
Eötvös Loránd University

Faculty of Informatics

Department of Programming

Languages and Compilers

Clang-based Variable Name Suggestions for C++

Advisor:

Zoltán Porkoláb

Associate Professor

Author:

Mátyás Végh

Computer Science BSc

Budapest, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/286965411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 5

1.1 Thesis Structure . 5

2 User Documentation 7

2.1 Building and Installation . 7

2.1.1 Prerequisites . 7

2.1.2 Building . 8

2.1.3 Installing . 9

2.2 Using . 9

2.2.1 Generating the Variable Database 9

2.2.2 Generating Variable-name Suggestions 12

2.2.3 Performing a Rename 13

2.2.4 Using the Vim Plugin 14

2.3 Troubleshooting . 15

2.3.1 Variable to suggest for is not in the database 15

2.3.2 Code Compilation Fails After a Rename 16

3 Developer Documentation 17

3.1 Architectural Overview . 17

3.1.1 Database Format . 18

3.2 Clang-plugin Architecture . 19

3.2.1 Plugin . 19

3.2.2 Action . 19

3.2.3 Consumer . 20

3.3 Implementation . 21

1

3.3.1 Visiting the Abstract Syntax Tree 21

3.3.2 Merging the Databases 24

3.3.3 Making Suggestions . 25

3.3.4 Renaming . 26

4 Testing 27

4.1 Robot . 27

4.1.1 Dump-Names . 27

4.1.2 Suggest-Names . 29

5 Summary 32

5.1 Results . 32

5.2 Further Work . 32

5.2.1 Variable-kind Aware Suggestions 32

5.2.2 Only Suggest Names that can be Used 33

5.2.3 Follow Function-calls 33

5.2.4 Ignore Certain Paths 33

5.2.5 Speed . 34

Appendices 35

A Schema of Variable-Name JSON 36

B Vim Plugin Documentation 38

C Robot Keywords for Database Handling 40

2

List of Figures

3.1 Overview of Architectural Elements 17

3.2 Structure of the Database . 18

3.3 Loading the AST Action . 19

3.4 Action Collaboration Diagram 20

3.5 Consumer Collaboration Diagram 21

3.6 Visitor Collaboration Diagram 22

3

Listings

2.1 Installing pip requirements . 7

2.2 Installing apt requirements . 8

2.3 Adding the LLVM apt repository 8

2.4 Invocation of Clang . 9

2.5 Invocation of Clang with Defaulted Output Filename 10

2.6 CMake Compiler Setting . 10

2.7 CMake Compiler Arguments 10

2.8 CMake Invocation without the Plugin 10

2.9 CMake Invocation with the Plugin 11

2.10 example.cpp . 11

2.11 examples.cpp.o.names.json . 11

2.12 suggest_names --help . 13

2.13 Suggestions for Foo::id . 13

2.14 suggest_names_rename --help 13

2.15 Invocation of suggest_name_rename 14

2.16 Adding the Vim plugin . 14

2.17 Setting Databases Path . 15

2.18 Traceback when requesting names for a variable not present . 15

3.1 Example Variable . 24

3.2 Merged Variable . 24

A.1 Schema of variable name database 36

B.1 Vim plugin documentation . 38

C.1 DatabaseKeywords.robot . 40

4

Chapter 1

Introduction

There are only two hard things

in Computer Science: cache

invalidation and naming things.

Phil Karlton

Several programs were written as part of this thesis, which when used

together, assist a software developer in giving variables in their C++ code-

base good names.

The primary goal of this thesis is to provide a refactoring tool that is aware

of all variable declarations and their relations, so that accurate suggestions

can be made. This is achieved by providing a compiler-plugin for Clang, the

C++-compiler of the LLVM compiler infrastructure [1].

The compiler-plugin generates a database containing information on vari-

ables, which are then used by a set of scripts to suggest variable names, and

to perform renaming operations.

A Vim-plugin is also provided to allow vim users to integrate the tools

provided into their daily workflow.

1.1 Thesis Structure

This thesis is composed of multiple chapters, each dealing with a certain

part of the work involved, from how to use the tools through how it is built

5

and tested. Chapter 1 on the preceding page provides the motivation for this

project. Chapter 2 on the next page provides a guide on how to build, install

and use the project. Chapter 3 on page 17 has detailed descriptions of the

implementation, algorithms used, and the architectural overview. Chapter 4

on page 27 describes the testing, including a list of tests written. The last

chapter 5 on page 32 summarizes the work, and what further enhancements

can be made.

6

Chapter 2

User Documentation

This chapter describes how to use the various components included in this

thesis.

2.1 Building and Installation

2.1.1 Prerequisites

This project was developed on Debian Stretch [2], and tested on Ubuntu

Xenial [3].

2.1.1.1 Python packages required

To build, install and test the components of this project, the following de-

pendencies are required: • meson [4] • ninja [5] • robotframework [6] • json-

schema [7] • yq [8]

These can be installed with:

Listing 2.1: Installing pip requirements

pip install meson ninja robotframework jsonschema yq

2.1.1.2 Apt packages required

• python3-pip [9] • python3-setuptools [10] • libclang-7-dev [11] • clang-

7 [12] • llvm-7-dev [13] • libboost-all-dev [14] • texlive-full [15] • rubber [16]

7

• wget [17] • ca-certificates [18] • jq [19]

These can be installed with:

Listing 2.2: Installing apt requirements

apt -get install python3-pip python3-setuptools libclang-7-dev clang-7

llvm-7-dev libboost-all-dev texlive-full rubber wget ca-certificates

jq

If the LLVM-7 packages are not available for your distribution, they can be

added with:

Listing 2.3: Adding the LLVM apt repository

apt -add - repository \

deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-7 main

To help users on older distributions where the LLVM-7 packages may

require packages which are not available, this project is also compatible with

Clang and LLVM version 4.

2.1.1.3 LATEX packages required

• Tikz-UML [20]

2.1.2 Building

Once the git [21] repository for this thesis project is cloned, setup a build

directory and run meson.

cd /path/to/ repository

mkdir build

cd build

meson ..

cd ..

The default build target will build the project, along with this thesis.

ninja -C build

To run the tests, use ninja -C build test.

8

2.1.3 Installing

Add suggest_names to your PATH.

$ export PATH =/ path/to/ repository / suggest_names :$PATH

2.2 Using

2.2.1 Generating the Variable Database

Before any variable suggestions can be made, the source-code must be in-

dexed. This is achieved with a clang-plugin, which during compilation col-

lects all variable occurences, and information about them, such as their type

and name.

2.2.1.1 Clang Invocation

To generate a database for a given source file, run clang as follows:

Listing 2.4: Invocation of Clang

clang ++ \

-fplugin =/ path/to/ repository /build/ libdump_names .so \

-Xclang \

-plugin -arg -dump -names \

-Xclang \

output -file \

-Xclang \

-plugin -arg -dump -names \

-Xclang \

/path/for/ database \

all ... \

other ... \

args ... \

/path/to/ source .cpp

If output-file is not specified, the output file is derived from the output

of compilation. For instance:

9

Listing 2.5: Invocation of Clang with Defaulted Output Filename

clang ++ \

-fplugin =/ path/to/ repository /build/ libdump_names .so \

-c

/path/to/ source .cpp

-o /path/to/ output .o

Results in /path/to/output/o.names.json. This is most useful when using

the Clang-plugin as part of a build-system, as described next.

2.2.1.2 Build-System Integration

To generate the variable databases for a project larger than a few files, inte-

gration into the project’s build-system is needed. As variable databases are

generated per translation-unit, this means we have to change to way the C++

files are compiled, namely that Clang is used as the compiler, and that our

plugin is used during compilation.

Several build-systems provide the option of the user to specify the com-

piler to be used, as well as additional compiler arguments. For CMake [22],

these can be achieved as follows:

Set the compiler to Clang with:

Listing 2.6: CMake Compiler Setting

CMAKE_CXX_COMPILER =clang ++

Set the compiler flags to use the plugin with:

Listing 2.7: CMake Compiler Arguments

CMAKE_CXX_FLAGS =’- fplugin =/ path/to/ libdump_names .so ’

For instance, when bootstrapping a project, instead of

Listing 2.8: CMake Invocation without the Plugin

mkdir build

cd build

cmake -G "Ninja" ..

do

10

Listing 2.9: CMake Invocation with the Plugin

mkdir build

cd build

cmake -G "Ninja" \

-DCMAKE_CXX_COMPILER =clang ++ \

-DCMAKE_CXX_FLAGS =’- fplugin =/ path/to/ libdump_names .so ’ \

..

2.2.1.3 An Example Run

In the following sections we will refer to the following example piece of C++

code:

Listing 2.10: example.cpp

1 struct Foo {

2 int id;

3 };

4

5 void f(int identifier) {

6 // ...

7 }

8

9 void g(int identifier) {

10 Foo f;

11 f.id = identifier ;

12 }

Running the Clang-plugin as described above will give us a JSON file

containing information on the symbols in the program:

Listing 2.11: examples.cpp.o.names.json

1 {

2 " Variables ": [

3 {

4 "type": "int",

5 "name": "id",

6 " location ": "./ example .cpp :2:9",

7 " occurences ": [

8 "./ example .cpp :11:7"

11

9]

10 },

11 {

12 "type": "int",

13 "name": " identifier ",

14 " location ": "./ example .cpp :5:12",

15 " occurences ": [

16]

17 },

18 {

19 "type": "int",

20 "name": " identifier ",

21 " location ": "./ example .cpp :9:12",

22 " occurences ": [

23 "./ example .cpp :11:12 "

24]

25 },

26 {

27 "type": " struct Foo",

28 "name": "f",

29 " location ": "./ example .cpp :10:9",

30 " occurences ": [

31 "./ example .cpp :11:5"

32]

33 }

34],

35 " Filename ": "./ example .cpp"

36 }

By default, all paths in the output are absolute paths. To make the out-

put more easily legible, we pass the -fdebug-prefix-map=/path/to/repository=.

command-line argument to Clang, so that the output paths are relative to

the root of the repository.

2.2.2 Generating Variable-name Suggestions

Once the code-base is indexed, suggestions can be requested with the script

suggest_names.

suggest_names’ documentation is as follows:

12

Listing 2.12: suggest_names --help

usage: suggest_names [-h]

database [database ...] filename line

column

Suggest variable names

positional arguments :

database JSON produced by clang - plugin containing all

variables

filename Filename containing variable to suggest

names for

line Line number of variable to suggest names for

column Column number of variable to suggest names

for

optional arguments :

-h, --help show this help message and exit

Invoking suggest_names to suggest an alternative to Foo::id can be done

as follows:

suggest_names varnames .json ./ examples / example .cpp 2 9

The resulting suggestions are as follows:

Listing 2.13: Suggestions for Foo::id

identifier

id

2.2.3 Performing a Rename

Renames can be performed with suggest_names_rename. When a rename is

made, all references to the variable are adjusted to the new name, even

accross translation-unit boundaries.

The documentation for suggest_names_rename is as follows:

Listing 2.14: suggest_names_rename --help

usage: suggest_names_rename [-h] --filename FILENAME

13

--line LINE --column COLUMN

--name NAME

database [database ...]

Rename variables

positional arguments :

database JSON produced by clang - plugin

containing all variables

optional arguments :

-h, --help show this help message and exit

--filename FILENAME Filename containing variable to

suggest names for

--line LINE Line number of variable to suggest

names for

--column COLUMN Column number of variable to

suggest names for

--name NAME New name for the variable

To accept identifier as the new name for Foo::id, we can then invoke

suggest_names_rename as follows:

Listing 2.15: Invocation of suggest_name_rename

suggest_names_rename \

--filename test.cpp --line 2 --column 6 \

--name identifier \

varnames .json

2.2.4 Using the Vim Plugin

To help making renaming easier, a Vim [23] plugin is included. With it, the

renaming process can be done interactively without needing to use command-

line tools. The Vim plugin can be added to your .vimrc by adding the fol-

lowing two lines:

Listing 2.16: Adding the Vim plugin

set rtp +=/ path/to/ repository /vim

helptags /path/to/ repository /vim/doc

14

Following this, the documentation of the Vim plugin is available through

the usual commands of Vim, such as :help.

To configure the path of variable databases, use:

Listing 2.17: Setting Databases Path

let g: suggest_names_database_path = ’/path/to/ project / builddir ’

The output of querying the help for :help suggest-names.txt can be found

in appendix B on page 38.

2.3 Troubleshooting

This section describes potential error messages the user may see during use

of the tools described prior, and how to resolve them.

2.3.1 Variable to suggest for is not in the database

If the user requests variable-names for a variable not present in any of the

databases, suggest_names gives an error along the lines of:

Listing 2.18: Traceback when requesting names for a variable not present

Traceback (most recent call last):

File "./ suggest_names / suggest_names ", line 48, in <module >

main ()

File "./ suggest_names / suggest_names ", line 44, in main

print_suggestions (args.database , args.filename , args.line

, args. column)

File "./ suggest_names / suggest_names ", line 28, in

print_suggestions

filename , line , column)

File "./ suggest_names / suggest_names ", line 19, in

_find_corresponding_variable

raise ValueError (’ Variable to suggest for is not in the

databases ’)

ValueError : Variable to suggest for is not in the databases

15

In this case, the error was caused by querying a variable at line 2, column

10 of example.cpp (see listing 2.10 on page 11). To fix this, we need to pass

column 9 instead of 10 to get the proper result.

When using the Vim plugin, this does not occur even if the cursor is not

on the first character of the variable, as the Vim plugin first computes the

position of the start of the variable before requesting suggestions.

Also note, that column numbers are based on the number of characters

that precede them, not their apparent position when displayed on a screen.

This is mostly important in code-bases where tabs are used for indentation.

2.3.2 Code Compilation Fails After a Rename

If after a rename, the code no longer compiles, there are generally two possible

reasons 1) The variable-name chosen was already in use and 2) The rename

was performed with out-of-date databases. There is no fix for the user to

apply in the former case, only to undo the change and pick a different name.

The general solution would be for suggest_names to only suggest names that

are not in use in the surrounding scope as described in subsection 5.2.2 on

page 33. The latter can be solved by always performing renames right after

build, where the databases are up to date.

16

Chapter 3

Developer Documentation

3.1 Architectural Overview

Figure 3.1 provides an overview of the system. The clang-plugin developed

produces a database for each translation-unit, which can then be merged

to make all variable declarations available to the frontend, which can then

suggest names for the variables.

The structure of the database can be seen in figure 3.2 on the next page.

Figure 3.1: Overview of Architectural Elements

*

*

≪includes≫

1*

≪compiles≫

1

1

≪invokes≫

≪produces≫

1

*

≪loads≫

header

source clang

plugin database

frontend

17

Figure 3.2: Structure of the Database

1 *

1

*

Database

filename: string

VariableDeclaration

+name: string
+type: string
+location: string

VariableOccurence

+location: string

3.1.1 Database Format

The database produced by the compiler-plugin generates a list of declarations

that are later used for suggesting variables. The database format is designed

such that each translation unit creates its own database. This is so that

when a project is being built with a build-system that supports incremental

building –where each output binary is kept up-to-date by only recompiling

the changed source files– the databases produced for those source files can

then be recombined with the rest to produce a complete overview of all

variables in the project. This is what makes cross translation-unit suggestions

and renaming operations possible. For a formal schema of the database, see

appendix A on page 36.

To support renaming of variables, we also need to track the location of

any references to the variables. This is to ensure that after renaming the

variable name at the point of declaration, we also must update every part of

the code that refers to this variable. This can not be achieved by mere textual

pattern-matching, as multiple scopes may have variables of the same name.

This means we have to list all occurences during analysis. When merging the

databases we also need to merge the list of occurences.

18

3.2 Clang-plugin Architecture

The clang-plugin contains all the code needed for traversing the Abstract

Syntax Tree, along with the routines needed for dumping the names that

occur in the codebase to a JSON file. All code in the clang-plugin is defined

in namespace dn. The components listed here each derive from or interact with

the interfaces of Clang designed for use in plugins.

Most of the work done by the plugin will be in visiting the Abstract

Syntax Tree produced by Clang, which will be described in subsection 3.3.1

on page 21.

3.2.1 Plugin

The plugin first starts by loading Action into clang::FrontEndPluginRegistry.

Figure 3.3: Loading the AST Action

clang

dn 1

1

≪register≫

FrontendPluginRegistry

Action

clang::FrontendPluginRegistry::Add<dn::Action> _{};clang::FrontendPluginRegistry::Add<dn::Action> _{};

3.2.2 Action

Action can then parse the command-line arguments passed to Clang, so that it

can deduce the filename that was set for storing the output JSON. Action uses

clang::PluginASTAction::ActionType Action::getActionType() to inform Clang

that Action should not inhibit compilation, and should be invoked after the

compilation has been done.

19

Figure 3.4: Action Collaboration Diagram

clang

dn

1 1

≪creates≫

PluginASTAction

+ASTConsumer* CreateASTConsumer(. . .)
+bool ParseArgs(. . .)
+ActionType getActionType()

ASTConsumer

Action

–outputFilename: boost::optional<string>

+ASTConsumer* CreateASTConsumer(. . .)
+bool ParseArgs(. . .)
+ActionType getActionType()

Consumer

3.2.3 Consumer

Clang then loads the Consumer as specifed by Action::CreateASTConsumer, which

can then proceed with traversing the Abstract Syntax Tree of the given Trans-

lation Unit.

Consumer’s sole responsibility is to invoke the Visitor when invoked by

Clang. This is done in Consumer::HandleTranslationUnit, by first constructing

a Visitor, calling it’s TraverseDecl function with the current translation unit’s

declaration, then printing the result to the output file.

20

Figure 3.5: Consumer Collaboration Diagram

clang

dn

1 1

≪calls≫

ASTConsumer

+void HandleTranslationUnit()

Consumer

–ci: clang::CompilerInstance&
– inputFile: string
–outputFile: string
–debugPrefixMap: map<string, string>

– void HandleTranslationUnit()

Visitor

3.3 Implementation

3.3.1 Visiting the Abstract Syntax Tree

There are two main tasks to accomplish when traversing the Abstract Syntax

Tree: the first is to record all variable declarations, the second is to record

all references to these variables.

Both of these tasks are accomplished by the Visitor class. To facilitate

these tasks, Clang’s RecursiveASTVisitor provides two functions for us to over-

ride: VisitDecl and VisitStmt.

A diagram of the involved classes can be seen in figure 3.3.1 on the fol-

lowing page.

VisitDecl is used to visit all declarations as described in section 3.3.1.1 on

the next page, whereas VisitStmt is used to visit all statements as described

in section 3.3.1.2 on page 23.

21

Figure 3.6: Visitor Collaboration Diagram

clang

dn

1 *

1

1
RecursiveASTVisitor

+bool TraverseDecl(. . .)
+bool VisitDecl(. . .)
+bool VisitStmt(. . .)

Derived
SourceLocation

Visitor

-outputFile: string
-debugPrefixMap: map<string, string>

+bool VisitDecl(. . .)
+bool VisitStmt(. . .)
+void printVariableNames(. . .)
–void visitVariableDeclaration(. . .)
–void visitFieldDeclaration(. . .)
–void visitDecl. . .Ref. . .Expr. . .(. . .)
–void visitMemberExpression(. . .)
–void addOccurence(. . .)

VariableDeclaration

–name: string
– type: string
–occurences: vector<string>

+string getName()
+string getType()
+string getLocation(. . .)
+bool operator==(. . .)
+void addOccurence(. . .)

3.3.1.1 Visiting Declarations

There are two sorts of declarations that we are interested in: variable decla-

rations, and field declarations.

The kinds a variable declaration can be are as follows:

• Function-local variable

• Global variable

• Function argument

Our task in all of these cases is to record the name, type and location

22

of the variable being declared. These are then used as a composite key to

compare variables. The location not only contains the line and column of the

variable, but also the filename. This is important as during the compilation

of a translation unit, we may also visit declarations that come from another

file, most notably header files. Once the databases are merged, duplicate

variables will be removed, as described in section 3.3.2 on the next page.

3.3.1.2 Visiting Statements

When visiting statements, most statements are of no use to us. The only

types of statements that are of interest to us, are those that refer to variable

declarations (or field declarations). We record these references, so that when

renaming a variable, we know what other parts of the code we need to change.

When traversing statements, we only need to handle DeclRefExprs, and

MemberExprs, as all other expressions that refer to variable declarations derive

from these classes.

In both cases, all we have to do is lookup the original declaration of

the variable (or field) that the expression refers to, and add the current

source location to its set of occurences. In most cases, the declaration will be

visited before the statement that refers to it, however there are two notable

exceptions.

The most obvious exception to this ordering is when we have a class that

has a member function that refers to a member of the class that is defined

before the member. In C++ the order of function definitions and members in

a class defintion does not matter like it normally would, and Clang traverses

these declarations and defintions roughly in the order they appear in the

source-code. This means our visitor may occur a reference to a field before

it has recorded the field itself.

The other –more subtle– case where we may see a reference before a

declaration is in the case of template functions whose signatures are only

determined fully upon instantiation. These function templates needn’t be

instantiated to be visited, however when they are, the arguments are visited

as being references before they are visited as declarations.

23

In both of the cases above, we need to make sure that the variable to

which we are trying to add an occurence already exists in the database. The

naive approach to this is to record it if it is not already present, and doing

the same when recording a declaration.

We cannot merely rely upon discovering all variable declarations by notic-

ing them through statements, as some variables are declared but never re-

ferred to.

3.3.2 Merging the Databases

The database format as described in section 3.1.1 on page 18 was chosen to

enable merging of the databases. As the database is merely a list of Variables,

each with a type, name, location and a list of occurences, these can be merged

simply. To support projects which may rename files during the lifetime of the

project, we ignore databases that refer to files that no longer exist. These

databases are referred to as stale.

Given a set of databases input_database1, . . . , input_databasem, we can

construct the set of non-stale databases as follows:

database1, . . . , databasen =
{

input_databasei

∣

∣

∣

i∈{1,...,m}
∧exists(input_databasei.filename)

}

(3.1)

where exists(filename) determines whether the file exists.

Given the following variable:

Listing 3.1: Example Variable

{

"type": TYPE ,

"name": NAME ,

" location ": LOCATION ,

" occurences ": [. . .]

}

and non-stale databases database1, . . . , databasen, we can construct the merged

variable as follows:

24

Listing 3.2: Merged Variable

{

"type": TYPE ,

"name": NAME ,

" location ": LOCATION ,

" occurences ": [

n
⋃

i=1

{

v.occurences

∣

∣

∣

∣

v∈databasei.variables
∧v.type=T Y P E
∧v.name=NAME
∧v.location=LOCAT ION

}

]

}

Note that while each input_databasei has a filename to determine whether

it is stale, the output of the merge process does not include this field. This

means that the merging operation is not associative, that is, merged databases

cannot be merged further.

3.3.3 Making Suggestions

When the developer requests a suggestion for a name, the first thing we need

to do is merge the databases that correspond to the project (as described in

section 3.3.2 on the previous page).

Once we have a merged database of all variables, we can then make a

suggestion based on the type of the variable we wish to rename.

3.3.3.1 Making Suggestions Based on Type

From the complete database named database, we first get all the candidate

names by looking up all variables that have the same type as the variable

we are suggesting names for. Let’s call the variable we are suggesting a new

name for variable. The set of names then becomes:

{v.name | v ∈ database.variables ∧ v.type = variable.type} (3.2)

We also assign a weight to these names based on how frequently they occur.

25

3.3.4 Renaming

When renaming a variable, there are two main points at which to apply the

rename, the declaration of the variable (or field), and at all occurences. This

is implemented in the Python script suggest_names_rename.

The first thing this script needs to do, is load and merge all the databases,

so that we can rename occurences of a variable located in different files.

Care must be taken when there are multiple references to a variable in

the same line. If no two references occur in the same line, we can simply go

to each location and change the old name to the new name, changing the

length of the line as necessary. If there are multiple occurences in the same line

however, changing the occurences left-to-right would invalidate the column

index stored by the next occurence, so we have to perform each rename in

the same line right-to-left. This invalidation also means that we require the

user to rebuild their project to update the databases before another rename

can be performed.

26

Chapter 4

Testing

This chapter describes the testing involved in this project. This project is

tested using Robot Framework [6].

As the project is composed of multiple programs, each part is tested in-

dependently. This helps in comprehension of each test, as the reader can

only deal with one part at a time, and also eliminates a combinatorial ex-

plosion that would emerge if every type of input that could emerge for the

Clang-plugin then needed to be tested by way of testing the variable-name

suggestions.

Keywords used by these tests can be found in appendix C on page 40.

4.1 Robot

4.1.1 Dump-Names

Tests that the compiler-plugin produces the appropriate database for an in-

put. It achieves this by invoking the compiler with one or more source files,

and then validates the database.

4.1.1.1 Variables

Tests that the part of the database that stores information about variable

declarations is correct.

27

List of tests:

• No Variables Should Make Variables Empty

Tests that an empty file produces an empty output.

Given Empty File is Passed To Analyzer

Then Variables Should Be Empty

• Single Variable Makes Variables Have 1 Entry

Tests that an file with a single variable produces an output with a

single entry. As this argument is modified twice, there should be two

occurences.

Given File single_int .cpp is Passed to Analyzer

Then There Should Be ${1} Entries that Occur ${2} Times

• Single Argument Makes Variables Have 1 Entry

Tests that a file with a single function with a single argument produces

an output with a single entry.

Given File single_int_argument .cpp is Passed to Analyzer

Then There Should Be ${1} Entries that Occur ${1} Times

• Single Unnamed Argument Makes Variables Empty

Tests that a file with a single function with a single unnamed argument

produces an output with no entries.

Given File unnamed_int_argument .cpp is Passed to Analyzer

Then There Should Be ${0} Entries that Occur ${0} Times

• Single Member of Struct Makes Variables Have 1 Entry

Tests that a file with a single struct with a single member produces an

output with a single entry.

Given File single_struct_member .cpp is Passed to Analyzer

Then There Should Be ${1} Entries that Occur ${0} Times

28

• Union Member Of Struct Makes Variables Have 3 Entries

Tests that a file with a single struct containing a union and a bool to

discriminate upon, is handled correctly despite the indirect field.

Given File member_union_access .cpp is Passed to Analyzer

Then There Should be ${3} Entries that Occur ${1} Times

• Union Makes Variables Have 3 Entries

Tests that a file with a function-local union and a bool to discriminate

upon, is handled correctly despite the indirect variable.

Given File union_access .cpp is Passed to Analyzer

Then There Should be ${3} Entries that Occur ${1} Times

4.1.2 Suggest-Names

Tests that given appropriate databases of sources, the correct suggestions are

made for each variable name. This is achieved by preparing databases and

making expectations on the suggested name lists.

4.1.2.1 Merge

Tests that the logic involved in merging multiple databases merges the databases

as though the source was concatenated before creating the database.

List of tests:

• Empty database and empty database merge to empty database

Given Empty database

And Empty database

When Databases are merged

Then The merged database has ${0} variables

• Stale database and stale database merge to empty database

Given Stale database

And Stale database

When Databases are merged

Then The merged database has ${0} variables

29

• Stale database and empty database merge to empty database

Given Stale database

And Empty database

When Databases are merged

Then The merged database has ${0} variables

• Empty database and single variable database merge to single variable

database

Given Empty database

And Database with one variable

When Databases are merged

Then The merged database has ${1} variables

• Stale database and single variable database merge to single variable

database

Given Stale database

And Database with one variable

When Databases are merged

Then The merged database has ${1} variables

• Two single variable databases merge to database with one variable

Given Database with one variable

And Database with one variable

When Databases are merged

Then The merged database has ${1} variables

• Two different single variable databases merge to database with two vari-

ables

Given Database with one variable

And Database with an other variable

When Databases are merged

Then The merged database has ${2} variables

• Same occurence passed twice gets merged to single occurence

30

Given Database with one variable and one occurence

And Database with one variable and one occurence

When Databases are merged

Then Each ${1} variables have ${1} occurences

• Different occurences of same variable remain separate

Given Database with one variable and one occurence

And Database with one variable and an other occurence

When Databases are merged

Then Each ${1} variables have ${2} occurences

• Different occurences of same variable remain separate and same ones

get merged

Given Database with one variable and one occurence

And Database with one variable and one occurence

And Database with one variable and an other occurence

When Databases are merged

Then Each ${1} variables have ${2} occurences

4.1.2.2 Suggest

Tests that the logic involved in suggesting variables based on complete infor-

mation is correct.

List of tests:

• Database with one variable should suggest its own name

Given Database with one variable

And Databases are merged

When Suggestions are requested

Then Suggestions have ${1} elements

• Database with two variables of same type should suggest both

Given Database with one variable

And Database with an other variable

And Databases are merged

When Suggestions are requested

Then Suggestions have ${2} elements

31

Chapter 5

Summary

5.1 Results

Several programs were implemented, that comprise a tool for suggesting

variable-names for C++ codebases. This tool was tested automatically us-

ing Robot [6], and tested manually against Xerces-C++ [24]. Variable-name

suggestions were based on the type of the variable in question, and sugges-

tions and renaming was made available via a Vim plugin.

5.2 Further Work

Multiple improvements can be made to the way variable-name suggestions

work, these are listed here.

5.2.1 Variable-kind Aware Suggestions

Several projects decorate variable names according to their kind, such as m_

being used as a prefix for member variables. In Xerces-C++, the prefix f is

used.

This should be incorporated into to the suggestion process, so that when

suggest_names finds a candidate variable of kind A, for variable of kind B, the

prefix (or other decoration) for A is removed, and the prefix for B is applied,

thereby ensuring that variable-names suggested follow these conventions.

32

5.2.2 Only Suggest Names that can be Used

Section 2.3 on page 15 describes some error-cases, one of which being that

suggest_names can suggest variable names after which the code fails to com-

pile. A solution to this would be to track a list of conflicting variable names

for each variable in the database. A variable A would conflict with a variable

B, that is B could not be renamed to A, if A was declared in the same scope

as B (as opposed to an ancestor scope), or if A was declared in an ancestor

scope, but was referred to in the scope of B. This analysis would need to

be performed by the Clang-plugin, as determining conflicts like this is C++

specific.

5.2.3 Follow Function-calls

Currently, suggestions are made purely based on the type of the variable. For

certain types, the type does not strongly determine the name of the variable.

For instance, a variable of type int could legitmately be called i, fd, error, or

temperatureOfBudapestInCelsius. While many types can reasonably determine

the names, types like int do not. In this case, we can follow the functions into

which a variable is passed, and see what name was assigned to the parameter

in the definition of the function, as well as the name of the returned value (if

any). The current architecture of having several databases and then merging

them would work well for this, as the function definition wouldn’t need to be

in the translation-unit where the rename takes place.

5.2.4 Ignore Certain Paths

Many code-bases have dependencies on large third-party code-bases, such as

the C++ standard library, or Boost. Frequently however, code-bases use dif-

ferent coding conventions to that of the third-party library, so those could

be omitted both for improving the results of variable-name suggestions. If

they were omitted during the database-generation phase, merging would

even be faster as there would be less variables to parse. For instance, a

simple #include <iostream> typically generates upwards of 4500 variable dec-

33

larations, many of which are internal to the library and are of no use in

renaming.

5.2.4.1 Map conventions

A more sophisticated version of the above, is to distinguish parts of the

code-base that are written with different conventions. For instance, if a code-

base calls file descriptors fileDescriptor, whereas the GNU C Library [25]

calls them __fd, instead of ignoring calls into glibc, we could determine the

convention as it applies in glibc, and map it back to the calling project’s

conventions.

5.2.5 Speed

Currently, there is a non-trivial performance cost of running variable-name

analysis during the compilation. For instance, on an Intel Core i5-4590 CPU,

Xerces-C++ without our plugin builds in 17s, where as takes upwards of

5 minutes with the plugin enabled. The primary cause of this is needing

to track whether we have seen the variables declaration before adding an

occurence. This is currently done with an array of Variables, storing an array

of Occurences, which leads to cubic time-complexity. Using a hashmap or

similar data structure would cut down the performance penalty drastically.

34

Appendices

35

Appendix A

Schema of Variable-Name

JSON

Listing A.1: Schema of variable name database

{

" $schema ": "http :// json - schema .org/draft -07/ schema #",

"type": " object ",

"title": " Schema for variable -name database ",

" required ": [

" Variables ",

" Filename "

],

" properties ": {

" Variables ": {

"type": "array",

"items": {

"type": " object ",

" required ": [

"type",

"name",

" location ",

" occurences "

],

" properties ": {

"type": {

"type": " string ",

36

" examples ": [

"std :: function <void (void)>"

],

" pattern ": "^(.*)$"

},

"name": {

"type": " string ",

" examples ": ["f"],

" pattern ": "^(.*)$"

},

" location ": {

"type": " string ",

" examples ": [

"/path/to/ include /a.hpp :123:45 "

],

" pattern ": " ^(.*):[0 -9]+:[0 -9]+ $"

},

" occurences ": {

"type": "array",

"items": {

"type": " string ",

" examples ": [

"/path/to/ source /a.cpp :12:34 "

],

" pattern ": " ^(.*):[0 -9]+:[0 -9]+ $"

}

}

}

}

},

" Filename ": {

"type": " string ",

" examples ": ["/dev/null"],

" pattern ": "^(.*)$"

}

}

}

37

Appendix B

Vim Plugin Documentation

Listing B.1: Vim plugin documentation

suggest-names.txt Suggest variable names for C++

===

INTRODUCTION vim-suggest-names-introduction

This plugin wraps suggest_names so that you can

automatically have variable suggestions for C++ code.

===

USAGE vim-suggest-names-usage

When editing C++, use : SuggestNames to have a buffer appear

with variable suggestions.

===

COMMANDS vim-suggest-names-commands

vim-suggest-names provides the following commands :

: SuggestNames

: SuggestNames

38

: SuggestNames Suggest variables for the variable

under the cursor.

The following maps are provided for the

suggestion buffer :

<CR> Accept the given suggestion, and

perform a rename of the variable.

This will trigger a change to all

buffers contain references to this

variable, so you will be prompted

to reload the impacted files.

===

OPTIONS vim-suggest-names-options

g: suggest_names_database_path

g: suggest_names_database_path

Path where name databases are stored. This path will be

recursively globbed in search of suitable jsons.

Default : $HOME/ .suggest_names /

===

39

Appendix C

Robot Keywords for Database

Handling

Listing C.1: DatabaseKeywords.robot

*** Settings ***

Library Collections

*** Keywords ***

Empty database

${ database } = Make database

Append To List ${ databases } ${ database }

Single variable

[Arguments] @{ occurences }

${ variable } = Make variable int a

... test.cpp :1:1 ${ occurences }

Set Test Variable ${ variable }

[Return] ${ variable }

Database with one variable

${ variable } = Single variable

${ database } = Make database ${ variable }

Append To List ${ databases } ${ database }

Stale database

${ variable } = Make variable int stale

40

... / non_existent :1:1

${ database } = Make database ${ variable }

... filename ="/ non_existent "

Append To List ${ databases } ${ database }

Database with one variable and one occurence

${ variable } = Single variable test.cpp :2:1

${ database } = Make database ${ variable }

Append To List ${ databases } ${ database }

Database with one variable and an other occurence

${ variable } = Single variable test2.cpp :2:1

${ database } = Make database ${ variable }

Append To List ${ databases } ${ database }

Database with an other variable

${ variable } = Make variable int b test.cpp :2:1

${ database } = Make database ${ variable }

Append To List ${ databases } ${ database }

Databases are merged

${ merged_database } = Merge databases ${ databases }

Set Test Variable ${ merged_database }

The merged database has ${n} variables

Length Should Be ${ merged_database . variables } ${n}

Each ${n} variables have ${k} occurences

Length Should Be ${ merged_database . variables } ${n}

:FOR ${ ELEMENT } IN @{ merged_database . variables }

\ Length Should Be ${ ELEMENT . occurences } ${k}

Clear databases

@{ databases } = Create List

Set Test Variable ${ databases }

Clear variable

${ variable } = Evaluate None

Set Test Variable ${ variable }

41

Bibliography

[1] LLVM Developer Group. LLVM. https://llvm.org/, 2018. Last ac-

cessed 2019-03-07.

[2] Ian Murdock and The Debian Project. Debian. https://www.debian.

org/releases/stable/, 2017. Last accessed 2019-05-07.

[3] Canonical Ltd. Ubuntu. https://releases.ubuntu.com/16.04.6/,

2016. Last accessed 2019-05-07.

[4] Jussi Pakkanen. Meson. https://mesonbuild.com/index.html, 2018.

Last accessed 2019-02-25.

[5] Evan Martin. Ninja. https://ninja-build.org/, 2018. Last accessed

2019-02-25.

[6] Robot Framework Foundation. Robot Framework.

https://robotframework.org/robotframework/3.1.1/

RobotFrameworkUserGuide.html, 2016. Last accessed 2019-02-11.

[7] Julian Berman. jsonschema. https://github.com/Julian/

jsonschema, 2019. Last accessed 2019-04-13.

[8] Andrey Kislyuk. yq. https://github.com/kislyuk/yq/, 2019. Last

accessed 2019-04-14.

[9] Python Packaging Authority. The Python Package Installer. https:

//pip.pypa.io/en/stable/, 2017. Last accessed 2019-04-14.

42

[10] Python Packaging Authority. Setuptools. https://github.com/pypa/

setuptools/, 2019. Last accessed 2019-04-14.

[11] LLVM Developer Group. libclang. https://releases.llvm.org/7.

0.0/tools/clang/docs/Tooling.html#libclang, 2018. Last accessed

2019-04-14.

[12] LLVM Developer Group. clang-7. http://releases.llvm.org/7.0.0/

tools/clang/docs/index.html, 2018. Last accessed 2019-04-14.

[13] LLVM Developer Group. LLVM. https://llvm.org/, 2018. Last ac-

cessed 2019-03-07.

[14] Boost C++ libraries. https://www.boost.org/, 2015. Last accessed

2019-04-14.

[15] Sebastian Rahtz and The TeX Users Group. Tex live. http://www.tug.

org/texlive/, 2015. Last accessed 2019-04-14.

[16] Emmanuel Beffara. Rubber. https://launchpad.net/rubber/, 2015.

Last accessed 2019-04-14.

[17] Hrvoje Nikšić. wget. https://www.gnu.org/software/wget/, 2015.

Last accessed 2019-04-14.

[18] Michael Shuler, Raphael Geissert, Thijs Kinkhorst, Christian Perrier,

and The Debian Project. Common ca certificates. https://packages.

debian.org/stretch/ca-certificates, 2017. Last accessed 2019-04-

14.

[19] Stephen Dolan. jq. https://stedolan.github.io/jq/, 2015. Last

accessed 2019-04-14.

[20] Nicolas Kielbasiewicz. TikZ-UML. https://perso.ensta-paristech.

fr/~kielbasi/tikzuml/, 2016. Last accessed 2019-04-14.

[21] Linus Torvalds and Junio C Hamano. Git. https://git-scm.com/,

2019. Last accessed 2019-05-09.

43

[22] Andy Cedilnik, Bill Hoffman, Brad King, Ken Martin, and Alexander

Neundorf. Cmake. https://cmake.org/, 2019. Last accessed 2019-05-

04.

[23] Bram Moolenaar. Vim. https://www.vim.org/, 2018. Last accessed

2019-03-07.

[24] Apache. Xerces-c++. https://xerces.apache.org/xerces-c/, 2018.

Last accessed 2019-05-04.

[25] Roland McGrath and the GNU Project. Gnu c library. https://www.

gnu.org/software/libc/, 2019. Last accessed 2019-05-05.

44

	Introduction
	Thesis Structure

	User Documentation
	Building and Installation
	Prerequisites
	Building
	Installing

	Using
	Generating the Variable Database
	Generating Variable-name Suggestions
	Performing a Rename
	Using the Vim Plugin

	Troubleshooting
	Variable to suggest for is not in the database
	Code Compilation Fails After a Rename

	Developer Documentation
	Architectural Overview
	Database Format

	Clang-plugin Architecture
	Plugin
	Action
	Consumer

	Implementation
	Visiting the Abstract Syntax Tree
	Merging the Databases
	Making Suggestions
	Renaming

	Testing
	Robot
	Dump-Names
	Suggest-Names

	Summary
	Results
	Further Work
	Variable-kind Aware Suggestions
	Only Suggest Names that can be Used
	Follow Function-calls
	Ignore Certain Paths
	Speed

	Appendices
	Schema of Variable-Name JSON
	Vim Plugin Documentation
	Robot Keywords for Database Handling

