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Abstract

This work presents a proof-of-concept study
for a framework of intrinsic evaluation of con-
tinuous embeddings as used in NLP tasks.
This evaluation method compares the geome-
try of such embeddings with ground-truth em-
beddings in a linguistically-inspired, discrete
feature space. Using model distillation (Hin-
ton et al., 2015) as a means of extracting mor-
phological information from models with no
explicit morphological awareness (e.g. word-
atomic models), we train multiple learner net-
works which do model morpheme composi-
tion so as to compare the amount of gram-
matical information different models capture.
We use Korean affixes as a case-study, as they
encode multiple types of linguistic informa-
tion (phonological, syntactic, semantic, and
pragmatic), and allow us to investigate specific
types of linguistic generalizations models may
or may not be sensitive to.

1 Introduction

While NLP systems built with neural network archi-
tectures have dominated the field in recent years, it
is often lamented that their improved performance
has come at the cost of understanding the models.
Furthermore, recent work on natural language in-
ference (McCoy et al., 2019) has cast doubt on the
ability of such models to generalize linguistic pat-
terns effectively. Particularly, carefully selected ex-
amples are shown to fool these systems, suggest-
ing they learn heuristics for performing well on data
sets rather than truly capturing linguistic informa-
tion. As such, methods of probing the informa-

tion within these models are of growing importance.
This work proposes such a method by comparing
the geometry of ground-truth, discrete-space embed-
dings against continuous embeddings learnt by neu-
ral networks. To do this, we extract morpholog-
ical information from different embedding models
via transparent model distillation (Tan et al., 2017)
and examine the resulting morpheme embeddings
for grammatical information. By investigating the
embeddings directy this falls under the rubric of in-
trinsic evaluation. This complements extrinsic eval-
uation methods, where embeddings’ ability to serve
as input for classifiers on linguistic tasks is seen as a
proxy for their linguistic content.

As is, intrinsic evaluation methods in the litera-
ture most often test for lexical semantics. For in-
stance, the word analogy task tests similarities be-
tween pairs of words, e.g. king is to queen as man is
to what? Here, since our ground-truth embeddings
reflect grammatical properties, the similarities be-
tween them and the continuous representations can
be taken to reflect grammatical, rather than lexical
content in the continuous representations.

As an initial investigation, we compare the mor-
phological information from multiple methods of
embedding Korean words into continuous space, us-
ing three learner networks to distill morpheme repre-
sentations for comparison. These are the STAFFNET

architecture of Edmiston and Stratos (2018), the
morphological recursive neural network MRNN
model of Luong et al. (2013), and a TREELSTM
(Tai et al., 2015) over morphological parses. By dis-
tilling into these networks, we extract explicit mor-
pheme representations. We focus on the affix repre-
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sentations, as they house the grammatical informa-
tion we are testing for.

Korean affixes are the choice for this pilot study
for multiple reasons. (i) Korean is an agglutinative
language, meaning there is (largely) a one-to-one
correspondence between affixes and meanings. (ii)
The morphology is highly regular, which facili-
tates high-fidelity morphological parsing. (iii) Ko-
rean affixes display at least four distinct types of
linguistic information. Phonolgical: Korean ex-
hibits phonologically-driven allomorphy. Syntac-
tic: Korean affixes contain syntactic information
as they attach to different syntactic units. Seman-
tic: affixes perform different semantic functions,
e.g. logical operators vs. focus markers. Prag-
matic: Certain affixes are indicative of formal lan-
guage, and others display honorific features. This
allows us to run focused experiments which probe
what type of information different models are sen-
sitive to.

Having distilled affix embeddings from various
ground-truth models, we run our evaluation task
by comparing the distilled representations of dif-
ferent models with ground-truth morpheme repre-
sentations embedded in a discrete, linguistically-
inspired feature space, and show that indeed neu-
ral models are picking up on at least some forms
of grammatical meaning. Results suggest that se-
mantic relationships are more difficult to capture
than syntactic, and models appear insensitive to
phonological/pragmatic information.
Contributions: (i) We introduce a new
linguistically-inspired intrinsic evaluation task
which probes for grammatical meaning, rather
than lexical meaning. (ii) We show results that
different types of linguistic information are
captured to differing degrees, and may be of a
differing nature from one another. (iii) To the
authors’ knowledge, this is the first application of
transparent model distillation for interpretation in
an NLP setting. (iv) We focus on an under-studied
language in NLP, which also happens to be
typologically far removed from those usually
studied in the literature.

2 Related Work

This work falls in the context of the emerging lit-
erature on the interpretability of neural network
models using model distillation, and on the inter-
pretability of linguistic representations learnt for
NLP tasks.

In the broader context of interpreting the behav-
ior of neural network models, model distillation
has emerged as a viable method. Tan et al. (2018b)
use so-called transparent model distillation to au-
dit black-box risk scoring models. By distilling a
black-box model into a transparent learner model,
and comparing this learner model with a non-
distilled transparent model trained on ground-truth
data, they are able to gain insights into black-
box models. Likewise, Zhang et al. (2018) use
model distillation (which they call knowledge dis-
tillation) to extract human-interpretable features
from the middle layers of convolutional networks
trained on computer vision tasks. While similar,
our method differs slightly from these approaches
in that we use model distillation to induce repre-
sentations for linguistic units which would other-
wise be unavailable (affixes).

As for the interpretability of linguistic represen-
tations learnt for NLP tasks, extrinsic evaluation
methods have focused both on morphological in-
formation (e.g. (Belinkov et al., 2017)) and syntac-
tic information (e.g. (Adi et al., 2016)). As these
are extrinsic methods, the task consists of learn-
ing representations, and then training classifiers on
carefully designed supervised learning tasks us-
ing these representations as input. The tasks are
meant to probe for linguistic properties (e.g. nega-
tion (Ettinger et al., 2016)), and performance on
these tasks can be interpreted as a proxy for the
amount of linguistic information contained in the
original representations. Work in the intrinsic eval-
uation domain has largely focused on testing lexi-
cal semantics, as by comparing relations between
e.g. countries and capitals (Mikolov et al., 2013a).
By comparison, here we intrinsically test for what
we call grammatical information, to be made spe-
cific in Section 3.3.

3 Background

3.1 Model Distillation

Model distillation (Hinton et al., 2015) is the tech-
nique of training one neural network (the learner
network) to approximate the output of another (the
ground-truth network). While the technique was
originally designed to train relatively lightweight
networks to approximate the outputs of larger,
more cumbersome networks or ensembles, model
distillation has recently been used to facilitate the
interpretation of so-called “black-box” neural net-
work models (Tan et al., 2017, 2018a,b; Zhang
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et al., 2018).
The idea behind using model distillation for the

interpretation of word-embeddings in this study
is to train a learner network amenable to mor-
phological interpretation to approximate a model
which is otherwise not straight-forward to ana-
lyze morphologically. In this case, this includes
word-atomic word-embedding models (such as
Word2Vec), as well as word-embedding models
which compose embeddings from sub-word con-
stituents (e.g. syllable-embedding models). As-
suming successful distillation, the morphologi-
cal representations of the learner network can be
seen as a proxy for the morphological informa-
tion captured by the original ground-truth net-
work. Here, model distillation of a ground-truth
model into a learner network proceeds by iterat-
ing over the corpus the ground-truth model was
originally trained on. For each word, the ground-
truth embedding y is calculated, as is the learner
network’s embedding ŷ. Training proceeds by op-
timizing the learner network’s parameters to min-
imize the squared distance between y and ŷ.

3.2 Learner Networks
3.2.1 STAFFNET

The first learner network is the STAFFNET ar-
chitecture. Introduced in Edmiston and Stratos
(2018), STAFFNET (‘Stem-Affix Net’) is a dy-
namic neural network architecture designed to
compose morpheme representations into full
word-embeddings in a linguistically plausible
way. The defining feature of STAFFNET is its dis-
tinguishing of morphemes into stems and affixes,
treating the former as vectors and the latter as
functions over vectors. Here, we treat affixes as
linear transformations and represent them as ma-
trices in Rd×d.

STAFFNET is a dynamic architecture, whose
composition of a word-embedding varies with the
morphological parse of the word. It composes a
word-embedding in a three-step process. First, a
word is decomposed into its constituent stems and
affixes.2 Second, the (potentially compound) stem
representation is calculated as the convex com-
bination of the outputs of a BiLSTM into which
the stems are fed. Third, any affixes are iteratively
applied to the compound stem representation—
the convex combination from the previous step.

2All morphological parsing done with the Komoran
POS-tagger available with the KoNLPy package. http:
//konlpy.org/en/latest/

Figure 1 illustrates this for the word cheese-
burger.PL.NOM, or cheeseburgers marked with
nominative case.

Figure 1: STAFFNET architecture showing the dynamic
composition of cheese-burger.PL.NOM.

3.2.2 MRNN

The second learner network is the morphological
RNN model of Luong et al. (2013), which con-
stucts a word’s embedding from constituent mor-
pheme embeddings by means of a recursive neural
network over the binary tree of the word’s mor-
phological parse. Parent nodes in the network are
functions of their children nodes, and are calcu-
lated as p = f(W [c1; c2] + b). That is, they are
the result of a non-linearity (here tanh) applied to
the output of an affine transformation over the con-
catenated children embeddings. An example is as
in Figure 2.

Figure 2: MORPHOLOGICAL RNN architecture show-
ing the composition of un-fortunate-ly

397

http://konlpy.org/en/latest/
http://konlpy.org/en/latest/


3.2.3 TREELSTM
The final learner network is theN -ary Tree-LSTM
of Tai et al. (2015). The transition equations follow
the original paper, where k indexes the kth child of
parent node p.

ip = σ(W (i)xp +
N
Σ
l=1
U

(i)
l hpl + b(i))

fpk = σ(W (f)xp +
N
Σ
l=1
U

(f)
kl hpl + b(f))

op = σ(W (o)xp +
N
Σ
l=1
U

(o)
l hpl + b(o))

up = tanh(W (u)xp +
N
Σ
l=1
U

(u)
l hpl + b(u))

cp = ip � up +
N
Σ
l=1
fpl � cpl

hp = op � tanh(cp)

Here, N is restricted to 2, as this model also
operates over binary morphological parses.

3.3 Korean Affixes as a Case Study
As mentioned above, Korean affixes exhibit
at least four different types of information:
phonological, syntactic, semantic, and prag-
matic. Phonological information is shown through
phonologically-driven allomorphy. For example,
the accusative marker -을 ‘-eul’ attaches to nom-
inals ending in a coda, while its allomorph -를 ‘-
leul’ attaches to nominals ending in vowels. A fa-
miliar analogy from English would be the choice
between ‘an’ and ‘a’, e.g. ‘an animal’ vs. ‘a dog.’
Syntactic information is shown through place of
attachment (Cho and Sells, 1995). There are many
semantic dimensions along which affixes vary, e.g.
some contribute focus semantics, others serve as
logical operators. Multiple pragmatic dimensions
of meaning are also evident in Korean affixation.
Some affixes are reserved for written usage, oth-
ers indicate the relationship between speaker and
hearer, such as honorifics.

Having formalized the feature set of 107 Ko-
rean affixes, we embed each affix into the binary
feature space {0, 1}n, the dimensions of which are
interpreted as linguistic features (e.g. [+CODA] vs.
[-CODA]) with 1 indicating the presence of that
feature, 0 otherwise. These embeddings serve as
‘ground-truth’ representations of Korean affixes,
and geometrically can be interpreted as the cor-
ners of an n−dimensional hypercube. We define

distance in this binary feature space with Ham-
ming distance, where dH(x, y) is the number of
dimensions along which x and y differ.

4 Methodology

4.1 Ground-truth Models and Distillation

We propose a method of intrinsically evaluat-
ing the extent to which different word-embedding
models capture the meaning of affixes in Ko-
rean, and therefore how well they capture phono-
logical, syntactic, semantic, and pragmatic infor-
mation. The models we distill and compare are
as follows. Character-level: fastText (Bojanowski
et al., 2017),3 Naver’s kor2vec model (based on
Kim et al. (2016))4, Syllable: The model of Choi
et al. (2017), Word: Skip-gram and CBOW mod-
els of Mikolov et al. (2013a), and GloVe Penning-
ton et al. (2014).

All models were trained on a Korean Wikidump
with vocabulary size limited to 10,000, and were
trained to produce embeddings in 300 dimensions,
as suggested by Choi et al. (2016). Other hyper-
parameters followed the suggestions of the orig-
inal publications where applicable. Each model
was then distilled into each of the learner archi-
tectures, embedding affixes as vectors in R300 or
in STAFFNET’s case, as matrices in R300×300.

4.2 Comparing Affix Representations for
Intrinsic Evaluation

One standard method of performing intrinsic eval-
uation of high-dimensional word-embeddings is
analogy tests (Mikolov et al., 2013b). In such a
test, word-sets are assembled of the form a:b,
c:d, where d is withheld. Given an embedding
model, an estimation of withheld d is given by
d̂ = ~b−~a+~c. An example is counted as correct if
the vector ~d is the closest—via cosine similarity—
in the embedding space to the model’s calculated
d̂, and incorrect otherwise.

In the case where affixes are represented by vec-
tors, here too we make use of cosine similarity.
Where affixes are represented as matrices, cosine
similarity is not applicable, and instead we com-
pare them via subspace similarity, as described in
Algorithm 1 (Mu et al., 2017).

Maff1 and Maff2 represent the matrix representa-
tions of the affixes to be compared. N is an inte-

3https://fasttext.cc/docs/en/
pretrained-vectors.html

4https://github.com/naver/kor2vec
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Algorithm 1 Subspace Similarity
Input: Maff1, Maff2, N
Output: score ∈ [0, 1]

X ← [pc(Maff1)1; ...; pc(Maff1)N ]
Y ← [pc(Maff2)1; ...; pc(Maff2)N ]
Z ← X>Y

score←
√∑N

t=1 σ
2
t /N

return(score)

ger signifying the number of principal directions
to use. σt represents the tth singular value of Z.
The algorithm proceeds by performing PCA on
the matrix inputs, and stacking the first N princi-
pal directions into matrices in Rd×N . The sum of
squares of the N singular values of the product of
these matrices, divided by N , results in a similar-
ity score in [0, 1]. The geometric intuition behind
this metric is that similar affixes should map stems
to similar subspaces.

To evaluate the distilled representations, we
compare the continuous embeddings against the
discrete embeddings in the following way. Given
the set of all affixes A, consider the subset YAff =
argmin
x∈A,x6=Aff

dH(x,Aff), the set of closest affixes to

any given affix in the ground truth discrete fea-
ture space, where |YAff| = k. In the continuous
space, we define the k−closest affixes to any given
affix with ŶAff = k-argmax

x∈A,x6=Aff
sim(x,Aff), where

sim(x, y) is cosine similarity or subspace similar-
ity, depending on architecture. By design YAff and
ŶAff are of the same cardinality.

Given YAff and ŶAff, we define two scores.
The first is the percentage of overlap—the per-
centage of the k-closest affixes in the continu-
ous representation which are k-closest with re-
gard to the ground-truth embeddings.5 The second
measures error; avg({dH(x,Aff) | x ∈ ŶAff}) −
min

x∈A,x6=Aff
dH(x,Aff); that is, the true error with re-

gard to an affix, as calculated by the average ham-
ming distance between Aff and x for x ∈ ŶAff,
minus the minimum possible error. We label this
penalty the Hamming offset. Note that percentage
of overlap and the Hamming offset provide two
graded measures of success with regard to an affix,
unlike all-or-nothing diagnostics like e.g. analogy
tests.

5Since it is always the case that |YAff| = |ŶAff| this
amounts to the F1 measure on cluster analysis.

4.3 Data Sets

This study makes use of two data sets. The first is a
Korean WikiDump used to train the original mod-
els, and also used as the corpus for model distil-
lation. The second data set was hand-constructed
for this study, and constitutes the ground-truth rep-
resentations used in the experiments below. It is
the embedding of 107 Korean affixes into a dis-
crete, binary feature space, consisting of 62 di-
mensions. These 62 dimensions correspond to lin-
guistic features along which Korean affixes vary,
and include features such as the aforementioned
[+CODA], and [+HONORIFIC]. We divided the lin-
guistic features into four distinct feature subsets,
one for each of phonological, syntactic, semantic,
and pragmatic features, so as to run tests on fea-
ture subsets. Over the affixes, there are five distinct
phonological configurations, eight distinct syntac-
tic configurations, 55 distinct semantic configura-
tions, and five distinct pragmatic configurations.

5 Experiments

5.1 Verifying Distillations

As we are testing models based on their distilled
representations rather than their original represen-
tations, the first question to ask is whether the dis-
tilled embeddings are a faithful recreation of the
models they are meant to emulate.

MODEL STAFFNET MRNN TREELSTM

KOR2VEC 0.971 0.840 0.952
FASTTEXT 0.949 0.824 0.946
SYLLABLE 0.967 0.869 0.979

W2V-SG 0.953 0.755 0.920
W2V-CBOW 0.941 0.786 0.878

GLOVE 0.935 0.690 0.875

Table 1: Average cosine similarity between ground-
truth embeddings and distilled embeddings over 10k
vocabulary.

The results in Table 1 show that each of the
models was able to reproduce the original embed-
dings to a very high degree of accuracy. This is
especially true given that the overwhelming ma-
jority of volume in R300 is orthogonal to any given
point. We take this to mean that the models have
been successfully distilled, and our distilled repre-
sentations can serve as faithful representatives of
their ground-truth models.
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5.2 Closest Affix

This section tabulates the scores for each of the
models—as well as a random baseline—on the in-
trinsic task described in Section 4.2. We test each
model distilled into each architecture, and for the
STAFFNET architecture we also test for different
values of subspace rank N . We chose the rank of
the subspace to be the minimum number of prin-
cipal components which accounted for 25%, 50%,
and 75% of the average variance of the affixes for
each model. As mentioned above, we calculate the
average percent of overlap between the k-closest
in the continuous and discrete spaces, and also cal-
culate the average Hamming offset. The results are
in Table 2, where the figures represent the scores
for each model averaged over performance on all
107 affixes.

As can be seen in the results, no model was able
to achieve a high level of accuracy on the task,
but all models significantly outperform the ran-
dom baseline, and the MRNN and TREELSTM
models fare better than the STAFFNET distilla-
tions with regard to both average percentage of
overlap and average hamming offset.

5.3 Feature Subsets

Given that Korean affixes contain linguistic infor-
mation of different sorts, we can perform a vari-
ant of our experiment from above using only sub-
sets of features. For example, given the feature-
makeup described above, affixes fall into one of
five phonological configurations, which we can
describe as +CODA, -CODA, +LOW, -LOW, or
NONE. For these experiments, similar to before de-
fine YAff = argmin

x∈A,x6=Aff
dH(phon(x), phon(Aff)),

or the set of affixes which are closest to a certain
affix in the discrete space considering only phono-
logical features. We then define ŶAff as before,
ŶAff = argmax

x∈A,x6=Aff
sim(x,Aff). Percentage of over-

lap and Hamming offset are as before. Results can
be interpreted as: for the k-closest affixes in the
continuous space, how many behave the same with
regard to, e.g. phonological features? This should
help identify what type of linguistic information
models are sensitive to.

The results for the phonological, syntactic, se-
mantic, and pragmatic subset tests are in Tables
3-6.

6 Discussion

Before discussing individual test results, it is note-
worthy that the scores of the tables vary signifi-
cantly from one another, and the random baseline
shows particularly strong results for certain sub-
sets, particularly the pragmatic subset. This is the
result of fluctuations in the average k (i.e. cluster
size) and average Hamming offset for each sub-
set. Table 7 lists these figuers. Dividing the aver-
age k by the total number of affixes |A| gives the
expected random score for percentage of overlap.
For each subset, the random baselines roughly re-
flect these figures. For interpreting the results, per-
formance relative to the random baseline is what is
important, not the percentage figure or Hamming
offset figures themselves.

Examining Table 2, the MRNN and TREEL-
STM models outperformed the STAFFNET mod-
els by a large margin. A plausible hypothesis
would be to attribute this difference to the lack
of non-linearity in the STAFFNET-derived affixes.
While STAFFNET does derive stem representa-
tions via back-propagation through a BiLSTM,
the affix representations always apply post-non-
linearity during forward propagation, and as such
are unable to learn any potentially non-linear rela-
tionships.

Regarding Table 3, while nearly all models out-
performed the random baseline, none did so sig-
nificantly. It is furthermore surprising that charac-
ter and syllable-level models did not significantly
outperform word-atomic models, to which phono-
logical information of the kind driving allomorphy
in Korean should be unavailable. This may suggest
that the models examined here are not sensitive to
phonological information in any significant way.

The syntactic results in Table 4 show all models
outperforming the random baseline, suggesting it
is possible for models to capture syntactic infor-
mation. Furthermore, the distilling architectures
performed relatively similarly, with a STAFFNET

distillation achieving the highest score. This sug-
gests that non-linearity may not be necessary to
capture syntactic relations.

For the semantic subset results in Table 5, while
STAFFNET distillations performed similar to the
random baseline, the models deriving affix rep-
resentations via non-linearity showed relatively
strong results. This suggests two things. (i) It is
possible for modern neural network models to cap-
ture grammatical meaning of a semantic nature,
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Architecture STAFFNET-
25% variance

STAFFNET-
50% variance

STAFFNET-
75% variance

MRNN TREELSTM

Model %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH

KOR2VEC 12% 3.35 11% 3.49 9% 3.39 16% 2.82 19% 2.62
FASTTEXT 13% 3.23 12% 3.22 9% 3.31 18% 2.59 16% 2.63
SYLLABLE 13% 3.18 11% 3.42 8% 3.36 17% 2.88 17% 3.29
W2V-SG 12% 3.17 8% 3.57 7% 3.40 18% 2.59 15% 3.01
W2V-CBOW 13% 3.19 9% 3.46 7% 3.56 18% 2.63 16% 2.86
GLOVE 10% 3.30 10% 3.34 7% 3.47 16% 2.80 11% 3.13
RANDOM 2% 4.23 3% 4.38 3% 4.47 2% 4.32 1% 4.35

Table 2: Percent correct and average Hamming Distance for models mapping to subspaces of different sizes. Best
scores in bold, worst scores in red.

Architecture STAFFNET-
25% variance

STAFFNET-
50% variance

STAFFNET-
75% variance

MRNN TREELSTM

Model %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH

KOR2VEC 31% 0.89 30% 0.91 30% 0.91 32% 0.91 32% 0.90
FASTTEXT 32% 0.87 31% 0.89 31% 0.89 29% 0.95 29% 0.95
SYLLABLE 32% 0.86 31% 0.90 31% 0.90 31% 0.88 29% 0.96
W2V-SG 32% 0.85 30% 0.89 30% 0.89 29% 0.95 28% 0.96
W2V-CBOW 31% 0.88 30% 0.91 30% 0.90 31% 0.92 31% 0.93
GLOVE 32% 0.87 29% 0.91 29% 0.90 29% 0.95 28% 0.94
RANDOM 26% 0.97 26% 0.99 27% 0.97 28% 0.96 29% 0.96

Table 3: Percent correct and Average Hamming offset: Restricting to Phonological features.

Architecture STAFFNET-
25% variance

STAFFNET-
50% variance

STAFFNET-
75% variance

MRNN TREELSTM

Model %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH

KOR2VEC 36% 1.27 38% 1.24 39% 1.22 37% 1.27 39% 1.23
FASTTEXT 37% 1.27 40% 1.21 41% 1.19 38% 1.23 37% 1.25
SYLLABLE 35% 1.30 37% 1.26 39% 1.22 35% 1.29 38% 1.25
W2V-SG 37% 1.26 37% 1.26 39% 1.21 37% 1.27 36% 1.29
W2V-CBOW 36% 1.29 38% 1.24 38% 1.24 38% 1.23 39% 1.23
GLOVE 36% 1.28 37% 1.26 38% 1.24 35% 1.30 34% 1.32
RANDOM 28% 1.43 28% 1.45 29% 1.43 29% 1.42 30% 1.41

Table 4: Percent correct and Average Hamming offset: Restricting to Syntacitc features.

Architecture STAFFNET-
25% variance

STAFFNET-
50% variance

STAFFNET-
75% variance

MRNN TREELSTM

Model %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH

KOR2VEC 6% 2.54 5% 2.52 5% 2.53 23% 1.85 25% 1.80
FASTTEXT 6% 2.39 5% 2.40 5% 2.43 33% 1.65 24% 1.72
SYLLABLE 5% 2.47 6% 2.51 5% 2.64 18% 1.96 19% 2.04
W2V-SG 5% 2.48 5% 2.46 5% 2.48 26% 1.77 29% 1.78
W2V-CBOW 6% 2.56 5% 2.54 5% 2.6 24% 1.89 19% 2.04
GLOVE 5% 2.49 5% 2.49 4% 2.57 24% 1.89 23% 1.92
RANDOM 3% 2.79 3% 2.70 2% 2.71 2% 2.72 2% 2.67

Table 5: Percent correct and Average Hamming offset: Restricting to Semantic features.
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Architecture STAFFNET-
25% variance

STAFFNET-
50% variance

STAFFNET-
75% variance

MRNN TREELSTM

Model %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH %Overlap OffsetdH

KOR2VEC 69% 0.33 69% 0.33 70% 0.31 71% 0.31 72% 0.29
FASTTEXT 69% 0.32 69% 0.33 70% 0.32 71% 0.31 69% 0.32
SYLLABLE 71% 0.31 69% 0.33 70% 0.33 70% 0.32 70% 0.31
W2V-SG 70% 0.33 69% 0.34 70% 0.32 70% 0.32 69% 0.33
W2V-CBOW 68% 0.33 68% 0.34 69% 0.34 70% 0.32 70% 0.32
GLOVE 68% 0.34 68% 0.34 68% 0.34 70% 0.32 69% 0.32
RANDOM 71% 0.31 70% 0.34 69% 0.33 70% 0.31 69% 0.34

Table 6: Percent correct and Average Hamming offset: Restricting to Pragmatic features.

SUBSET AVG. k AVG. k / |A| AVG. dH
ALL 2.21 0.02 5.56

PHON 29.93 0.28 0.96
SYN 30.92 0.29 1.42
SEM 3.25 0.03 3.00

PRAG 73.91 0.69 0.32

Table 7: Average size of nearest k affixes for each fea-
ture subset.

and (ii) non-linearity is required to capture these
meanings.

For the pragmatic results in Table 6, all mod-
els perform virtually indistinguishably from the
random baseline. This suggests that the word-
embedding models examined here are not sensi-
tive to pragmatic features, at least not when dis-
tilled into another model.6

As this is a proof-of-concept study, the princi-
pal takeaway is that this method of intrinsic eval-
uation is possible, and reveals interesting charac-
teristics of neural representations. Specifically, the
underlying geometry of ground-truth discrete em-
beddings are at least to some extent being cap-
tured in the geometry of the continuous represen-
tations learnt by different neural-network models.
Furthermore, the results in this study show that
not only are neural network models sensitive to
grammatical information—as distinct from lexical
information—they are sensitive to different types
of grammatical information to differing degrees.
Syntactic information can apparently be captured
by linear relations, while semantic information re-
quires non-linearities. This result is perhaps not

6Though it is of note that all models were trained on
text which is ostensibly academic in character (a WikiDump
file), and which therefore is almost devoid of pragmatically-
marked language like honorifics.

surprising, as even in the theoretical linguistics lit-
erature semantic analyses often require more com-
plex algebraic structures built on top of syntactic
parses. Finally, neural models seem insensitive to
phonological and pragmatic information, with all
models here performing virtually the same as the
random baseline on these sub-tests.

Finally, in addition to the test results them-
selves, the fact that any models significantly out-
performed the random baseline shows that trans-
parent model distillation can serve as a viable
means of extracting sub-atomic information from
otherwise atomic representations.

7 Conclusion

This study has been a proof-of-concept for an
intrinsic evaluation method which probes gram-
matical, rather than lexical information in word-
embeddings. To do this, we studied the case of Ko-
rean affixes, which display multiple types of gram-
matical information. In order to derive affix rep-
resentations, we used Transparent Model Distil-
lation to extract morpheme representations where
they otherwise did not exist. Our study has shown
that neural network models are sensitive to gram-
matical information, and that the geometry of the
continuous representations learnt by neural net-
work models reflects to some degree the geometry
of ground-truth discrete embeddings.

We put forward such a process as a framework
for the fine-grained intrinsic analysis of the high-
dimensional continuous embeddings which are of-
ten used to help solve natural language processing
tasks.
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Appendix A: Feature subsets

Table 8 displays the feature values which make up
the dimensions of the discrete space. The combi-
nation of all feature values from the subsets com-
prise the full discrete space, upon which the exper-
iment in Table 2 was run.
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SUBSET FEATURE VALUES

PHONOLOGICAL FEATURES [+CODA], [-CODA], [+LOW], [-LOW]
SYNTACTIC FEATURES [+POSTPOSITION], [+CONJUNCTIVE], [+X-

LIMITER],
[+Z-LIMITER], [+V1], [+V2], [+V3], [+V4]

SEMANTIC FEATURES [+DECLARATIVE], [+NOMINATIVE], [+TOPIC],
[+LOCATIVE], [+DIRECTIVE], [+GENATIVE],
[+ACCUSATIVE], [+PAST], [+CONJUNCTION],
[+ADVERBIAL], [+ALSO], [+TAG], [+NOM-
INALIZER], [+FROM], [+CONDITIONAL],
[+LIKE], [+ESSIVE], [+COMPARATOR],
[+COMPLEMENTIZER], [+RELATIVIZER],
[+PAST], [+RETROSPECTIVE], [+FUTURE],
[+PLURAL], [+PRESENT], [+BECAUSE],
[+COPULA], [+QUOTATIVE], [+ABLA-
TIVE], [+INTENT], [+MUST], [+RESULT], [-
ANIMATE], [+ANIMATE], [+INSTRUMENTAL],
[+INTERROGATIVE], [+DATIVE], [+GOAL],
[+EVEN], [+COHORTATIVE], [+ONLY], [+DIS-
JUNCTIVE], [+EACH], [+DURATION]

PRAGMATIC FEATURES [+FORMAL], [-FORMAL], [+HONORIFIC],
[+FAMILIAR]

Table 8: Description of feature subsets.
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