
On the Effectiveness of Low-Rank Matrix Factorization for
LSTM Model Compression

Genta Indra Winata, Andrea Madotto, Jamin Shin, Elham J. Barezi, Pascale Fung
Center for Artificial Intelligence Research (CAiRE)

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

{giwinata,amadotto,jmshinaa,ejs}@connect.ust.hk
pascale@ece.ust.hk

Abstract

Despite their ubiquity in NLP tasks, Long
Short-Term Memory (LSTM) networks suffer
from computational inefficiencies caused by
inherent unparallelizable recurrences, which
further aggravates as LSTMs require more pa-
rameters for larger memory capacity. In this
paper, we propose to apply low-rank matrix
factorization (MF) algorithms to different re-
currences in LSTMs, and explore the effec-
tiveness on different NLP tasks and model
components. We discover that additive re-
currence is more important than multiplica-
tive recurrence, and explain this by identify-
ing meaningful correlations between matrix
norms and compression performance. We
compare our approach across two settings: 1)
compressing core LSTM recurrences in lan-
guage models, 2) compressing biLSTM layers
of ELMo evaluated in three downstream NLP
tasks.

1 Introduction

Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997;
Gers et al., 2000) have become the core of many
models for tasks that require temporal dependency.
They have particularly shown great improvements
in many different NLP tasks, such as Language
Modeling (Sundermeyer et al., 2012; Mikolov,
2012), Semantic Role Labeling (He et al., 2017),
Named Entity Recognition (Lee et al., 2017),
Machine Translation (Bahdanau et al., 2014), and
Question Answering (Seo et al., 2016). Recently,
a bidirectional LSTM has been used to train deep

contextualized Embeddings from Language Models
(ELMo) (Peters et al., 2018), and has become a
main component of state-of-the-art models in many
downstream NLP tasks.

However, there is an obvious drawback of scal-
ability that accompanies these excellent perfor-
mances, not only in training time but also during in-
ference time. This shortcoming can be attributed to
two factors: the temporal dependency in the compu-
tational graph, and the large number of parameters
for each weight matrix. The former problem is an
intrinsic nature of RNNs that arises while modeling
temporal dependency, and the latter is often deemed
necessary to achieve better generalizability of the
model (Hochreiter and Schmidhuber, 1997; Gers et
al., 2000). On the other hand, despite such belief
that the LSTM memory capacity is proportional to
model size, several recent results have empirically
proven the contrary, claiming that LSTMs are indeed
over-parameterized (Denil et al., 2013; James Brad-
bury and Socher, 2017; Merity et al., 2018; Melis et
al., 2018; Levy et al., 2018).

Naturally, such results motivate us to search for
the most effective compression method for LSTMs
in terms of performance, time, and practicality,
to cope with the aforementioned issue of scala-
bility. There have been many solutions proposed
to compress such large, over-parameterized neu-
ral networks including parameter pruning and shar-
ing (Gong et al., 2014; Huang et al., 2018), low-
rank Matrix Factorization (MF) (Jaderberg et al.,
2014), and knowledge distillation (Hinton et al.,
2015). However, most of these approaches have
been applied to Feed-forward Neural Networks and

253
33rd Pacific Asia Conference on Language, Information and Computation (PACLIC 33), pages 253-262, Hakodate, Japan, September 13-15, 2019

Copyright © 2019 Genta Indra Winata, Andrea Madotto, Jamin Shin, Elham J. Barezi and Pascale Fung

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286965245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Convolutional Neural Networks (CNNs), while only
a small attention has been given to compressing
LSTM architectures (Lu et al., 2016; Belletti et
al., 2018), and even less in NLP tasks. No-
tably, (2016a) applied parameter pruning to stan-
dard Seq2Seq (Sutskever et al., 2014) architecture
in Neural Machine Translation, which uses LSTMs
for both encoder and decoder. Furthermore, in lan-
guage modeling, (2017) uses Tensor-Train Decom-
position (Oseledets, 2011), (2018) uses binarization
techniques, and (2017) uses an architectural change
to approximate low-rank factorization.

All of the above mentioned works require some
form of training or retraining step. For instance,
(2017) requires to be trained completely from
scratch, as well as distillation based compression
techniques (Hinton et al., 2015). In addition, prun-
ing techniques (See et al., 2016a) often accompany
selective retraining steps to achieve optimal perfor-
mance. However, in scenarios involving large pre-
trained models, e.g., ELMo (Peters et al., 2018), re-
training can be very expensive in terms of time and
resources. Moreover, compression methods are nor-
mally applied to large and over-parameterized net-
works, but this is not necessarily the case in our
paper. We consider strongly tuned and regular-
ized state-of-the-art models in their respective tasks,
which often already have very compact representa-
tions. These circumstances make the compression
much more challenging, but more realistic and prac-
tically useful.

In this work, we advocate low-rank matrix fac-
torization as an effective post-processing compres-
sion method for LSTMs which achieve good perfor-
mance with guaranteed minimum algorithmic speed
compared to other existing techniques. We summa-
rize our contributions as the following:

• We thoroughly explore the limits of several
different compression methods (matrix factor-
ization and pruning), including fine-tuning af-
ter compression, in Language Modeling, Senti-
ment Analysis, Textual Entailment, and Ques-
tion Answering.

• We consistently achieve an average of 1.5x
(50% faster) speedup inference time while los-
ing ∼1 point in evaluation metric across all

datasets by compressing additive and/or mul-
tiplicative recurrences in the LSTM gates.

• In PTB, by further fine-tuning very compressed
models (∼98%) obtained with both matrix fac-
torization and pruning, we can achieve ∼2x
(200% faster) speedup inference time while
even slightly improving the performance of the
uncompressed baseline.

• We discover that matrix factorization performs
better in general, additive recurrence is often
more important than multiplicative recurrence,
and we identify clear and interesting correla-
tions between matrix norms and compression
performance.

2 Related Work

The current approaches of model compression are
mainly focused on matrix factorization, pruning, and
quantization. The effectiveness of these approaches
were shown and applied in different modalities.
In speech processing, (2008; 2013; 2014; 2014)
studied the effectiveness of Non-Matrix Factoriza-
tion (NMF) on speech enhancement by reducing
the noisy speech interference. Matrix factorization-
based techniques were also applied in image cap-
tioning (Hong et al., 2016; Li et al., 2017) by ex-
ploiting the clustering intepretations of NMF. Semi-
NMF, proposed by (2010), relaxed the constraints
of NMF to allow mixed signs and extend the pos-
sibility to be applied in non-negative cases. (2014)
proposed a variant of the Semi-NMF to learn low-
dimensional representation through a multi-layer
structure. (2018) proposed to replace GRUs with
low-rank and diagonal weights to enable low-rank
parameterization of LSTMs. (2017) modifed LSTM
structure by replacing input and hidden weights with
two smaller partitions to boost the training and infer-
ence time.

On the other hand, compression techniques can
also be applied as post-processing steps. (2017) in-
vestigated low-rank factorization on standard LSTM
model. The Tensor-Train method has been used to
train end-to-end high-dimensional sequential video
data with LSTM and GRU (Yang et al., 2017; Tjan-
dra et al., 2017). In another line of work, (2016b) ex-
plored pruning in order to reduce the number of pa-

254

rameters in Neural Machine Translation. (2018) pro-
posed to zero out the weights in the network learning
blocks to remove insignificant weights of the RNN.
Meanwhile, (2018) proposed to binarize LSTM Lan-
guage Models. Finally, (2016) proposed to use all
pruning, quantization, and Huffman coding to the
weights on AlexNet.

3 Methodology

3.1 Long-Short Term Memory Networks
Long-Short Term Memory (LSTMs) networks are
parameterized with two large matrices, Wi, and
Wh. LSTM captures long-term dependencies in the
input and avoids the exploding/vanishing gradient
problems on the standard RNN. The gating layers
control the information flow within the network and
decide which information to keep, discard, or update
in the memory. The following recurrent equations
show the LSTM dynamics: it

ft
ot

ĉt

 =

 σ
σ
σ

tanh

 (Wi Wh)

(
xt

ht−1

)
, (1)

Wi =

Wi
i

Wf
i

Wo
i

Wc
i

 ,Wh =

Wi
h

Wf
h

Wo
h

Wc
h

 , (2)

ct = ft � ct−1 + it � ĉt,

ht = ot � tanh(ct).
(3)

where xt ∈ Rninp , and ht ∈ Rndim at time
t. Here, σ(·) and � denote the sigmoid function
and element-wise multiplication operator, respec-
tively. The model parameters can be summarized
in a compact form with: Θ = [Wi,Wh], where
Wi ∈ R4∗ninp×4∗ndim which is the input matrix, and
Wh ∈ R4∗ndim×4∗ndim which is the hidden matrix.
Note that we often refer Wi as additive recurrence
and Wh as multiplicative recurrence, following ter-
minology of (2018).

3.2 Low-Rank Matrix Factorization
We consider two Low-Rank Matrix Factorization for
LSTM compression: Truncated Singular Value De-
composition (SVD) and Semi Non-negative Matrix
Factorization (Semi-NMF). Both methods factorize
a matrix W into two matrices Um×r and Vr×n such

that W = UV (Fazel, 2002). SVD produces a fac-
torization by applying orthogonal constraints on the
U and V factors along with an additional diago-
nal matrix of singular values, where instead Semi-
NMF generalizes Non-negative Matrix Factoriza-
tion (NMF) by relaxing some of the sign constraints
on negative values for U and W. The computa-
tion advantage, compared to pruning methods which
require a special implementation of sparse matrix
multiplication, is that the matrix W requires mn
parameters and mn flops, while U and V require
rm+rn = r(m+n) parameters and r(m+n) flops.
If we take the rank to be very low r << m,n, the
number of parameters in U and V is much smaller
compared to W.

As elaborated in Equation 1, a basic LSTM cell
includes four gates: input, forget, output, and cell
state, performing a linear combination on input at
time t and hidden state at time t − 1. We propose
to replace Wi, Wh pair for each gate with their
low-rank decomposition, either SVD or Semi-NMF
(Ding et al., 2010), leading to a significant reduction
in memory and computational cost requirement. The
general objective function is given as:

W
m×n

= U
m×r

V
r×n

, (4)

minimize
U,V

||W −UV||2F . (5)

3.3 Truncated Singular Value Decomposition
(SVD)

One of the constrained matrix factorization method
is based on Singular Value Decomposition (SVD)
which produces a factorization by applying orthog-
onal constraints on the U and V factors. These ap-
proaches aim to find a linear combination of the ba-
sis vectors which restrict to the orthogonal vectors in
feature space that minimize reconstruction error. In
the case of the SVD, there are no restrictions on the
signs of U and V factors. Moreover, the data matrix
W is also unconstrained.

W = USV, (6)

minimize
U,S,V

||W −USV||2F . (7)

s.t. U and V are orthogonal, and S is diagonal.
The optimal values Ur

m×r, Sr
r×r, Vr

r×n for Um×n,

255

≈

U
f

i
U

f

h

V
f

i
V

f

h

ht−1

xt

U
i
i

U
i
h

V
i
i

V
i
h

U
c
i

U
c
h

V
c
i

V
c
h

U
o
i

U
o
h

V
o
i

V
o
h

σ σ tanh σ

⊙

+⊙ct−1

⊙

tanh

ct

ht

U
f

i
U

f

h

V
f

i
V

f

h

∗U
f

i V
f

i ∗U
f

h V
f

h

ht−1xtht−1xt

Figure 1: Factorized LSTM Cell

Sn×n, and Vn×n are obtained by taking the top r
singular values from the diagonal matrix S and the
corresponding singular vectors from U and V.

3.4 Semi-NMF

Semi-NMF generalizes Non-negative Matrix Factor-
ization (NMF) by relaxing some of the sign con-
straints on negative values for U and W (V has
to be kept positive). Semi-NMF is more prefer-
able in application to Neural Networks because of
this generic capability of having negative values.
To elaborate, when the input matrix W is uncon-
strained (i.e., contains mixed signs), we consider
a factorization, in which we restrict V to be non-
negative, while having no restriction on the signs of
U. We minimize the objective function as in Equa-
tion 8.

W± ≈ U±V+, (8)

minimize
U,V

||W −UV||2F s.t. V ≥ 0. (9)

The optimization algorithm iteratively alternates
between the update of U and V using coordinate
descent (Luo and Tseng, 1992).

3.5 Pruning

We use the pruning methodology used in LSTMs
from (2015) and (2016b). To elaborate, for each
weight matrix Wi,h, we mask the low-magnitude
weights to zero, according to the compression ratio

Table 1: The table shows the total parameters, perplex-
ity, and compression efficiency (lower is better) on PTB
Language Modeling task. ‡We reproduced the results.

PTB Param. w/o fine-tuning w/ fine-tuning
PPL E(r) PPL E(r)

AWD-LSTM 24M 58.3‡ - 57.3 -
TT-LSTM 12M 168.6 2.92† - -
Semi-NMF Wh (r=10) 9M 78.5 0.72 58.11 -0.02
SVD Wh (r=10) 9M 78.07 0.32 58.18 -0.02
Pruning Wh (r=10) 9M 83.62 0.89 57.94 -0.03
Semi-NMF Wh (r=400) 18M 59.7 0.05 57.84 -0.02
SVD Wh (r=400) 18M 59.34 0.006 57.81 -0.02
Pruning Wh (r=400) 18M 59.47 0.03 57.19 -0.04
Semi-NMF Wi (r=10) 15M 485.4 19.81 81.4 1.04
SVD Wi (r=10) 15M 462.19 6.83 88.12 1.35
Pruning Wi (r=10) 15M 676.76 28.69 82.23 1.08
Semi-NMF Wi (r=400) 20M 62.7 0.42 58.47 -0.01
SVD Wi (r=400) 20M 60.59 0.02 58.04 -0.01
Pruning Wi (r=400) 20M 59.62 0.10 57.65 -0.02

of the low-rank factorization1.

4 Evaluation

We evaluate using five different publicly available
datasets spanning two domains: 1) Perplexity in
two different Language Modeling (LM) datasets, 2)
Accuracy/F1 in three downstream NLP tasks that
ELMo achieved the state-of-the-art single-model
performance. We also report the number of param-
eters, efficiency E(r) (ratio of loss in performance
to parameters compression), and inference time 2 in
test set.

1We align the pruning rate with the rank with r(m+n)
mn

.
2Using an Intel(R) Xeon(R) CPU E5-2620 v4 @2.10GHz.

256

Table 2: The table shows the total parameters, perplex-
ity, and compression efficiency (lower is better) on WT-2
Language Modeling task. ‡We reproduced the results.

WT-2 Params PPL E(r)
AWD-LSTM 24M 65.67‡ -
Semi-NMF Wh (r=10) 9M 102.17 65.14
SVD Wh (r=10) 9M 99.92 62.49
Pruning Wh (r=10) 9M 109.16 72.64
Semi-NMF Wh (r=400) 18M 66.5 4.33
SVD Wh (r=400) 18M 66.1 2.28
Pruning Wh (r=400) 18M 66.23 2.94
Semi-NMF Wi (r=10) 15M 481.61 197.57
SVD Wi (r=10) 15M 443.49 194.89
Pruning Wi (r=10) 15M 856.87 211.23
Semi-NMF Wi (r=400) 20M 68.41 22.68
SVD Wi (r=400) 20M 67.11 12.18
Pruning Wi (r=400) 20M 66.37 5.97

We benchmark the LM capability using Penn
Treebank (Marcus et al., 1993, PTB) and WikiText-
2 (Merity et al., 2017, WT2). For the downstream
NLP tasks, we evaluate our method in the Stan-
ford Question Answering Dataset (Rajpurkar et al.,
2016, SQuAD) the Stanford Natural Language In-
ference (Bowman et al., 2015, SNLI) corpus, and the
Stanford Sentiment Treebank (Socher et al., 2013,
SST-5) dataset.

For all datasets, we run experiments across differ-
ent levels of low-rank approximation r with Semi-
NMF and SVD, averaged over 5 runs, and compare
with Pruning with same compression ratio. We also
compare the factorization efficiency when only one
of Wi or Wh was factorized. This is done in order
to see which recurrence type (additive or multiplica-
tive) is more suitable for compression.

4.1 Measure

For evaluating the performance of the compression
we define efficiency measure as:

E(r) =
R(M,M r)

R(P, P r)
(10)

whereM represent any evaluation metric (i.e. Accu-
racy, F1-score, Perplexity3), P represents the num-

3Note that for Perplexity, we use R(Mr,M) instead, be-
cause lower is better.

ber of parameters4, and R(a, b) = a−b
a where a =

max(a, b), i.e. the ration. This indicator shows the
ratio of loss in performance versus the loss in num-
ber of parameter. Hence, an efficient compression
holds a very smallE since the denominator, P−P r,
became large just when the number of parameter de-
creases, and the numerator, M −M r, became small
only if there is no loss in the considered measure.
In some cases E became negative if there is an im-
provement.

4.2 Language Modeling (LM)

We train a 3-layer LSTM Language Model proposed
by (Merity et al., 2018), following the same training
details for both datasets, using their released code 5.
In PTB, we fine-tune the compressed model for sev-
eral epochs. Table 1 reports the perplexity among
different ranks in Wi,h. It is clear that compressing
Wh works notably better than Wi. We achieve sim-
ilar results for WT-2. In general, SVD has the lowest
perplexity among others. This difference becomes
more evident for higher compression (e.g., r=10).
Moreover, all the methods perform better than the
result reported by (Grachev et al., 2017) using Ten-
sor Train (TT-LSTM). Using fine-tuning with rank
10 all the methods we achieve a small improvement
compared to the baseline with a 2.13x speedup.

4.3 NLP Tasks with ELMo

To highlight the practicality of our proposed method,
we also measure the factorization performances with
models using pre-trained ELMo (Peters et al., 2018),
as ELMo is essentially a 2-layer bidirectional LSTM
Language Model that captures rich contextualized
representations. Using the same publicly released
pre-trained ELMo weights 6 as the input embedding
layer of all three tasks, we train publicly available
state-of-the-art models as in (Peters et al., 2018):
BiDAF (Seo et al., 2016) for SQuAD, ESIM (Chen
et al., 2017) for SNLI, and BCN (McCann et al.,
2017) for SST-5. Similar to the Language Mod-
eling tasks, we low-rank factorize the pre-trained
ELMo layer only, and compare the accuracy and F1
scores across different levels of low-rank approxi-

4P r and Mr are the parameter and the measure after semi-
NMF of rank r

5https://github.com/salesforce/awd-lstm-lm
6https://allennlp.org/elmo

257

Table 3: The table shows the Accuracy/F1 with ELMo.

SST-5 r=10 r=400 Best
Acc. E(r) Acc. E(r) Acc. (avg) E(r) (avg)

BCN - - - - 53.7‡ -
BCN + ELMo - - - - 54.5‡ -
Semi-NMF Wh 50.18 0.29 53.93 0.21 54.16 (52.93) 0.09 (0.17)
SVD Wh 50.4 0.27 54.11 0.13 54.11 (52.84) 0.12 (0.17)
Pruning Wh 50.81 0.25 54.66 -0.03 54.88 (53.59) -0.07 (0.06)
Semi-NMF Wi 38.23 1.1 54.11 0.15 54.11 (50.56) 0.12 (0.34)
SVD Wi 40.58 0.94 54.34 0.05 54.38 (51.19) 0.02 (0.26)
Pruning Wi 34.57 1.35 54.61 -0.01 54.66 (50.01) -0.02 (0.33)

SNLI r=10 r=400 Best
Acc. E(r) Acc. E(r) Acc. (avg) E(r) (avg)

ESIM - - - - 88.6 -
ESIM + ELMo - - - - 88.5‡ -
Semi-NMF Wh 87.24 0.04 88.45 0.01 88.47 (88.18) 0.003 (0.01)
SVD Wh 87.27 0.04 88.46 0.005 88.46 (88.18) 0.003 (0.01)
Pruning Wh 87.51 0.03 88.53 -0.003 88.53 (88.23) -0.003 (0.01)
Semi-NMF Wi 77.08 0.39 88.44 0.01 88.44 (86.59) 0.01 (0.07)
SVD Wi 78.15 0.35 88.48 0.002 88.48 (86.77) 0.007 (0.06)
Pruning Wi 73.67 0.5 88.48 0.005 88.5 (85.8) 0.001 (0.09)

SQuAD r=10 r=400 Best
F1 E(r) F1 E(r) F1 (avg) E(r) (avg)

BiDAF - - - - 77.3‡ -
BiDAF + ELMo - - - - 81.75‡ -
Semi-NMF Wh 76.59 0.21 81.55 0.04 81.55 (80.32) 0.03 (0.07)
SVD Wh 76.72 0.21 81.62 0.027 81.62 (80.47) 0.02 (0.06)
Pruning Wh 52.02 0.49 81.73 0.006 81.65 (80.6) 0.006 (0.05)
Semi-NMF Wi 60.69 0.88 81.78 -0.0003 81.78 (77.93) -0.0003 (0.17)
SVD Wi 57.14 1.03 81.78 -0.0003 81.78 (77.69) -0.0003 (0.17)
Pruning Wi 52.02 1.24 81.73 0.004 81.73 (76.06) 0.004 (0.25)

mation. Note that although many of these models
are based on RNNs, we factorize only the ELMo
layer in order to show that our approach can effec-
tively compress pre-trained transferable knowledge.
As we only compress the ELMo weights, and other
layers of each model also have large number of pa-
rameters, the inference time is affected less than in
Language Modeling tasks. The percentage of pa-
rameters in the ELMo layer for BiDAF (SQuAD) is
59.7%, for ESIM (SNLI) 67.4%, and for BCN (SST-
5) 55.3%.

From Table 3, for SST-5 and SNLI, we can see that
compressing Wh is in general more efficient and
better performing than compressing Wi, except for
SVD in SST-5. On the other hand, for the results on
SQuAD, Table 3 shows the opposite trend, in which
compressing Wi constantly outperforms compress-
ing Wh for all methods we experimented with. In
fact, we can see that, in average, using highly com-
pressed ELMo with BiDAF still performs better than
without. Overall, we can see that for all datasets, we

achieve performances that are not significantly dif-
ferent from the baseline results even after compress-
ing over more than 10M parameters.

4.4 Norm Analysis

In the previous section, we observe two interesting
points: 1) Matrix Factorization (MF) works consis-
tently better in PTB and Wiki-Text 2, but Pruning
works better in ELMo for Wh, 2) Factorizing Wh

is generally better than factorizing Wi. To answer
these questions, we collect the L1 norm and Nu-
clear norm statistics, defined in Figure 2, comparing
among Wh and Wi for both PTB and ELMo. L1
and its standard deviation (std) together describe the
sparsity of a matrix, and Nuclear norm approximates
the matrix rank.

MF versus Pruning in Wi From the results, we
observe that MF performs better than Pruning in
compressing Wi for high compression ratios. Fig-
ure 2 shows rank r versus L1 norm and its standard

258

0 200 400

r

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

(a) �(kWr
i k1)

0 200 400

r

0.000005

0.000010

0.000015

0.000020

0.000025
(b) �(kWr

hk1)

LM MF

LM Prune

LM uncompressed

ELMo MF

ELMo Prune ELMo uncompressed

0 200 400

r

0.00005

0.00010

0.00015

0.00020

(c) kWr
i k1

0 200 400

r

0.0001

0.0002

0.0003

0.0004

(d) kWr
hk1

0 200 400

r

0.0000

0.0005

0.0010

0.0015

0.0020

(e) kWr
i kNuc

0 200 400

r

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

(f) kWr
hkNuc

Figure 2: Norm analysis comparisons between MF and Pruning in Language Modeling (PTB) and ELMo. Rank versus
(a) σ(‖Wi‖1) (b) σ(‖Wh‖1) (c) ‖Wi‖1 (d) ‖Wh‖1 (e) ‖Wi‖Nuc (f) ‖Wh‖Nuc.

Figure 3: Heatmap LSTM weights on PTB.

Figure 4: Heatmap of ELMo forward weights.

deviation, in both PTB and ELMo. The first notable
pattern from Figure 2 Panel (a) is that MF and Prun-
ing have diverging values from r ≤ 200. We can
see that Pruning makes the std of L1 lower than the
uncompressed, while MF monotonically increases

the std from uncompressed baseline. This means
that as we approximate to lower ranks (r ≤ 200),
MF retains more salient information, while Pruning
loses some of that salient information. This can be
clearly shown from Panel (c), in which Pruning al-
ways drops significantly more in L1 than MF does.

MF versus Pruning in Wh The results for Wh

are also consistent in both PTB and WT2; MF works
better than Pruning for higher compression ratios.
On the other hand, results from Table 3 show that
Pruning works better than MF in Wh of ELMo even
in higher compression ratios.

We can see from Panel (d) that L1 norms of
MF and Pruning do not significantly deviate nor
decrease much from the uncompressed baseline.
Meanwhile, Panel (b) reveals an interesting pattern,
in which the std actually increases for Pruning and is
always kept above the uncompressed baseline. This
means that Pruning retains salient information for
Wh, while keeping the matrix sparse.

This behavior of Wh can be explained by the na-
ture of the compression and with inherent matrix
sparsity. In this setting, pruning is zeroing values
already close to zero, so it is able to keep the L1
stable while increasing the std. On the other hand,
MF instead reduces noise by pushing lower values
to be even lower (or zero) and keeps salient informa-
tion by pushing larger values to be even larger. This
pattern is more evident in Figure 3 and Figure 4, in
which you can see a clear salient red line in Wh that
gets even stronger after factorization (Uh × Vh).
Naturally, when the compression rate is low (e.g.,
r=300) pruning is more efficient strategy then MF.

259

Wi versus Wh We show the change in Nuclear
norm and their corresponding starting points (i.e.,
uncompressed) in Figure 2 Panels (e) and (f). No-
tably, Wh has a consistently lower nuclear norm
in both tasks compared to Wi. This difference is
larger for LM (PTB), in which ‖Wi‖Nuc is twice
of that of ‖Wh‖Nuc. By definition, having a lower
nuclear norm is often an indicator of low-rank in a
matrix; hence, we hypothesize that Wh is inherently
low-rank than Wi. We confirm this from Panel (d),
in which even with a very high compression ratio
(e.g., r = 10), the L1 norm does not decrease that
much. This explains the large gap in performance
between the compression of Wi and Wh. On the
other hand, in ELMo, this gap in norm is lower and
also shows smaller differences in performance be-
tween Wi and Wh, and also sometimes even the op-
posite in SQuAD. Hence, we believe that smaller nu-
clear norms lead to better performance for all com-
pression methods.

5 Conclusion

In conclusion, we empirically verified the limits
of compressing LSTM gates using low-rank ma-
trix factorization and pruning in four different NLP
tasks. Our experiment results and norm analysis
show that Low-Rank Matrix Factorization works
better in general than pruning, except for particu-
larly sparse matrices. We also discover that inher-
ent low-rankness and low nuclear norm correlate
well, explaining why compressing multiplicative re-
currence works better than compressing additive re-
currence. In future works, we plan to factorize all
LSTMs in the model, e.g. BiDAF model, and try to
combine both Pruning and Matrix Factorization.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Francois Belletti, Alex Beutel, Sagar Jain, and Ed Chi.
2018. Factorized recurrent neural architectures for
longer range dependence. In International Conference
on Artificial Intelligence and Statistics, pages 1522–
1530.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-

tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages
1657–1668.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando
De Freitas, et al. 2013. Predicting parameters in deep
learning. In Advances in neural information process-
ing systems, pages 2148–2156.

Chris HQ Ding, Tao Li, and Michael I Jordan. 2010.
Convex and semi-nonnegative matrix factorizations.
IEEE transactions on pattern analysis and machine in-
telligence, 32(1):45–55.

Hao-Teng Fan, Jeih-weih Hung, Xugang Lu, Syu-Siang
Wang, and Yu Tsao. 2014. Speech enhancement using
segmental nonnegative matrix factorization. In Acous-
tics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, pages 4483–4487.
IEEE.

Maryam Fazel. 2002. Matrix rank minimization with
applications. Ph.D. thesis, PhD thesis, Stanford Uni-
versity.

Jürgen T Geiger, Jort F Gemmeke, Björn Schuller, and
Gerhard Rigoll. 2014. Investigating nmf speech en-
hancement for neural network based acoustic models.
In Proc. INTERSPEECH 2014, ISCA, Singapore, Sin-
gapore.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cum-
mins. 2000. Learning to forget: Continual prediction
with lstm. Neural Comput., 12(10):2451–2471, Octo-
ber.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir
Bourdev. 2014. Compressing deep convolutional
networks using vector quantization. arXiv preprint
arXiv:1412.6115.

Artem M Grachev, Dmitry I Ignatov, and Andrey V
Savchenko. 2017. Neural networks compression for
language modeling. In International Conference on
Pattern Recognition and Machine Intelligence, pages
351–357. Springer.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for ef-
ficient neural network. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 28,
pages 1135–1143. Curran Associates, Inc.

Song Han, Huizi Mao, and William J Dally. 2016. Deep
compression: Compressing deep neural networks with

260

pruning, trained quantization and huffman coding.
ICLR.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages
473–483.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. stat,
1050:9.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Seunghoon Hong, Jonghyun Choi, Jan Feyereisl, Bo-
hyung Han, and Larry S Davis. 2016. Joint image
clustering and labeling by matrix factorization. IEEE
transactions on pattern analysis and machine intelli-
gence, 38(7):1411–1424.

Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neu-
mann. 2018. Learning to prune filters in convolutional
neural networks. arXiv preprint arXiv:1801.07365.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
2014. Speeding up convolutional neural networks with
low rank expansions. In Proceedings of the British
Machine Vision Conference. BMVA Press.

Caiming Xiong James Bradbury, Stephen Merity and
Richard Socher. 2017. Quasi-recurrent neural net-
works. In International Conference on Learning Rep-
resentations.

Oleksii Kuchaiev and Boris Ginsburg. 2017. Factoriza-
tion tricks for lstm networks. ICLR Workshop.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197.

Omer Levy, Kenton Lee, Nicholas FitzGerald, and Luke
Zettlemoyer. 2018. Long short-term memory as a dy-
namically computed element-wise weighted sum. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 732–739. Association for Com-
putational Linguistics.

Xuelong Li, Guosheng Cui, and Yongsheng Dong. 2017.
Graph regularized non-negative low-rank matrix fac-
torization for image clustering. IEEE transactions on
cybernetics, 47(11):3840–3853.

Xuan Liu, Di Cao, and Kai Yu. 2018. Binarized lstm
language model. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2113–
2121. Association for Computational Linguistics.

Zhiyun Lu, Vikas Sindhwani, and Tara N Sainath. 2016.
Learning compact recurrent neural networks. In
Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on, pages 5960–
5964. IEEE.

Zhi-Quan Luo and Paul Tseng. 1992. On the conver-
gence of the coordinate descent method for convex
differentiable minimization. Journal of Optimization
Theory and Applications, 72(1):7–35.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Comput. Linguist.,
19(2):313–330, June.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6294–6305.

Gbor Melis, Chris Dyer, and Phil Blunsom. 2018. On the
state of the art of evaluation in neural language models.
In International Conference on Learning Representa-
tions.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. ICLR.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In International Conference on
Learning Representations.

Antonio Valerio Miceli Barone. 2018. Low-rank
passthrough neural networks. In Proceedings of the
Workshop on Deep Learning Approaches for Low-
Resource NLP, pages 77–86. Association for Compu-
tational Linguistics.

Tomáš Mikolov. 2012. Statistical language models based
on neural networks. Presentation at Google, Mountain
View, 2nd April.

Nasser Mohammadiha, Paris Smaragdis, and Arne Lei-
jon. 2013. Supervised and unsupervised speech
enhancement using nonnegative matrix factorization.
IEEE Transactions on Audio, Speech, and Language
Processing, 21(10):2140–2151.

Ivan V Oseledets. 2011. Tensor-train decomposition.
SIAM Journal on Scientific Computing, 33(5):2295–
2317.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237.
Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for

261

machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392. Association
for Computational Linguistics.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016a. Compression of neural machine
translation models via pruning. CoNLL 2016, page
291.

Abigail See, Minh-Thang Luong, and Christopher D.
Manning. 2016b. Compression of neural machine
translation models via pruning. In Proceedings of The
20th SIGNLL Conference on Computational Natural
Language Learning, pages 291–301. Association for
Computational Linguistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. ICLR 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1631–
1642. Association for Computational Linguistics.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In Thirteenth Annual Conference of the International
Speech Communication Association.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.
2017. Compressing recurrent neural network with ten-
sor train. In Neural Networks (IJCNN), 2017 Interna-
tional Joint Conference on, pages 4451–4458. IEEE.

George Trigeorgis, Konstantinos Bousmalis, Stefanos
Zafeiriou, and Bjoern Schuller. 2014. A deep semi-
nmf model for learning hidden representations. In In-
ternational Conference on Machine Learning, pages
1692–1700.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia
Zhang, Wenhan Wang, Fang Liu, Bin Hu, Yiran Chen,
and Hai Li. 2018. Learning intrinsic sparse structures
within long short-term memory. In International Con-
ference on Learning Representations.

Kevin W Wilson, Bhiksha Raj, Paris Smaragdis, and Ajay
Divakaran. 2008. Speech denoising using nonneg-
ative matrix factorization with priors. In Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008.
IEEE International Conference on, pages 4029–4032.
IEEE.

Yinchong Yang, Denis Krompass, and Volker Tresp.
2017. Tensor-train recurrent neural networks for video

classification. In International Conference on Ma-
chine Learning, pages 3891–3900.

262

	33_paclic33_proceedings
	33_PACLIC_33_paper_35

