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Abstract 

In recent times, RNN-based sequence-to-

sequence attentional models have achieved good 

performance on abstractive summarization. 

However, numerous problems regarding 

repetition, incoherence, and exposure bias are 

encountered when applying these models. In this 

work, we propose a novel architecture that 

augments the standard sequence-to-sequence 

attentional model and a new training method 

combining reinforcement learning. We evaluate 

our proposed method on the CNN/Daily Mail 

dataset. The empirical results demonstrate the 

superiority of our proposed method in the 

abstractive summarization. 

1 Introduction 

Abstractive text summarization is an important 

aspect of natural language processing (NLP), which 

requires the machine to automatically generate a 

paragraph of general content (Wang et al. 2018), 

such as news title summarization (Kraaij, Spitters, 

and Hulth 2002) and abstract summarization 

(Barzilay and McKeown 2005), after reading an 

article. Nevertheless, compared with other NLP 

tasks, automatic summarization exists numerous 

problems. For example, unlike machine translation 

tasks where input and output sequences often share 

similar lengths, summarization tasks are more likely 

to have input and output sequences greatly 

imbalanced. There are two methods to 

summarization: extractive and abstractive. Whereas 

the extraction method collects abstracts only from 

paragraphs (usually entire sentences) that are 

extracted directly from the source text (Neto, Freitas, 

and Kaestner 2002; Dorr, Zajic, and Schwartz 2003; 

Martins and Smith 2009; Berg-Kirkpatrick, Gillick, 

and Klein 2011; Nallapati, Zhai, and Zhou 2017), 

the abstract method may generate new words and 

phrases that are not present in the source text 

(Ranzato et al. 2015; Nallapati et al. 2016; See, Liu, 

and Manning 2017; Zhou et al. 2018; Gehrmann, 

Deng, and Rush 2018). 

With the success of the sequence-to-sequence 

(seq2seq) mode (Bahdanau, Cho, and Bengio 2014; 

Sutskever, Vinyals, and Le 2014), it is possible to 

use recurrent neural networks (RNN) to read articles 

and generate topics. However, there are some 

problems with the conventional seq2seq model. 

First, before the start of the summary generation 

task, a fixed size vocabulary needs to be established, 

and each word of the text is replaced by its index in 

the vocabulary when the text is processed. However, 

most source articles will have out-of-vocabulary 

(OOV) words that are not in the vocabulary list, 

such as names of people, place names, scores, etc. 

When these words are encountered in the 

conventional seq2seq model, they can only be 

regarded as unrecognized words (UNK) (Gulcehre 

et al. 2016), so the output will often appear as well. 

Second, when generating a summary of multiple 

sentences, it is common to generate repeated words 

or sentences (See, Liu, and Manning 2017). In 

addition, exposure bias is problem in sequence gen- 
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Figure 1：Model Overview. For each pointer network output distribution, a specific action 𝑦𝑠 is sampled 

and the greedy action 𝑦𝑔 is extracted and  action 𝑦𝐺 is  the ground truth. 

 
 

eration task (Ranzato et al. 2015).  

In the model training process, each input word of 

the decoder uses the last word correctly output in the 

training sample, while in the testing stage, each 

input word of the decoder is its last output word, 

which results in the deviation between the test and 

training results. 

The main contributions of this paper include: In 

this paper a new approach is proposed based on the 

pointer network (Vinyals, Fortunato, and Jaitly 

2015) jointly with an improved attention 

mechanism, to solve the OOV word problem by 

using high attention words as candidate outputs 

based on different attention to the input text, that is, 

words in the input text can be copied into the output. 

Besides, the proposed model has been optimized by 

employing the reinforcement training. Next, We 

improve the temporal attention (Sankaran et al. 

2016) and decoder self-attention (Paulus, Xiong, 

and Socher 2017). Benefiting from our approaches, 

repetition is reduced by storing the attention of the 

history input word and decoding the attention 

between words in different time steps. We abstract 

the text abstract model into a reinforcement learning 

model (Mnih et al. 2015). In the training process, 

the decoding input of each time step is the output of 

the previous time step, and the ROUGE score (Lin 

2004) of the generated abstract and reference 

abstract is taken as the reward, which is solved by 

the policy gradient (Thomas and Brunskill 2017) to 

solve the exposure deviation problem. 

2 Models  

The symbols we will use are defined as follows:  
en  

represents the length of the encoder, 
dn  represents 

the length of the decoder, },,{ 21 enxxxx   

represents the encoder input word vector sequence, 

},,,{ 21 enhhhh   represents the output sequence 

of the encoder, },,,{ 21 dnssss   represents the 

output sequence of the decoder, 

},,,{ 21 dnyyyy   represents the final output of 

the word vector sequence, },,,{ **

2

*

1

*

dnyyyy   

represents the ground-truth of training samples, 

],[ ba  represents the combination of  a  and  b  into 

one vector. 

The overall structure of the model is shown in 

Figure 1.  

The overall process of training is as follows: 

(1) The input word sequence passes through the 

embedded layer to obtain the same length vector, 

which is then fed into the encoder. 

(2) After encoding all the input text, the encoded 

information is fed to the decoder. 

(3) Feed the real sample or its own output from 

the previous moment into the decoder (detailed in 

2.4) to get the output of the current moment. 

(4) Calculate temporal attention and decode self-

attention to get the context vector of the encoder and 

decoder. 
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(5) Feed the context vector and decoder output 

into the generated and pointer network to get the 

output of the word. 

(6) Calculate rewards based on output words and 

real samples, and train the entire network using the 

policy gradient method. 

Only the first 5 steps are required for the test, and 

the decoder input of step 3 is the output of the 

previous moment. 

The following is a detailed introduction to the 

basic structure, temporal attention, decoding self-

attention, generation and pointer network, loss 

function and reinforcement learning. 

2.1 Basic Structure and Temporal Attention 

Our basic structure references (Nallapati and Xiang 

2016), the encoder uses a single-layer bidirectional 

LSTM, consisting of a forward LSTM(
fLSTM ) 

and a backward LSTM (
bLSTM ), the encoder's the 

i time step output  ],[ b

i

f

ii hhh  . 

In order to prevent the generation of repetitive 

words, the temporal attention is introduced, that is, 

in each decoding time step to save attention, in the 

new time step to get attention divided by the sum of 

historical attention, weaken the previously high 

focus of the part, enhance the previously less 

attention to the part. The output of the t  time step 

of the decoder for the attention 
e

ta  of each time step 

of the encoder is calculated as follows: 

  )tanh(e e
tit

e
si

e
h

Te
ti bsWhWv   








 








other   
)eexp(

)eexp(

1)eexp(

1

1

t

j j

t

t

e
t

t

  

 e

t

e

ta softmax  

where 
ev , 

e

hW , e
sW  and  

e

tib  are learnable 

parameters. 

In the traditional attention mechanism, historical 

attention is not preserved, so the calculation formula 

of the traditional attention mechanism  
e

ta  is  

 e

t

e

t ea softmax . 

We can get the context vector 
e

tc  of the encoder 

based on the attention of each output of the encoder 

at the t  time step: 

 





en

i

i

e

ti

e

t hac
1

 

2.2 Decoding Self-attention 

In addition to the temporary temporal attention 

mechanism, we also introduce decoding self-

attention in order to be able to focus on previously 

generated words and prevent duplication when 

generating new words. At the 1t  time step, the 

decoder outputs attention to the output of the 

tj 0   time Step 
d

ta : 

  )tanh( d
tjt

d
sj

d
h

Tdd
tj bsWsWve   

 d

t

d

t ea softmax  

where 
dv , 

d

hW , 
d

sW  and 
d

tjb  are learnable 

parameters. 

At the 1t  time step, the decoder context vector 
d

tc  is a 0 vector. When 1t ,
d

tc : 





j

k

i

d

tk

d

t sac
1

 

2.3 Generate and Pointer Network 

The final output word in the t  time step is 

distributed as 
vP , indicating the probability of each 

word being output in the word list, and is related to 

the context vector 
e

tc  of the encoder, the context 

vector 
d

tc  of the decoder, and the current output 
ts   

of the decoder, using linear function and softmax to 

calculate: 

)],,[(softmax outt

d

t

e

tout

t

v bsccWP   

where  
outW  and 

outb   are learnable parameters. 

However, 
t

vP  only decides that a word in the 

word list should be output. If a word in the original 

text is needed but not in the word list, it cannot be 

solved. Therefore, we use pointer network to 

determine whether a word should be copied based 

on the attention to the input word. 

We define the variable 
t

genP  to determine the 

probability of outputting a word based on 
t

vP , then 

genP1   represents the probability of copying a 

word:  
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 t

gent

Tt

s

d

t

Tt

cd

e

t

Tt

ce

t

gen bswcwcwP   

where 
t

cew , 
t

cdw , 
t

sw  and 
t

genb  are learnable 

parameters,   is the sigmoid activation function. 

Combining 
t

vP  and pointer network, we get the 

probability of the final output word y : 

)()1()()(
1

yxaPyPPyP i

n

i

e

ti

t

gen

t

v

t

gen

t e

  
 

Of course, if the word y  does not exist in 

the word list, then 0)( yPt

v . 

2.4 Loss Function and Reinforcement 

Learning 

When training RNN to do sequence generation tasks, 

the most common method is teacher 

forcing(Williams and Zipser 1989), which trains the 

network at each time step of decoding with 

maximum likelihood estimation as the target. 

Maximizing likelihood estimation is equivalent to 

minimizing the loss function below:  





dn

t
ttML xyyyPL

1

*
1

*
1

* ),,,|(log   

Firstly, using such loss function, the decoder 

input is real output when training, and the decoder 

output is its own output when testing, it will cause 

exposure bias. Secondly, there is a certain deviation 

between the target of likelihood estimation and the 

evaluation index (such as ROUGE), the value of 

loss function will decrease, but the ROUGE will 

increase, or vice versa. 

We use reinforcement learning to solve the above 

two problems. For exposure bias, use the output of 

the decoder itself as input to the next decoder during 

training. For the deviation between the optimization 

target and the evaluation index, using the principle 

of reinforcement learning, the evaluation index is 

directly taken as the target, and the network is 

trained by the strategy gradient. 

We use the entire network as the actor, the 

ROUGE-L score of the actor's output y as a reward, 

denoted as )(yR , the maximum value is 1 and the 

minimum value is 0. So the task target is to 

maximize the reward, that is, the loss function 

)(RLL  is the negative expectation reward:  

)]([)( )(~ yREL yPyRL 
   

where   represents all trained parameters, 





dn

t
tt xyyyPxPyP

1
11 ),,,|()()( 

  represents 

the probability of actor output sentence y . 

According to the policy gradient algorithm, we 

get the gradient of the loss function about  :  

)](log)([)( )(~ yPyREL yPyRL  
   

In order to reduce the variance of the gradient, we 

use a policy gradient algorithm with baseline, and 

its loss function is as follows: 





dn

t

s
t

ss
t

gs
RL xyyyPyRyRL

1
11 ),,,|(log))()((   

where 
sy  represents output sampled according to 

distributed ),,,|( 11 xyyyP s
t

ss
t  , 

gy  represents 

the output obtained according to distributed  

),,,|( 11 xyyyP g

t

gg

t   greed. 

In the above formula, )( gyR  is the baseline and 

)( syR  is the target. When both MLL  and  RLL  are 

considered in training, the network needs to be 

updated separately based on two loss functions. 

Therefore, the storage space occupied during 

training (the memory used when using the GPU) is 

twice times the use of a single loss function. 

Considering the diversity of the training samples, 

the output 
gy  is inherently quite random, so we use 

)( gyR  as the optimization target and )( syR  as the 

baseline. The new modified loss function is: 





dn

t

g

t

gg

t

sg

RL xyyyPyRyRL
1

11 ),,,|(log))()((   

This way, when using both loss functions, you do 

not need to save the intermediate parameters of 

output, just save the intermediate parameters that 

generate, and when you update, the two loss 

functions can be updated at the same time. 

Therefore, the storage space occupied during the 

training process is half of the previous formula and 

can achieve the same effect. 

3 Related Work 

Automatic text summarization models are usually 

divided into abstract models and extraction models. 

Early work focused on methods based on extraction 

and compression. From Rush (et al. 2015) for the 

first time to apply modern neural network to abstra- 
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Model ROUGE-1 ROUGE-2 ROUGE-L 

Lead-3 [See et al., 2017] 39.2 15.7 35.5 

SummaRuNNer [Nallapati et al., 2017] 39.6 16.2 35.3 

PointerGenerator+Coverage [See et al., 

2017] 

39.53 17.28 36.38 

Inconsistency Loss [Hsu et al., 2018] 40.68 17.97 37.13 

ML+RL [Paulus et al., 2017] 39.87 15.82 36.90 

Ours  

Storing attention 37.14 15.35 34.59 

Improved attention 39.57 17.15 36.83 

Improved attention + RL 40.75 18.03 38.11 

Table 1: ROUGE F1 results for various models and ablations on the CNN/Daily Mail test set. 

 

 

ctive text summarization, abstract models show 

excellent performance. These models include the 

use of recurrent neural networks (RNN), where 

encoder and decoder are constructed using either 

Long Short-Term Memory (LSTM) (Hochreiter and 

Schmidhuber 1997) or Gated Recurrent Unit (GRU) 

(Cho et al. 2014), attention (Nallapati and Xiang 

2016), coverage (Chen et al. 2016; See, Liu, and 

Manning 2017), the copy mechanism (Gu et al. 

2016; See, Liu, and Manning 2017), and 

convolutional neural networks (CNN) (Dauphin et 

al. 2017; Gehring et al. 2017). 

Reinforcement learning is used to optimize non-

differential metrics for language generation and 

mitigate exposure bias. Ranzato (et al. 2015) have 

applied reinforcement learning to train various 

RNN-based sequence generation task models, 

which resulted in significant improvements over 

previous supervised learning methods. Paulus, 

Xiong, and Socher (2017) use reinforcement 

learning algorithm policy gradient methods for 

abstractive summarization,  Rennie (et al. 2017) 

designed a self-critical sequence training method for 

image captioning tasks. 

4 Experiment 

For all experiments, the dimension of the word 

vector is 128, the pre-trained word vector is not used, 

such as word2vec (Mikolov et al. 2013), word 

vector is learned from scratch during training, the 

internal state of LSTM is 256 dimensions, and the 

word list uses 50,000 words. The optimization 

method uses Adagrad (Duchi, Hazan, and Singer 

2011), which was found to work best of Stochastic 

Gradient Descent, Adadelta, Momentum, Adam and 

RMSProp, with a learning rate of 0.15 and an initial 

accumulator value of 0.1. 

We use the CNN/Daily Mail dataset for training 

and validation, which online news articles and 

multiple-sentence summaries, averaging an article 

with 781 tokens, each article matching an average 

of 3.75 sentences, with an average of 56 tokens. We 

used scripts supplied by (Nallapati and Xiang 2016) 

to obtain the same version of the data, which has 

287,226 training pairs, 13,368 validation pairs and 

11,490 test pairs. Following (See, Liu, and Manning 

2017) we choose the non-anonymized version of the 

dataset. 

On CNN/Daily Mail dataset, we report the full-

length F-1 score of the ROUGE-1, ROUGE-2 and 

ROUGE-L metrics (which respectively measure the 

word-overlap, bigram-overlap, and longest 

common sequence between the reference summary 

and the summary to be evaluated), calculated using 

PyRouge package. For ML+RL training, we use the 

ROUGE-L score as a reinforcement reward. 

5 Results 

Our results for the CNN/Daily Mail dataset are 

shown in Table 1. We compare the performance of 

many recent approaches with our model. Our full 

model scores are shown in the last line of the table. 

Compared with other models, we can find that there 

are some improvements in the scores of the three 

evaluation indicators. Compared with the best 

performing inconsistency loss (Hsu et al. 2018), our 

model has a slight improvement in ROUGE-1 and 

ROUGE-2 scores, and the ROUGE-L score is more 

obvious. This is due to the fact that we set ROUGE-

L as reward for training.  
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As shown in the last four lines of Table 1, we 

study the ablation of our model variables to analyze 

the importance of each component. We use three 

ablation models for the experiments. The first model 

is just to store attention; The second model uses 

improved attention; And the third model is to use 

RL based on improved attention. By comparing the 

first two models, using improved attention can be 

2.16 average ROUGE higher than storing attention, 

indicating that improved attention provides 

effective help to the model. Comparing the latter 

two models, we observe that full model outperforms 

by 1.11 on average ROUGE, indicating that RL has 

an effect on the model. Ablation studies have shown 

that each module is necessary for our complete 

model, and that improvements on all indicators are 

statistically significant. 

6 Conclusion and Future Work 

In this work, we propose an improved attention 

model with reinforcement learning for abstractive 

text summarization. We evaluate our model on 

CNN/Daily Mail dataset, the experimental results 

show that compared to previous systems our 

approach effectively improves performance.  

Note that the model in this paper mainly uses the 

basic reinforcement learning algorithm. In the 

future, our goal is to use more advanced 

reinforcement learning algorithm to achieve better 

results. 
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