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Abstract

Unsupervised neural machine translation

(UNMT) requires only monolingual data of

similar language pairs during training and

can produce bidirectional translation models

with relatively good performance on alpha-

betic languages (Lample et al., 2018). How-

ever, little research has been done on lo-

gographic language pairs. This study fo-

cuses on Chinese–Japanese UNMT trained

by data containing sub-character (ideograph

or stroke) level information, which is ob-

tained by decomposing character-level data.

BLEU (Papineni et al., 2002) scores of

both character-level and sub-character-level

systems were compared against each other.

The results showed that, despite the effective-

ness of UNMT on character-level data, sub-

character-level data could further enhance the

performance. Moreover, the stroke-level sys-

tem outperformed the ideograph-level sys-

tem.

1 Introduction

Although supervised neural machine translation

(NMT) has achieved great success in recent

years (Wu et al., 2016; Vaswani et al., 2017), the

fact that it may fail without large quantities of par-

allel training data is a practical problem (Koehn

and Knowles, 2017; Isabelle et al., 2017), particu-

larly for low-resource domains and language pairs.

Lample et al. (2018) proposed an unsupervised neu-

ral machine translation (UNMT) method that re-

quires only monolingual training data to train bidi-

rectional translation models on similar language

Language Word

JA-character 風 景

JA-ideograph ⿵几䖝 ⿱日京

JA-stroke ⿵⿰㇓乙⿱丿⿻⿱⿰丨𠃌

一⿺⿱丨 一丶

⿱〾⿵⿰丨𠃌⿱一一 ...

ZH-character 风 景

ZH-ideograph ⿵几㐅 ⿱日京

ZH-stroke ⿵⿰㇓乙⿻丿丶

⿱〾⿵⿰丨𠃌⿱一一 ...

EN landscape

Table 1: Examples of decomposition of a Japanese word

“風景” and Chinese word “风景,” both meaning “land-

scape” in English.

pairs; it relies heavily on the shared information be-

tween source and target data. They experimented

on alphabetic language pairs (English–French and

English–German) and showed the effectiveness of

such methods: although the BLEU score is not as

high as state-of-the-art supervisedmodels, the trans-

lation quality is highly acceptable.

Chinese and Japanese are also similar language

pairs, using Chinese characters in their logographic

writing systems; there are no natural word bound-

aries and the characters are formed compositionally

by sub-character level units, such as ideographs and

strokes. Table 1 shows examples of how words

in Chinese and Japanese are decomposed. Com-

pared with words, the ideograph and stroke se-

quences have a higher proportion of shared parts ;

shared parts are very useful for byte pair encoding

(BPE) algorithms and shared vocabularies in ma-
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chine translation systems. Given this significant

difference, it is worth asking whether natural lan-

guage processing (NLP) methods that are success-

ful for alphabetic languages will also work for logo-

graphic languages.

The idea of integrating sub-character-level infor-

mation into NLP tasks is not entirely new. For

example, such information helps in training bet-

ter word embeddings (Shi et al., 2015; Peng et

al., 2017) and text classification systems (Toyama

et al., 2017). Recently, Zhang et al. (2018) have

demonstrated that sub-character level information

will help Chinese–Japanese supervised NMT sys-

tems on both the encoder and decoder sides. How-

ever, there is still no study on logographic UNMT

systems.

Therefore, this study attempted to answer the fol-

lowing questions:

1. Is UNMT effective for logographic language

pairs, such as Chinese–Japanese, particularly

when sub-character-level information is used?

2. What is the influence of the shared token rate

on UNMT?

2 Background

2.1 Chinese Characters

Chinese and Japanese use structured strokes

to form ideographs and then form characters.

(Japanese also has kanas, which function as pho-

netic letters.) According to the UNICODE 10.0

standard, there are 36 strokes (such as “㇐,” “㇑,”

“㇓,” and “㇝,”) which compose hundreds of

ideographs1, and more than 90,000 different char-

acters. Table 2 shows examples of how strokes and

ideographs compose different characters.

2.2 The Structure of Transformer Units

The UNMT architecture, introduced in Section 2.3,

is built based on transformer units in which there

are three basic structures (Vaswani et al., 2017):

positional embedding (PE), multihead attention

(MA), and position-wise feedforward network

(FFN).

1The number depends on the definition of ideographs (usu-

ally around 500 or more).

Character Semantic

ideograph

Phonetic

ideograph

Pinyin

驰 run 马 horse 也 chí

池 pool 水(氵) water 也 chí

施 impose 方 direction 也 shī

弛 loosen 弓 bow 也 chí

地 land 土 soil 也 dì

驱 drive 马 horse 区 qū

Table 2: Examples of Chinese characters. (Pinyin is the

official romanization representing a character’s pronun-

ciation.) Both semantic and phonetic ideographs can be

shared across different characters for similar functions.

For example, “驰” and “驱,” both containing “马,” have

related meanings, while characters containing “也” are

usually pronounced similarly.

Positional embedding. The positional embedding

matrix is computed by two trigonometric functions,

given the token position pos and the hidden index i,
as shown in Equation 1. It is then applied to normal

pretrained embeddings by simple addition:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(1)

Functioning as an improved version of the tradi-

tional attentionmechanism (Equation 2), multihead

attention computes scaled attention scores on split

query, key, and value pairs according to Equa-

tion 3, and then concatenates the results. In Equa-

tion 3, QWQ
i , KWK

i , and VW V
i are Qi, Ki, and

Vi, respectively, projected by FFNs.

Multihead attention. The MA that takes identical

hidden states as Q, K, and V is the so-called “self

attention.” TheMA that takes target states asQ and

source states as K and V is the so-called “context

attention.”

Attention(Q,K, V ) = softmax(QKT /
√

dk)V (2)

MultiHead(Q,K, V ) = Concat(h1, ..., hi)W
o

hi = Attention(QWQ
i ,KWK

i , V WV
i )

(3)

Position-wise FFN. The position-wise FFN is a

combination of two FFNs with a ReLU activation

function in between, as shown in Equation 4.
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Figure 1: The architecture of the unsupervised NMT

model. The green arrows indicate the direction of data

flow in encoder–decoder language models, while the

red arrows indicate the direction of data flow in back-

translation models. The dotted lines are losses com-

puted on the same language; therefore, no supervision

is needed.

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

Each encoder layer contains one “self MA” and

one FFN; each decoder layer contains one “self

MA,” one “context MA,” and one FFN. Encoders

will first embed the source sequence using source

PE and feed the output to stacked encoder layers

to obtain the encoder hidden state. The decoders

will take the encoder state and embed the target

sequence using target PE, and then feed both of

them to stacked decoder layers to obtain the de-

coder state. Like normal NMT systems, a linear

layer and a softmax layer are used to project the de-

coder state to vocabulary scores.

2.3 The UNMT Architecture

The UNMT architecture uses two transformer en-

coders and two transformer decoders to form two

“encoder–decoder language models” (LM) and

two “back-translation models” (BT) in a crossed

fashion, as shown in Figure 1:

• L1 LM: L1 mono⇒ L1 encoder⇒L1 decoder

⇒L1 output

• L2 LM: L2 mono⇒L2 encoder⇒L2 decoder

⇒L2 output

• L1 BT: L1 mono ⇒L1 encoder ⇒L2 decoder

⇒L2 synthetic ⇒L2 encoder ⇒L1 decoder

⇒L1 output

• L2 BT: L2 mono ⇒L2 encoder ⇒L1 decoder

⇒L1 synthetic ⇒L1 encoder ⇒L2 decoder

⇒L2 output

In this architecture, all four losses are computed

within the same language so that no supervision is

needed.

There are three key structures that underpin the

approach to UNMT systems:

Shared BPE Embeddings. Instead of mapping

two monolingual embeddings together (Artetxe et

al., 2018), the shared BPE embeddings are trained

directly on the concatenated source and target

monolingual data. This was found efficient and ef-

fective for UNMT (Lample et al., 2018).

Encoder–Decoder Language Models. The

weights of the deeper layers of the encoders are of-

ten shared, to enhance performance. Alternatively,

an multi-layer perceptron (MLP) discriminator

can be added, to discriminate between the latent

representations produced by different encoders.2

Back-Translation Models. UNMT borrowed this

idea from Sennrich et al. (2016): the back-

translation models are trained jointly in both trans-

lation directions. Specifically, for one direction, the

forward NMTmodel first generates synthetic target

data, and then it is translated back to the source lan-

guage using the backward model.

3 Chinese–Japanese Sub-character Level

UNMT

In addition to validating the effectiveness of UNMT

with the Chinese–Japanese language pair, this

study has further enhanced the shared informa-

tion by decomposing characters into ideographs and

strokes3.

2It is claimed to be better to have a discriminator that takes

the output of the two encoders and to adversarially train it with

the translation model (Lample et al., 2018). However, in our

experiment, we find this to be effective only for distant lan-

guage pairs; it makes little difference to the result with similar

language pairs, such as Chinese–Japanese, as in our setting.

Therefore, we disregard the discriminator here.
3In the character-level corpus that we use, the average word

length of Chinese and Japanese from dictionary-based tokeniz-

ers are 1.7 and 2.2, respectively, which is too short for a BPE

algorithm to obtain better shared information. Longer decom-

posed sequences would be preferable.
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3.1 Character Decomposition

Both Chinese and Japanese data are encoded us-

ing UNICODE in which similar CJK (Chinese-

Japanese-Korean) characters are merged into one

type. The CHISE project4 provides decomposed

mapping information from CJK characters to pre-

defined ideograph sequences. There are 394

ideographs and 19 special symbols for “unclear”

ideographs. In addition, there are 11 “ideographic

description characters” (IDCs) to describe the

structural relationship between ideographs, which

can help to reduce the ambiguity of the decomposed

data.

Based on the CHISE project , we developed a de-

composition tool called “textprep” to decompose

character-level tokenized data to sub-character-

level ideograph and stroke data with no ambiguity5.

This means that both Chinese and Japanese data can

be decomposed to ideograph and stroke sequences

and composed back to character sequences. To en-

able this, a special duplication marker (“〾”) is

added in minor ambiguous cases. In addition, all of

the ideographs were manually transcribed to stroke

sequences. A corpus with no structural informa-

tion was also created, for comparison reasons, by

removing IDCs and adding necessary duplication

markers. Table 1 contains examples of various lev-

els of character decomposition in the training cor-

pus.

3.2 Controlling Shared Tokens

Lample et al. (2018) have successfully made 95%

of the BPE tokens in the English–German language

pair shared across the training set, indicating that

the greater the proportion of token sharing, the bet-

ter a UNMT system will perform. Our study sam-

pled from the same dataset with a controlled rate of

token sharing, to gain a better understanding of this

notion. Algorithm 1 takes the token sharing rate r,
top-k value k, and sample size N as parameters.

4 Experiments

To answer the research questions, two lines of ex-

periments were performed. The Japanese–Chinese

4http://www.chise.org/
5https://github.com/vincentzlt/textprep

Algorithm 1: Sharing Rate Sampling

Data: source/target sentences

Input: r, k,N
Output: source/target sentences with r

sharing rate (sample)
Init:

current_r, vocab, shared_vocab, sample;
while len(sample) < N do

current_sample ∼ randomly sample

8× k sentences;

calculate sentence-level sharing rate sr
based on shared_vocab;
sort sample in descending order of sr;
if current_r < r then

select top k sentences;

else

select bottom k sentences;

end

add selected sentences to sample;
update

current_r, vocab, shared_vocab;
remove current_sample from datasets;

end

portion of the Asian Scientific Paper Excerpt Cor-

pus (ASPEC-JC (Nakazawa et al., 2016)) was used.

Although this is a parallel corpus, we shuffled it and

used it monolingually. The official training/devel-

opment/testing split contains 670,000 Chinese and

Japanese sentences for training andmore than 2,000

sentences for evaluating and testing. Word level

BLEU scores are used as the evaluation metric.

Sub-character-level UNMT. The baseline is a

UNMT system trained on Chinese–Japanesemono-

lingual data, which are first pre-tokenized into

words, and then BPE’ed using fastBPE6. We call

this the character-level baseline because no sub-

character-level units are involved. The experiments

are to compare it against UNMT systems trained on

sub-character-level data, which are directly decom-

posed from character-level data and then BPE’ed

using fastBPE. In sub-character-level data, the pres-

ence of structural information was also controlled

by adding or removing IDCs.

6https://github.com/glample/fastBPE
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Granularity JA–ZH ZH–JA

Character 24.18 (29.60) 29.79 (40.00)

Ideograph
w/ IDCs 25.76∗ 32.61∗

w/o IDCs 25.14∗ (32.00) 32.17∗ (42.60)

Stroke
w/ IDCs 26.39∗ 32.99∗

w/o IDCs 24.75∗ (32.10) 30.59∗ (42.20)

Table 3: BLEU scores (∗ for statistically significant

score against baseline at p < 0.0001) of UNMT (larger

fonts) and supervised NMT systems (Zhang and Ko-

machi, 2018) (smaller fonts in parentheses) on test sets.

UNMT with different token sharing. We sampled

data (N = 300, 000) from the same monolingual

corpus using Algorithm 1 with a controlled token

sharing rate (r) of 0.5, 0.7, and 0.9. This is because
UNMT systems trained on stroke-level data with

IDCs achieved the best performance in preliminary

experiments.

For pre-tokenization of the data, Jieba7 was ap-

plied to Chinese using the default dictionary and

MeCab8 was applied to Japanese using the IPA

dictionary. For BPE training, the vocabulary size

was set to 30,000. We used 4-layer standard trans-

former (Vaswani et al., 2017) units as our two en-

coders and decoders. The embedding size was 512;

the hidden size of the fully connected network was

2048; the weights of the last three layers of the en-

coders were shared; the number of multi-attention

heads was 8. During training, the dropout rate was

set to 0.1 and both vocabularies and embeddings

were shared. 10% of input and output sentences

were randomly blanked out to add noise to the lan-

guagemodel training. We used the Adam optimizer

with a learning rate of 0.0001.

5 Results

5.1 Sub-character Level UNMT

Table 3 shows the results for sub-character-level

UNMT in both translation directions. Comparing

with the character-level baseline, all sub-character-

level models have better BLEU scores. In both

stroke and ideograph systems, IDCs in the data

can further enhance the performance. However,

7https://github.com/fxsjy/jieba
8http://taku910.github.io/mecab/

r JA–ZH ZH–JA

0.5 19.72 25.23
0.7 23.60 28.32
0.9 23.04 28.84

Table 4: BLEU scores with different token sharing rates

on test set.

for ideograph systems, removing structural infor-

mation did not decrease the performance much,

whereas a significant drop was observed in stroke

systems without structural information. The best

UNMT system was trained on stroke data with

structural information, in both translation direc-

tions. This contrasts with the finding of Zhang and

Komachi (2018) on supervised NMT systems: that

when both source and target data had the same gran-

ularity, ideograph systems outperformed stroke sys-

tems in both translation directions.

5.2 UNMT with Different Share Token Rates

Table 4 shows the results for UNMT systems us-

ing data with different share token rates. When

r = 0.5, the system recorded the lowest perfor-

mance; however, when r increased to 0.7 and 0.9,
the performance differences became negligible . In

contrast with Lample et al. (2018), in our previous

sub-character experiments, only 66% to 68% of the

tokens were shared but we could still achieve rela-

tively good BLEU scores .

6 Discussion

This study has confirmed the effectiveness of

UNMT systems on small Chinese–Japanese

datasets, with a much lower token sharing rate

than Lampel et al. (2018). Although the BLEU

score is not as high as most RNN-based and

transformer-based supervised NMT systems, it is

still promising, not only because of its translation

quality, but also because it greatly broadens the

scope of machine translation applications.

6.1 Translation Quality

In both translation directions, there were many syn-

onymous expressions produced that lowered the

BLEU score. However, according to native speak-

ers’ judgement, they tended to be good translations
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Type Sentence

Reference–JA 図 3 に 「 会 」 が 固有 表現 で ある か 否 か を 判定 する 2 つ の 例文 を

示し た .

Reference–ZH 图 3 所示 的 是 2 个 关于 判断 “ 会 ” 是否是 固有 表达 的 例句 。

Character–JA 図 3 に 示す よう な 2 つ の 判断 について 「 会 」 が 固有 表現 で ある か

どう か を 判断 する 例文 を 示す .

Character–ZH 图 3 中 显示 了 判定 “ 会 ” 是 固有 名词 还是 有 2 个 例句 。

Ideograph–JA 図 3 に 示す よう に 2 つ の 判断 「 会 」 が 固有 表現 で ある か どう か

について の 例文 を 示す .

Ideograph–ZH 图 3 中 显示 了 判定 “ 会 ” 是否是 固有 名词 的 2 个 例句 。

Stroke–JA 図 3 に 示す の は , 2 つ の 判断 について 「 会 」 が 固有 表現 の 例文 で

ある か どう か で ある

Stroke–ZH 图 3 中 显示 了 判定 “ 会 ” 是否是 固有 表达 的 2 个 例句 。

English Figure 3 showed 2 example sentences of judging whether “会” is an inherent expression.

Table 5: Translation examples from three UNMT models in six translation directions.

in respect of grammaticality, fluency, and natural-

ness. For example, in Table 5, the character-level

system’s Chinese translation “中 显示” (“inwhich

shows”) was very close to the reference “所示”

(“as shown in”) semantically, and it was consis-

tent in the ideograph-level and stroke-level mod-

els. A similar example is “判断” (“judge”) in refer-

ence and “判定” (“determine”) in hypothesis. This

might be because of the encoder–decoder language

models, which successfully grasp the language fea-

tures and express them in the translation. Conse-

quently, if semantic metrics could be introduced,

the performance of UNMTmight be better reflected

in the results.

6.2 Shared Information and Proportion of

Shared Tokens

Zhang et al. (2018) showed that shared informa-

tion in the form of sub-character-level information

can help supervised NMT systems; this study found

a similar phenomenon, although with a different

granularity preference. This is largely a result of

better shared information. For example, in Table 5,

despite the fact that translations produced by ideo-

graph and stroke models were better than those of

the character model, the stroke model was slightly

better than the ideograph model because it trans-

lated the Japanese “表現” (“expression”) into Chi-

nese “表达” (“expression”), which was more pre-

cise than the ideograph model’s “名词” (“none”).

However, current unsupervised models still per-

form poorly on distant language pairs. If the shared

information between distant language pairs can be

improved, UNMT may work for more general pur-

poses. Additionally, although a low proportion of

shared tokens can harm the performance, a high

proportion does not linearly improve the perfor-

mance.

7 Conclusion

The effectiveness of UNMT models on the lo-

gographic language pair, Chinese–Japanese, is

quite promising, even when using a small training

dataset. However, to evaluate its performance more

accurately, better semantic metrics are required. Fi-

nally, a relatively high proportion of shared tokens

is required for good UNMT (around 70%), but a

higher shared token rate seems unnecessary.
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