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Analysis of Algorithms for Velocity Estimation 
from Discrete Position Versus Time Data 

Ronald H. Brown, Susan C. Schneider, and Michael G. Mulligan 

Abstract-This paper investigates algorithms for constructing 
velocity approximations from discrete position versus time data. 
The study is limited to algorithms suitable to provide velocity 
information in discrete-time feedback control systems such as 
microprocessor-based systems with a discrete position encoder. 
Velocity estimator based on lines per period reciprocal-time 
Taylor erie expansions, backward difference expansions, and 
least-square curve fits are presented. Based on computer simula
tion comparisons of relative accuracies of the different algo
rith~s are made. Tbe lea t-sqoares velocity estimator · tillered 
the effect of imperfect measurements (" noise") best, whereas 
the Taylor series expansions and backward difference equation 
estimators respond better to velocity transients. 

l. INTRODUCTION 

W ITH the advent of the microprocessor, many motion 
control systems are being implemented as discrete-time 

systems. The performance of motion control systems c·an 
often be enha~_including_some type of velocity feed
back where, for example, the velocity is estimated from 
discrete position versus time information provided by an 
(optical) encoder. In essence, the velocity is estimated by 
performing an approximate derivative operation on the dis
crete data. Many designs of discrete-time derivative filters 
exist today [ 1], [2]; unfortunately, most of these are unsatis
factory for control applications as the delay inherent to these 
derivative filters adversely affects stability. Furthermore, it is 
well known that derivative operators tend to magnify errors. 
However, several methods have been developed to estimate 
velocity from discrete data while reducing estimate errors 
and minimizing the delay [3)-[8]. 

In this paper, some existing velocity estimator algorithms 
are reviewed and the mathematical theories of the various 
algorithms are presented. With the aid of computer simula
tions, the accuracy of these algorithms are evaluated, includ
ing the dynamic range and transient response. In addition, a 
new set of algorithms for velocity estimators based on 
least squares is proposed. The major contribution of this 
work is the presentation of the theory behind many existing 
methods for estimating velocity from discrete position-time 
data, the development of a new family of algorithms based on 
least-squares fits, and the error analysis of the various algo
rithms. The major conclusion of these analyses is that the 
choice of "best estimator" to use is, at best, application 
dependent. 

Manuscript received August 14, 1990; revised, September 28, 1991. . 
The authors are with the Department of Electncal and Computer Engi

neering, Marquette University, Milwaukee, WI 53233. 
IEEE Log Number 9105264. 

II. ALGORITHMS FOR VELOCITY ESTIMATORS 

The algorithms investigated in this study fall into two 
general classes of velocity estimators, defined by how the 
time and position information are acquired. When position 
and time information are obtained using an optical encoder 
system, the user can make a choice regarding whether time 
information or position information will be required. A ro
tary optical encoder will typically produce two square waves 
in quadrature. Each transition of both waves is detected as an 
encoder line, so the user can choose to count the number of 
encoder lines in a fixed period of time; or the user can choose 
to measure the time during which a set number of encoder 
lines is counted. In either case, only one variable is mea
sured, the other variable is assumed to be constant, which 
leads to a definition of velocity estimator class. "Fixed-time" 
velocity estimators are those in which the time between 
successive samples is known (at least approximately), and the 
distance traveled over-this fixed time interval is measured by 
counting lines. For "fixed-position" velocity estimators, the 
estimation is based on the measurement of time r~quired to 
travel fixed distances. 

Any numerical method that calculates a derivative from 
discrete position versus time data can be used for a velocity 
estimator. At the kth sampling instant, the measured position 
traveled x k and the time at the sampling instant t k are 
generally available. The simplest fixed-time velocity estima
tor can be called the lines per period (LPP) estimator. In the 
LPP method, the velocity is estimated by counting the num
ber of encoder lines detected during a sampling period; if 
fj. x k = x k - x k - 1, the number of lines counted in the kth 
time interval , and T is the length of each time interval, then 
the velocity estimation for the kth interval is Ok = fj,_ x k / T 
lines per time unit or imply Ok= fj.xk lines per sampling 
period. A first-order fixed-position estimator i implemented 
as the reciprocal of the mea ured time (RT). When the 
position between successive time measurements is defined to 
be one line, and Tk = t k - t k- i, the measured time to 
transverse this distance, the velocity estimate for the kth 
interval is v k = 1 / Tk lines per time unit. 

The LPP fixed-time velocity estimator and the RT fixed
position velocity estimator are mathematically equivalent, 
even through (at first glance) these estimators appear to be 
different. The estimations of velocity are fj. x k / Tk for both 
methods, with fj. x k constant for the fixed-position velocity 
estimator and Tk constant for the fixed-time velocity estima
tor. Assuming accurate data measurements, both of these 
methods provide a velocity estimate for the current sample 
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that corresponds to the average velocity over that sampling 
interval. During a velocity transient, the "true" velocity at 
the sampling instant will differ from the average velocity ; this 
velocity difference is equivalent to a time delay that can 
degrade the performance of a control system and may lead to 
instability. 

In general, adding higher order terms to the derivative 
approximation should improve the transient response. For 
velocity estimators, higher order approximations to the 
derivative are achieved by combining present and " earlier" 
velocity estimates. Several higher order derivative algorithms 
for approximating derivatives from discrete data are analyzed 
in this section. These higher order derivative algorithms, 
however, tend to magnify measurement errors [9]. To reduce 
the effect of these errors, a class of derivative algorithms 
based on least-square fits through data points is proposed. 
(Because an estimator with minimal delay is sought, standard 
' ' windowing'' techniques for designing differentiating digital 
filters are not considered in this . paper because of the inherent 
time delay associated with these filters.) 

A. Taylor Series Expansion (TSE) Velocity Estimator 

An estimator for estimating the velocity can be developed 
using a Taylor series expansion of velocity [7] . The velocity 
at time t k can be estimated from the velocity at time t 13 by 
the TSE: 

co 1 . j 

= ~ 1·1 ufl ( tk - t13) 
1=0 · 

(1) 

where OU) is the jth derivative of v. 
If 013 is estfmated as the average velocity during the most 

recently measured sampling interval and this average velocity 
is estimated to occur at the center of the sampling interval, 
then 013 = 11xk / Tk and (tk - t13 ) = Tk/2. If the TSE is 
truncated after the first term with these estimations, the 
estimated velocity Ok = 11 x k / Tk is the same as the recipro
cal-time estimator for fixed-position data and is the same as 
the lines-per-period estimator for fixed-time data~ When u13k 

is estimated from the kth period as 11 x k / T k, and u /3k- 1 is 
estimated from the (k- l)th period as Axk_ 1 /Tk-1' the 
first derivative of the velocity at the middle of the ith period 
can be approximated by 

LlV U13 - V13• 1 
LJ(l_) ,::< - ,,:;, I /- (2) 

13' T T I 

Higher order derivatives of 013; are also approximated in a 
similar fashion by 

A(j - 1) A(j-1) 
V13; - V13;-1 

~ 
(3) 

Using these derivative approximations, the velocity estimator 

of (1) then becomes 

V k = f, ~ w) ( Tk ) j 
J=O J . 2 

(4) 

where the TSE is truncated after the Nth-order derivative 
term. The TSE estimators for N equal to 0, 1, and 2 are 
shown in Table I. The fixed-position estimators have been 
normalized by setting /1 x k = 1 and the fixed-time estimators 
have been normalized by setting Tk = 1. 

The TSE estimator truncated before any derivative term is 
the same as the reciprocal-time or the lines-per-period estima
tors. The TSE estimator truncated after the first-order deriva
tive term with these approximations (called the second-order 
TSE estimator), is the average-plus-acceleration estimator 
described in [6] (with the scaling parameter set equal to ½) . 
B. Backward Difference Expansion (BDE) Velocity 
Estimator [9] 

The BDE method for obtaining the derivative of the func
tion t(xk) or x(tk) is developed by assuming that the actual 
function can be replaced by an interpolating polynomial that 
exactly fits the data points. The first and higher order 
derivatives of the function are obtained in terms of the 
appropriate finite difference approximations for the deriva
tives of the approximating polynomial. For fixed-position 
data, the backward difference equation is obtained by expand
ing the function tk - i in a Taylor series around tk and then 
solving for dt k / dx, 

. dtk 
tk-i = tk + ( - l) dx 

(-i)2 
d 2 tk (-i)

3 
d3 tk 

+~ dx2 + _ 3_!_ dx 3 + (5) 

The first-order BDE for dt k / dx is obtained by expanding 
tk- I using (5) and then truncating the expansion after the 
first term on the right-hand side, as shown in (6): 

dtk 
-= 
dx 

(6) 

The first-order BDE is identical to the reciprocal-time estima
tor (as was the TSE estimator when truncated before the 
derivative terms) . The second-order BDE for dtk / dx is 
obtained when both t k- 1 and t k - 2 are expanded in the 
Taylor series of (5), and the resulting two equations are 
solved for both dt k / dx and dti / dx 2 with third-order 
derivative terms neglected. This procedure is continued to 
include terms containing tk_ 3 when the third-order BDE for 
dtk / dx is derived. The second- and third-order BDE expan
sions for dt k / dx are written both in terms of A x k and time 
interval Tk in Table II. The algorithms for first-, second-, 
and third-order fixed-time BDE velocity estimators, pre
sented in Table II, are obtained by exchanging t with x and 
T with 11 x. In this table, the fixed-position estimators have 
been normalized by setting 11 x k = 1 and the fixed-time 
estimators have been normalized by setting Tk = 1. For 
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TABLE I 
THE FIRST-, SECOND-, AND THIRD-ORDER TAYLOR SERIES EXPANSION ESTIMATORS FOR BOTH POSITION-AND FIXED-TIME 

ESTIMATORS 

Order 

!st 

2nd 

3rd 

Fixed-Position TSE Estimators 
(in lines / clock cycles) 

Fixed-Time TSE Estimators 
(in lines / sampling period) 

uk = /J.xk + ½(/J.xk - /J.xk- 1) 

+ f (/J.xk - 2/J.xk- l + /J.Xk -2 ) 

Tk is the change in time in clock cycles over the k-th position interval, thus Dk has units of lines/clock cycle. 
/J. x k is the change in position in lines over the k-th sampling period, thus u k has units of lines per sampling period. 

TABLE II 
THE FIRST, SECOND, AND THIRD-ORDER BACKWARD DIFFERENCE EXPANSION ESTIMATORS FOR BOTH PoslTION- AND FIXED-TIME 

ESTIMATORS. 

Order 

1st 

2nd 

3rd 

Fixed-Position BDE Estimators 
(in-clock cycles line) 

dtk 
- = Tk 
dx 

dtk I 

dx = Tk + 2<Tk - Tk-1) 

dtk I 
dx = Tk + 2(Tk - Tk_,) 

+ ½(Tk - 2Tk - l + Tk_ 2) 

Fixed-Time BDE Estimators 
(in lines / sampling period) 

dxk 
-=/J.Xk 
dt 

dxk , dt = /J.xk + 2(/J.xk - /J.xk_,) 

dxk , 
- = /J.xk + 2(/J.xk - /J.xk _ ,) 
dt 

+ f (/J.xk - 2//J.xk - 2/J.xk - l + /J.xk _ 2) 

Tk is the change in time in clock cycles over the kth position interval, thus dt k / dx = I/ u k has units of clock cycles per line. 
/J. x k is the change in position in lines over the kth sampling period, thus dx k / dt = u k has units of lines per sampling period. 

fixed-time estimators, the second-order BDE is the same as 
the second-order TSE. The third-order BDE differs from the 
third-order TSE estimator only in the coefficients of the 
third-order terms . 

Although not referred to as such, the methods implemented 
in (8] are fixed-time BDE velocity estimators. Note that 
Nth-order BDE's can be implemented as finite impulse re
sponse digital filters of length equal to ( N + l) if the t / s or 
x/s are used, and of length N if the time or position 
intervals (T/s or Ax/s) are used. 

C. Least-Squares Fit (LSF) Velocity Estimator 

An alternative algorithm to the ' exact polynomial fit to 
data'' approach used for the BOE method i to perform a 
least-squares fit to the measured data· such an approach has 
been utilized as a means of predicting the " next time" an 
encoder pulse will occur [11]. This least-squares fit calcula
tion can also be used to implement a velocity estimator. 

In the least-squares fi t te hnique an Nth-order polynomial 
can be fit through the M most recent data points in a 
lea t-squares sense provided that M > N + l . The velocity 
estimate is made by evaluating the derivative of the polyno
mial at the most recent data point. F0r fixed-position data, an 

approximating polynomial of the form 

tk =Co+ C1Xk + C2Xi + . '• +cNx{: (7) 

is assumed, where N is the order of the polynomial fit. From 
this equation, a velocity estimate, calcylated as the derivative 
dt k / dx evaluated at the most recent sample, can be obtained 
as 

The coefficients, c0 cN , are chosen to minimize the total 
squared error between the M most recent data points, t k 

· · · t k - M + i, and the M most recent estimates t k • • • 

tk-M+l · 
Equation (7) can be expanded to include the M most 

recent estimates as 

f = Ac (9) 

where f is an M vector containing the M most recent 
estimates, c is an (N + 1)-vector containing the polynomial 
coefficients, and A is an M x (N + 1)-matrix with the ith 
row containing the 0th through Nth powers of X;, With the 
assumption that measurements are obtained on consecutive 
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encoder lines, and recognizing that subtracting an offset from 
the position data does not affect the value of the derivative, A 
can be written as 

1 1 

1 2 
A= 1 3 

12 

4 

9 

13 

8 
27 

1 M M 2 M 3 

(10) 

where the offset x;'s, for i = k - M + 1 to k are equal to 1 
to M. 

Using standard LSF techniques [12], the coefficient vector 
c that minimizes the total squared error between the measure
ments and the estimates is 

(11) 

The derivative of the approximating polynomial i m, with 
respect to position x, evaluated at the most recently acquired 
data point, with substitution for the coefficients C; from (11), 
can be written as 

diM . 
-- = 4TA1t = hTt 
dx 

(12) 

where qr= [012M 3M2 • • • (N- l)MN- 2NMN- 1] and 
h_T = i{At. 

Thus the velocity estimate, v k is the reciprocal of the 
derivative of the approximating polynomial di M / dx, which 
is equivalent to di k / dx and is obtained as a linear combina
tion of the kth and previous M - I samples of time. The 
finite-impulse response (FIR) filter coefficients for a line fit to 
four points (LSF 1/4), a parabola fit to eight points (LSF 
2 /8), and a cubic fit to eight points (LSF 3 /8) are listed in 
Table III. Note that the LSF estimators can be implemented 
as finite impulse response digital filters of order M. 

III. SIMULATION RESULTS 

In order to examine and compare the performance of the 
velocity estimation schemes described above, several trial 
velocity profiles were used to "test" the estimators. Al
though the profiles do not completely test these algorithms, 
the results from two of these tests are sufficient to show that 
there is no one "best" way to estimate velocity in all 
situations. These velocity profiles were used to obtain the 
discrete data points for both time- and fixed-position systems 
needed for the velocity estimators. The two velocity profiles, 
shown in Fig. 1, were (A) a low-speed underdamped velocity 
profile with an initial speed of 1500 lines per second followed 
by a high acceleration with overshoot, settling at a final speed 
of 10 300 lines per second, and (B) a high-speed under
damped velocity profile with an initial speed of 15 500 lines 
per second, a high acceleration with overshoot, settling at a 
final speed of 103 300 lines per second. A third velocity 
profile (a low-speed trapezoidal velocity profile) was also 
included in the simulations to show the effect of the algo
rithms for a common motor velocity trajectory and is also 
shown in Fig. 1. 

150 ,--------- - - --, 

0 
Q) 

"' <ii 100 Q) 

~ 

8 
0 
~ 

.!: 
~ 50 ·u 
0 
«i 
> 

0L--=="---- --=====' 
0 50 100 150 

Time in milliseconds 

Fig. 1. Trial velocity profiles used in the system simulations. 

TABLE Ill 
TH E FIR FILTER COEFFICIENTS FOR THE LINE FIT TO FOUR (LSF 1/4), THE 

QUADRATIC FIT TO EIGHT (LSF 2/8), AND THE CUBIC FJT TO E!GHT 

(LSF 3/ 8) LEAST SQUARES FIT EsTIMATORS 

LSF 1/4 LSF 2/8 LSF 3/8 

h j -0.3000000 0.2083333 - 0.2777778 

h2 -O.l000000 -0.0178571 0.3293651 

h3 0.1000000 -0.1607143 0.3253968 

h4 0.3000000 - 0,2202381 -0.0119048 

hs -0.1964286 -0.4047619 

~6 -0.0822857 -0.5753968 

h1 0. l011905 -0.2460317 

hs 0.3750000 0.8611111 

The 'most significant error source for all fixed-time estima
tors is '' position measurement truncation.'' Position mea
surement truncation errors occur because position can only 
be measured as an integer number of lines, thus causing the 
truncation of the position measurement. Additional position 
measurement errors can occur due to imperfections in the 
encoder, i.e., the encoder lines are not equally spaced in 
position, but typically, the deviations will not exceed a 
position increment in magnitude. Methods have been pro
posed to eliminate position measurement truncation errors by 
also measuring the time between the first and last lines in a 
sampling interval [3]. 

Two error sources are significant for fixed-position estima
tors. "Position-base jitter" is caused by imperfections in the 
position base, that is, the change in position between sam
pling instants varies. This error source, caused by unequal 
positional spacings in the encoder, is quite prevalent in real 
systems. The other significant source of errors is "time 
measurement truncation.'' Typically, the time required to 
transverse the position base distance is measured by counting 
clock cycles. Only an integer number of clock cycles can be 
counted, leading to a time measurement error of up to ± 1 
clock period. (In addition, a drawback of all fixed-position 
methods occurs at high speed. The amount of processing time 
to calculate the velocity is fixed, where the information to be 
processed is generated at a rate proportional to speed. The 
top measurable speed of the system is limited to less than 
1/ TP lines per second, where TP is the processing time. The 
top speed can be increased by measuring the time between K 
encoder lines, where K is a positive integer. This has the 
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effect of reducing the resolution of the encoder and will 
increase the top speed by a factor of K, but this is detrimen
tal at slow speeds as the number of estimations has been 
reduced by K. Typically, the velocity changes slowly com
pared to the time between adjacent encoder lines, allowing 
the value of K to be dynamically adjusted resulting in an 
estimator with a larger dynamic range [4], [5] .) 

The fixed-time and fixed-position velocity estimators tested 
were: 

1) First-order algorithms, i.e., lines-per-period es.timator 
(LPP) for fixed-time and reciprocal-time estimator (RT) 
for fixed-position 

2) Taylor-series expansion estimator truncated after two 
and three terms (TSE 2 and TSE 3) 

3) Second- and third-order backward-difference expansion 
estimators (BDE 2 and BDE 3) 

4) Least-squares fit estimators for 
a) A line fit to 4 points, (LSF 1 /4) 
b) A quadratic fit to 8 points, (LSF 2/8) and 
c) A cubic fit to 8 points, (LSF 3/8) 

For the purpose of comparison, the velocity estimators 
were first tested with the time-position sequences developed 
for a "perfect encoder," where a "perfect encoder" is 
defined to be an encoder with no errors in position, i.e., the 
spacing between all adjacent encoder lines Ax was set 
identically to one. Then the estimators were tested with an 
imperfect encoder.: Typically, a rotary optical encoder pro
duces two square waves in quadrature. Each transition of 
each wave is detected as an encoder line. When the duty 
cycle of the encoder output signals is not exactly symmetri
cal, and/or the alignment of the two signals is not in perfect 
quadrature, the decoded lines do not correspond to equal 
position increments. This "imperfect encoder" effect was 
simulated by varying the Ax k values cyclically with a period 
of four lines. This type of encoder error is consistent with 
what might be obtained from a real encoder. The following 
Axks were used to simulate an imperfect encoder: Ax4 ;+ 1 = 
0.95, AX4 ;+ 2 = 0.95, AX4 ;+ 3 = 0.90, and AX4 ; = 1.2 for 
all i. The results presented here are typical of all the simula
tions and similar errors occurred in simulations with other 
combinations of encoder errors. It should also be noted that 
the error at the transients was quite sensitive to variation in 
the time and position of the transient. 

A. Analysis of Errors in Fixed-Time Velocity Estimator~ 

The fixed-time velocity estimators were simulated using 
the velocity profiles in Fig. 1 with both the perfect and 
imperfect encoder implementations. The sampling period was 
set at one millisecond (1 ms). The percent relative errors, 
e/s, where, 

U - V loo k k 
ek = (13) 

where v k is the true velocity at the kth sample and Dk is the 
velocity estimate, are plotted versus time in Fig. 2 for the 
perfect encoder. The plots for all encoders have been offset 
from each other for clarity, and the velocity profile has been 
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Fig. 2. The fixed-time estimator relative error with the perfect encoder. 
(a) With the low-speed underdamped velocity profile. (b) With the high-speed 
underdamped velocity profile. (c) With the trapezoidal velocity profile. 

overlaid for comparison. Figs. 3 and 4 contain the root mean 
squared (rms) relative errors of the estimations generated 
from the three test velocity profiles using the various methods 
for the perfect and imperfect encoders, respectively. The 
fixed-time estimators are insensitive to the type of encoder 
error considered; the rms values of the relative errors for the 
simulations with the imperfect encoder are virtually identical 
to those obtained during simulations with the perfect encoder. 
The errors in the fixed-time estimations are due to either 
position measurement truncation or poor transient response. 

At high speeds, when the number of lines counted in a 
period is large, the effect of the position measurement trunca-
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Fig. 3. The percent rrns relative error for the fixed-time algorithms with 

the perfect encoder. 
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Fig. 4. The percent rms relative error for the fixed-time algorithms with an 

imperfect encoder. 

tion is small. But at low speeds, the relative error can 
become quite large. As can be seen in Fig. 2(b), the relative 
error of the LPP method is small as the velocity reaches 
approximately 100 lines per sampling period. When the 
velocity is low, as in the left part of Fig. 2(a), where the 
velocity is 1.5 lines per sampling period, the velocity errors 
of many of the methods are quite large. At intermediate 
speeds, 10.3 lines per sampling period on the right side of 
Fig. 2(a) and 15.5 lines per sampling period on the left side 
of Fig. 2(b), some of the methods are generating significant 
errors . As expected, the estimations produced by the TSE 
and BDE methods amplified the position tneasurement errors 
of the LPP method 'but had better transient responses. Note 
that the TSE 3 is slightly better than the BDE 3. This is due 
to the attenuation of the third-order term of the TSE 3 
compared to the BDE 3. The LSF methods produced estima
tions with poorer transient responses, but the errors produced 
at near constant speeds below 20 lines per sampling period 
were significantly smaller than the errors generated with the 
LPP, TSE, and BDE methods. 

B. Analysis of Errors in Fixed-Position Velocity 
Estimators 

The fixed-position velocity ·estimator algorithms were also 
simulated using the velocity profiles in Fig . 1. The t k test 
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Fig. 5. The fixed-position estimator relative error with the perfect en
coder. (a) With the low-speed underdamped velocity profile. (b) With the 
high-speed underdamped velocity profile. (c) With the trapezoidal velocity 
profile. 

data obtained from these profiles included the effect of the 
time measurement error inherent in the fixed-position meth
ods. The t k test data used were the ideal time truncated to six 
decimal places to represent time being measured with a 
1-MHz clock. The relative errors produced by the estimators 
with the perfect encoder are shown in Fig. 5. Fig. 6 illus
trates the same errors when an imperfect encoder is used. the 
rms relative errors for the simulations are shown in Fig. 7 
and Fig. 8 for the perfect and imperfect encoders, respec
tively . 

Perfect Encoder Simulation: For all the simulations with 
the perfect encoder, the fixed-position estimators do well at 
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Fig. 6. The fixed-position estimator relative error with an imperfect 
encoder. (a) With the low-speed underdamped velocity profile. (b) With the 
high-speed underdamped velocity profile. (c) With the trapezoidal velocity 
profile. 

the near constant lower speeds. The estimator based on finite 
difference approximations of dt / dx, RT, TSE 2, TSE 3, 
BOE 2, and BOE 3 are most accurate at the lower speeds, 
with no errors exceeding 5 % except at the discontinuities in 
the acceleration. At higher speeds the errors become large 
due to time measurement truncation. For example, in the 
right hand portion of Fig. S(b), where the time between 
sampling instants is approximately 9. 7 µs , the measured time 
for any given interval is either 9 or 10 µs . Increasing the 
order of the estimators from 1 to 2 to 3 does increase the 
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ability to follow the velocity during transients but at the 
expense of greater error at high speeds. 

The LSF estimators have large errors during the velocity 
transients, but the effect of the time measurement truncation 
is less (or filtered) compared to the RT, TSE, and BOE 
methods. At near constant speeds, the LSF 2/8 estimator has 
the lowest error, whereas the LSF 3 /8 estimator is more 
accurate at the transients. 

Imperfect Encoder Simulations: The first observation to 
make based on a comparison of the error data presented in 
Figs. 5 and 6, for the perfect and imperfect encoders, 
respectively , is that the errors of all the fixed-position estima
tors are significantly larger with imperfect encoders than with 
perfect encoders; i.e. , inherent encoder errors overshadow 
time measurement errors when determining total fixed-posi
tion estimator errors. However, the same general features 
noted above in the discussion of the perfect encoder simula
tions also appear in the imperfect encoder simulations for the 
fixed-position estimators. 

The most striking result to be noted in the imperfect 
encoder simulations is that the LSF 2 /8 estimator does the 
best job of all the fixed-position velocity estimators. Except 
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at the discontinuous accelerations, the relative error in the 
LSF 2 /8 estimator never exceeds 5 % and is the least affected 
by encoder variations. 

The LSF 2 /8 estimator, as well as acting as a differentiator 
is also functioning as a low-pass filter for the encoder error 
spectrum, apparently even better than the LSF 3 /8 estimator. 
Because an overdetermined system is needed to effect the 
LSF fit, it might be expected that the LSF 2/4 estimator 
would also act as an effective differentiator/ error filter. To 
test this hypothesis, the results of imperfect encoder simula
tions for the velocity profiles were compared for the quadratic 
LSF estimators fit to 4, 5, 6, 7, 8, 9, 10, 12, and 16 points, 
these results are shown in Fig. 9. The LSF 2/4 estimator 
represents "too exact" a fit to the data and does not provide 
much filtering effect. The LSF 2 /8 works well because the 
length of the estimator is a multiple of the encoder error 
period. Increasing the number of data points in the estimator 
to 12, and then 16 enhances the filtering, particularly at 
(near) constant speeds. This enhanced filtering behavior is, of 
course, at the expense of computation speed (more points 
take more time to process) and larger errors and longer 
delays in response to a discontinuity in the acceleration (there 
is more "old" data in the estimator). The LSF 2/8 estimator 
is probably the best "all-around" estimator in this series of 
simulations. The relative error away from the discontinuities 
in acceleration is less then 3 % . At the discontinuities, the 
error is comparable to or better than the other LSF estima
tors. 

IV. COMMENTARY ON ALGORITHM IMPLEMENTATION 

The simulations in the previous section demonstrated that 
no one algorithm is superior to the others in all situations. 
The choice of the best estimator algorithm is application 
dependent and should be coupled with the choice of encoder. 

Fixed-time algorithms are generally natural to implement 
in a discrete time control system, and are best used in 
high-speed applications. At high speeds, any of the fixed-time 
algorithms are good velocity estimators at steady speeds, 
with the LSF algorithms providing the lowest error. If, in a 
velocity feedback system, the ability of the velocity to follow 

velocity transients is important, then one of the "exact" fit 
estimators, such as the BDE3 or TSE 3 may be the proper 
choice but only when speed is at least on the order of 100 
encoder lines per sampling period. In very high speed appli
cations, "processing" time becomes important. In such cases, 
the simplest algorithm, the LPP, may be the best. 

When accuracy at low speeds is critical, the fixed-position 
LSF algorithms are the best choice. As the fixed-position 
algorithms are particularly sensitive to imperfections in en
coders, the corresponding TSE and BDE algorithms should 
never be used in low-speed applications, as these "exact fit" 
algorithms magnify the inherent encoder errors. On the other 
hand, the LSF fixed-position algorithms filter the effects of 
the encoder imperfections and significantly extend the low
speed range, and provide good transient response. The accu
racy of the fixed-position LSF algorithms begins to degrade 
at "medium" speed. 

Other application specific factors, such as 1) the maximum 
acceptable error of velocity estimation, 2) the cost of the 
development and implementation of any particular algorithm, 
and 3) the actual dynamic range of speed for the application, 
must also be considered when making a choice of algorithm. 
An application that will encompass a significant range of 
speeds from very low to even moderately high, may need to 
dynamically switch between algorithm types . 

V. SUMMARY 

In this paper, many velocity estimator algorithms using 
discrete position versus time measurements have been brought 
together with the theory behind the algorithms explained, and 
a new set of algorithms based on least squares has been 
proposed. Computer simulations have been performed to 
evaluate and compare these algorithms with simulated ideal 
and real data as both time- and fixed-position estimators. The 
simulations show that no one estimator algorithm is best for a 
system that has a large dynamic range of speeds, has large 
transients, and uses an imperfect (real) encoder. At low 
speeds, fixed-position estimators worked best where fixed
time estimators worked best at high speeds. The LSF estima
tors filtered the effect of imperfect measurements where the 
TSE and BDE estimators responded better to velocity tran
sients. 

The work included in this paper has been intended to serve 
as a unification of the work of previously presented velocity 
estimators as well as to specifically outline the theoretical 
basis of these estimators. In addition, a new group of velocity 
estimators, the LSF group, has been proposed, developed 
and evaluated. These is still room for improvement in veloc
ity estimators. Perhaps refined algorithms can be found using 
narrow band differentiators with constant phase ( + 90°) or 
using frequency domain designs where both magnitude and 
phase are specified. 
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