
A Reinforced Improved Attention Model for Abstractive Text

Summarization

Yu Chang Hang Lei Xiaoyu Li Yiming Huang

School of Information and Software Engineering

University of Electronic Science and Technology of China

Chengdu, China

realchangyu@gmail.com {hlei, xiaoyuuestc}@uestc.edu.cn yiminghwang@gmail.com

Abstract

In recent times, RNN-based sequence-to-

sequence attentional models have achieved good

performance on abstractive summarization.

However, numerous problems regarding

repetition, incoherence, and exposure bias are

encountered when applying these models. In this

work, we propose a novel architecture that

augments the standard sequence-to-sequence

attentional model and a new training method

combining reinforcement learning. We evaluate

our proposed method on the CNN/Daily Mail

dataset. The empirical results demonstrate the

superiority of our proposed method in the

abstractive summarization.

1 Introduction

Abstractive text summarization is an important

aspect of natural language processing (NLP), which

requires the machine to automatically generate a

paragraph of general content (Wang et al. 2018),

such as news title summarization (Kraaij, Spitters,

and Hulth 2002) and abstract summarization

(Barzilay and McKeown 2005), after reading an

article. Nevertheless, compared with other NLP

tasks, automatic summarization exists numerous

problems. For example, unlike machine translation

tasks where input and output sequences often share

similar lengths, summarization tasks are more likely

to have input and output sequences greatly

imbalanced. There are two methods to

summarization: extractive and abstractive. Whereas

the extraction method collects abstracts only from

paragraphs (usually entire sentences) that are

extracted directly from the source text (Neto, Freitas,

and Kaestner 2002; Dorr, Zajic, and Schwartz 2003;

Martins and Smith 2009; Berg-Kirkpatrick, Gillick,

and Klein 2011; Nallapati, Zhai, and Zhou 2017),

the abstract method may generate new words and

phrases that are not present in the source text

(Ranzato et al. 2015; Nallapati et al. 2016; See, Liu,

and Manning 2017; Zhou et al. 2018; Gehrmann,

Deng, and Rush 2018).

With the success of the sequence-to-sequence

(seq2seq) mode (Bahdanau, Cho, and Bengio 2014;

Sutskever, Vinyals, and Le 2014), it is possible to

use recurrent neural networks (RNN) to read articles

and generate topics. However, there are some

problems with the conventional seq2seq model.

First, before the start of the summary generation

task, a fixed size vocabulary needs to be established,

and each word of the text is replaced by its index in

the vocabulary when the text is processed. However,

most source articles will have out-of-vocabulary

(OOV) words that are not in the vocabulary list,

such as names of people, place names, scores, etc.

When these words are encountered in the

conventional seq2seq model, they can only be

regarded as unrecognized words (UNK) (Gulcehre

et al. 2016), so the output will often appear as well.

Second, when generating a summary of multiple

sentences, it is common to generate repeated words

or sentences (See, Liu, and Manning 2017). In

addition, exposure bias is problem in sequence gen-

362
Pacific Asia Conference on Language, Information and Computation (PACLIC 33), pages 362-369, Hakodate, Japan, September 13-15, 2019

Copyright © 2019 Yu Chang, Hang Lei, Xiaoyu Li and Yiming Huang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286965257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1：Model Overview. For each pointer network output distribution, a specific action 𝑦𝑠 is sampled

and the greedy action 𝑦𝑔 is extracted and action 𝑦𝐺 is the ground truth.

eration task (Ranzato et al. 2015).

In the model training process, each input word of

the decoder uses the last word correctly output in the

training sample, while in the testing stage, each

input word of the decoder is its last output word,

which results in the deviation between the test and

training results.

The main contributions of this paper include: In

this paper a new approach is proposed based on the

pointer network (Vinyals, Fortunato, and Jaitly

2015) jointly with an improved attention

mechanism, to solve the OOV word problem by

using high attention words as candidate outputs

based on different attention to the input text, that is,

words in the input text can be copied into the output.

Besides, the proposed model has been optimized by

employing the reinforcement training. Next, We

improve the temporal attention (Sankaran et al.

2016) and decoder self-attention (Paulus, Xiong,

and Socher 2017). Benefiting from our approaches,

repetition is reduced by storing the attention of the

history input word and decoding the attention

between words in different time steps. We abstract

the text abstract model into a reinforcement learning

model (Mnih et al. 2015). In the training process,

the decoding input of each time step is the output of

the previous time step, and the ROUGE score (Lin

2004) of the generated abstract and reference

abstract is taken as the reward, which is solved by

the policy gradient (Thomas and Brunskill 2017) to

solve the exposure deviation problem.

2 Models

The symbols we will use are defined as follows:
en

represents the length of the encoder,
dn represents

the length of the decoder, },,{ 21 enxxxx 

represents the encoder input word vector sequence,

},,,{ 21 enhhhh  represents the output sequence

of the encoder, },,,{ 21 dnssss  represents the

output sequence of the decoder,

},,,{ 21 dnyyyy  represents the final output of

the word vector sequence, },,,{ **

2

*

1

*

dnyyyy 

represents the ground-truth of training samples,

],[ba represents the combination of a and b into

one vector.

The overall structure of the model is shown in

Figure 1.

The overall process of training is as follows:

(1) The input word sequence passes through the

embedded layer to obtain the same length vector,

which is then fed into the encoder.

(2) After encoding all the input text, the encoded

information is fed to the decoder.

(3) Feed the real sample or its own output from

the previous moment into the decoder (detailed in

2.4) to get the output of the current moment.

(4) Calculate temporal attention and decode self-

attention to get the context vector of the encoder and

decoder.

363

(5) Feed the context vector and decoder output

into the generated and pointer network to get the

output of the word.

(6) Calculate rewards based on output words and

real samples, and train the entire network using the

policy gradient method.

Only the first 5 steps are required for the test, and

the decoder input of step 3 is the output of the

previous moment.

The following is a detailed introduction to the

basic structure, temporal attention, decoding self-

attention, generation and pointer network, loss

function and reinforcement learning.

2.1 Basic Structure and Temporal Attention

Our basic structure references (Nallapati and Xiang

2016), the encoder uses a single-layer bidirectional

LSTM, consisting of a forward LSTM(
fLSTM)

and a backward LSTM (
bLSTM), the encoder's the

i time step output],[b

i

f

ii hhh  .

In order to prevent the generation of repetitive

words, the temporal attention is introduced, that is,

in each decoding time step to save attention, in the

new time step to get attention divided by the sum of

historical attention, weaken the previously high

focus of the part, enhance the previously less

attention to the part. The output of the t time step

of the decoder for the attention
e

ta of each time step

of the encoder is calculated as follows:

 )tanh(e e
tit

e
si

e
h

Te
ti bsWhWv 








 








other
)eexp(

)eexp(

1)eexp(

1

1

t

j j

t

t

e
t

t



 e

t

e

ta softmax

where
ev ,

e

hW , e
sW and

e

tib are learnable

parameters.

In the traditional attention mechanism, historical

attention is not preserved, so the calculation formula

of the traditional attention mechanism
e

ta is

 e

t

e

t ea softmax .

We can get the context vector
e

tc of the encoder

based on the attention of each output of the encoder

at the t time step:





en

i

i

e

ti

e

t hac
1

2.2 Decoding Self-attention

In addition to the temporary temporal attention

mechanism, we also introduce decoding self-

attention in order to be able to focus on previously

generated words and prevent duplication when

generating new words. At the 1t time step, the

decoder outputs attention to the output of the

tj 0 time Step
d

ta :

 )tanh(d
tjt

d
sj

d
h

Tdd
tj bsWsWve 

 d

t

d

t ea softmax

where
dv ,

d

hW ,
d

sW and
d

tjb are learnable

parameters.

At the 1t time step, the decoder context vector
d

tc is a 0 vector. When 1t ,
d

tc :





j

k

i

d

tk

d

t sac
1

2.3 Generate and Pointer Network

The final output word in the t time step is

distributed as
vP , indicating the probability of each

word being output in the word list, and is related to

the context vector
e

tc of the encoder, the context

vector
d

tc of the decoder, and the current output
ts

of the decoder, using linear function and softmax to

calculate:

)],,[(softmax outt

d

t

e

tout

t

v bsccWP 

where
outW and

outb are learnable parameters.

However,
t

vP only decides that a word in the

word list should be output. If a word in the original

text is needed but not in the word list, it cannot be

solved. Therefore, we use pointer network to

determine whether a word should be copied based

on the attention to the input word.

We define the variable
t

genP to determine the

probability of outputting a word based on
t

vP , then

genP1 represents the probability of copying a

word:

364

 t

gent

Tt

s

d

t

Tt

cd

e

t

Tt

ce

t

gen bswcwcwP 

where
t

cew ,
t

cdw ,
t

sw and
t

genb are learnable

parameters,  is the sigmoid activation function.

Combining
t

vP and pointer network, we get the

probability of the final output word y :

)()1()()(
1

yxaPyPPyP i

n

i

e

ti

t

gen

t

v

t

gen

t e

  

Of course, if the word y does not exist in

the word list, then 0)(yPt

v .

2.4 Loss Function and Reinforcement

Learning

When training RNN to do sequence generation tasks,

the most common method is teacher

forcing(Williams and Zipser 1989), which trains the

network at each time step of decoding with

maximum likelihood estimation as the target.

Maximizing likelihood estimation is equivalent to

minimizing the loss function below:





dn

t
ttML xyyyPL

1

*
1

*
1

*),,,|(log 

Firstly, using such loss function, the decoder

input is real output when training, and the decoder

output is its own output when testing, it will cause

exposure bias. Secondly, there is a certain deviation

between the target of likelihood estimation and the

evaluation index (such as ROUGE), the value of

loss function will decrease, but the ROUGE will

increase, or vice versa.

We use reinforcement learning to solve the above

two problems. For exposure bias, use the output of

the decoder itself as input to the next decoder during

training. For the deviation between the optimization

target and the evaluation index, using the principle

of reinforcement learning, the evaluation index is

directly taken as the target, and the network is

trained by the strategy gradient.

We use the entire network as the actor, the

ROUGE-L score of the actor's output y as a reward,

denoted as)(yR , the maximum value is 1 and the

minimum value is 0. So the task target is to

maximize the reward, that is, the loss function

)(RLL is the negative expectation reward:

)]([)()(~ yREL yPyRL 
 

where  represents all trained parameters,





dn

t
tt xyyyPxPyP

1
11),,,|()()(

 represents

the probability of actor output sentence y .

According to the policy gradient algorithm, we

get the gradient of the loss function about  :

)](log)([)()(~ yPyREL yPyRL  
 

In order to reduce the variance of the gradient, we

use a policy gradient algorithm with baseline, and

its loss function is as follows:





dn

t

s
t

ss
t

gs
RL xyyyPyRyRL

1
11),,,|(log))()((

where
sy represents output sampled according to

distributed),,,|(11 xyyyP s
t

ss
t  ,

gy represents

the output obtained according to distributed

),,,|(11 xyyyP g

t

gg

t  greed.

In the above formula,)(gyR is the baseline and

)(syR is the target. When both MLL and RLL are

considered in training, the network needs to be

updated separately based on two loss functions.

Therefore, the storage space occupied during

training (the memory used when using the GPU) is

twice times the use of a single loss function.

Considering the diversity of the training samples,

the output
gy is inherently quite random, so we use

)(gyR as the optimization target and)(syR as the

baseline. The new modified loss function is:





dn

t

g

t

gg

t

sg

RL xyyyPyRyRL
1

11),,,|(log))()((

This way, when using both loss functions, you do

not need to save the intermediate parameters of

output, just save the intermediate parameters that

generate, and when you update, the two loss

functions can be updated at the same time.

Therefore, the storage space occupied during the

training process is half of the previous formula and

can achieve the same effect.

3 Related Work

Automatic text summarization models are usually

divided into abstract models and extraction models.

Early work focused on methods based on extraction

and compression. From Rush (et al. 2015) for the

first time to apply modern neural network to abstra-

365

Model ROUGE-1 ROUGE-2 ROUGE-L

Lead-3 [See et al., 2017] 39.2 15.7 35.5

SummaRuNNer [Nallapati et al., 2017] 39.6 16.2 35.3

PointerGenerator+Coverage [See et al.,

2017]

39.53 17.28 36.38

Inconsistency Loss [Hsu et al., 2018] 40.68 17.97 37.13

ML+RL [Paulus et al., 2017] 39.87 15.82 36.90

Ours

Storing attention 37.14 15.35 34.59

Improved attention 39.57 17.15 36.83

Improved attention + RL 40.75 18.03 38.11

Table 1: ROUGE F1 results for various models and ablations on the CNN/Daily Mail test set.

ctive text summarization, abstract models show

excellent performance. These models include the

use of recurrent neural networks (RNN), where

encoder and decoder are constructed using either

Long Short-Term Memory (LSTM) (Hochreiter and

Schmidhuber 1997) or Gated Recurrent Unit (GRU)

(Cho et al. 2014), attention (Nallapati and Xiang

2016), coverage (Chen et al. 2016; See, Liu, and

Manning 2017), the copy mechanism (Gu et al.

2016; See, Liu, and Manning 2017), and

convolutional neural networks (CNN) (Dauphin et

al. 2017; Gehring et al. 2017).

Reinforcement learning is used to optimize non-

differential metrics for language generation and

mitigate exposure bias. Ranzato (et al. 2015) have

applied reinforcement learning to train various

RNN-based sequence generation task models,

which resulted in significant improvements over

previous supervised learning methods. Paulus,

Xiong, and Socher (2017) use reinforcement

learning algorithm policy gradient methods for

abstractive summarization, Rennie (et al. 2017)

designed a self-critical sequence training method for

image captioning tasks.

4 Experiment

For all experiments, the dimension of the word

vector is 128, the pre-trained word vector is not used,

such as word2vec (Mikolov et al. 2013), word

vector is learned from scratch during training, the

internal state of LSTM is 256 dimensions, and the

word list uses 50,000 words. The optimization

method uses Adagrad (Duchi, Hazan, and Singer

2011), which was found to work best of Stochastic

Gradient Descent, Adadelta, Momentum, Adam and

RMSProp, with a learning rate of 0.15 and an initial

accumulator value of 0.1.

We use the CNN/Daily Mail dataset for training

and validation, which online news articles and

multiple-sentence summaries, averaging an article

with 781 tokens, each article matching an average

of 3.75 sentences, with an average of 56 tokens. We

used scripts supplied by (Nallapati and Xiang 2016)

to obtain the same version of the data, which has

287,226 training pairs, 13,368 validation pairs and

11,490 test pairs. Following (See, Liu, and Manning

2017) we choose the non-anonymized version of the

dataset.

On CNN/Daily Mail dataset, we report the full-

length F-1 score of the ROUGE-1, ROUGE-2 and

ROUGE-L metrics (which respectively measure the

word-overlap, bigram-overlap, and longest

common sequence between the reference summary

and the summary to be evaluated), calculated using

PyRouge package. For ML+RL training, we use the

ROUGE-L score as a reinforcement reward.

5 Results

Our results for the CNN/Daily Mail dataset are

shown in Table 1. We compare the performance of

many recent approaches with our model. Our full

model scores are shown in the last line of the table.

Compared with other models, we can find that there

are some improvements in the scores of the three

evaluation indicators. Compared with the best

performing inconsistency loss (Hsu et al. 2018), our

model has a slight improvement in ROUGE-1 and

ROUGE-2 scores, and the ROUGE-L score is more

obvious. This is due to the fact that we set ROUGE-

L as reward for training.

366

As shown in the last four lines of Table 1, we

study the ablation of our model variables to analyze

the importance of each component. We use three

ablation models for the experiments. The first model

is just to store attention; The second model uses

improved attention; And the third model is to use

RL based on improved attention. By comparing the

first two models, using improved attention can be

2.16 average ROUGE higher than storing attention,

indicating that improved attention provides

effective help to the model. Comparing the latter

two models, we observe that full model outperforms

by 1.11 on average ROUGE, indicating that RL has

an effect on the model. Ablation studies have shown

that each module is necessary for our complete

model, and that improvements on all indicators are

statistically significant.

6 Conclusion and Future Work

In this work, we propose an improved attention

model with reinforcement learning for abstractive

text summarization. We evaluate our model on

CNN/Daily Mail dataset, the experimental results

show that compared to previous systems our

approach effectively improves performance.

Note that the model in this paper mainly uses the

basic reinforcement learning algorithm. In the

future, our goal is to use more advanced

reinforcement learning algorithm to achieve better

results.

Acknowledgments

The financial support for this work is provided by

the National Science Foundation of China

(No.61502082, No.61502080).

References

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by jointly

learning to align and translate. arXiv preprint

arXiv:1409.0473.

Barzilay, Regina, and Kathleen R McKeown. 2005.

Sentence fusion for multidocument news

summarization. Computational Linguistics 31(3),

297–328.

Berg-Kirkpatrick, Taylor, Dan Gillick, and Dan Klein.

2011. Jointly learning to extract and compress,

Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human

Language Technologies-Volume 1, pp. 481–90.

Chen, Qian, Xiaodan Zhu, Zhenhua Ling, Si Wei, and

Hui Jiang. 2016. Distraction-based neural networks

for modeling documents. IJCAI International Joint

Conference on Artificial Intelligence 2016-January,

2754–60.

Chen, Qian, Xiao-Dan Zhu, Zhen-Hua Ling, Si Wei, and

Hui Jiang. 2016. Distraction-Based Neural Networks

for Modeling Document. IJCAI, pp. 2754–60.

Cho, Kyunghyun, Bart Van Merriënboer, Caglar

Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. 2014. Learning phrase

representations using RNN encoder-decoder for

statistical machine translation. arXiv preprint

arXiv:1406.1078.

Chopra, Sumit, Michael Auli, and Alexander M Rush.

2016. Abstractive sentence summarization with

attentive recurrent neural networks, Proceedings of the

2016 Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, pp. 93–98.

Dauphin, Yann N, Angela Fan, Michael Auli, and David

Grangier. 2017. Language modeling with gated

convolutional networks, Proceedings of the 34th

International Conference on Machine Learning-

Volume 70, pp. 933–41.

Dorr, Bonnie, David Zajic, and Richard Schwartz. 2003.

Hedge trimmer: A parse-and-trim approach to

headline generation, Proceedings of the HLT-NAACL

03 on Text summarization workshop-Volume 5, pp.

1–8.

Duchi, J, E Hazan, and Y Singer. 2011. Adaptive

subgradient methods for online learning and stochastic

optimization. The Journal of Machine Learning

Research 12, 2121–59.

Duchi, John, Elad Hazan, and Yoram Singer. 2011.

Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning

Research 12(Jul), 2121–59.

Gehring, Jonas, Michael Auli, David Grangier, Denis

Yarats, and Yann N Dauphin. 2017. Convolutional

sequence to sequence learning, Proceedings of the

34th International Conference on Machine Learning-

Volume 70, pp. 1243–52.

Gehrmann, Sebastian, Yuntian Deng, and Alexander M

Rush. 2018. Bottom-up abstractive summarization.

arXiv preprint arXiv:1808.10792.

Gu, Jiatao, Zhengdong Lu, Hang Li, and Victor OK Li.

2016. Incorporating copying mechanism in sequence-

367

to-sequence learning. arXiv preprint

arXiv:1603.06393.

Gulcehre, Caglar, Sungjin Ahn, Ramesh Nallapati,

Bowen Zhou, and Yoshua Bengio. 2016. Pointing the

unknown words. arXiv preprint arXiv:1603.08148.

Hochreiter, Sepp, and Jurgen Schmidhuber. 1997. Long

short term memory. Neural computation. Neural

Computation 9(8), 1735–80.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. Long

short-term memory. Neural computation 9(8), 1735–

80.

Hsu, Wan-Ting, Chieh-Kai Lin, Ming-Ying Lee, Kerui

Min, Jing Tang, and Min Sun. 2018. A unified model

for extractive and abstractive summarization using

inconsistency loss. arXiv preprint arXiv:1805.06266.

Kraaij, W, M Spitters, and A Hulth. 2002. Headline

extraction based on a combination of uni- and

multidocument summarization techniques. Duc 2002.

Kraaij, Wessel, Martijn Spitters, and Anette Hulth. 2002.

Headline extraction based on a combination of uni-and

multidocument summarization techniques,

Proceedings of the ACL workshop on Automatic

Summarization/Document Understanding Conference

(DUC 2002). ACL.

Lin, CY. 2004. Rouge: A package for automatic

evaluation of summaries, Proceedings of the

workshop on text summarization branches out (WAS

2004), pp. 25–26.

Lin, Chin-Yew. 2004. Rouge: A package for automatic

evaluation of summaries, Text summarization

branches out, pp. 74–81.

Martins, André FT, and Noah A Smith. 2009.

Summarization with a joint model for sentence

extraction and compression, Proceedings of the

Workshop on Integer Linear Programming for Natural

Langauge Processing, pp. 1–9.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey

Dean. 2013. Efficient estimation of word

representations in vector space. arXiv preprint

arXiv:1301.3781.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver,

Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex

Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, Stig Petersen, Charles Beattie, Amir

Sadik, Ioannis Antonoglou, Helen King, Dharshan

Kumaran, Daan Wierstra, Shane Legg, and Demis

Hassabis. 2015. Human-level control through deep

reinforcement learning. Nature 518, 529.

Nallapati, Ramesh, and Bing Xiang. 2016. Abstractive

Text Summarization using Sequence-to-sequence

RNNs and Beyond Cicero dos Santos, 280–90.

Nallapati, Ramesh, Feifei Zhai, and Bowen Zhou. 2017.

Summarunner: A recurrent neural network based

sequence model for extractive summarization of

documents, Thirty-First AAAI Conference on

Artificial Intelligence.

Nallapati, Ramesh, Bowen Zhou, Caglar Gulcehre, Bing

Xiang, and others. 2016. Abstractive text

summarization using sequence-to-sequence rnns and

beyond. arXiv preprint arXiv:1602.06023.

Neto, Joel Larocca, Alex A Freitas, and Celso AA

Kaestner. 2002. Automatic text summarization using

a machine learning approach, Brazilian Symposium

on Artificial Intelligence, pp. 205–15.

Paulus, Romain, Caiming Xiong, and Richard Socher.

2017. A deep reinforced model for abstractive

summarization. arXiv preprint arXiv:1705.04304.

Ranzato, Marc’Aurelio, Sumit Chopra, Michael Auli,

and Wojciech Zaremba. 2015. Sequence level training

with recurrent neural networks. arXiv preprint

arXiv:1511.06732.

Rennie, Steven J, Etienne Marcheret, Youssef Mroueh,

Jerret Ross, and Vaibhava Goel. 2017. Self-critical

sequence training for image captioning, Proceedings

of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 7008–24.

Sankaran, Baskaran, Haitao Mi, Yaser Al-Onaizan, and

Abe Ittycheriah. 2016. Temporal attention model for

neural machine translation. arXiv preprint

arXiv:1608.02927.

See, Abigail, Peter J Liu, and Christopher D Manning.

2017. Get to the point: Summarization with pointer-

generator networks. arXiv preprint arXiv:1704.04368.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le. 2014.

Sequence to sequence learning with neural networks,

Advances in neural information processing systems,

pp. 3104–12.

Thomas, Philip S, and Emma Brunskill. 2017. Policy

gradient methods for reinforcement learning with

function approximation and action-dependent

baselines. arXiv preprint arXiv:1706.06643.

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly.

2015. Pointer networks, Advances in Neural

Information Processing Systems, pp. 2692–2700.

Wang, Li, Junlin Yao, Yunzhe Tao, Li Zhong, Wei Liu,

and Qiang Du. 2018. A reinforced topic-aware

convolutional sequence-to-sequence model for

368

abstractive text summarization. arXiv preprint

arXiv:1805.03616.

Williams, Ronald J, and David Zipser. 1989. A learning

algorithm for continually running fully recurrent

neural networks. Neural computation 1(2), 270–80.

Zhou, Qingyu, Nan Yang, Furu Wei, Shaohan Huang,

Ming Zhou, and Tiejun Zhao. 2018. Neural document

summarization by jointly learning to score and select

sentences. arXiv preprint arXiv:1807.02305.

369

	45_paclic33_proceedings
	45_PACLIC_33_paper_39

