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Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC

14000 Caen, France
Email: {judith-jeyafreeda.andrew, stephane.ferrari, fabrice.maurel, gael.dias,emmanuel.giguet}@unicaen.fr

Abstract

Web page segmentation aims to break a page
into smaller blocks, in which contents with co-
herent semantics are kept together. Examples
of tasks targeted by such a technique are ad-
vertisement detection or main content extrac-
tion. In this paper, we study different seg-
mentation strategies for the task of non visual
skimming. For that purpose, we consider web
page segmentation as a clustering problem
of visual elements, where (1) all visual ele-
ments must be clustered, (2) a fixed number
of clusters must be discovered, and (3) the
elements of a cluster should be visually con-
nected. Therefore, we study three different
algorithms that comply to these constraints:
K-means, F-K-means, and Guided Expan-
sion. Evaluation shows that Guided Expan-
sion evidences statistically-relevant results in
terms of compactness and separateness, and
satisfies more logical constraints when com-
pared to the other strategies.

1 Introduction

Skimming and scanning are two well-known reading
processes, which are combined to access the docu-
ment content as quickly and efficiently as possible.
Scanning refers to the process of searching for a spe-
cific piece of information, and skimming is the ac-
tion of passing through a document in a first glance
to get an overview of its content. Skimming can
easily be applied in a visual environment thanks to
the visual, logical or textual document structure. In-
deed, visual skimming relies on contrasted effects
related to layout rendering and typographic styles.

However, these effects are not available in a non
visual environment. As such, reproducing the docu-
ment content driven by its structure in a non visual
setting is a much harder problem, but essential to be
solved to improve web accessibility, for the visually
impaired, for instance.

In this paper, we focus on the hypothesis that
successful non visual skimming strategies can take
advantage of a prior identification of the coarse-
grained document structure. This specific task is
known as Web Page Segmentation (WPS). WPS
aims to break a page into zones that appear se-
mantically coherent. A large number of approaches
have been proposed to automate this process (San-
oja and Gançarski, 2014; Cai et al., 2003a; Zeleny et
al., 2017). However, they deal with tasks that imply
constraints far from ours. In our TAG THUNDER
project1, we consider that non visual skimming re-
quires three characteristics to be filled.

First, the number of zones has to be fixed in or-
der to foster the emergence of regularities in the
output and to comply with the maximum number
of concurrent oral stimuli a human-being can cog-
nitively distinguish. Indeed, we assume that each
semantically coherent zone can be summarized and
simultaneously synthesized into spatialized concur-
rent speech acts. Within this context, (Guerreiro
and Gonçalves, 2015; Manishina et al., 2016) have
shown that the cognitive load can rise up to five
different stimuli, thus limiting the number of zones
resulting from the WPS process. The 5-zone WPS
should also ease the association of a particular sound
position to the logical function of the zone in a given

1https://tagthunder.greyc.fr/
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web page. As a consequence, it may enable the ad-
vent of new non visual reading strategies. Second,
each zone should be associated to a unique sound
source spatially located in accordance with its pos-
ition in the web page. Thus, each zone should be a
single compact block made of contiguous web ele-
ments, and the zones should not overlap. Third, seg-
mentation must be complete, which means that no
web page element should remain outside a given
zone, as the objective is to reveal the overall se-
mantics of a document and not just parts of it, op-
posite to advertisement withdrawal for example.

In this paper, we study three different algorithms
that comply to these constraints: the classical k-
means (MacQueen, 1967), the F-K-means (a variant
of K-means, which introduces the notion of force
between elements instead of the euclidean distance),
and the Guided Expansion algorithm (GE), which
follows a propagation strategy including alignment
constraints. A manual evaluation of the three al-
gorithms is performed by three experts measuring
two clustering indicators: compactness and separ-
ateness. However, human evaluation may be sub-
ject to bias as each expert evaluates the WPS process
with his/her own subjectivity. As a consequence, we
propose a quantitative evaluation that introduces dif-
ferent criteria of analysis.

The paper is structured as follows. Section 2
provides a brief overview of WPS and its evaluation
policies. Section 3 introduces the three clustering al-
gorithms. Sections 4 and 5 present the manual and
automatic evaluations. Finally, 6 concludes the pa-
per with a discussion and outlines future works.

2 Related Work

Web Page Segmentation. Efforts on WPS have
focused on removing noisy content from web pages
(Yi et al., 2003; Chen et al., 2003; Alassi and Al-
hajj, 2013; Barua et al., 2014). Later, (Yin and Lee,
2005) were the first to propose a structural view-
point of web page segmentation, by developing a
graph-based strategy to classify elements into cat-
egories. For that purpose, layout and Document Ob-
ject Model (DOM) features were used, as well as
some hand-crafted heuristics. Although this meth-
odology shows an original research direction, it re-
lies on a fixed structural semantics that does not cor-

respond to the creativity on the Web. More recently,
(Sanoja and Gançarski, 2014) proposed Block-O-
Matic, a pipeline strategy, which combines content,
geometric and logical structures. One of the main
drawback of this approach is the fact that it heavily
relies on the DOM, which can be prone to errors due
to uncontrolled page creation (Zeleny et al., 2017).
Moreover, the number of clusters is automatically
determined and thus can greatly vary from page to
page. Also, some elements can remain unclustered.

In order to overcome some of these limitations,
visual-based strategies have been proposed, which
mainly focus on the analysis of the visual features
of the document contents as they are perceived by
human readers. Notable works that follow this
paradigm are VIPS (Cai et al., 2003a) and the Box
Clustering Segmentation (BCS) algorithm (Zeleny
et al., 2017). While VIPS still uses the DOM as a
logical view of the document in combination with
visual features, BCS exclusively relies on a flat
visual representation of the document, that allows
great adaptability to new web contents. In partic-
ular, BCS follows a sort of hierarchical agglomer-
ative clustering algorithm that includes a threshold,
which controls the gathering of visual elements into
clusters. As a consequence, the number of coherent
zones is automatically determined by the threshold
and can vary, and some elements may remain un-
clustered, similarly to (Sanoja and Gançarski, 2014).

In this paper, we follow the same strategy as the
BCS algorithm as we exclusively rely on visual ele-
ments to segment web pages, and thus rely on a flat
structure. But, we propose three different cluster-
ing techniques that comply to the constraints im-
posed by the non visual skimming task: (1) segment-
ation into exactly 5 coherent zones, (2) complete-
ness, where all visual elements belong to a given
cluster and (3) connectivity of all the elements in-
side a cluster.

Evaluation. With respect to evaluation of WPS,
two strategies have been predominantly proposed.
On the one hand, qualitative evaluations can be per-
formed, where human assessors are asked to validate
the proposed segmentation against a human ground
truth (Cai et al., 2003b).

On the other hand, studies propose quantitative
evaluations relying on cluster correlation metrics.
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Within this context, (Zeleny et al., 2017) compare
BCS to VIPS using classical clustering evaluation
metrics, the F-score and the Adjusted Rand Index.
In particular, they create pairs of automatically de-
tected areas and manually annotated areas, which
share at least one rendered box. For each such pair,
they calculate Precision and Recall. If there are any
manually selected areas that do not share boxes with
any automatically detected areas, the recall value for
each of them is set to 0. The resulting F-score is cal-
culated using average values of Precision and Recall
for the entire web page. So, (Zeleny et al., 2017)
use the techniques of a general clustering problem.
However, WPS can not strictly be compared to a
general clustering problem. For example, if just
one visual element does not belong to its correct
cluster, it may break the logical structure of the seg-
mentation, but the quantitative metric will still re-
main high. Similarly, (Sanoja and Gançarski, 2015)
create a ground truth database by segmenting web
pages using the MoB tool Then, a block in the auto-
matic segmentation is said to be correctly segmented
if its geometry and location are equal to only one
block in the ground truth database; thus proposing
specifically-tuned metrics. But as they mostly rely
on the DOM structure, they are limited to DOM-
based methodologies.

3 Clustering Strategies

WPS for the specific task of non visual skimming
can be defined as a clustering problem, where ba-
sic visual elements must be gathered into a K fixed
number of clusters, where K is equal to 5. In partic-
ular, basic visual elements are retrieved from a web
page after rendering on the user’s browser. DOM
elements are then enriched with calculated CSS fea-
tures, and the basic visual elements correspond to
the last block elements in each branch of the DOM
tree2. In order to cluster the basic visual elements,
we propose three different strategies: K-means, F-
K-means, and Guided Expansion.

3.1 K-means

K-means (MacQueen, 1967) is a well-established
algorithm, when the number of clusters must be
fixed in advance. Within the context of WPS, some

2This is our unique use of the DOM structure.

Figure 1: Blue lines showing center to center and red
lines showing border to border distances.

adaptations are required. In particular, the assign-
ment phase is based on the shortest euclidean dis-
tance between two visual elements, noted dist(., .).
For our task, the elements to cluster are not data
points in an N-dimensional space, but blocks, i.e.
rectangle shapes. In particular, we use a border-
to border distance instead of a center-to-center dis-
tance. Indeed, as shown in Figure 1, a border-to-
border distance is more appropriate in a visual con-
text than a center-to-center distance. In our ex-
ample, the center-to-center strategy selects the two
visual bounding boxes positioned on the right while
border-to-border strategy selects the two positioned
on the left.

Moreover, the classical K-means relies on the
random selection of initial seeds. However, this
strategy does not adapt to our approach because we
need comparable algorithms. As a consequence, we
propose to fix the 5 initial seeds following the di-
agonal reading strategy, i.e. if a diagonal is drawn
on the web page from top-left to bottom-right, two
seeds are positioned on each extremities, one in the
center and the two other ones between the extremit-
ies and the center of the diagonal. The underlying
idea is that within a skimming process, readers ad-
opt a fast reading strategy, that focuses on particular
areas of the web page. In this paper, we propose
to test the diagonal strategy but other reading ap-
proaches exist (Fitzsimmons et al., 2014; Pernice et
al., 2014), which study remains as future work. The
K-means clustering process is detailed in Algorithm
1. An illustration of theK-means on a real web page
is given in Figure 2.
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Input: The set of basic visual elements; K
Output: K clusters
Initialization: Select K centroid elements;
while true do

Assign each visual element to its closest
centroid based on dist(., .);

Compute K new centroids as the average
virtual visual element of each cluster;

if centroids do not change then
break;

end
end

Algorithm 1: K-means algorithm.

3.2 F-K-means

In the first proposal, the assignment phase is ex-
clusively based on the geometric distance between
visual objects. For this second algorithm, we pro-
pose a small variant, which takes into account the
area covered by each visual basic element, the ra-
tionale being that visually bigger elements are more
likely to “absorb” smaller elements than the con-
trary. So, if two visual elements are close to each
other, their assignment function force(b1, b2) will
also depend on their differences of covered area as
defined in equation 1, where ab1 (resp. ab2) is the
area of the visual element b1 (resp. b2) and dist(., .)
is the shortest border-to-border euclidean distance
between the basic elements.

force(b1, b2) =
(ab1 ∗ ab2)
dist(b1, b2)

(1)

So, the F-K-means algorithm follows the exact
same procedures as algorithm 1, to the exception of
the function used for the assignment step, which is
the force(., .), i.e. the elements, which show the
highest force to their centroids are selected. An il-
lustration of the F-K-means on a real web page is
given in Figure 3.

3.3 Guided Expansion

With the Guided Expansion (GE) algorithm, in-
stead of assigning all visual elements to their closest
centroid in a single step, only one visual element is
assigned at a time to its centroid, controlled by a
set of conditions that include the shortest euclidean

distance between the borders of two elements, the
alignment between elements, and their visual simil-
arity. The GE is defined in algorithm 2.

In particular, visual similarity vsim(., .) between
two elements b1 and b2 is computed as in equa-
tion 2 over their respective feature vectors

−→
b1 and−→

b2 formed by the following CSS properties of each
bounding box: font-color, font-weight, font-family
and background-color.

vsim(
−→
b1 ,
−→
b2) =

|
−→
b1 |∑
i=1

1−→
bi1=
−→
bi2

(2)

It is important to notice that a cluster is a set
of visual elements, except for the first step of the
algorithm. So, when the distance and the visual
similarity are computed between an element and its
cluster candidate, this refers to the computation of
each metric between the element and all the ele-
ments in the cluster. This situation is formalized in
equations 3 and 4, where c1 is the cluster candidate
for b1. An illustration of the GE algorithm on a real
web page is given in Figure 4.

dist(b1, c1) = argminbi∈c1dist(b1, bi) (3)

vsim(
−→
b1 , c1) = argmaxbi∈c1vsim(

−→
b1 ,
−→
bi ) (4)

4 Qualitative Evaluation

In this section, we propose to perform a qualitative
evaluation, where 3 human experts are asked to eval-
uate two common indices in clustering, i.e. com-
pactness and separateness (Acharya et al., 2014).
Each expert must produce his/her own segmenta-
tion and evaluate both indicators on his ground truth.
Compactness is defined at the cluster level and eval-
uates how many of the elements within a cluster
belong to a same cluster in the (individual) ground
truth. Separateness is defined at the web page level
and evaluates how much the proposed segmentation
guarantees the separability between clusters when
compared to the expert ground truth segmentation.
In this case, the expert must evaluate how much, on
average, elements that should belong to the same
cluster following the (individual) ground truth are
separated in different clusters.
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Figure 2: K-means Figure 3: F-K-means Figure 4: Guided Expan. Figure 5: Manual Segm.

In particular, each expert must give a mark ran-
ging from 0 (unacceptable), 1 (bad), 2 (passable), 3
(good) and 4 (perfect). Based on this protocol, the
three algorithms presented in section 3 have been
tested on a total of 53 web pages from 3 domains:
Tourism (23 web pages), E-Commerce (12 web
pages) and News (18 web pages), that are part of our
TAG THUNDER project corpus3. To avoid bias,
the experts are unaware of the algorithms strategies
he/she is evaluating. Overall results are presented
in table 1 and an example of the expert manual seg-
mentation is illustrated in Figure 5.

It is clear that the GE algorithm shows the best
figures both in terms of compactness and separate-
ness for the 3 human experts. However, while com-
pactness receives average values between passable
and good, separateness receives much lower values,
between passable and bad. This finding is transverse
to all three algorithms, clearly evidencing that find-
ing coherent zones that match human expectations
is a hard task, while building internally semantically
coherent zones is easier. Also, figures show differ-
ences between K-means and F-K-means. In par-
ticular, both algorithms show similar compactness,
but the F-K-means evidences worst results for sep-
arateness. This result can easily be explained as the
F-K-means tends to create unbalanced clusters, that
are either very small or rather big. This is confirmed
by the higher standard deviation in terms of com-
pactness for F-K-means than for K-means, signi-
fying that F-K-means tends to create very compact

3This dataset is freely available for research purposes.

clusters (but small) and uncondensed big ones, thus
penalizing separateness.

To statistically confirm these results, we com-
puted a global segmentation score (GSS) taking into
account both compactness and separateness (equa-
tion 5) and performed a Wilcoxon signed-rank test
between all algorithms for each human expert. In
equation 5, the evaluation scale refers to the scoring
scale of separateness (separat) and compactness
(compact), i.e. in our case 5 (0 to 4 grade). Results
in table 2 show that GE evidences statistically su-
perior results to both K-means and F-K-means, and
that K-means provides statistically higher results
than F-K-means, for all three experts in all tested
situations, to exception for Expert 3 when compar-
ing K-means and F-K-means.

GSS =
(1 + separat)× (1 + compact)

|evaluation scale|2
(5)

5 Quantitative Evaluation

As seen from the manual evaluation, each expert
evaluates the segmentation in a different way de-
pending on his/her perception of coherency of the
visual elements. In order to reduce human bias
in evaluation, quantitative metrics should be used.
However, as stated in section 2, clustering metrics
are not adapted to our task. As a consequence, we
propose to compute a set of metrics that characterize
clustering results based on three different criteria:
(1) number of broken logical constraints, (2) cluster
balance and (3) cluster geometrical overlap.
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Input: The set of basic visual elements; K
Output: K clusters
Initialization: Select K centroid elements
(clusters) based on the reading strategy;

while there are unclustered elements do
Select each closest element to every cluster

using dist(., .);
Order these elements by the minimum

distance to their candidate cluster;
Remove all elements that do not evidence

the smallest distance for possible
assignment;

if there are no ties then
Assign the closest element overall to its

cluster;
end
else if there are ties then

Check whether the elements are
vertically or horizontally aligned with
at least one element of their cluster;

Order elements by alignment;
if there are no ties AND one aligned
element then

Assign the aligned element to its
cluster;

end
else if there are ties OR no aligned

element then
Order elements by the maximum
visual similarity to their cluster;

Remove all elements that do not
evidence the highest visual
similarity for possible assignment;

if there are no ties then
Assign the most visually similar
element to its cluster;

end
else if there are ties then

Assign all elements to their
cluster;

end
end

end
end
Algorithm 2: Guided expansion algorithm.

Compactness Separateness GSS
Avg. ±σ Avg. ±σ Avg. ±σ

K
-M

E1 2.42 1.16 1.15 0.64 0.30 0.12
E2 1.90 0.87 1.20 0.60 0.26 0.11
E3 3.10 0.74 0.70 0.80 0.29 0.15

F-
K

-M

E1 2.43 1.46 0.62 0.57 0.23 0.09
E2 1.83 1.15 0.40 0.50 0.16 0.07
E3 3.05 1.22 0.30 0.50 0.21 0.095

G
E

E1 2.89 1.24 1.62 0.93 0.42 0.19
E2 2.41 0.81 1.90 0.90 0.41 0.16
E3 3.40 0.68 1.50 0.90 0.44 0.18

Table 1: Overall results for K-means (K-ME.), F-K-
means (F-K-ME.) and Guided expansion (GE).

H1
F-K-ME. <K-ME. F-K-ME. < GE K-ME. < GE
z-score S/NS z-score S/NS z-score S/NS

E1 4.365 S 5.392 S 3.726 S
E2 5.291 S 4.997 S 3.548 S
E3 2.169 NS 4.304 S 3.021 S

Table 2: Wilcoxon signed-rank test for the GSS. S stands
for significant statistical difference and NS for non signi-
ficant. Ei is i-th expert. Tests are computed for p < 0.05.

Three criteria emerged from the manual evalu-
ations conducted by all three experts. First, experts
evaluated negatively when logical constraints were
broken, i.e elements embodied by specific HTML
tag sequences such as <li> <ul> items, <title>
and the following paragraph <p>, <header>,
<footer> or <nav> elements. So, each time one
of these logical constraints is broken, this counts for
one cut, and each web page is evaluated based on
its overall number of cuts. The higher the number
of cuts, the worst the clustering result must be eval-
uated. Overall results are given in table 3 (column
1). results show the superiority of the Guided Ex-
pansion algorithm over the other two algorithms in
terms of number of cuts. In particular, it evidences
a minimum average value of 1.47, while K-means
shows a 2.12 score and F-K-means shows worst res-
ults with a score of 2.80. Moreover, the three al-
gorithms can be sorted according to their ability to
minimize the cut criterion with statistically signific-
ant values, i.e. GE is superior to K-means, which is
in turn superior to F-K-means. This criterion seems
all the more important that there seems to be a cor-
relation between manual and automatic results. In-
deed, as illustrated by figure 4 for GE and figure 5
for manual segmentation, similar behavior seems to
stand. However, this situation does not stand for the
other two algorithms, where for instance menu sec-

428



tions are cut as illustrated in figures 2 and 3.
Second, experts negatively evaluated strong im-

balance between clusters, but also high balance
between clusters. This can be motivated by the fact
that a great deal of web pages contain a main (rather
large) body section, while all other zones show sim-
ilar sizes. Note that this issue is usually not taken
into account by classical clustering metrics such as
Adjusted Rand Index or F-score. As a consequence,
this notion of balance is tested over three different
properties of the clusters: surface area of the cluster,
number of characters within the cluster, and number
of visual elements within the cluster. In particular,
the surface area of the cluster is calculated as the
maximum rectangle that embodies all the visual ele-
ments contained in it. So, each web page receives an
overall score that stands for the standard deviation
between all clusters for each of the three balance cri-
teria (i.e. surface, text and visual elements). Overall
results are given in table 3 (columns 2-4).

Third, experts evaluated negatively when the
zones were intertwined with each other, i.e. they
penalized non rectangular clusters. To evaluate this
phenomenon, we computed the number of overlaps
between the outer rectangles of all clusters, i.e. the
smallest rectangle including all the elements of each
cluster. So, if two clusters overlap in terms of outer
rectangle, this stands for the presence of a non rect-
angular zone. Overall results are given in table 3
(column 5).

Table 3 shows the results of the automatic evalu-
ation for the three main criteria for a set of 150 web
pages (47 tourist web pages, 58 e-Commerce web
pages and 45 news web pages4) segmented using the
three algorithms (K-means, F-K-means and Guided
Expansion). In particular, each criterion receives the
average value and the standard deviation ±σ for the
set of 150 pages. Table 4 completes results of table
3 with statistical significance by including the Wil-
coxon signed-rank test.

First, results show the superiority of the Guided
Expansion algorithm over the other two algorithms
in terms of number of cuts. In particular, it evidences
a minimum average value of 1.47, while K-means
shows a 2.12 score and F-K-means shows worst res-
ults with a score of 2.80. Moreover, the three al-

4All part of our project corpus.

gorithms can be sorted according to their ability to
minimize the cut criterion with statistically signific-
ant values, i.e. GE is superior to K-means, which is
in turn superior to F-K-means. This criterion seems
all the more important that there seems to be a cor-
relation between manual and automatic results. In-
deed, as illustrated by figure 4 for GE and figure 5
for manual segmentation, similar behavior seems to
stand. However, this situation does not stand for the
other two algorithms, where for instance menu sec-
tions are cut as illustrated in figures 2 and 3.

Second, balance results show similar observations
whether we compare surface area, text area or num-
ber of elements between clusters. In all cases, the
F-K-means shows highest unbalance5, while K-
means shows the lowest unbalance. This situation
can be observed in figures 2 and 3, where respect-
ively, K-means tends to create evenly distributed
zones and F-K-means usually discovers a large zone
and a set of smaller clusters. Oppositely, the Guided
Expansion algorithm evidences some tendency to
unbalanced clustering, that seems to better approx-
imate human segmentation as shown in figures 4 and
5, where human annotators may allow a disequilib-
rium between the main body of the web page and the
satellite zones such as headers, footers or menus. In-
deed, humans tend to prefer little unbalanced zones
in order to both respect the task condition (i.e. non
visual skimming) and maintain the structural and lo-
gical aspects of the web page. Note that with respect
to statistical significance, we can conclude that F-K-
means is clearly the algorithm that steadily produces
more unbalanced results. while this hypothesis is not
so strong between K-means and the GE algorithm.

Third, the “Exterior Rectangle” criterion, that
aims to measure the number of non-rectangular
shapes evidences similar results between all al-
gorithms with around five overlaps per web page
on average. Nevertheless, there is a clear statist-
ical tendency of the F-K-means to produce less non-
rectangular zones. This can be explained by the
unbalance constraint. Indeed, as the F-K-means
produces highly unbalanced clusters, i.e. usually
a large big zone and a set of rather small clusters,
it is unlikely that overlap between zones exist, and

5This situation has already been evidenced in the qualitative
evaluation.
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Nb. of Cuts Surface Area Text Area Nb. of Elements Exterior Rectangle
Avg. ±σ Avg. ±σ Avg. ±σ Avg. ±σ Avg. ±σ

K-means 2.12 ±2.05 11.80 ±6.46 11.40 ±5.52 10.95 ±8.01 5.21 ±2.54
F-K-means 2.80 ±2.76 21.14 ±8.18 18.55 ±7.74 22.79 ±16.73 4.54 ±2.20

GE 1.47 ±1.85 17.34 ±6.95 16.78 ±6.37 19.67 ±13.47 5.39 ±2.22

Table 3: Automatic evaluation results forK-means, F-K-means and Guided Expansion (GE) for 150 web pages. Note
that the column ±σ gives the standard deviation value over the 150 web pages.

H1
F-Kmeans >Kmeans F-Kmeans > GE Kmeans > GE
z score. S/NS z score S/NS z score S/NS

Nb. of Cuts 3.64 S 7.08 S 4.85 S
Surface Area 10.29 S 5.65 S 9.12 NS

Text Area 9.59 S 2.36 S 8.83 NS
Nb. of Elements 9.96 S 2.53 S 9.54 NS

Exterior Rectangle 3.35 NS 3.60 NS 1.11 S

Table 4: Wilcoxon signed-rank test for the automatic evaluation for K-means, F-K-means and GE for 150 web pages.
S stands for significant statistical difference and NS for non significant. Tests are computed for p < 0.05.

as a side-effect less non-rectangular zones are cre-
ated. However, it is important to notice that the
exterior rectangle criterion goes down to almost 0
for human annotators, who rarely proposed non-
rectangular zones. As such, one might think that all
algorithms are far from achieving human-like beha-
vior. Although this is a strict reality from the figures,
this difference against the manual evaluation obser-
vation may also indicate a lack of possible solutions
by human annotators. Indeed, we think that ac-
ceptable segmentation can be proposed by some al-
gorithms, although human annotators may not have
thought about. For example, the top of figure 4
shows a non-rectangular red zone with an outer rect-
angle overlapping the yellow one, that might satisfy
some logical coherence, as menus are gathered to-
gether. Although this situation has not been pro-
posed by any of the three annotators, we agree that
such a segmentation is clearly satisfactory. Based on
a deeper manual analysis of these results, we found
that the Guided Expansion algorithm seems to be
best performing algorithm on this criterion by pro-
ducing better non-rectangular zones. Nevertheless,
further discussion should clearly be about the way to
refine this criterion in order to distinguish between
good and bad overlaps automatically.

6 Conclusions and Research Directions

In this paper, we presented Web Page Segmentation
as a clustering problem driven by the task of non
visual skimming. In particular, we tuned the well-
known K-means algorithm and designed two other

algorithms, namely the F-K-means and the Guided
Expansion, all dedicated to our objective and re-
specting the task constraints of a fixed number of
zones, completeness of the coverage, and connectiv-
ity of visual elements. In particular, we showed that
human and automatic evaluations are complement-
ary to rank the algorithms according to several para-
meters (the number of cuts of HTML elements, the
number of overlaps between zones and the balance
of created clusters), each parameter performing a
specific complementary role for both compactness
and separateness criteria. From both qualitative and
quantitative evaluations, the Guided Extension al-
gorithm seems to be the most efficient solution over
all criteria. The superiority of the GE algorithm is
probably due to the introduction of the alignment
constraint. Indeed, the alignment constraint is more
difficult to encode in a K-means family algorithm
as alignment is a local feature. Still, some clear
limitations exist. The clustering process is highly
sensitive to the initial seeds positions. By follow-
ing a diagonal reading strategy, we noted that most
algorithms evidence an horizontal segmentation, i.e.
vertical cluster are difficult to identify. Another re-
lated issue concerns the F-K-means. If some seed is
associated to a small element, this cluster will hardly
expand as the force(., .) metric tends to benefit lar-
ger visual elements, thus clearly disadvantaging this
algorithm compared to the other ones. As such, im-
mediate future work must deal with finding optimal
reading strategies for all algorithms.
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