and evading extreme temperatures and desiccation. For example, geckos in the 
genus Sphaerodactylus appear to overheat easily (Allen & Powell, 2014) and several species that inhabit hot, 
xeric habitats are nocturnal, including: S. leucaster, S. thompsoni and S. ladae in southern Hispaniola; S. 
roosevelti in south-west Puerto Rico; and S. inaguae from the Bahamas (Schwartz & Henderson, 1991; Rivero, 
1998; Scantlebury et al., 2011). Similarly, some gecko species living at high altitudes, such as Mediodactylus 
amictopholis, are thought to have shifted to diurnal activity to facilitate thermoregulation in colder climates 
(Szczerbak & Golubev, 1996). However, there are numerous counter examples of both nocturnal and diurnal 
gecko species inhabiting extreme environments. Pristurus and Rhoptropus, for instance, are diurnal genera that 
can be active at extremely high temperatures in arid environments (Arnold, 1993; Nagy, Seely & Buffenstein, 
1993; Autumn, 1999) whereas Homonota darwnii and Alsophylax pipiens live in cold climates at extreme 
latitudes and remain nocturnal (Szczerbak & Golubev, 1996; Aguilar & Cruz, 2010; Weeks & Espinoza, 2013). 
Furthermore, nocturnal geckos seem quite capable of regulating body temperature while hidden in retreats 
during the day (Huey et al., 1989; Downes & Shine, 1998; Kearney & Predavec, 2000; Aguilar & Cruz, 2010) or 
through occasional daytime basking (Werner, 1969; Pianka & Huey, 1978; Werner & Whitaker, 1978; Gibson et 
al., 2015) and thus switching to diurnality solely for thermoregulatory purposes may be uncommon overall. 

Predation could also instigate changes in temporal activity patterns in geckos and such shifts are well 
documented in other vertebrate species (Halle, 1993; Rydell & Speakman, 1995; Fraser et al., 2004; McCauley et 
al., 2012). Most predator-induced niche shifts in geckos involve the alteration of the spatial niche (Hoare et al., 
2007; Pike et al., 2010). However, Bauer (2013) hypothesized that geckos may transition to a more conspicuous, 
diurnal lifestyle in environments where predators are less abundant or absent, such as on islands. Lack of 
predators is thought to be responsible for dramatic changes in phenotype and behaviour in many island species, 
such as the evolution of flightlessness in birds (Darwin, 1859; Whittaker & Fernández-Palacios, 2007). Thus, it is 
reasonable that similar selective pressures could alter temporal activity in geckos. 

Shifts in temporal activity patterns may also be related to competition avoidance and the exploitation of 
underutilized resources. Temporal resource partitioning helps competitors coexist by avoiding direct 
confrontation or reducing resource overlap (MacArthur & Levins, 1967; Schoener, 1974). For example, the early 
shift to nocturnality in ancient geckos has been attributed to avoiding competition with diurnal lizards and 
exploiting the relatively open nocturnal niche (Vitt et al., 2003; Vitt & Pianka, 2005). The lack of competition 
with other diurnal lizards, mostly iguanians, is frequently cited as promoting transitions back to diurnality in 
geckos (Vitt et al., 2003; Vitt & Pianka, 2005; Garcia-Porta & Ord, 2013). Indeed, many diurnal geckos occur in 
regions with a paucity of iguanian species. The success of Phelsuma and Lygodactylus in Madagascar has been 
attributed to the lack of arboreal iguanians, with the exception of the extremely specialized chameleons (Vitt et 
al., 2003). Similarly, diurnality in the diplodactylid genera Naultinus and Eurydactylodes may have been a shift 
into empty niche space in the absence of diurnal, arboreal agamids in New Zealand and New Caledonia (Garcia-
Porta & Ord, 2013). On the other hand, many diurnal geckos co-occur with iguanians, which requires some 
explanation. One possibility is that diurnal competitors recently dispersed into the area. For example, the 
southern African Rhoptropus are sympatric with several agamid species (Branch, 1998). However, diurnality 
evolved in Rhoptropus sometime prior to 25–30 Mya (Fig. 3), which pre-dates diversification of agamids in the 
region 15–20 Mya (Leaché et al., 2014). It is also possible that diurnal gecko lineages evolved in an area lacking 
iguanians and subsequently dispersed into habitats occupied by diurnal, non-gekkotan lizards. 



Two Lygodactylus species co-occur with numerous diurnal, arboreal iguanians in the arid Chaco and Cerrado 
regions of South America (Peters, Donoso-Barros & Orejas-Miranda, 1986). South America was already teaming 
with iguanians by the time Lygodactylus dispersed to South America from Africa in the early Miocene (Báez & de 
Gasparini, 1979; Gamble et al., 2011; Townsend et al., 2011; Albino & Brizuela, 2014). However, it should be 
noted that direct competition is probably minimal between the miniature South American Lygodactylus and co-
distributed iguanians due to extreme differences in size (Vitt, 1995). Furthermore, competition does not have to 
be with other lizards. Competitive exclusion from the species-rich, Neotropical treefrogs has been proposed as a 
possible explanation for the paucity of nocturnal, arboreal geckos in the Western Hemisphere (Duellman & 
Pianka, 1990); three-fifths of New World gecko species are primarily terrestrial and diurnal members of the 
Sphaerodactylidae (Gamble et al., 2011). 

Determining the relative importance of climate, predators and competition to individual transitions in gekkotan 
temporal activity will require further research. Historical approaches that utilize phylogenetic data and 
incorporate the evolution of ecologically relevant traits to investigate the organization of ecological 
communities will be particularly useful in this regard (Webb et al., 2002; Cavender-Bares et al., 2009). Because 
temporal niche shifts between diurnality and nocturnality are relatively rare among animals (Schoener, 1974) 
the large number of transitions observed in geckos will prove quite useful for testing hypotheses of temporal 
niche partitioning and ecological community assembly over a variety of evolutionary timescales. 

It is reasonable to assume that changes in temporal activity in geckos could be associated with increased 
diversification rates in diurnal lineages. The occupation of a new adaptive zone can lead to ecological release 
promoting diversification and adaptive radiation (Simpson, 1944; Schluter, 2000; Harmon et al., 2008). However, 
we found no association between changes in temporal niche and speciation and extinction rates with our BiSSE 
analysis. This lack of a relationship could be due to several factors. First, the invasion of a new adaptive zone 
need not automatically lead to adaptive radiation (Losos, 2010; Yoder et al., 2010). For example, genetic 
constraints could limit the evolution of ancillary phenotypic traits necessary for subsequent diversification 
(Schluter, 1996). This could include the evolution of eye lens crystallins to filter harmful UV light or physiological 
adaptations to increased daytime temperatures (Autumn, 1999; Röll, 2001b). Second, geckos as a whole may be 
‘prone to radiating’, sensuLosos (2010). There are numerous species-rich gecko clades, some of which are 
diurnal and others that are nocturnal (Fig. 4). Any increase in diversification rate experienced by a diurnal 
lineage due to ecological opportunity may not be significantly greater than the high diversification rates 
exhibited by many nocturnal gecko lineages. Investigating the factors that promote diversification in geckos will 
require additional data, as many traits may be linked to increased diversification in geckos (Harmon et al., 
2008; Gamble et al., 2012; Garcia-Porta & Ord, 2013), as well as the development of robust methods that can 
more accurately identify the correlates of diversification (Maddison & FitzJohn, 2015). 

Conclusions 
Temporal niche partitioning among species can have a strong phylogenetic basis and geckos overall exhibit 
significant phylogenetic conservation of physiological and behavioural traits related to temporal activity patterns 
(Autumn et al., 1999; Vitt et al., 2003; Vitt & Pianka, 2005). However, multiple shifts in temporal activity have 
occurred across the gekkotan phylogeny and parsing out the causes and consequences of such transitions will 
provide important insights into many aspects of gecko biology (Dial & Grismer, 1992; Autumn, 1999; Autumn et 
al., 1999). The comparative phylogenetic framework presented here will be useful for interpreting, or 
reinterpreting, adaptations to varying thermal and light environments in geckos (Autumn, 1999; Röll, 
2001b; Werner & Seifan, 2006). Furthermore, replicate transitions to diurnality in geckos provide an exceptional 
opportunity to further study the evolution of suites of complex traits and determine whether convergent traits 
associated with diurnality follow predictable evolutionary patterns. 
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