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Abstract 

Corrosion of reinforcing bars is a primary source of deterioration for reinforced concrete (RC) 

structures, and the corrosion-induced deterioration poses a major challenge to the RC structure 

in an aggressive environment for providing an acceptable performance over their entire life-

cycle. Especially for the RC shield tunnels located in marine environments, those tunnel 

structures always undergo a more complex and rapid deterioration process due to aggressive 

chemical attack and action of high earth-water pressure. Therefore, higher structural 

performance and durability for RC tunnel structures in coastal regions are required to ensure 

the serviceability of structures within their lifetime. 

For new RC shield tunnels, the concept of Life Cycle Design has been gradually 

proposed and considered by engineers at structural design phase; meanwhile, for improving 

the accuracy of structural performance estimates for existing RC shield tunnels, updating of 

structural reliability has been discussed by incorporating observational information from field 

inspection. However, because the environmental and operational conditions of RC shield 

tunnels in coastal regions are complex, the primary impact factors on structural deterioration 

should be identified and integrated into the reliability-based performance analysis of tunnel 

structures, so that the reliable design for new tunnels and rational maintenance planning for 

deteriorated existing structures can be proposed. 

To address this issue, a novel approach for estimating the life-cycle structural 

performance of a RC shield tunnel in a marine environment is proposed firstly, in which the 

hazard associated with underground chloride and the impact of hydrostatic pressure on 

chloride motion in RC segmental linings are taken into account. The deterioration processes 

of RC segmental linings are investigated based on a corrosion-accelerated experiment of 

bearing RC segment specimens, and the combined effects of corrosive agents and loads on 



 
 

deterioration of RC segment are revealed. Monte Carlo simulation is used to estimate the time-

variant failure probability of RC shield tunnels in a marine environment. In an illustrative 

example, the effects of structural location, hydrostatic pressure, and material properties on the 

life-cycle reliability of shield tunnels are discussed.  

Based on the life-cycle structural performance analysis of RC shield tunnels in coastal 

regions, the approaches for life-cycle reliability-based design and assessment of RC shield 

tunnels in coastal regions are proposed, respectively. For the durability design of RC shield 

tunnels in coastal regions, the coupling effects of chloride and hydrostatic pressure are 

integrated into the reliability-based durability design of new RC shield tunnels in coastal 

regions. Based on the proposed durability design criterion for RC segments, the durability 

design factors are discussed, and the relationship between the marine environment and 

concrete quality (W/C) of RC segment is revealed, so that the target durability reliability level 

of RC tunnel structures within the prescribed lifetime will be satisfied. Meanwhile, with 

respect to the existing RC shield tunnels in coastal regions, a computational procedure for 

updating structural reliability of existing RC shield tunnels subjected to underground chloride 

attacks is presented. Observational information, including chloride concentration distribution 

in segmental linings, corrosion-induced crack width on the surface of segments and vertical 

convergence of shield tunnels, are used in conjunction with the calculation of time-variant 

reliability for existing RC shield tunnels via Sequential Monte Carlo Simulation (SMCS). And 

the influences of different observational information on updating the parameters of random 

variables, time-variant convergence and reliability of existing RC shield tunnels, are discussed, 

respectively. 
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Chapter 1: Introduction 

1.1 Background and motivation of research 

The reliable and durable performance of tunnel structures is essential to support the stable 

developments of the cities located in the coastland or regions with numerous lakes and 

rivers. Generally, those tunnels are expected to provide acceptable service for extended 

periods of time, but reinforced concrete (RC) tunnel linings, owing to their inherent 

vulnerability, are at risk from deterioration processes due to aggressive chemical attacks 

and other physical damage mechanisms (Ellingwood 2005; Biondini and Frangopol 2016). 

In particular, for a RC shield tunnel located in a marine environment, the tunnel structure 

always undergoes a more complex and rapid deterioration process (Post et al. 2004, Yuan 

et al. 2006). For example, the Al-Shindagha undersea tunnel in Dubai (built in 1973) and 

the Ahmed Hamdi underwater tunnel (built in 1983) that crosses the Suez Canal had to 

be rehabilitated in 1983 and 1992, respectively, because of severe steel corrosion and 

lining damage that accrued within 10 years after construction (Liu et al. 2016). The likely 

reason for this phenomenon is the combined effects of multiple mechanical and 

environmental stressors, such as high hydrostatic pressure and highly concentrated and 

aggressive chemical agents. Therefore, higher structural performance and durability for 

tunnel linings are required to ensure the long-term safety and serviceability of tunnel 

structures. 

For the new shield tunnels, considering the high construction costs, long target 

service-life and difficulties of maintenance, repair and rehabilitation, etc., the concept of 

Life Cycle Design have been gradually proposed and considered by engineers at structural 

design phase, to ensure the higher long-term structural performance and durability of 

tunnel structures, especially for undersea tunnels (Sun 2011; He et al. 2017). For example, 

because of the repaid development of nation economy in China, higher demands for  
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Figure 1.1 Development history of Tokyo Metro (Kimura et al. 2012) 

underground infrastructure facilities, like metro in developed coastal cities, transportation 

tunnels cross rivers, lakes and sea, has been proposed. Therefore, a reliable durability 

design methodology, like Life Cycle Design, for new RC tunnel structures is very 

important and urgent. On the other hand, numerous existing RC tunnel structures have 

been constructed to support national development in many countries since last century, 

especially in the developed countries. Figure 1.1 presents a history of metro development 

in Tokyo as an example with indicators of year and tunnel length. Although the demands 

for new tunnel structures have been gradually decreased, amount of existing tunnel 

structures have been undergoing deterioration since the turning of the century (Kimura et 

al. 2012). Structural deterioration poses a big challenge to these existing tunnel structures 

for providing an acceptable service over their entire life-cycle. Meanwhile, tunnel 

structures cannot be simply abandoned after structural degradation, which is different 

from the ground structures. Therefore, a reliable predicting approach is necessary to 

provide precise estimates for structural performance of existing shield tunnels during their 

remaining lifetime, so that the repair and maintenance action plan can be carried out in 

time to extend structural service life. 

Because of the complexity of structural deterioration process of RC shield tunnels 

in coastal regions, the primary impact factors on structural deterioration should be 
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captured and integrated into the structural performance analysis, this approach could 

support decision-making processes for reliable design of durable tunnels and rational 

planning of maintenance, repair of deteriorating existing structures. Generally, RC tunnel 

linings in marine environments are exposed to chemical attacks from aggressive agents. 

Aggressive chemicals, such as chlorides and sulfates, either diffuse under concentration 

gradients into segmental linings, or permeate with seawater into segmental linings due to 

the high water pressures on the outside wall of linings (Jin et al. 2013; Zhang et al. 2016). 

This process often leads to premature steel corrosion and the concrete cracking of tunnel 

linings. Meanwhile, the concrete cracking and spalling of tunnel linings induced by high 

water-soil pressures and steel corrosion allow aggressive agents to permeate more easily 

(Hoseini et al. 2009) and, thus, increase the rates of corrosion and structural deterioration 

(Otieno et al. 2016). As a result, to accurately assess the structural performance of a shield 

tunnel during its life-cycle, the coupling effects of aggressive chemical agents and high 

hydrostatic pressures on the deterioration of the shield tunnels must be considered. 

Over the past few decades, significant advances have been accomplished in the 

fields of life-cycle structural performance assessment of RC structures (Mori and 

Ellingwood 1993; Frangopol and Lin 1997; Ellingwood 2005; Akiyama et al. 2010, 2012; 

Frangopol 2011; Biondini and Frangopol 2016). However, owing to the complex 

underground service conditions, the deterioration processes of shield tunnels normally is 

different from that of ground RC structures. In terms of the durability of tunnel structures, 

the attempts (Kudo and Guo 1994; Fagerlund 1995; Sun 2008, 2011; Funahashi 2013 & 

Lei et al. 2015) using corrosion testing of the RC component and on-sit monitoring have 

been addressed in the durability design, assessment and lifetime prediction of undersea 

tunnels. Meanwhile, probabilistic methods to evaluate the deterioration of underwater 

tunnels (Song et al. 2009; Bagnoli et al. 2015) have been recently reported. However, 

there has been a lack of research on accounting for structural deterioration performance 
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of the shield tunnels in a marine environment over their entire life-cycle, by considering 

the effects of marine environmental hazard and structural deterioration processes. 

Furthermore, according to the life-cycle structural performance analysis of RC shield 

tunnels in coastal regions, a reliable reliability-based durability design criteria for new 

shield tunnels and an approach for estimating structural performance of existing shield 

tunnels using inspection information should be established. 

1.2 Objectives of research 

This study focuses on the external steel corrosion of RC segmental linings due to the 

chloride attacks from the surrounding soil and underground water around shield tunnel. 

Next, life-cycle structural performance of RC shield tunnels in a marine environment is 

studied with emphasis on the corrosion-induced deterioration of segmental linings, 

according to the deterioration mechanism of RC segmental linings in a marine 

environment and Life-Cycle concept of RC structures.  

In this study, three primary objectives are proposed as follows:  

(1) Time-variant structural performance assessment of a shield tunnel in coastal regions 

a. Present a framework for the time-variant structural performance assessment of a 

shield tunnel in a marine environment; 

b. Because the deterioration of a shield tunnel depends on its location and surroundings, 

the hazards posed by chloride should be investigated for a tunnel in a coastal region.  

c. Experimentally illustrate the deterioration processes of segmental linings under 

different load levels, with an emphasis on the chloride-induced corrosion of concrete 

segments. And propose an approach for estimating the damage level in segmental 

linings based on the experimental results.  
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d. Examine chloride transportation in the segmental linings, with an emphasis on the 

impact of hydrostatic pressures. Next, estimate the time to corrosion initiation of 

external reinforcement in segmental linings.  

e. Assess the time-variant structural reliability of a shield tunnel in a marine 

environment considering the degradation of structural stiffness and the capacity of 

segmental linings induced by steel corrosion. 

(2) Life-cycle reliability-based durability design for RC shield tunnels  

a. Integrate the chloride hazard in coastal regions, structural location and effect of 

hydrostatic pressure into the reliability-based durability design of RC segmental 

linings with service life design format. 

b. Propose a computational procedure for service life (durability) design of segmental 

linings using partial factors, and determine the durability partial factors of segment 

according to the target lifetime and target reliability. 

c. Discuss the maximum design value of water to cement ratio for RC segmental linings 

under different hydrostatic pressure and underground chloride hazard. 

(3) Performance assessment of existing RC shield tunnels based on inspection data  

a. Propose a framework for estimating structural performance of existing RC shield 

tunnels in a marine environment during their remaining lifetime, and illustrate the 

updating process for structural reliability assessment using Sequential Monte Carlo 

Simulation (SMCS) and inspection results. 

b. Discuss the influence of different types of inspection information on updating 

parameters of random variables and reliability of RC shield tunnels. According to the 

updating results, determine a maximum time interval of inspection for existing RC 

shield tunnels to improve the predicted precision of structural performance during 

their remaining lifetime.  
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In terms of above three primary objectives, objective (1) is treated as a fundamental 

aspect for the studies for other two objectives. According to the procedure for assessing 

the hazard associated with underground chloride around segmental linings and the effect 

of hydrostatic pressure on chloride transport in segmental linings, time-dependent 

chloride distribution around external reinforcement of segmental linings could be 

estimated accurately. Thus, the durability parameters of RC segmental linings could be 

designed based on quantitative evaluation results for shield tunnels located in different 

coastal regions. Meanwhile, the predicted results associated with structural performance 

before updating would be used to update the parameters of random variables with 

inspection information, then time-dependent structural reliability of existing RC 

segmental linings could be updated based on updated random variables.  
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Chapter 2: Literature Reviews 

2.1 Basic concepts for deterioration of RC structures 

2.1.1 Corrosion mechanism of reinforcement in concrete 

Generally, microscopic pores of concrete includes high concentrations of alkaline 

solution, this very alkaline condition (i.e. pH 12-13) could facilitate the formulation of a 

thin protective oxide film (i.e. passivation film) on the surface of the reinforcement bars 

(Broomfield 2006; Bertolini 2008; Kapakonstantinou et al. 2013). Because of the 

protection of passive film on rebars, the steel corrosion can be prevented even though 

there are an amount of oxygen and high moisture in concrete. However, due to the 

chloride penetration and carbonation of concrete for real concrete structures, the passive 

film on rebar might be locally damaged or removed, resulting in the corrosion of 

reinforcement in engineering.  

Chloride-induced corrosion is regarded as the most severe factors for structural 

deterioration of structures in coastal regions, the chlorides found in concrete are generally 

from two approaches. One is chloride casted into concrete, such as mixing by seawater, 

using admixture including chlorides. Another one is the penetration of chloride in 

concrete due to salt spray from seawater, drying/wetting cycles of seawater and deicing 

salts in winter (Broomfield 2006). In particular for the undersea tunnels, segmental linings 

are exposed to infinite seawater and chloride from seawater could penetrate into 

segmental linings, it is a big challenge for engineers to ensure the long-term safety and 

serviceability of tunnel structure during its life-cycle. 

For structures under an aggressive environment, as the chloride concentration 

around rebar accumulates and reaches a critical threshold, localized corrosion on rebar 

would take place due to passive film broken down. According to previous reports 
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(Broomfield 2006; Kapakonstantinou et al. 2013), the chloride-induced corrosion is an 

electrochemical process, including anodic and cathodic half-cell reactions. The reactions 

could be illustrated using following equations: 

Fe→Fe2++2e-                                                    (2-1) 

Fe2++2Cl-→FeCl2                                                 (2-2)  

FeCl2+2H2O→Fe(OH)2+2HCl                                       (2-3) 

4Fe(OH)2+O2+2H2O→4Fe(OH)3                                     (2-4) 

4Fe(OH)3→Fe2O3·H2O+2H2O                                           (2-5) 

Above equations reveal that chloride ions are not consumed in the steel corrosion 

process, they are the catalysts for steel corrosion and could accelerate the corrosion 

process of reinforcement in concrete (Kapakonstantinou et al. 2013). Because of the 

widely distributed chloride in the world, such as in seawater, de-icing salts and air of 

coastal regions, significant attentions has been given to the durability of concrete structure 

subjected to chloride-induced corrosion (Venu et al.1965; Hausmann 1967 and Gouda 

1970; Francois et al. 1999;  Broomfield 2006; Angst, U. et al. 2009; Kapakonstantinou et 

al. 2013). 

On the other hand, carbonation-induced corrosion often occurs due to the 

neutralization of the alkalinity condition in concrete induced by carbon dioxide from 

atmosphere (Bertolini 2008). With the interaction of carbon dioxide and alkaline 

hydroxides in concrete, the value of pH in concrete would drop to about 8.5 (Jin et al. 

2014). If there are enough oxygen and moisture in concrete, passive film could be 

gradually removed, and reinforcement steels could corrode. Especially for the internal 

service environment of tunnels, there are high concentration of carbon dioxide due to bad 

ventilating conditions, so that the internal reinforcements of segmental linings are 

generally at risk from carbonation-induced corrosion (Pan et al 2005; Sun 2011).  
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Furthermore, the stray current induced corrosion also is a common problems for 

concrete structures, like metro tunnels, it could causes rapid and serious steel weight loss 

of reinforcements for concrete structures (Zhou et al. 1999; Angst, U. et al. 2009). 

2.1.2 Impact factors for reinforcement corrosion 

(1) Alkaline condition and chloride concentration around steel   

As previously states, the failure of passive film is associated with the alkaline condition 

and chloride concentration in concrete. At the beginning time after structure construction, 

the initial value of pH in concrete is mainly influenced by the types of binder materials, 

but because of the occurrence of carbonation, leaching, hydration, etc. for concrete 

structures, the pH value could change and affect the property of passive film (Angst, U. 

et al. 2009). Meanwhile, chloride ions act the catalyst on the steel corrosion, and chloride 

concentration around rebar could directly affect the steel corrosion process. Generally, 

higher concentration of chlorides leads to higher hazard associated with corrosion of 

reinforcement bars in concrete, but the chloride threshold for corrosion initiation is only 

influenced by chloride concentration. According to the literatures (Venu et al.1965; 

Hausmann 1967 and Gouda 1970), the threshold value for steel corrosion initiation are 

associated with the results of inhibiting effect of hydroxide ions against chloride induced 

corrosion. Gouda (1970) experimentally found threshold value increasing with the 

increasing pH value. Therefore, it is suggested to determine the threshold value, Ccrit, 

based on the Cl-/OH- ratios.  

(2) External environment (e.g. Temperature, Moisture and Oxygen) 

As a matter of fact, both water and oxygen are the basic elements for steel corrosion, 

anyone of them lacked could be facilitate to inhibit steel corrosion. For the concrete under 

water saturated condition and rather dry condition, resulting in a lack of oxygen and water 

for the reaction of steel corrosion, respectively, higher chloride concentration is often 



 

10 

 

required for the steel corrosion initiation (Angst, U. et al. 2009). On the contrary, when 

concrete are subjected to wetting/drying cycles or exposed to the environment with 

relative humidity (RH) ranging from 90% to 95% (Zhao 2004), reinforcements might 

have the higher hazard associated with corrosion. In addition, temperature also plays a 

significant role for steel corrosion process, the corrosion rate generally increases with the 

increasing temperature to 40℃ according to Jin et al. (2014).   

(3) Concrete properties and conditions 

Steel corrosion process is significantly influenced by the concrete properties, like the ratio 

of water to cement, the binder type, and cracks of concrete. In term of the ratio of water 

to cement, it could not only determine the strength of concrete, but also affect the anti-

permeability of concrete. Generally, higher ratio of water to cement could result in a 

worse anti-permeability of concrete, which is harmful to inhibit steel corrosion (Jin et al. 

2014). Meanwhile, the electrical resistivity of concrete is associated with the binder 

materials of concrete, like the mineral admixture using silica fume, fly ash and blast 

furnace slag, and the rate of steel corrosion would change depending on the types of 

mineral admixture (Angst, U. et al. 2009). Furthermore, because of the action of tensile 

loads, effect of wetting/drying cycle, and alkali-aggregate reaction, etc., the cracking of 

the cover concrete might take place after structure construction. Cover concrete cracking 

could allow the chlorides, carbon dioxide, water and oxygen, etc., to reach the surface of 

steel more easily, and thus increase the rate of corrosion (Francois et al. 1999; Otieno et 

al. 2016).  

(4) Other effects 

Except for the factors illustrated previously, the steel corrosion process is also associated 

with the steel properties and/or conditions, like steel surface condition, steel 

electrochemical potential, and steel-concrete interface, and stress state of structures  
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Figure 2.1 Illustration diagram of an undersea shield tunnel 

 (Angst, U. et al. 2009; Jin et al. 2014). Because of the variety of factors on steel corrosion 

involved, the uncertainties in the steel corrosion process are extremely advisable to be 

taken into consideration when assessing the structural deterioration performance 

(Biondini and Frangopol 2016). 

2.2 Durability of RC tunnel structures in a marine environment 

2.2.1 Deterioration mechanism of RC segmental linings 

With respect to an RC shield tunnel in a marine environment, three damage mechanisms 

are generally observed: (1) chemical processes (e.g., carbonation and chloride-induced 

corrosion), (2) physical processes (e.g., expansion because of rust formation) and (3) 

mechanical processes (e.g., concrete cracking caused by soil-water pressure and other 

loads). As shown in Figure 2.1, the inside- and outside walls of segmental linings are 

exposed to totally different environments. Marine chloride diffuses and permeates into 

the outside wall of segmental linings because of high concentration gradients and 

significant hydrostatic pressure. Meanwhile, carbonation and chloride attacks occur at the 

inside wall of segmental linings due to high concentrations of CO2 and airborne chloride, 

seepage and leakage of seawater. These processes can lead to steel corrosion in the 

segmental linings and corrosion-induced concrete cracking. In addition, concrete 

cracking and spalling of the segmental linings induced by high soil-water pressure might 
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happen at the beginning of structural service phase, so that aggressive agents can move 

into concrete more easily and result in severe corrosion. Therefore, the coupled effects of 

a corrosive environment and high water-soil pressure are considered as the most 

significant reasons for the decline in the long-term structural performance of undersea 

shield tunnels.  

In term of the structural deterioration of undersea shield tunnels due to steel 

corrosion of external reinforcement, structural damage process is described in Figure 2.2 

based on the model proposed by Tuutti (1982) using a phenomenological process (Rao et 

al. 2017). In this approach, segment damage is segmented into a series of states beginning 

with the (1) initial damage induced by loading and chloride transport through the concrete 

cover; (2) reinforcing steel de-passivation, steel corrosion initiation and anti-permeability 

decrease of segment; (3) accelerated corrosion rates, concrete cracking caused by 

expansion from rust formation and decreased bond strength; and (4) severe steel weight 

loss as well as concrete spalling and structural capacity loss. In particular, states (2), (3) 

and (4) represent the deteriorating damage stages induced by the coupled effects of 

corrosive agents and loads as shown in Figure 2.2. 

 

Figure 2.2 Illustration diagram of deterioration process for undersea shield tunnels 
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2.2.2 Study on durability performance of RC tunnels 

In order to ensure undersea tunnel structures to provide an acceptable service for extended 

periods of time, significant advances have been accomplished in the durability of these 

tunnel structures. Jin et al. (2013) and Zhang et al. (2016) illustrated the chloride transport 

process in the concrete linings under the effect of hydrostatic pressure based on the 

experiments and theoretical model, the results revealed that the high hydrostatic pressure 

could accelerate chlorides motion in concrete linings. Meanwhile, Liu et al. (2017) 

presented that the chloride ions could be locally concentrated at the locations around 

segment joint, and the external reinforcement in segmental linings, especially for the 

reinforcement close to segment joint, are at high hazard from the corrosion due to the 

coupling effect of aggressive agent and high hydrostatic pressure.  

In terms of the performance assessment of RC undersea tunnels, numerous attempts 

that use on-site monitoring and the corrosion testing of RC components have focused on 

the qualitative durability assessment and lifetime prediction of underwater tunnels. In 

engineering, since it is difficult to confirm steel corrosion status by visual inspection, 

especially for the corrosion of external reinforcement in segmental linings, Non-

destructive testing (NDT) technology has been widely used on the on-site monitoring 

activities for confirming steel corrosion. By using different types of corrosion sensors, 

corrosion potential, corrosion rate and volume changes of rebar due to corrosion could be 

measured to reflect the status of corrosion (Wang et al. 2012). Bigaj et al. (2003) 

introduced an inspection system used in Green Heart Tunnel in Dutch to provide an early 

warning for corrosion risk of tunnel linings, and update the predicted service lifetime of 

tunnel. Gong et al. (2017) presented the on-site steel corrosion data for a subsea tunnel in 

China, including corrosion current, potential and temperature. The monitoring results 

revealed that corrosion current and temperature in linings had a cyclic-type variation with 
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seasonal changing, and the corrosion potentials were widely scattered because of the 

localized differences in the vicinity of rebar and concrete. Meanwhile, Fagerlund (1995) 

and Lei et al. (2015) carried out a lifetime prediction of underwater tunnels based on the 

chloride transport in concrete linings. Kimura et al. (2012) developed a methodology for 

evaluating and verifying the performance of existing tunnels based on the Analytic 

Hierarchy Process (AHP). Wang et al. (2016) proposed a maintenance framework for the 

existing shield tunnel based on the concept of structural life-cycle, and suggested to use 

the structural performance and life-cycle cost as the major indictors accounting for the 

structural deterioration performance. In addition, probabilistic methods to evaluate the 

deterioration of underwater tunnels (Song et al. 2009; Bagnoli et al. 2015) have gradually 

been reported in recent years. 

Significant attentions have also been given to the durability-based design of new 

RC tunnels, especially for the tunnel structures in a marine environment. In Japan, Kudo 

and Guo (1994) studied the durability and anti-corrosion properties of a highway shield 

tunnel that crosses Tokyo Bay with a durability test, and a RC segment using blast furnace 

slag was recommended to improve the durability of undersea tunnels. In China, Sun (2008, 

2011), based on the mechanism of durability degradation of undersea tunnels, proposed 

a methodology and corresponding testing methods for the durable design of a subsea 

tunnel in China, and, thus, eleven engineering measures were suggested to improve the 

durability of tunnel lining structures. Li et al. (2015a & 2015b) established a principle 

and procedure for the durability design of the Hong Kong-Zhuhai-Macau sea-link project 

based on the full probability method and a proposed partial factor method.  

2.3 Life-cycle performance of deteriorating RC structures 

2.3.1 Uncertainties over structural lifetime 

The life-cycle performance of structures depends on the time-dependent deterioration  
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Figure 2.3 Life-cycle performance profile under uncertainties (Frangopol 2011) 

effect of damage processes of structural materials and components (Estes and Frangopol 

2005). Owing to the coupling effects of multiple mechanical and environmental hazards, 

the structural deterioration mechanisms are generally complex, and their effects and 

evolution over time, depending on both the damage mechanisms and type of materials 

and structures, are difficult to be predicated accurately due to the uncertainties in the real 

world (Biondini and Frangopol 2016). 

As shown in Figure 2.3 proposed by Frangopol (2011), the life-cycle performance 

profile of structures illustrates that the uncertainties during structural life-cycle are 

associated with many parameters, and the uncertainties for predicting time-dependent 

structural performance would increase with time because of the accumulation of 

uncertainties using prediction models. However, the essential factors for predicting 

structural service life are strongly affected by the uncertainties from initial performance 

index, deterioration initiation time and structural deterioration rate (Frangopol 2011 & 

2016).  

Considering the unavoidable uncertainties when estimating structural performance 

over their entire life, it is extremely advisable to adopt the probabilistic methods for 

modelling and analysis of time-dependent structural performance (Ang and Tang 2007). 
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Based on the probabilistic models of structural performance, uncertainty analysis could 

facilitate to achieve more accurate prediction results for structural performance, and 

support the decision-making process to make reliable durability designs for new 

structures and rational engineering measures for deteriorating existing structures 

(Biondini and Frangopol 2016).  

2.3.2 Life-cycle reliability-based structural performance 

(1) Reliability assessment for structural performance 

As illustrated previously, because of the uncertainties over structural entire lifetime, time-

variant probability-based concepts and methods provide a rational and more scientific 

approach for estimating the life-cycle performance of a structural system (Ang and Tang 

1984, 2007; Frangopol 2011). The failure probability of a structural system during its life-

cycle is generally defined as the probability of violating any of the limit state functions 

that indicate its failure modes. In engineering, the functions of R=R(t) and S=S(t) 

represent the time-variant resistance and demand of a structural system, respectively, and 

both of them are regarded as random variables or process with time due to the 

uncertainties. According to different formats of structural limit state (i.e. safety and 

serviceability), those two functions could be described as different indictors of structural 

performance, and the time-variant structural failure probability can be expressed as 

(Frangopol 2011): 

   
0

( ) ( ) ( , ) ( , )f R SP t P R t S t F x t f x t dx


                                  (2-6) 

where FR(x, t) is the (instantaneous) cumulative probability distribution function (CDF) 

of the resistance; and fs(x, t) is the (instantaneous) probability distribution function (PDF) 

of the demand.  

Alternatively, structural safety can also be indicated using the time-variant 

reliability index (t), the relationship between structural failure probability and reliability  
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Table 2.1 Target reliability index based on ULT in GB 50010-2002 

Safety 

grade 

Consequence 

of failure 

Structure 

category 

Reliability Index  

Brittle failure Ductile failure 

First Very Severe Important  4.2 3.7 

Second Severe Ordinary 3.7 3.2 

Third Not serious Secondary 3.2 2.7 

Note: Brittle failure is including axial tension and pure bending. Ductile failure is including axial 

compression, eccentric compression and shear. 

Table 2.2 Target reliability for different reference periods in EN1990 (2002) 

Reliability 

classes 

Consequence 

of failure 

Reliability Index  
Example 

1 Year 50 Year 

RC3 High 5.2 4.3 Bridges, Public building 

RC2 Medium 4.7 3.8 Residences, Office 

RC1 Low 4.2 3.3 Agricultural building 

index can be expressed as follows (Biondini and Frangopol 2016): 

1( ) ( ( ))ft P t                                                             (2-7) 

where   is the cumulative distribution function of the standard normal variable.  

(2) Target reliability indices for structural performance 

In the structural design, two limit state formats, including ultimate limit state (ULT) and 

serviceability limit state (SLT), are generally considered. According to different limit 

state format and consequence of structural failure, target reliability indices, target, may be 

different. Table 2.1 indicates the target reliability level for a new structure based on ULT 

in China (GB 50010-2002), three reliability levels were classified based on the 

consequence of structural failure, and the reliability indices were given according to 

structural failure mode. Meanwhile, EN1990 (2002) and fib Model Code (2012) proposed 

a similar reliability classes as shown in Table 2.2, but the detail reliability indices were 

suggested based on different reference periods. With respect to the SLT, JSCE Standard 

Specifications (2002) and RILEM (1998) proposed the reliability indices ranging from 

1.5 to 2.5 for RC structures.  
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In recent decades, as the durability of RC structures becomes more and more 

important, a new category of limit state (i.e. durability limit state) has been introduced. It 

may be formally regarded as belonging in the SLS (fib 2018), fib Model Code (2012) 

recommended the target durability reliability equal to 1.5. Meanwhile, the Code for 

Durability Design of Concrete Structure of China (2008) indicated that structural damage, 

like corrosion and cracking, should be controlled under repairable conditions and cannot 

affect structural bearing capacity, which is different from that in JSCE Code that does not 

allow structures to have any corrosion during structural lifetime. According to the 

consequence of structural failure, failure probability of RC structures ranging from 5% to 

10% (i.e. target ranges from 1.282 to 1.645) was suggested to be used in the durability 

design and assessment of a RC structure in China. 

However, target reliability levels in codes are generally used for new structures. For 

the existing structures, requirements to reach the same target reliability levels with new 

structures seems to be uneconomical (Sykora et al. 2017), thus an effort to determine the 

target reliability for existing structures were introduced based on the economic and 

societal aspects during structural life cycle (Sykora et al. 2017).  

2.3.3 On-site inspection for updating structural reliability 

As a matter of fact, life-cycle models are very sensitive with the changing of input 

parameters of random variables (Frangopol 2011; Biondini and Frangopol 2016).  Due to 

the limit information from structural systems or limit knowledge for engineers, time-

variant structural performance is generally overestimated or underestimated during 

structural design phase or service phase as shown in Figure 2.4. In order to reduce the 

level of uncertainty and support the decision-making process to carry out necessary 

measures of maintenance and repair for existing structures in time, information obtained 

from the on-site monitoring are recognized as a useful approach (Frangopol 2011). 
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Figure 2.4 Updating structural reliability compared with that without updating 

(Biondini and Frangopol 2016) 

In recent years, multiple attempts have been given to update the prediction functions 

of existing structures based on inspection data. Frangopol and Strauss (2008a & 2008b) 

proposed a methodology to develop structural performance function using monitored 

extreme data and estimate the possible monitoring intervals, then applied them for a 

bridge using Bayesian updating approach. Akiyama et al. (2010), based on Sequential 

Monte Carlo Simulation (SMCS), presented a procedure to predicate the reliability of 

existing structures by updating random variables using observed crack widths and 

chloride concentration distribution. Oksha et al. (2012) proposed and illustrated an 

approach for updating structural reliability of an existing bridge based on automated finite 

element model integrated with monitored strain data. However, there is lack of research 

on the updating structural performance of existing shield tunnels based on the inspection 

results. 

2.4 Chapter Summary 

(1) Steel corrosion in concrete takes place when the passive film on the steel surface is 

broken down by chloride attack or carbonation, and the critical threshold of corrosion 

initiation and corrosion rate are associated with multiply impact factors, such as 

alkaline condition, chloride concentration, temperature, moisture and oxygen, but 

corrosion of steel bar is just a form of the reaction of iron, water and oxygen. 
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(2) With respect to the durability of RC tunnel structures in coastal regions, three damage 

mechanisms were illustrated, including chemical processes, physical processes and 

mechanical processes. Considering the coupling effects of these three mechanisms 

on deterioration of RC segmental linings, an illustration diagram for the deteriorating 

process of RC shield tunnels subjected to the attacks from aggressive agents and high 

water-soil pressure was presented, including initial damage stage induced by load 

and deteriorating damage stage induced by the coupling effects of aggressive agents 

and load. 

(3) In term of the research on durability of shield tunnels, the time-dependent 

performance indicators have not been taken into consideration for the life cycle 

performance analysis of tunnel structures. Based on the concept of Life Cycle 

Analysis, it is crucial to apply probabilistic methodology on modeling and analysis 

of time-dependent structural performance due to the uncertainty over structural 

lifetime, and inspection information could provide a powerful aid to reduce the level 

of uncertainty and to improve the accuracy of predictive probabilistic models.  
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Chapter 3: Life-Cycle Reliability Analysis of Shield Tunnels in 

Coastal Regions  

3.1 Procedure for the life-cycle reliability assessment of shield tunnels in 

a marine environment 

For RC shield tunnels exposed to an aggressive environment, the deteriorative processes 

that result from aggressive chemical attacks and other physical damage mechanisms put 

their structural systems at risk. Therefore, the life-cycle performance of structural systems 

must be considered time-dependent (Ellingwood 2005; Frangopol 2011). 

Generally, to accurately assess the deterioration processes of structural systems in 

different regions, their environmental hazards should first be quantitatively assessed. 

Then, the damage level of structural systems can be described as a function of the steel 

weight loss of RC segments. Finally, the time-variant performance of these structural 

systems can be estimated. All factors that affect structural deterioration are considered, 

and the basic equations to compute the life-cycle structural performance of shield tunnels 

in a marine environment are expressed as follows: 

(a) Hazard assessment 

   1 1' ,soil seaHazard g C g C d                                       (3-1) 

(b) Damage assessment 

 2 1 2( ) , , , , , ,w RCt g Hazard P m f t t t                                    (3-2) 

 3( ) , ( )D t g f t                                                (3-3) 

(c) Mechanical performance assessment 

 1 0( ( ), ( )) , ( ), ( ), soilM t F t f L EI t D t m                                (3-4) 
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 2 0( ) ( ), ( ), ( )u uM t f M t t F t                                           (3-5) 

where Hazard is associated with the chloride concentration, Csoil, around the tunnels, 

which is a function of the chloride concentration of seawater, Csea, and the distance, d, 

from the coastline to the structures. Pw is the hydrostatic pressure on the tunnels. mRC 

represents the material properties of the RC segments, including the diameter of rebar (), 

the number of rebar (n), the water to cement ratio (W/C) and the concrete cover (c). t1 and 

t2 are the time of corrosion initiation and the corrosion crack occurrence, respectively.  

(t) is the steel weight loss in time after structural construction, and D(t) is the damage 

level of the segments in time after structural construction. f is the load level of the 

segments that is induced by water-soil pressure and/or other loads. L is the Loads that 

include soil pressure, Ps, and hydrostatic pressure, Pw. msoil represents the material 

properties of the soil around the tunnel. EI(t0) is the flexural stiffness of an undamaged 

segment, M(t) and F(t) are the time-variant bending moment and axial force of segmental 

linings, respectively. Mu(t0) is the flexural capacity of no corroded segmental linings, 

depending on the size of segment section, amount of rebar and axial force. Mu(t) is the 

flexural capacity of corroded segmental linings. 

In addition, because of the uncertainties in the material, and geometric properties, 

both in the physical models of the deterioration process and in the mechanical and 

environmental stressors, a measure of the time-variant structural performance is 

realistically possible only in probabilistic terms. Figure 3.1 illustrates a flowchart that 

describes the framework to compute the life-cycle reliability of a shield tunnel in a marine 

environment. When estimating life-cycle reliability based on the flowchart shown in 

Figure 3.1, a given performance limit state should be considered that relates to the 

predefined damage level of the RC segmental linings.  
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Figure 3.1 Flowchart to estimate the life-cycle reliability of shield tunnels in coastal 

regions affected by chloride corrosion 

This flowchart consists of the following five main parts: (1) defining the process of 

hazard assessment for underground chloride in a coastal region; (2) investigating the 

chloride-induced deterioration process of segmental linings in a marine environment to 

propose an estimation method for a deteriorated damage level of segmental linings and 

the steel corrosion associated with the load level; (3) estimating the time to corrosion 

initiation and crack occurrence of the segmental linings with the impact of hydrostatic 

pressure; (4) proposing an approach to assess the time-variant structural performance of 

the segmental linings with corrosion-induced deterioration based on parts (2) and (3); and 

(5) computing the time-variant structural reliability of shield tunnels with an emphasis on 

corrosion-induced structural performance deterioration. 
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3.2 Hazard assessment of marine chloride 

3.2.1 Attenuation of underground chloride in coastal regions 

The deterioration of RC structures is influenced by the local environments where these 

structures are located. Because different environmental conditions cause RC structures to 

undergo different deterioration processes, it is necessary to quantitatively assess these 

environmental conditions. This evaluation of environmental hazards should be reflected 

in the life-cycle assessments of the RC structures in coastal regions.  

For shield tunnels located in coastal regions, it is assumed that the attenuation of 

underground chloride ions around tunnels, Csoil (ppm, i.e., 1 mg/L), only depends on the 

chloride concentration of coastal waters, Csea (ppm), and the distance d (km) from the 

coastline to the structures. The observed values from Xiamen (Guo et al. 2004) are used 

herein to ascertain the attenuation relationship between the underground chloride content, 

Csoil, and the distance from the coastline. There are 18 sites on Xiamen Island to collect 

data on Csoil, and a regression analysis using least squares method to reflect non-linear 

attenuation trend of coastal hazards associated with chloride was conducted based on 

Akiyama et al. (2010), as shown in Figure 3.2. Considering the influence of the chloride 

content in coastal waters, Csea, the attenuation of Csoil in the horizontal direction is: 

0.62 0.63d

soil seaC C                                               (3-6) 

Underground environments around a shield tunnel are complex, non-continuous 

and uncertain. Because the data on underground chlorides in different coastal regions are 

very limited, it is difficult to consider the influence of geological formations, geotechnical 

properties around structures, dilution of fresh water on the surface, precipitation, tunnel 

depth and differences in coastal topography on the content of underground chlorides 

collected at each location. To consider the uncertainties involved in the prediction of 

underground chlorides around tunnels, a parameter associated with model error must be 
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Figure 3.2 Underground chloride content compared with the distance from the 

coastline in Xiamen 

included in the attenuation equations. Meanwhile, if there are more on-site information 

for underground chloride, uncertainty of prediction model could be reduced, and the 

accuracy of performance estimation could be improved.  

3.2.2 Hazards associated with chlorides around tunnels 

Considering model uncertainty, attenuation (Equation 3-6) can be expressed as: 

 0.62 0.63d

soil R S seaC X X C                                            (3-7) 

where XR is a lognormal random variable that relates to the estimation of the chloride 

content in the soil, and XS is a normal random variable associated with the marine chloride 

content in different coastal regions. 

The probability that Csoil at a specific site exceeds an assigned value, csoil, is 

described as follows: 

0
( ) ( ) ( ) ( )

0.62 0.63

soil
soil soil soil R S Sd

S sea

c
q c P C c P X f x dx

X C



   
           (3-8) 

where f (xS) is the probability density function of XS. 

The hazard curves for the tunnel structures in different cities that were obtained 

with Equation 3-8 are shown in Figure 3.3. The assigned value of csoil ranges from 0 to  
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Figure 3.3 Hazard curves for the underground chloride content at two coastal 

cities with a distance of 0.5 km and 2 km from the coastline 

100,000 ppm; XS for Xiamen city is a normal random variable with a mean value of 1.0 

and coefficient of variation (C.O.V.) of 0.043, and XS for Shanghai is a normal random 

variable with a mean value of 1.0 and C.O.V. of 0.155. 

3.3 Structural damage process of shield tunnels due to reinforcement 

corrosion 

3.3.1 Deteriorating experimental programme of segmental specimens 

3.3.1.1 Overview of experimental plan 

An experimental plan was established to characterize the deterioration of a load-bearing 

segmental lining in an aggressive environment. Because of the difficulty of using a 

prototype segment under a loading to conduct an electrolytic experimental test, a 

simplified segmental specimen (see Figure 3.4) was designed based on the segmental 

linings in the shield tunnel of the Xiamen Metro Line No. 2 Project (see Figure 3.5) (Sun 

2011; Liu et al. 2015). As shown in Figure 3.4, the specimen is 1360 mm long, whereas 

the experimental zone is 660 mm long. For each specimen, the cross section is 290 mm 

× 350 mm in the middle region and 290 mm × 600 mm in both end regions. 
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Figure 3.4 Simplified segmental specimen (dimensions are in mm) 

 

Figure 3.5 Segmental lining of the shield tunnel 

To study the deterioration processes of segmental linings under different load levels 

and determine how the mechanical performance of the segmental lining deteriorates, five 

groups of two segmental specimens (F1, F2, F3, F4 and F0) were designated in the 

experiments. Groups F1, F2 and F3 were corrosion-accelerated specimens without 

cracking, with a small number of cracks, and with severe cracking, respectively. F4 was 

a control group of corrosion-accelerated specimens without loading. F0 was also a control 

group used to determine the ultimate bearing capacity without corrosion. Moreover, three  
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 Specimen F1,F2,F3  Specimen F4  Specimen F0

Step1:Loading stage 

before corrosion

Step2:Accelerated corrosion 

stage under loading

Step3:Testing stage about 

bearing capacity of 

deteriorated specimen

Step2:Accelerated corrosion 

stage without loading

Step3:Testing stage about 

bearing capacity of 

deteriorated specimen

Step3:Testing stage about 

bearing capacity of no 

damage specimen

 

Figure 3.6 Experimental process of the specimens in each group 

different stages were considered in the experiment, as indicated in Figure 3.6. During the 

testing process, a specified load was provided during the first stage (Step 1), which 

enabled the specimens to be tested under different load levels. In the second stage, the 

load level of the specimens remained constant, and an accelerated corrosion test was 

conducted (Step 2). Finally, in the third stage, an ultimate limit load was provided to cause 

the deteriorated specimens to fail (Step 3). 

3.3.1.2 Material and fabrication of specimens 

All specimens were fabricated using identical material constituents. The concrete used in 

the specimens had a compressive strength of 32.5 MPa and a tensile strength of 2.65 MPa. 

Portland cement, sand and gravel with a maximum aggregate size of 25 mm were used. 

The proportions of cement: sand: gravel by weight were determined as 1:1.34:3.28 with 

a water-to-cement (W/C) ratio of 0.37 in the concrete mix design. Four deformed bars 

(two tensile bars and two compressive bars), each with a diameter of 22 mm, were used 

as longitudinal bars. The reinforcement grade was HRB335 (i.e., hot-rolled ribbed-steel 

bar), which has a yield strength of 335 MPa. The diameter of the stirrups was 10 mm, and 

the steel grade was HPB235 (i.e., hot-rolled plain-steel bar), which has a yield strength  



 

29 

 

Table 3.1 Material parameters of the rebar 

Material 
Diameter 

(mm) 

Yield 

Strength 

(MPa) 

Ultimate 

Strength 

(MPa) 

Modulus of 

Elasticity  

(GPa) 

Elongation 

(%) 

HPB235 10 235 370 210 25 

HRB335 22 335 455 200 16 

of 235 MPa. The material parameters of the rebar are provided in Table 3.1. To improve 

the experimental efficiency, a sodium chloride (NaCl) solution with a chloride 

concentration of 2% was added into the concrete during mixing. 

3.3.1.3 Deteriorating experimental procedure 

To achieve the combined effects of loads and corrosive agents on the segmental 

specimens, a loading jack and electrical corrosion technique were applied in the 

experiments. As shown in Figure 3.7, loads were placed on both ends of the segmental 

specimens using the loading jack, which caused the specimen to be subjected to the 

combined effects of an axial force and a bearing moment. Then, a NaCl solution pool 

with a chloride content of 20% was placed on the top surface to corrode the tensile rebar, 

as indicated in Figure 3.7 (a). Subsequently, the steel corrosion process was initiated using 

an electrolytic technique and the corrosion process continued for 22 days. 

3.3.1.4 Failure mode of the segmental specimens under different deterioration states 

The corrosion products expand and cause corrosion-induced cracking when the resulting 

tensile stress in the surrounding concrete reaches its tensile strength limit. Moreover, the 

corrosion-induced cracking patterns of the segmental specimens in each group are 

different because of the effects of the load level. For unloaded specimen F4, corrosion-

induced cracks along the direction of the rebar occurred in the cover concrete, and as the 

corrosion developed, the longitudinal cracks became interconnected and grew wider. 

Finally, the maximum crack width of specimen F4, which was measured by the crack  
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(a) 

 

(b) 

Figure 3.7 (a) Schematic diagram of an experimental corrosion specimen and (b) 

photograph of the experimental setup for the bearing specimens 

scale, was approximately 2.2 mm.  

For bearing specimens F1, F2 and F3, with initial load-induced crack widths of 0 

mm, 0.2 mm and 0.45 mm, respectively, segmented corrosion-induced cracks along the 

direction of the rebar occurred primarily between the tensile cracks in the cover concrete. 

As the steel weight loss increased, the corrosion-induced cracks became interconnected 

with tensile cracks and propagated together. For example, the tensile crack widths on the 

top surface of specimen F3 near the location of the maximum bending moment ranged 

from 2.1 mm to 2.6 mm.  

Because cracking propagation induces further degradation of the steel-concrete 

interface and exposes more of the steel surface to corrosive agents, a higher loading level  
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(a) 

 

(b) 

 

(c) 

Figure 3.8  Failure modes of specimens (a) without corrosion (F0); (b) corrosion 

without cracks (F1); and (c) corrosion with cracks (F3) 

led to greater steel weight loss and more severe cracking. Considering that different 

deteriorated states of specimens might lead to different failure modes, after corrosion 

testing of the segmental specimens, the load acting on the specimens was increased, and 
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the failure modes of the segmental specimens under differently deteriorated states were 

identified as shown in Figure 3.8.  

For the non-corrosion specimens, F0, Figure 3.8(a) shows that the tensile cracks 

propagated a substantial distance in the tensile zone of each specimen, and the largest 

crack occurred at the mid-span; moreover, the concrete was crushed in the compressive 

zone of each specimen. As shown in Figure 3.8(b), specimens F1 and F4, which did not 

exhibit significant degrees of corrosion, exhibited larger tensile cracks than specimen F0, 

and the two largest failure cracks appeared at the mid-span. Finally, Figure 3.8(c) shows 

that specimens F2 and F3, which had more steel weight loss, exhibited interconnected 

failure cracks and spalling of the cover concrete. 

3.3.2 Damage definition of segmental linings 

The life-cycle structural performance of a RC shield tunnel is influenced by three factors: 

environmental stressors, service time (t), and the provided load level (f). Because the RC 

segmental linings are subjected to chemical-physical damage, the structural and material 

performance will deteriorate and the structural stiffness will decrease with time after 

construction. As the structural stiffness decreases, deformation of the segmental linings 

will increase significantly. This can be regarded as a macroscopic phenomenon of 

structural deterioration. Moreover, structural deformation is an important part of the on-

site monitoring of a tunnel structure. Therefore, a damage index denoted by the level of 

deformation facilitates assessments of the level of deterioration in a tunnel structure. 

Based on the stiffness damage theory reported in Liu (2011), a damage index of 

segmental specimens is defined as: 

0 0

' '
1

E I
D

E I
                                                                   (3-9) 

where E’I’ and E0I0 are the residual stiffness and initial stiffness of the specimen, 

respectively. 
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Thus, according to the relationship between the displacement at the mid-span and 

the stiffness of the beam is: 

2

=
8

Ml
u

EI
                                                    (3-10) 

Therefore, Equation 3-9 can also be expressed as: 

'
1

'

e

e

M u
D

M u
                                                             (3-11) 

where M’ is the bending moment of the specimen; u’ is the displacement of the damaged 

specimen, which can be measured experimentally; Me and ue are the bending moment at 

the elastic limit of the specimen and its corresponding displacement, respectively; and D 

is the damage value of the segmental specimen.  

Furthermore, the specimen damage is expressed by D0, D1 and D2 according to the 

testing stage. D0 is the initial damage induced by loading during the first stage (i.e., 

loading stage before corrosion), and D1 and D2 are the total damages of the specimens 

during the second stage (i.e., accelerated corrosion stage) and third stage (i.e., loading 

stage after corrosion), respectively. In particular, the second stage D1 contains the initial 

damage D0 and deteriorating damage d. Therefore, D1 is expressed as follows: 

 
1 0D D d                                                              (3-12) 

where d is the damage increment of the specimen induced by the combined effects of 

loading and corrosion during the accelerated corrosion stage. 

3.3.3 Damage evolution of the segmental specimens 

Based on the damage equation for the segmental specimens (Equation 3-11), the damage 

value D0, D1 and D2 of the specimens in each group can be derived from the measured 

displacement value u’ of the specimens. The damage curves for the five groups of 

specimens at all loading stages are shown in Figures 3.9, 3.10 and 3.11. 

These figures show that for the specimens with higher load levels (e.g., specimens  
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Figure 3.9 Damage index curves of specimens under different load levels (F1-F3) 

 

Figure 3.10 Damage index curve of the specimen without initial damage (F4) 

 

Figure 3.11 Damage index curve of the specimen without corrosion (F0) 

F2 and F3), the initial damage occurred before the corrosion began. However, specimens 

F1 and F4 remained in an undamaged state and cracking did not occur before the 

corrosion began. Thus, with the development of steel corrosion, the damage of specimens 

increased linearly with time. In addition, the ingress of chloride was accelerated because 

of the effect of the load, which led to a higher corrosion rate with increases in the load 

levels during corrosion testing. Finally, at the end of the corrosion test, the measured 

ultimate steel weight losses were 18%, 24% 30% and 14% for specimens F1, F2, F3, and 
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F4, respectively. 

With respect to the ultimate bearing capacity of the deteriorating specimens, the 

ultimate bearing capacity of the specimens showed greater decreases when the steel 

weight losses were higher. As shown in Figures 3.9, 3.10 and 3.11, the ultimate bearing 

capacities of specimens F1, F2, F3 and F4 decreased by 23%, 26%, 38% and 18%, 

respectively. 

Finally, in terms of the ultimate damage value of the specimens, flexural failure 

occurred when the loading reached the ultimate load of the deteriorating specimen. 

However, because the failure specimen still had a slight residual stiffness, E’I’ was greater 

than zero and the ultimate damage value from Equation 3.9 was less than one. 

3.3.4 Damage modeling for the segmental specimens 

3.3.4.1 Initial damage under load 

Because of the construction load, ground load and high soil-water pressure, concrete 

cracking of segmental linings may have occurred at the beginning of service time, which 

indicates that the structural damage occurs. In particular, when the concrete cracks occur 

at the tension zone of the segmental linings, it is harmful to the long-term structural 

performance of shield tunnels. With respect to a shield tunnel in an aggressive 

environment, the damage induced by loads before structural deterioration initiation is 

regarded as the initial damage D0. To perform a long-term structural performance 

assessment of shield tunnels in an aggressive environment, the initial damage must first 

be estimated. 

According to a regression analysis for the experimental results on specimens F0 for 

loading without corrosion, the relationship between the damage D0 caused by the load and 

load level f is: 
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Figure 3.12 Damage associated with the load level 
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where  and  are the average stress and average strain on the positions of the rebar in the 

RC, respectively; E0 is the elastic modulus of the RC; t is the equivalent cracking stress 

of the RC; ys is the distance from the rebar position to the neutral axis of the specimen; I 

is the moment of inertia of the specimen; and Ac is the cross-sectional area of the specimen. 

As shown in Figure 3.12, the calculated curve can appropriately reflect the damage 

growth trend with an increase in load level. When the load exceeds the elastic limit of RC 

member (f = 0.94), crack initiation and propagation lead to damage accumulation in 

segmental specimens. With an increase in load level, the increase in damage tends to be 

slow and gradual. However, in term of the shield tunnels, the bending moment, M and 

axial force, F in Equation 3-14 vary from case to case, depending on the structural shape 

and loading condition, segmental linings will yield at different value of load level, f. 

3.3.4.2 Deteriorating damage due to coupling effects 
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Table 3.2 Deteriorating damage d and steel weight loss  (%) of the segmental 

specimens 

Experimental 

Time/days 
0 3 6 9 12 15 18 22 

F1 

Deteriorating 

Damage, d 
0 0.048 0.074 0.083 0.107 0.138 0.180 0.219 

Steel Weight 

Loss,   
0 6.42 9.42 13.74 15.67 16.54 17.54 18.37 

F2 

Deteriorating 

Damage, d 
0 0.004 0.033 0.064 0.090 0.113 0.168 0.206 

Steel Weight 

Loss,   
0 8.87 12.73 16.11 19.36 20.9 22.74 24.38 

F3 

Deteriorating 

Damage, d 
0 0.001 0.020 0.040 0.058 0.081 0.111 0.151 

Steel Weight 

Loss,   
0 11.21 16.85 20.11 23.18 25.94 27.53 30.12 

F4 

Deteriorating 

Damage, d 
0 0.012 0.030 0.045 0.062 0.077 0.090 0.111 

Steel Weight 

Loss,   
0 3.61 7.49 9.97 10.99 11.78 12.5 13.64 

The deteriorating deformation ut is regarded as a macroscopic phenomenon for the 

damage of the segmental lining's stiffness, and it is typically determined by the load level 

f of the segmental linings and the steel weight loss. Therefore, the function of 

displacement can be expressed as ut=ut(f, ). Immediately after tunnel construction, the 

rebar is not corroded and   = 0; thus, the structure presents only the loading damage D0. 

Since corrosive agents and high water-soil pressure affect the segmental linings, the 

deteriorating damage d accumulates gradually. As a result, the deteriorating damage d 

is a function of the load level f and the steel weight loss  as follows: 

1 0 ( , )d D D g f                                                      (3-15) 

According to the Liu et al. (2015) that experimentally investigated the relationship 

between steel weight loss and accelerated corrosion time, the details of deteriorating 

damage and steel weight loss are shown in Table 3.2. 
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Figure 3.13 Deteriorating damage associated with steel weight loss under different 

load levels 

Based on this Table, a deteriorating damage formula for a segmental specimen as 

denoted by steel weight loss and load level can be expressed as: 

2( )d A B C                                                 (3-16) 

where A, B and C are influence coefficients given by regression analysis. 

For the specimens without initial cracks subjected to corrosion, the value of f ranges 

from 0 to 0.94, and A, B and C can be expressed as: 
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                                             (3-17) 

For the specimens with initial cracks subjected to corrosion, the value of f ranges 

from 0.94 to 2.07, and A, B and C can be expressed as: 
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                                       (3-18) 

The experimental results for the relationships between the deteriorating damage and 

steel weight loss of the segmental specimen under different load levels are shown in 

Figure 3.13. 

This figure reveals that a higher loading level led to greater steel weight loss and 
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severe cracks accelerated the rebar corrosion process. However, the effect of rebar 

corrosion on the deteriorating damage of specimens with a higher loading level (i.e. more 

cracks induced by loading before corrosion) decreased. The reason for this is that more 

corrosive rust ran away through severe cracks with NaCl solution in the experiment, 

resulting in slower corrosion-induced cracking propagation and deteriorating damage.  As 

shown in Figure 3.13, the calculated value matches the experimental results well and can 

accurately reflect the deteriorating damage process. 

In terms of the life-cycle structural performance of an underwater shield tunnel, the 

use of Equations 3-16 to 3-18 represents a new approach for assessing the life-cycle 

structural performance of an underwater tunnel in an aggressive environment. By 

considering the load level and steel weight loss at different sections of the segmental 

linings, the deteriorating damage level of a tunnel structure can be estimated using 

Equations 3-16 to 3-18. Based on the deteriorating damage value of a segmental lining, 

the stiffness of an aging tunnel structure can be obtained and applied to the mechanical 

performance estimation. However, since bending moment, M, and axial force, F, of shield 

tunnel depend on the design conditions, segmental linings may deteriorate under higher 

load level, f. Meanwhile, due to the complexity of aggressive environment around tunnels, 

reinforcement in segment may suffer from higher steel weight loss during structural 

lifetime. 

3.3.5 Steel corrosion associated with load level 

The corrosion process of rebar for experimental specimen is normally a dynamic process 

in which the diffusion distances of corrosive agents increase along with the thickness of 

the rust layer, which causes the rate of steel corrosion to decrease (Liu and Weyers 1998a; 

Bhargava et al. 2006). Therefore, the rate of steel weight loss may not follow a simple 

linear model based on a steady state corrosion process. For uniform corrosion, the 
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thickness of the rust layer is proportional to the total mass of rust per unit length of the 

corroding bar (Wr), and the growth of rust products is given as (Liu and Weyers, 1998b) 

pr

r

kdW

dt W
                                                                (3-19) 

where kp is related to the rate of steel weight loss as kp = Ap π D0 icor (Bhargava et al., 

2006); icor is the annual mean corrosion rate (μA/cm2); D0 is the original diameter of rebar 

(mm); and t is presented in years. 

Similarly, the relationship between the amount of steel weight loss Ws (mg/mm) per 

unit length and the amount of rust Wr (mg/mm) is expressed as (Bhargava et al. 2006). 

s rW W                                                       (3-20) 

By combining Equations 19 and 20, the steel weight loss rate dWs/dt can be obtained 

as follows: 

2

0p cors

s

A D idW

dt W

 
                                                      (3-21) 

where the parameters  and Ap are related to the corrosion process and the amount of rust 

generated, respectively (Faroz et al., 2016). An estimate of these constants was given by 

Bhargava et al. (2006) based on the experimental evaluation by Liu (1996), and Ap=2.49 

and =0.613.  

According to the experimental results, the steel corrosion rates of segmental 

specimens under different load levels determined using Equation 3-21 are shown in 

Figure 3.14. Figure 3.14 shows that the steel corrosion rates of segmental specimens tend 

to decrease with time, which is consistent with the results of Liu and Weyers (1998b). 

Besides, the average steel corrosion rate of segmental specimens increases with the 

loading according to Figures 3.13 and 3.14. Considering the effect of a load on the steel 

corrosion rate, Equation 3-21 becomes: 
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Figure 3. 14 Steel corrosion rate of RC 

 

Figure 3.15 Steel weight loss associated with time 

2

0 0p fs

s

A D idW

dt W
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                                           (3-22) 

where the loading coefficient based on regression analysis is βf = 0.961e0.774f and i0 is the 

annual mean corrosion rate without considering the load effect. 

For a constant corrosion rate, the time-variant amount of steel weight loss model 

Ws (mg/mm) considering the load effect can be derived based on Equation 3-22 as 

follows: 
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sW e D i t                                         (3-23) 
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0.387 f

c e                                                     (3-24) 

where c is the influence coefficient of load level on steel corrosion.  

Finally, the estimated values of the steel weight loss determined using Equation 3-

23 and the average rebar corrosion rate for segmental specimens are shown in Figure 3.15. 

As shown in this figure, the calculated values are consistent with the experimental results. 

3.4 Time-variant structural performance assessment of shield tunnel in 

a marine environment 

3.4.1 Evaluation of corrosion initiation and crack occurrence 

3.4.1.1 Chloride transportation in segmental linings under hydrostatic pressure 

Until recently, researchers (Chen et al. 2008; Song et al. 2009 & Sun 2011) have estimated 

the life-cycle performance of undersea tunnels by only considering the diffusion of the 

chloride ions in RC linings. Fick’s diffusion law has been adopted to predict the lifetime 

of undersea tunnels. However, because of the effect of high hydrostatic pressure on the 

tunnels, these structures withstand a large water pressure gradient between their inside 

and outside walls. Chloride motion in the linings is associated with external water 

pressure, as proven by experimental results (Van der wegen et al. 1993; Jin et al. 2013 & 

Zhang et al. 2015, 2016). 

Therefore, considering the impact of hydrostatic pressure and the water 

environment, it is currently thought that the coupled effects of diffusion and advection 

drive chloride motion. The diffusion results in the transportation of chloride ions from a 

region of high ion concentration to a region of lower ion concentration. Meanwhile, 

advection transports ions with the bulk motion of the carrier fluid, including the matric 

potential (i.e., capillary) and pressure potential (i.e., permeation). 
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Chloride transportation in concrete is assumed to act under steady-state conditions. 

Therefore, a diffusion flux of free chloride ions by using Fick’s 1st diffusion law is 

usually applied: 

d fJ D C                                                    (3-25) 

where Jd is the diffusion flux of free chloride ions, kg/(m2·s); D is the chloride diffusion 

coefficient of concrete, m2/s; ∇ is the nabla operator; and Cf is the volume concentration 

of free chloride dissolved in the pore solution, kg/m3. In particular, the negative sign in 

Equation 3-25 indicates that diffusion occurs with the concentration reduction. 

The advective flux can be expressed as: 

a fJ C u                                                                (3-26) 

where Ja is the advective flux of free chloride ions, kg/(m2·s); and u is the average velocity 

of chloride, m/s. 

Therefore, the total flux of free chloride ions is described as follows: 

cl d aJ J J                                                               (3-27) 

Based on the mass conservation law of chloride ions, the governing differential 

equation of chloride movement is: 

( ) 0
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                                                   (3-29) 

With respect to Equation 3-29, Ogata and Banks (1961) presented an analytical 

solution for saturated concrete, described as: 

 ,
2 4 4
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s D
C x ut x ut
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Dt Dt
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                         (3-30) 

where for shield tunnel structures, x is the depth from the outside wall of the linings, mm; 

t is the time after structural construction in years; Cs is the chloride content at the surface, 
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kg/m3; u is the average velocity of the chloride motion, mm/year; D is the chloride ion 

transportation coefficient in concrete, mm2/year; erfc (·) is the complementary error 

function, erfc(·) = 1 − erf (·); and erf (·) is the error function. 

A one-dimensional flow that seeps through concrete under pressure is regarded as 

a laminar flow. Thus, the velocity equation of a pressurized seeping flow is described 

based on Darcy’s Law as follows (Murata et al. 2004 & Yoo et al. 2011): 

S
w S w

w

K
u K H P

g
                                             (3-31) 

where uw is the flow velocity of liquid, mm/year; Ks is the permeability coefficient, 

mm/year; H is the hydraulic head, m; ρw is the water density, kg/m3; and Pw is the 

hydraulic pressure of the flow path, MPa. 

According to Equation 3-31, Murata et al. (2004) proposed two methods to evaluate 

the watertight properties of concrete and the average penetration depth of water under 

different water pressures over time. For the Darcy seepage flow (Murata et al. 2004), 

since the external water pressure, Pw, is less than 0.15 MPa, the Darcy flow velocity is 

constant over time and space, and the hydraulic gradient becomes linear. The penetration 

depth of water  (mm) by using the Darcy seepage model is 

2 s w

w

K P
t

g



                                                   (3-32) 

For the seepage diffusive flow (Murata et al. 2004), the external water pressure, Pw, 

is larger than 0.15 MPa. As the internal deformation induced by high water pressure 

becomes significant, the flow velocity and hydraulic gradient vary over time and space. 

Thus, the penetration depth of water  (mm) is described by using a high-pressure seepage 

model as: 

2 2

04 t
 




                                                              (3-33) 
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where  is the coefficient of water pressure, mm2/year; and ξ = 0.4104 ln(Pw) + 0.995. α 

is a correction factor for pressurized time (i.e., α = (365×24×602×t)3/7), and t is pressurized 

time in years. γ2
0 is the initial diffusion coefficient, mm2/year; and γ2

0 = (Ks Kv) / (ρwg). Kv 

is the volumetric modulus of elasticity when considering the substances of water and 

concrete, expressed as 1/ Kv = ν / Kc +(1−ν) / Kw. Kc is the volumetric modulus of elasticity 

of a concrete body, Kw is the volumetric modulus of the elasticity of water, and ν is the 

volumetric ratio of concrete body. 

Because the size of a chloride ion is much smaller than the size of a water molecule, 

the permeation speed of a chloride ion is much slower than the permeation speed of water 

in concrete, and the transportation velocity of a chloride ion is approximately 53% that of 

water (Jin et al. 2013). The average flow velocity of a chloride ion under water pressure 

is  

0.53u t                                                  (3-34) 

In particular, when the external water pressure, Pw, is very low (i.e., u is close to 

zero), the advection process of chloride can be ignored. Therefore, Equation 3-30 can be 

simplified as  

 , 1
4

s

x
C x t C erf

Dt

  
   

  
                                            (3-35) 

which is the diffusion equation of chloride based on Fick’s second law. 

An experimental results from Jin et al. (2013) reporting the chloride transport of 

concrete under hydrodynamic pressure are adopted herein to verify this proposed model. 

Figures 3.16 (a) and (b) depict the chloride transport under a hydrostatic pressure of 0.2 

MPa in a concrete with a water-to-cement (W/C) ratio of 0.53, and the estimated results 

of chloride distribution obtained using Equations 3-30 to 3-34 are compared with the 

experimental results at time of 24 h and 480 h, respectively. As shown in figures, the  
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(a) 

  

(b) 

Figure 3.16 Chloride concentration distribution of concrete under the hydrostatic 

pressure of 0.2 MPa at (a) 24 h and (b) 480 h 

proposed method provides good agreement with the experimental results.  

Furthermore, according to an review about permeability of concrete (Hoseini et al. 

2009), when the crack width is less than 0.2 mm, the permeability of chloride and water 

has not obvious change compared with that in un-cracked concrete. In engineering, the 

crack width of segmental linings due to load has a strict limit, it should be less than 0.2 

mm; meanwhile, because of the influence of high water pressure, tensile stress in the 
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outside wall of segmental linings is very low, and compressive stress generally plays more 

significant role in the outside wall of segmental linings. Therefore, in term of effect of 

load-induced cracks on the diffusion of chloride, it has not been taken into consideration 

in this study. 

3.4.1.2 Reinforcement corrosion initiation 

The degree of contact with a chloride environment has a significant effect on the level of 

the surface chloride content, Cs. In terms of the underground environment in coastal 

regions, Cs of a shield tunnel is assumed to be approximately equal to the chloride content 

of the soil, and it may not change with time because of the chemical equilibrium for 

concrete that is exposed to infinite seawater (Ann et al. 2009). Therefore, Cs is described 

as: 

1 0.001s soilC X C                                              (3-36) 

where Cs is the chloride content on the outside surface of the tunnel wall, kg/m3; Csoil is 

the chloride content of the soil, ppm; and X1 is a lognormal random variable that 

represents model uncertainty. 

As the total amount of chloride around rebar accumulates and reaches a critical 

threshold of chloride content, Ccr (kg/m3), the corrosion of rebar starts. Thus, the time t1 

to corrosion initiation can be obtained by using the following event: 

1 2 ( , ) 0crg X C C c t                                             (3-37) 

  3,
2 4 4

uc

s D
C c ut c ut

C c t X erf e erfc
Dt Dt

     
     

    
                              (3-38) 

26.77( ) 10.10( ) 1.1410 W C W CD                                           (3-39) 

where Ccr is the critical threshold of the chloride content, kg/m3; c is the concrete cover 

specified in the design, mm; t is the time after construction in years; W/C is the ratio of 

water to cement; D is the chloride ion transportation coefficient in concrete, mm2/year; 
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and u is the average velocity of the chloride motion, mm/year. X2 is a normal variable 

associated with the evaluation of Ccr, and X3 is a lognormal variable that represents the 

model uncertainty that is associated with the estimation of C(c, t). 

In particular, the chloride coefficient of diffusion (Equation 3-39) (Akiyama et al. 

2010) was obtained by the data reported by Maeda et al. (2004), which are used for 

concrete, including ordinary Portland cement (OPC). Concerning the critical threshold of 

chloride content Ccr, the value of Ccr exhibits a high discretization because of material 

properties and the environment. For an environment with frequently changing humidity 

or a constant humidity between 90% and 95%, the critical content is the lowest. However, 

for submerged structures that lack oxygen, Ccr is higher (Breitenbucher et al. 1999 & 

Zhao 2004). Based on previous reports (Breitenbucher et al. 1999; Val et al. 2003 & Jin 

et al. 2014), Ccr is assumed to be 2.8 kg/m3, and X2 is treated as a normal random variable 

with a mean and C.O.V. of 1.0 and 0.375, respectively. 

3.4.1.3 Corrosion-induced crack occurrence 

As the passive film is broken by chloride ions, the metallic Fe at the anode is oxidized to 

form ferrous ions that can react with hydroxyl ions to produce ferrous hydroxide, which 

can be further converted to hydrated ferric oxide. Because the various iron oxides have 

volumes that are 2 to 6 times the volume of iron (Liu et al. 1998 & Papakonstantinou et 

al. 2013), a large volume expansion of rust formation causes internal stress and induces 

cracks in the cover concrete when the total amount of the steel corrosion product, Qb, 

exceeds the critical threshold of corrosion that is associated with crack initiation, Qcr. 

According to Akiyama et al. (2010; 2012), the probability that is associated with the 

corrosion crack occurrence is estimated by the probability of occurrence of the event: 

2 4 1 1( ) ( , , ) 0cr bg X Q c Q V t t                                               (3-40) 

where 



 

49 

 

1 2( ) ( )cr c cQ c W W                                            (3-41) 

 2 2

2/3

1 0 0

0.22 2( )

( 1) ( )

s
c c

c

c
W f

E c

 
 

  

  
 

   

                             (3-42) 

2 1 1
( 1) 5 3

s
c c

c
W w

c

 
 

  




 
                                          (3-43) 

1 1 5 1 1( , , ) ( )b sQ V t t X V t t                                        (3-44) 

s is the steel density in 7.85 mg/mm3,   = 3.0 is the expansion rate of the volume of the 

corrosion product, fc is the concrete strength in MPa, wc is set to 0.1 mm as the crack 

width of the first cracking, and Ec is the modulus of elasticity of concrete in MPa.  is the 

diameter of the steel bar in mm, V1 is the corrosion rate of the steel bar before the 

occurrence of a corrosion crack in mm/year, and 0, 0, 1 and 1 are the coefficients that 

consider the effects of the concrete cover, steel bar diameter and concrete strength, 

respectively (Qi et al. 2001).  is the correction factor, X4 is the lognormal random variable 

that represents the model uncertainty that is associated with the estimation of Qcr, and X5 is 

the lognormal random variable associated with the corrosion rate. 

Based on Equations 3-40 to 3-44, the time, t2, to corrosion crack occurrence is 

4
2 1

5 1

( )cr

s

X Q c
t t

X V
                                                 (3-45) 

The corrosion rate of the structures submerged in water or soil is generally lower 

than that of ground structures due to the lack of oxygen (JSCE 2010). According to the 

monitoring corrosion rate (see Table 3.3) of RC structures in aggressive environments, 

including submerged environments, and the JSCE specification (2010), a computation of 

the amount of rebar corrosion is made by assuming two corrosion rates, namely, (a) 7.7 

m/year before the occurrence of corrosion cracking and without loading (V1, f = 0) and (b) 

30 m/year after the occurrence of corrosion cracking and without loading (V2, f = 0). 

Meanwhile, X5 is assumed as a lognormal with a mean and C.O.V. of 1.0 and 0.58, respectively 

(Mori et al. 1994; Frangopol et al. 1997; Nakagawa et al. 2004 & Akiyama et al. 2010). 
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Table 3.3 RC corrosion rate review in a submerged environment (m/year) 

 
Corrosion 

rate 
Condition Case 

Stewart M.G. et al. 

(1998) & Chen D. 

et al. (2008) 

11.6 

Uncracked 

Moderate 

corrosion 

  

Gonzalez J.A. et al.  

(1995) 
11.6~34.8 Active corrosion Lab Specimen 

Costa A. et al. 

 (2002) 

<11.6 Passive condition 
On-site 

Bridge 

(Portugal) 81.2 Construction joint 

Walsh M. T. et al.  

(2016) 
5~35 

Pilings of 

undersea 
On-site Bridge 

Gong C. et al.  

(2017)  

1.16~8.12 Initiation 

On-site 

Tunnel 

(Xiangan Subsea  

Tunnel, China) 

58~116 Inside wall  

11.6~92.8 Outside wall 

Finally, considering the effect of different loading levels on the corrosion rate that is 

described in Equation 3-24, the corrosion rate of the segment under different load levels is 

V1,f = 7.78 e0.387f and V2,f = 30 e0.387f. 

3.4.2 Performance assessment of the segmental linings based on steel corrosion 

3.4.2.1 Steel weight loss and deteriorated flexural strength due to corrosion 

Structural integrity degradation occurs after reinforcement corrosion initiation, while the 

flexural strength of corroded RC linings depends mainly on the total available area of the 

rebar in the tension zone. In this paper, the steel weight loss, (t), which is assumed to be 

uniform corrosion (Akiyama et al. 2010), is described as: 

 

1

1 1 5 1 22

2 1 1 5 2 2 5 22

0.0,                                                      

( ) ,                         < 
( ) ( ) / 4

( ) ( ) ,  
( ) / 4

t t

t t V X t t t
t

t t V X t t V X t t



 







 


   









                            (3-46) 

where  is the diameter of the steel bar, mm; V1 is the corrosion rate of the steel bar 

before cracking, m/year; V2 is the corrosion rate of the steel bar after cracking, m/year. 
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Figure 3.17 Relationship between the steel weight loss of longitudinal bars and 

flexural strength loss 

As corrosion gradually progresses, the remaining flexural capacity is reduced. 

There have been many experimental studied on RC specimens with chloride-induced 

corrosion of rebars. Previous experimental results of corroded RC specimens (EI 

Maaddawy et al. 2005; Malumbela et al. 2010; Yu et al. 2015 & Xia et al. 2016) are used 

here. In these studies, the specimens were corroded by electric corrosion or 

drying/wetting conditions using salt water, and then the residual capacities of corroded 

RC specimens were tested under pure bending state (EI Maaddawy et al. 2005; 

Malumbela et al. 2010; Yu et al. 2015) or eccentric compression loading (Xia et al. 2016). 

Based on a regression analysis for the test results of corroded RC specimens, the flexural 

capacity loss of the segments with corrosion-induced deterioration in tension zones is 

shown in Figure 3.17. The relationship between  (t) and the flexural strength loss, h(),  

is: 

  6( ) 1.089 1.000h X                                                (3-47) 

 0( ) ( )uM t M h t                                                        (3-48) 

where Mu(t) is the deteriorated flexural capacity of the segments due to reinforcement 

corrosion, and M0 is the undamaged flexural capacity of the segments, depending on the 
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cross-section size, amount of rebar and axial force (JSCE 2010). X6 is a normal random 

variable related to the ratio of experimental to computed value by Equation 3-47 with a 

mean and C.O.V. of 1.0 and 0.066, respectively.  

However, because the pitting corrosion of reinforcing bars is ignored here, this 

linear equation may lead to an overestimation of the deteriorated flexural capacity of the 

segmented linings with an increase of average steel weight loss. 

3.4.2.2 Estimation of stiffness and demand on deteriorated segmental linings 

As stated previously, the time-variant damage variable, DI (t), of the RC segments in an 

aggressive environment is determined by the load level, f, and steel weight loss,  (t), 

which includes the initial damage, Df , due to the load and the deteriorated damage, Dc (t), 

due to the coupling effects of the load and corrosion. Meanwhile, because of the non-

uniform distribution of the load level, f, along the different sections of segmental linings, 

the time-variant damage variable, DI (t), of the RC segments is also associated with the 

sectional position, , of the segmental linings. Based on Equations 3-13 to 3-18, the time-

variant damage variable, DI ( t), of an RC segment is assumed as (Liu 2011): 

( , ),           0 ( ) 0.94
( , )

( ) ( , ),   0.94 ( ) 2.07

c

I

f c

D t f
D t

D D t f

 


  

 
 

  
                         (3-49) 

3 2( ) 0.077 ( ) 0.559 ( ) 1.482 ( ) 0.923fD f f f                           (3-50) 

2( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )cD t A t B t C t                                        (3-51) 

where  is the sectional position of the segmental linings; f ( ) is the load level at each 

section of the segmental linings; Df ( ) and Dc ( ,t) are the initial damage due to the load 

and the deteriorated damage due to the coupling effects of the load and corrosion, 

respectively; and A( ), B( ) and C( ) are correction coefficients depending on . 
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Figure 3.18 Loading structure model schematic diagram of a modified routine 

calculation method (adapted from JSCE 2007) 

Regarding the demand calculation of deteriorated shield tunnels, a modified routine 

calculation method (see Figure 3.18) is adopted in this paper. This calculation method, 

which was proposed by Japan Society of Civil Enigneers (JSCE) (JSCE 2007), is a typical 

example of many loading-structure models that ignore the joint effects and that treat the 

shield tunnel as a uniform, rigid ring. In this paper, the average time-variant stiffness, EI 

(t), of the deteriorated segmental linings is defined as follows based on Equation 3-9: 

 ( ) 1 ( )IEI t D t EI                                              (3-52) 

2 2

0 0

2
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( , ) ( , )
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D t d D t d
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 
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 


                                      (3-53) 

where ( )ID t  is the weighted mean value of the damage variable, DI ( t), for each cross-

section of the RC segmental linings, and EI is the undamaged stiffness of the RC 

segmental linings. 
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Figure 3.19 Illustration diagram of case studies of a shield tunnel in a coastal 

region 

Furthermore, considering the uncertainty in structural properties and soil properties, 

these random variables are adopted in the demand calculation process of shield tunnels 

with corrosion-induced deterioration.  

3.5 Illustrative examples 

3.5.1 Time to corrosion initiation analysis 

Corrosion initiation indicates the beginning of structural deterioration, and the time to 

corrosion initiation can be regarded as a significant index for structural durability 

assessments. A Monte Carlo analysis was conducted to obtain the distribution of the time 

to corrosion initiation of shield tunnels with a sample size of 20,000. The influence of 

three cases, including the hydrostatic pressure, the material properties of a segment and 

chloride hazard, on the time to corrosion initiation was considered for the shield tunnels 

in the two coastal cities of Xiamen and Shanghai (see Figure 3.19).  

All the parameters of the random variable Xi (i = S, R, 1, 2, 3, 4, 5) involved in the 

calculation of the time to corrosion initiation by using MCS are summarized in Table 3.4.  

Marine Chloride Contents
Xiamen: Csea=16.3kg/m3

Shanghai: Csea=5.6kg/m3

Seawater

Coastal Land

1
2

m

2
.6

m
5

.4
m

Sludge

Residual sandy sticky clay

Completely weathered granite

Cross Section of Shield Tunnel

Shield Tunnel in a Coastal Region

Information of Case Study
Water Pressure Pw: 0MPa, 0.1MPa, 0.2MPa,

0.3MPa

Location from Coastline ds: 0km, 0.5km, 2km

Ratio of water to cement W/C: 0.37,0.55
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Table 3.4 Parameters of the random variables of the deteriorating calculation 

Variables Distribution Mean C.O.V. 

Chloride content in soil (XR) Lognormal 1.00 0.73 

Marine chloride content (XS) Normal 1.00 
0.043 (Xiamen) 

0.155 (Shanghai) 

Cs-Csoil equation (X1) Lognormal 1.43 1.08 

Critical threshold chloride content at 

occurrence of steel corrosion (X2) 
Normal 1.00 0.375 

Estimation of chloride transport (X3) Lognormal 1.24 0.906 

Critical threshold of corrosion amount at 

crack initiation (X4) 
Lognormal 1.00 0.352 

Corrosion rate (X5) Lognormal 1.00 0.58 

Corrosion-induced flexural capacity loss 

(X6) 
Normal 1.00 0.066 

The examples illustrating the probability density functions (PDFs) for the time to 

corrosion initiation of the shield tunnels under different conditions are presented in 

Figures 3.20 to 3.22. 

Figure 3.20 presents the distribution of the time to corrosion initiation for a shield 

tunnel located in Xiamen under the hydrostatic pressures of 0 MPa, 0.1 MPa, 0.2 MPa 

and 0.3 MPa. From this figure, the effect of greater hydrostatic pressure is clearly 

confirmed because the time to corrosion initiation occurs considerably earlier with greater 

hydrostatic pressure than with lower hydrostatic pressure. Notably, for a shield tunnel that 

is under high hydrostatic pressure conditions (i.e., Pw > 0.15 MPa), a significantly 

premature corrosion initiation occurs at only several years after the completion of 

construction. Similar results are indicated for the shield tunnels located in Shanghai. 

Besides, the material properties of a segment also play a significant role in structural 

durability, as illustrated in Figure 3.21. Because the chloride transportation process is 

associated with the ratio of water to cement (i.e., Ks and D), the time to corrosion initiation 

of a shield tunnel in Xiamen with a higher ratio of water to cement (i.e., W/C = 0.55) is 

earlier than the time to corrosion of a shield tunnel in Xiamen with a lower ratio of water  
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Figure 3.20 PDF of corrosion initiation over time after the structural construction 

of the shield tunnels in Xiamen under different hydrostatic pressures 

 

Figure 3.21 PDF of corrosion initiation over time after the structural construction 

of the shield tunnels in Xiamen for different ratios of water to cement 

to cement (i.e., W/C = 0.37) and is approximately 8 years and with a higher probability. 

Similar analyses are performed for the shield tunnel in Shanghai. As expected, a RC 

segment that uses a lower ratio of water to cement has better anti-permeability. 

Finally, Figures 3.22 (a) and (b) reveal that a higher probability of corrosion 

initiation occurs for a shield tunnel near a marine environment because of the higher 

chloride hazard and that this probability decreases with an increasing distance from the 

coastline. However, with the decrease of chloride hazard, the probability of corrosion 
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(a) 

 

(b) 

Figure 3.22 PDF of corrosion initiation over time after the structural construction 

of the shield tunnels in (a) Xiamen and (b) Shanghai for different distances from 

the coastline 

initiation gradually tends to be uniform distributed with a low level during structural 

lifetime due to the week chloride attacks, as shown in Figure 3.22 (b). 

3.5.2 Time-variant structural performance analysis 

3.5.2.1 Time-variant structural reliability margin 

To estimate the life-cycle performance of a structural system, time-variant probability-

based concepts and methods provide a rational and more scientific basis for treating  
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Table 3.5 Parameters of the random variables of the demand calculation 

Variables Distribution Mean C.O.V. 

Density of first layer of cover soil (s1) Lognormal 1610 kg/m3 0.044 

Density of second layer of cover soil (s2) Lognormal 1830 kg/m3 0.028 

Density of third layer of cover soil (s3) Lognormal 1880 kg/m3 0.041 

Elastic resistance coefficient of soil (kr) Lognormal 30×103 kN/m3 0.236 

Side pressure coefficient of soil () Lognormal 0.330 0.175 

Unit weight of RC segment (g1) Normal 23 kN/m3 0.020 

Elasticity modulus of concrete (E) Normal 34.5 GPa 0.085 

uncertainties (Ang and Tang 1984, 2007; Frangopol 2011). The failure probability of a 

structural system during its life-cycle is generally defined as the probability of violating 

any of the limit state functions that indicate its failure modes. In this paper, because the 

material properties of the segments (i.e., stiffness and strength) are the random functions 

of time, the time-variant margin of structural safety, Z(t), is described by the flexural 

bending capacity, Mu(t), and the bending moment, M(t), of the shield tunnels. Thus, the 

failure probability, Pf (t), is defined as: 

 ( ) ( ) ( ) ( ) 0f uP t P Z t M t M t                                      (3-54) 

The shield tunnels studied here are located in two coastal cities of China (see Figure 

3.19), namely, Xiamen and Shanghai. Notably, the depth of the shield tunnel is assumed 

to be 12 m, and the structure is located in a layer of completely weathered granite. The 

overlying stratum is sludge and residual sandy sticky clay with a depth of 5.4 m and 2.6 

m, respectively. Finally, the key parameters of the random variables to calculate structural 

demand with uncertainty are listed in Table 3.5. 

Considering the corrosion-induced deterioration of a shield tunnel under different 

conditions, based on Table 3.4, the time-variant failure probabilities of the shield tunnels 

in Xiamen and Shanghai are partly shown in Figures 3.23 to 3.28. From these figures, the 

failure probabilities are presented along the sections of the shield tunnels that are within 
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20 years of construction. In particular, the time-variant probabilities for sections regards 

as the hazard zones of the shield tunnels are also depicted here. 

3.5.2.2 Failure probability associated with hydrostatic pressure 

Figure 3.23 presents the influence of hydrostatic pressure on the failure probability of the 

shield tunnels located in Xiamen. Similar results are also obtained for the shield tunnels 

located in Shanghai. As shown in Figure 3.23, all sections of the shield tunnel can be safe 

for several decades after construction. As the degree of steel weight loss increases in the 

outside wall of the segmental lining, the failure probabilities on/around the sections with 

negative bending moment of the shield tunnel (i.e. the tension zone of section occurs at 

the outside wall of segment linings) increase. In particular, the section around 70 and 290 

degrees of segmental lining gradually exhibit higher failure probabilities. However, as 

the degree of the hydrostatic pressure that acts on a shield tunnel and as the steel weight 

loss increases in the outside wall of the segmental linings, all the sections with negative 

bending moment are exposed to a higher hazard.  

In terms of the top and bottom sections of segmental linings shown in Figure 3.23, 

these sections under positive bending moment exhibit to be safe over time. The steel 

weight loss considered in this paper only occurs on the outside wall of the segmental 

lining, the corrosion of external reinforcements in tensile areas due to negative bending 

moment greatly decrease the flexural capacity. However, the flexural capacity at the top 

and bottom sections of the shield tunnel depends on the reinforcing bars on the inside 

wall due to positive bending moment; therefore, the time-variant flexural capacity on the 

top and bottom sections can be considered as undamaged state. Meanwhile, the greater 

degree of structural stiffness deterioration that occurs because of more steel weight loss 

could cause a decrease in the bending moment of the segmental linings. Therefore, the 

top and bottom sections of the segmental linings are relatively safe compared with the  
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(a) 

 

(b) 

Figure 3.23 Failure probability of all sections of the shield tunnel in Xiamen (ds = 0 

km, W/C = 0.37) under the hydrostatic pressures of (a) 0 MPa and (b) 0.3 MPa at 

different years 
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(a) 

 

(b) 

Figure 3.24 Maximum failure probability of the shield tunnels in (a) Xiamen and 

(b) Shanghai under different hydrostatic pressures 

sections under negative bending moment based on the limit state function. 

Figure 3.24 provides the maximum failure probabilities of shield tunnels in Xiamen 

and Shanghai under different hydrostatic pressures. Generally, a greater hydrostatic 

pressure leads to a higher failure probability for the shield tunnel. This is because the 

flexural capacity of these sections is dominated by the degree of the steel weight loss on 

the outside walls of the segmental linings. Although higher water pressure has a beneficial 
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influence on structural stress condition (i.e., the compression state), higher steel weight 

loss, induced by coupling effect of higher water pressure and aggressive agent, will cause 

the deterioration of flexural capacity more significantly. However, for a shield tunnel 

under low hydrostatic pressure conditions (e.g., Pw = 0.1 MPa), the influence of 

hydrostatic pressure on corrosion initiation is limited (see Figure 3.20). Meanwhile, 

because of the beneficial effect of hydrostatic pressure on the stress state of a shield tunnel, 

higher compressive axial force induces a decrease in the load level, which results in a 

lower corrosion rate. Thus, a slower deterioration process occurs in the segmental linings. 

This results in a slight reduction of the failure probability of a shield tunnel with low 

hydrostatic pressure compared with a shield tunnel without any hydrostatic pressure. 

3.5.2.3 Failure probability associated with the material properties and chloride 

hazard 

The influence of a segment’s material properties on a shield tunnel’s failure probability 

is illustrated in Figures 3.25-3.26. Figure 3.25 shows plots that correspond to the influence 

of the ratio of water to cement on the failure probability distribution along the sections of 

a shield tunnel at Shanghai. The time-variant failure probabilities for the sections regarded 

as the hazard zones of shield tunnels at Xiamen and Shanghai are displayed in Figure 

3.26. According to these figures, a higher ratio of water to cement leads to a greater failure 

probability because of a faster deterioration process that is caused by worse anti- 

permeability in the segment. One hundred years after construction, the failure probability 

of the hazard section of the shield tunnels at Shanghai using the higher ratio of water to 

cement (i.e., W/C = 0.55) increases by two times, compared with the failure probability 

using the lower ratio of water to cement (i.e., W/C = 0.37). Also, the analyses for the 

shield tunnels located in Xiamen reveal similar results. 
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(a) 

 

(b) 

Figure 3.25 Failure probability of all sections of the shield tunnel in Shanghai (ds = 

0 km, Pw = 0 MPa) with ratios of water to cement that are equal to (a) 0.37 and (b) 

0.55 at different years 
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(a) 

 

(b) 

Figure 3.26 Max failure probability of the shield tunnels in (a) Xiamen and (b) 

Shanghai with different ratios of water to cement 

Finally, the failure probabilities of a shield tunnel with a varying distance from the 

coastline are displayed in Figures 3.23 (a), 3.25(a), 3.27 and 3.28 assuming hydrostatic 

pressure equal to 0 MPa is illustrated here. As shown in Figure 3.28 (a), the failure 

probability of a shield tunnel in Xiamen increases with the structure’s proximity to the 

marine environment because of a higher chloride hazard, similar to the results for a shield 

tunnel in Shanghai. Therefore, in term of the shield tunnels near to marine environment, 

it is necessary to conduct structural durability design, so that the target durability  
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(a) 

 

(b) 

Figure 3.27 Failure probability of all sections of the shield tunnel in (a) Xiamen 

and (b) Shanghai (Pw = 0 MPa, W/C = 0.37) with a distance of 2 km from the 

coastline at different years 
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(a) 

 

(b) 

Figure 3.28 Max failure probability of the shield tunnels in (a) Xiamen and (b) 

Shanghai with different distances from the coastline 

reliability level of shield tunnels during their lifetime will be satisfied. 

3.6 Chapter Summary 

(1) A novel time-variant framework for the structural performance assessment of shield 

tunnels in a marine environment was proposed. In this framework, the following five 

main components are considered: (a) chloride hazard assessment; (b) time-to-

corrosion-initiation estimate with the impact of hydrostatic pressure; (c) deterioration 

process investigation based on corrosion-accelerated experimental tests; (d) 
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deteriorated structural performance evaluation; and (e) time-variant structural 

reliability analysis. 

(2) A novel approach was proposed to establish the probabilistic hazard for chloride 

around a shield tunnel in a coastal region; this hazard can quantify the effect of the 

aggressive environment on the shield tunnel.  

(3) The deterioration processes of segmental linings under the coupled effects were 

experimentally investigated using corrosion-accelerated specimens in a tunnel 

segment. Damage indices proposed include the initial and deteriorating damage as 

well as the steel corrosion of the segmental linings considering the loading effect.  

(4) A probabilistic method to evaluate the chloride transport process in the segmental 

linings of shield tunnels with the impact of hydrostatic pressure was proposed. The 

time to corrosion initiation can be estimated by considering combined effects. Under 

high hydrostatic pressure, chloride ions can permeate the segmental linings more 

quickly due to coupling effect of diffusion and advection. This causes a higher failure 

probability of undersea shield tunnels. 

(5) A computational procedure to integrate the chloride hazard around tunnel structures 

into the time-variant reliability of shield tunnels in coastal regions was proposed. 

This proposed method emphasized the structural performance degradation induced 

by steel corrosion, and the influence of hydrostatic pressure, structural location and 

material properties on the structural failure probability. 
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Chapter 4: Reliability-Based Durability Design of Shield 

Tunnels in Coastal Regions 

4.1 Procedure for the reliability-based durability design of shield 

tunnels in a marine environment 

Durability design, as an essential part of structural design, has widely been considered to 

ensure structures in an aggressive environment to provide acceptable service for extended 

periods of time. However, it should be recognized that the acquired knowledge on 

structural durability is far from complete, and not all durability requirements can be easily 

quantified (Li et al. 2015). Since the aggressive hazards might be underestimated or 

overestimated in design, poor quality concrete and/or inadequate concrete cover could 

lead to premature steel corrosion and severe concrete cracking for RC structures. As 

described in Chapter 3, owing to inadequate material parameters in design, these shield 

tunnels are at risk from deterioration process due to the coupling effects of high 

hydrostatic pressure and aggressive chemical attacks. 

According to the description in Chapter 3, the degradation process of RC segmental 

linings is associated with several marine environmental factors, and the influence of these 

factors varies depending on time and space. Due to the uncertainties from environment 

and structure, the probabilistic concepts and methods should be taken into account for a 

reliable durability design of RC segmental linings in a marine environment. Meanwhile, 

in order to ensure the long-term structural performance of RC shield tunnels in an 

aggressive environment, controls of steel corrosion and concrete cracking should be 

considered in durability design as the basic requirements. Based on the new approach, the 

coupling effects of underground chloride hazards and high hydrostatic pressure are 

integrated in computing the probabilities of occurrence of steel corrosion and corrosion- 



 

69 

 

 

Figure 4.1 Flowchart for reliability-design approach of RC shield tunnels in a 

marine environment integrated with the coupling effects of underground chloride 

hazards and high hydrostatic pressure 

induced cracking, and a flowchart for reliability-based design of segmental linings in a 

marine environment is illustrated in Figure 4.1.  

According to the flowchart in Figure 4.1, two primary aspects are presented: (a) 

basic models for estimating structural serviceability of shield tunnels, and (b) an approach 

and method for durability design of RC segment in a marine environment. In terms of the 

aspect (a), it includes two steps: (1) defining the process of hazard assessment for 

underground chloride in a coastal regions (i.e. Part 1); (2) computing the time-dependent 

probability of steel corrosion and corrosion-induced cracking of the segmental linings 

with the impact of hydrostatic pressure (i.e. Part 2). Then, based on the basic models in 

aspect (a), a reliability-based durability design criterion of segmental linings was 

proposed in Part 3 included in aspect (b) to calculate the concrete cover and determine 
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the concrete quality (i.e. ratio of water to cement), so that the target durability reliability 

level of tunnel structures during their lifetime could be satisfied.  

4.2 Basic models for estimating structural serviceability of shield tunnels 

due to corrosion 

In Chapter 3, the probabilistic models associated with underground chloride hazard, steel 

corrosion and corrosion-induced cracking have been presented in detail. Herein, a brief 

summary of these models are described as follows. 

4.2.1 Probabilistic model of hazard associated with underground chloride 

Since the long-term performance of RC structures is strongly influenced by their 

environmental conditions, environmental hazards should be quantitatively assessed and 

considered in the durability design of RC shield tunnels in a marine environment. 

Considering the uncertainties involved in the prediction of underground chlorides around 

tunnels, parameters associated with model error should be included in the attenuation 

equations. Thus, the attenuation with model uncertainty is expressed as: 

 0.62 0.63d

Soil R S SeaC X X C                                         (3-7) 

where XR is a lognormal random variable related to estimation of chloride content in soil; 

and XS is a normal random variable associated with the marine chloride content at 

different coastal regions. 

The probability that Csoil at a specific site exceeds an assigned value csoil is described 

as: 

0
( ) ( ) ( ) ( )

0.62 0.63

Soil
Soil Soil Soil R S Sd

S Sea

c
q c P C c P X f X dX

X C



    
         (3-8) 

where f (XS) is the probability density function of XS. 
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4.2.2 Performance function for steel corrosion  

High hydrostatic pressure on tunnels lead structures to withstand a large water pressure 

gradient between the inside and outside walls, it could facilitate chloride ions transporting 

in concrete linings. As the total amount of chloride around rebar accumulates and reaches 

critical threshold of chloride content Ccr (kg/m3), the corrosion of rebar begins. 

Considering the action of hydrostatic pressure and the water environment, the time t1 to 

corrosion initiation can be obtained using the following event: 

1 2 ( , ) 0crg X C C c t                                           (3-37) 

where 

  3,
2 4 4

uc

s D
C c ut c ut

C c t X erf e erfc
Dt Dt

     
     

    
                       (3-38) 

26.77( ) 10.10( ) 1.1410 W C W CD                                         (3-39) 

c is the concrete cover specified in design, mm; t is the time after construction, year; W/C 

is the ratio of water to cement; D is the chloride ion transportation coefficient in concrete, 

mm2/year; u is the average velocity of chloride motion, mm/year; X1 is a lognormal 

random variable representing model uncertainty; Ccr is assumed to be 2.8 kg/m3, X2 is a 

normal variable associated with the evaluation of Ccr; and X3 is a lognormal variable 

representing the model uncertainty associated with estimation of C(c, t). 

4.2.3 Performance function for corrosion-induced cracking 

As the passive film is broken by chloride ions, a large volume expansion of rust formation 

causes internal stress and induces cover concrete segment cracks when the total amount 

of steel corrosion product Qb exceeds the critical threshold of corrosion associated with 

crack initiation Qcr. And the probability of corrosion crack occurrence with time can be 

estimated by the following event: 

2 4 1( ) ( , , ) 0cr b cog X Q c Q V t t                                    (3-40) 
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where 

1 2( ) ( )cr c cQ c W W                                            (3-41) 

1 5 1( , , ) ( )b co s coQ V t t X V t t                                       (3-44) 

s is the steel density, 7.85 mg/mm3; V1 is the corrosion rate of the steel bar before the 

occurrence of a corrosion crack, mm/year, assumed as the corrosion rate is 7.7 m/year; 

 is the correction factor; X4 is a lognormal random variable representing the model 

uncertainty associated with the estimation of Qcr; and X5 is a lognormal random variable 

related to the corrosion rate. 

4.2.4 Serviceability assessment of RC shield tunnels in a marine environment 

To assess the serviceability of RC shield tunnels in a marine environment over their entire 

lifetime, Monte Carlo simulation (MCS) was also used herein. All parameters of the 

random variable Xi (i = S, R, 1, 2, 3, 4, and 5) involved in calculation are shown in Table 

3.1. The probabilities associated with occurrence of two limit states (see Equation 3-37 

and 3-40) at an assigned time, t, are defined as below, respectively. 

 1( )fP t P t t                                                             (4-1) 

 1 2( )fP t P t t t                                                 (4-2) 

where t1 is the time to corrosion initiation; t2 is the time from corrosion initiation to 

occurrence of corrosion-induced cracking.  

Equation 4-1 and 4-2 represent the time-dependent failure probability associated 

with corrosion initiation and occurrence of corrosion-induced cracking, respectively. And 

the probabilities can be transformed into a reliability index, , as follows: 

1( ) ( ( ))ft P t                                                 (4-3) 

where  is the cumulative distribution function of the standard normal variable. 
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Figure 4.2 Reliability index for limit states depending on Equation 3-37 and 3-40 

According to the hazard curves of underground chloride in Xiamen shown in Figure 

3.3 (0.5 km from the coastline) and two limit states of structural serviceability (see 

Equation 3-37 and 3-40), the relationships between the reliability indices for structure 

with different designed parameters and time after structural construction are presented in 

Figure 4.2. As shown in Figure 4.2, the durability performance of RC segmental linings, 

under different marine environments (e.g. hydrostatic pressure and underground chloride 

contents), could be quantified based on this proposed approach. 

4.3 Reliability-based design criterion 

4.3.1 Proposed design criterion 

In engineering, a target value, target, is given at structural design phase to ensure the 

serviceability of structures during their life-cycle. For the shield tunnels in coastal regions, 

because of the coupling effects of aggressive agents and high hydrostatic pressure, 

chloride transportation in concrete linings might not only include the diffusion process. 

Accordingly, a durability design method for shield tunnels in coastal regions is required 

based on the hazard assessment and effect of high hydrostatic pressure. Herein, the 

serviceability of structure is considered to be associated with the corrosion-induced 

cracks, and the limit state of structural serviceability is defined at the occurrence of first 

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

R
el

ia
b
il

it
y
 I

n
d
ex

Time after Construction (Years)

W/C=0.3

c=100mm

Pw=0.1MPa
W/C=0.4

c=50mm

Pw=0MPa



 

74 

 

corrosion-induced cracking. Next, a design criterion is proposed, so that the reliability 

index for the occurrence of corrosion cracking will be very close to the target value 

without complex reliability computations. After confirming that the time to occurrence, 

Tcrack,d, is larger than the lifetime of structure, Td, the designers can determine the concrete 

cover and concrete quality. The design formulation proposed is: 

 , 1 2d crack dT T T T                                               (4-3) 

, 0.8d

S d SeaC C                                                     (4-4) 

, 1 1
lim,

1 1
2 4 4

duc

S d d dD
d

C c uT c uT
C erfc e erfc

DT DT

     
     

        

                       (4-5) 

,

2

cr d

d

Q
T

V
                                                         (4-6) 

where  is durability design factor taking into account the uncertainties in the 

computation of Tcrack,d; T1 and T2 are the time of steel corrosion initiation and the time 

from steel corrosion initiation to occurrence of cracks, respectively; cd is the design 

concrete cover; Clim,d is equal to Ct as the mean value; Vd is equal to V1 as the media value; 

and Qcr,d is equal to Qcr multiplied by X4 as the median value. 

To determine the durability design factor for tunnels in a marine environment, the 

procedure based on code calibration has the following steps: 

(a) Set the target reliability index target and the life time of tunnel Td. 

(b) Set the calculation group under different marine environments (i.e. the design value 

of surface chloride content of tunnel using Equation 3-7 and design value of hydraulic 

pressure). In this study, 100 locations from 12 coastal cities of China are chosen to 

represent different marine environmental conditions. 

(c) Assume the initial durability design factor . 

(d) Determine the design concrete cover using Equation 4-5. 
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(e) Calculate i (i = 1, 2, …, 100) of tunnels under all cases that have the design concrete 

cover determined in step (d). 

(f) Repeat steps (c) to (e) until 

100
2

target

1

( ( ))i

i

U   


                                            (4-7) 

is minimum, and the durability design factor is found. 

4.3.2 Durability design factor 

Specifications, like JSCE Standard Specifications (2002) and RILEM (1998), proposed 

the reliability indices ranging from 1.5 to 2.5 for serviceability limit state of RC structures. 

However, since the target lifetime of tunnels is generally almost 100 years or longer, it is 

very difficult to design using too high reliability indices. Thus, a target reliability index 

of Hong Kong-Zhuhai-Macau project for a working life of 120 years was suggested to be 

1.3 (Li et al. 2015). Meanwhile, the Code for Durability Design of Concrete Structure of 

China (2008) suggests that failure probability of RC structures should range from 5% to 

10% to ensure structural serviceability during its lifetime (i.e. target ranges from 1.282 to 

1.645). In this study, target is set to be 1.1, 1.3 and 1.5, and the lifetime of tunnel is set to 

be 80 years, 100 years and 120 years. Minimum concrete cover is assumed 30 mm. 

The calculated durability design factors for each target reliability index and lifetime 

are shown in Figure 4.3. This figure indicates that  is more sensitive to target than to Td. 

The reliability indices for structures under different requirements (i.e. prescribed lifetime, 

Td, and target reliability value, target) and conditions (i.e. different cities, distance from 

coastline, d, hydrostatic pressure, Pw, and water to cement ratio, W/C) are listed in Table 

4.1. As shown in Table 4.1, the reliability indices are very close to the target values. 

Therefore, based on the proposed design criterion and durability design factor, shield 

tunnels in a marine environment requiring target durability reliability indices for the 

prescribed lifetime can be designed. 
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Figure 4.3 Relationship between lifetime of structures Td, target reliability index 

target and durability design factor  

Table 4.1 Reliability indices of RC tunnels using durability design factor 

Coastal City 

in China 

Case Considered 

Td=100Year 

target=1.3 

Td=80Year 

target=1.5 

Td=120Year 

target=1.3 

Pw=0.2MPa 

d=0.3km 

Pw=0.08MPa 

d=0.5km 

Pw=0.6MPa 

d=0km 

W/C

= 

0.3 

W/C

= 

0.35 

W/C

= 

0.4 

W/C

= 

0.3 

W/C

= 

0.35 
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Dandong 1.31  1.32  1.33  1.55  1.57  1.58  1.31  1.33  1.41  

Tianjin 1.32  1.32  1.35  1.56  1.55  1.58  1.29  1.33  1.40  

Yantai 1.30  1.31  1.34  1.53  1.55  1.58  1.29  1.34  1.40  

Rizhao 1.21  1.23  1.24  1.44  1.44  1.44  1.21  1.25  1.33  

Lianyungang 1.25  1.26  1.27  1.49  1.48  1.50  1.25  1.28  1.36  

Ningbo 1.24  1.24  1.26  1.48  1.49  1.49  1.24  1.28  1.35  

Zhoushan 1.19  1.20  1.22  1.43  1.41  1.44  1.20  1.24  1.31  
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Mean 1.26 1.27 1.29 1.5 1.5 1.51 1.26 1.3 1.36 

Standard Deviation 0.04 0.04 0.05 0.05 0.05 0.06 0.04 0.04 0.04 
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4.3.3 Maximum design ratio of water to cement associated with concrete cover and 

marine environments 

As discussed in Chapter 3, in order to improve the long-term serviceability of shield 

tunnels in an aggressive environment, a lower ratio of water to cement and/or a thicker 

concrete cover of segment should be used. However, if the concrete cover of RC segment 

is too thick, higher tensile stress occurring in cover concrete would lead to more severe 

cracks, which is harmful to the structural durability. As a result, a limit value for 

maximum concrete cover of segments should be determined. According to a previous 

report (Song et al. 2009), which indicated an undersea tunnel in South Korea using 

designed concrete cover about 80 mm, a maximum design concrete cover of segment for 

shield tunnel in coastal regions is assumed to be 80 mm in this study.  

For the segments with a concrete cover of 80 mm, the relationship between 

maximum ratio of water to cement and different marine environment (i.e. design water 

pressure and marine chloride concentration) are presented in Figure 4.4 to Figure 4.6 

based on proposed design criterion. As shown in these figures, ratio of water to cement is 

suggested to be less than 0.35 for the RC shield tunnels in a marine environment, a similar 

suggestion has been proposed by Sun (2008). In addition, when the RC segmental linings 

are subjected to higher hydrostatic pressure, ratio of water to cement should be less than 

0.3, so that these tunnels could satisfy the target reliability during its life-cycle. 

For the undersea shield tunnels with target lifetime of 100 years under different 

target reliability (see Figure 4.4 (a), Figure 4.5(a) and Figure 4.6(a)), the functions of 

maximum ratio of water to cement depending on marine environments are proposed based 

on response surface method, as follows: 

(a) Target lifetime of 100 years with target reliability of 1.1 
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(a) Limit surface of water to cement ratio using MCS 

 

(b) Fitting surface of water to cement ratio using response surface method (RSM) 

Figure 4.4 Maximum design ratio of water to cement for undersea shield tunnels 

with prescribed lifetime of 100 years and target reliability index of 1.1 
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(b) Target lifetime of 100 years with target reliability of 1.3 
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(a) Limit surface of water to cement ratio using MCS 

 

(b) Fitting surface of water to cement ratio using response surface method (RSM) 

Figure 4.5 Maximum design ratio of water to cement for undersea shield tunnels 

with prescribed lifetime of 100 years and target reliability index of 1.3 

(c) Target lifetime of 100 years with target reliability of 1.5 
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The fitting surface for max design ratio of water to cement with different marine 

environments are presented in Figure 4.4(b), Figure 4.5(b) and Figure 4.6(b), based on 

Equations 4-8 to 4-10. These calculated surfaces can appropriately reflect the influence 
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(a) Limit surface of water to cement ratio using MCS 

 

(b) Fitting surface of water to cement ratio using response surface method (RSM) 

Figure 4.6 Maximum design ratio of water to cement for undersea shield tunnels 

with prescribed lifetime of 100 years and target reliability index of 1.5 

of marine environments on the requirements of designing ratio of water to cement. 

However, if the RC segmental linings are under a severe marine environments, even 

though the ratio of water to cement is very low, the durability requirements of segmental 

linings cannot be satisfied as shown in Figures 4.4 to 4.6. Accordingly, other engineering 

measures to improve the durability of segmental linings should be taken into 
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consideration, such as protection coat on the surface of segment and reinforcement (Sun 

2008). 

4.4 Chapter Summary 

(1) A computational procedure to integrate the chloride hazard around RC shield tunnel 

structures in a marine environment into reliability-based durability design using a 

partial factor was proposed. The effects of hydrostatic pressure and structural 

location on the durability reliability can be considered in the proposed method.  

(2) A discussion about design criterion for RC segmental linings in a marine 

environment and durability design factors was presented to satisfy the target 

durability reliability level; Based on the proposed design criterion of RC segmental 

linings, the relationship between the marine environments and maximum design ratio 

of water to cement of RC segmental linings was revealed.  

(3) According to this design method, proposed material parameters could generally 

ensure a higher long-term durability for structure during its life-cycle, compared to 

the design without considering environmental hazards. However, uncertainties of 

environmental hazards (e.g. underground chloride hazard), water pressure and 

prediction models, might be overestimated or underestimated at the design phase, 

thus maintenance activities are still needed after structural construction.  
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Chapter 5: Updating Structural Reliability of Existing Shield 

Tunnels 

5.1 Procedure for the updated life-cycle reliability assessment of existing 

shield tunnels in a marine environment  

Uncertainties including aleatory and epistemic cannot be neglected for the problems in 

the real world (Ang and Tang 2007; Frangopol 2011; Biondini et al. 2016). For a new RC 

shield tunnel in an aggressive environment, reliability-based durability design generally 

could ensure structure to provide an acceptable service during its life-cycle. However, in 

terms of the existing structures, those structures might be designed without durability 

measures, or using an overestimated /underestimated uncertainty at structural durability 

design phase. In order to accurately estimate structural performance of existing RC 

segmental linings during their remaining lifetime, inspection and monitoring activities 

has been widely adopted in engineering, so that the repair and maintenance action can be 

carried out in time to extend structural service life. For results of inspection and 

monitoring activities, they could not only provide an indicator reflecting structural 

deteriorating state, but also reduce the uncertainty related to structural performance 

assessment during structural life-cycle (Biondini et al. 2016).  

Figure 5.1 depicts a flowchart for computing the life-cycle reliability of RC shield 

tunnels in a marine environment incorporating with the inspection information. As shown 

in Figure 5.1, new RC shield tunnels and existing RC shield tunnels are both considered 

in this framework. One of the main differences in the life-cycle reliability assessment 

process for new and existing RC shield tunnels is whether the observation information is 

available (i.e. part 5). In terms of the procedure from Part 1 to Part 4, it have been 

illustrated in Chapter 3 based on Figure 3.1. For the new structures and the existing  
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Figure 5.1 Flowchart to estimate the life-cycle reliability of RC shield tunnels in 

coastal regions using inspection information 

structures without available observation information, the life-cycle reliability of RC 

shield tunnels can be calculated following this procedure using initial parameters of 

random variables. However, when the observation information is available for existing 

structures, the parameters of random variables can be updated via Sequential Monte Carlo 

Simulation (SMCS) as shown in Part 5. Finally, based on the procedure from Part 1 to 
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Part 4, the life-cycle reliability of existing RC shield tunnels can be updated by inspection 

information. 

5.2 Algorithm of sequential Monte Carlo simulation 

In general, to update reliability of existing structures based on the inspection data, the 

updating approach could be classified into two steps: (1) updating for the probability 

density functions (PDFs) of model parameters; (2) updating structural reliability using 

updated random variables. However, due to the complexity of observed data and random 

variables, it is not easy for the updated PDFs of model parameters to be expressed as a 

common distribution format, like normal distribution and lognormal distribution. 

Bayesian updating (Ang and Tang 2007) has been widely recognized to update structural 

reliability based on on-site information, but only when the prediction models are linear 

and/or random variables are normal distribution, a closed form solution of updated PDF 

could exist using this approach (Yoshida 2009), so that it is difficult to achieve the PDF 

updating according to a rigorous theoretical approach in engineering, because of less 

linear models or normal distribution for random variables in the real world (Yoshida 2009; 

Akiayam et al. 2010). 

In order to solve this problem and implement the PDF updating with non-linear 

models and non-normal distribution of random variables, significant advances have been 

accomplished to get approximate solutions. Sequential Monte Carlo Simulation (SMCS) 

is one of those approaches with a convenient computation procedure, and it has been used 

to update structural reliability of existing RC structures (Yoshida 2009; Akiayam et al. 

2010). In this study, SMCS was adopted in conjunction with the time-dependent 

reliability assessment of existing RC shield tunnels. With respect to the SMCS for 

existing structures, the updating procedure using SMCS includes time updating process 

and observation updating process, the detailed introduction could be found in Yoshida  
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Figure 5. 2 Flowchart of updating reliability based on SMCS (Akiyama et al 2010) 

(2009) and Akiyama et al. (2010). Herein, a brief summary of the SMCS approach for 

updating random variables is described based on Figure 5.2. 

As shown in Figure 5.2, time updating process is the first step to predict the un-

updated state vector at the k-th step (e.g. steel weight loss at 30th year before updating) 

using information at the (k-1)-th step (e.g. steel weight loss at 29th year), and the predicted 

state vector, xk/k-1, can be expressed as a function as below:  

 / 1 1/ 1,k k k k kx F x w                                                        (5-1) 

where wk is the system noise associated with the uncertainty involved in the prediction 

process. For this equation, the cases associated with non-linear states and non-Gaussian 

random variables have been included. 

In the observation updating process, updated state vector, xk/k, could be gotten based 

on the predicted state vector, xk/k-1, from Equation 5-1 and the observation information, zk. 

For the observation information, zk, it is assumed as a function of updated state vector xk/k 

and observation noise vk, shown as follow. 

 / ,k k k kz H x v                                                             (5-2) 

(1) Initial Condition

x0/0, k

k=k+1

(2) Time Updating

xk/k-1=F(xk-1/k-1, wk) 

(3) Observation Updating, xk/k

(a) Likelihood calculation
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(c) Resampling 
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With respect to the PDFs of the noises, p(wk) and p(vk), in Equation 5-1 and 5-2, 

they are assumed known and independent in the updating process. Observation updating 

process using predicted state vector and observation information includes three sub-steps: 

(1) likelihood for each samples; (2) weight standardizing (likelihood ratio) and (3) 

resampling of random variables. Finally, updated reliability of structures could be gotten 

based on resampling results of random variables associated with the inspection 

information.  

5.3 Modeling of observational data for deteriorating shield tunnels 

For the existing RC shield tunnels in an aggressive environments, structural degradation 

level could be reflected using inspection information. According to different deterioration 

states of RC shield tunnels described in Chapter 3, three types of observed information 

are used here to update structural reliability, including the chloride contents in segmental 

linings, corrosion-induced cracks on the surface of segmental linings and the deteriorating 

deformation on the vault of shield tunnel.  

(1) Modeling of observed chloride contents in segmental linings 

With respect to the inspection data relating to chloride contents in segmental linings, it 

could provide more information to accurately evaluate the time of corrosion initiation of 

reinforcement in the segmental linings. This approach could decrease the uncertainty for 

estimating structural performance of deteriorating RC shield tunnels at initial stage. When 

chloride content distribution by on-site monitoring is given, the observed equation related 

to the inspection data of chloride contents is: 

'

1 3

' '
0.001

2 4 4

ud

soil D
cl cl

C d ut d ut
z X X erf e erfc v

Dt Dt

     
      

    
                  (5-3) 

where zcl is the observed chloride contents at distance d’ from the segment surface; vcl is 

observation noise for chloride contents, assumed to be a standard normal distribution; D 
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is the chloride ion transportation coefficient in concrete, mm2/year; u is the average 

velocity of chloride motion, mm/year; Csoil is the chloride content of the soil, ppm; X1 is 

a lognormal random variable representing model uncertainty; and X3 is a lognormal 

variable representing the model uncertainty associated with estimation of time-dependent 

chloride concentration. 

(2) Modeling of observed corrosion-induced cracks on the surface of segmental linings 

After the occurrence of corrosion initiation, expansion of rust formation results in 

cracking in the cover concrete of segmental linings. Generally, the corrosion-induced 

cracks is associated with the amount of steel weight loss. Since it is difficult to measure 

the steel weight loss in segmental linings directly and accurately, visual inspection for 

corrosion-induced crack width on the surface of segments, reflecting the amount of steel 

weight loss, was adopted as an observational information in SMCS.  

Considering the relationship between amount of steel weight loss and corrosion-

induced crack width generally is complex and uncertain, an observation model for visual 

inspection of corrosion crack width has been proposed by Akiyama (2010) via the survey 

of marine RC structures (Kodama et al. 2002). Four categories associated with corrosion-

induced crack width, steel weight loss and deterioration state were classified. The 

probabilities for each categories of crack widths associated with different categories of 

steel weight loss are shown in Table 5.1. When the category of steel weight loss is given 

using estimating equations, the probability, used to calculate likelihood for each sample 

in observation updating process, could be determined based on the category of 

observational crack width shown in Table 5.1. 

(3) Modeling of observed deformation on the vault of shield tunnel 

With the decrease of structural stiffness due to steel weight loss and corrosion-induced 

cracking, structural deformation of segmental linings, reflecting the structural integrity 
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Table 5.1 Observation model of visual inspection of corrosion crack width 

(Akiyama et al. 2010) 

Category based on  

steel weight loss 

Category based on crack width 

I  

(0-0.1mm) 

II 

(0.1-0.2mm) 

III 

(0.2-0.5mm) 

IV 

(>0.5mm) 

1 (SWL=0-2.3%) 0.811 0.159 0.031 0.000 

2 (SWL=2.3%-5%) 0.268 0.410 0.313 0.009 

3 (SWL=5%-20%) 0.019 0.120 0.600 0.261 

4 (SWL>20%) 0.000 0.004 0.219 0.776 

degradation, would increase significantly. As an important part of the on-site monitoring 

of a tunnel structure, the deterioration deformation of segmental linings could directly 

provide estimated results for structural serviceability at the inspection time. Meanwhile, 

according to the observed structural deformation, uncertainties associated with predicting 

the deformation of segmental linings could decrease in the remaining lifetime of shield 

tunnels. Thus, the observational equation based on the inspected structural deformation 

could be expressed as: 

disv estimation disz Disv v                                                     (5-4) 

where zdisv is the observed deformation on the vault of shield tunnel; Disvestimation is the 

predicted deformation on the vault of shield tunnel at t-th year after structure construction 

according to the calculating procedure proposed in Chapter 3; and vdis is the observation 

noise for deformation inspection with a standard normal distribution, depending on the 

magnitude of measuring error using measuring devices. 

5.4 Time-dependent structural performance analysis based on 

inspection results 

5.4.1 Structural reliability margin for existing shield tunnels 

Structural serviceability is regarded as a significant part for structural durability, an 

appropriate serviceability limit based on structural degradation degree could guarantee 

structural safety to be satisfied during its lifetime. According to the durability demands 
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of RC shield tunnels reported by Sun (2008), serviceability limit state of segmental linings 

was proposed that the deformation of segmental linings should be less than 4% of the 

external diameter of shield tunnel. In this study, the time-dependent margin of structural 

serviceability, Z(t), is described by the deformation on the vault of shield tunnel, Disv(t), 

and the limit value for deformation of shield tunnel, DisvL (i.e. 4% of the external diameter 

of shield tunnel). Thus, the failure probability, Pf (t), is expressed as: 

 ( ) ( ) ( ) 0f LP t P Z t Disv t Disv                                            (5-5) 

The shield tunnel studied here is assumed to be located at Xiamen of China. The 

depth of the shield tunnel is assumed to be 12 m, structure is located in a layer of 

completely weathered granite, and the overlying stratum is sludge and residual sandy 

sticky clay with a depth of 5.4 m and 2.6 m. Meanwhile, the segmental linings are 

assumed to withstand water pressure of 0.1 MPa. The key parameters of the random 

variables to calculate structural reliability could be found in Table 3.4 and Table 3.5.  

Considering the influence of observational information on decreasing uncertainty 

may be different, assumed observational data are listed in Table 5.2 and Table 5.3, 

including crack width, chloride contents distribution and structural deformation. Then, 

cumulative distribution function (CDF) of random variables before and after updating 

with different observation data are partial presented in Figure 5.3 and 5.4; Also, the 

distribution of predicted deformation on vault of segmental linings before and after 

updating and time-dependent reliability of existing segmental linings are shown from 

Figure 5.5 to 5.8.  

5.4.2 Time-dependent reliability analysis of existing segmental linings 

Figure 5.3 illustrated the CDFs for parameters of random variables before updating (Case 

0) and after updating (Case 2, 5, 7 and 10) using different type of observed data. 

According to these figures, the influence of inspection information on the random 
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Table 5.2 List of assumed observation data 

 

 

Year of  

Inspection 

Visual inspection  

(crack width) 

Distribution of 

Chloride Contents 

Vertical  

Deformation  

0 - - - - 

1 70 I - - 

2 70 II - - 

3 70 III - - 

4 70 - A* - 

5 70 - B* - 

6 70 - C* - 

7 70 - - 20 mm 

8 70 - - 30 mm 

9 70 - - 40 mm 

10 70 II B* 20 mm 

11 50 - - 20 mm 

*Detail data shown in Table 5.4 

Table 5.3 Assumed chloride contents distribution (kg/m3) (Akiyama et al. 2010) 

Distribution 
Distance from concrete surface 

10 mm 30 mm 50 mm 70 mm 90 mm 

A 1.2 0.9 0.75 0.65 0.55 

B 2.44 1.92 1.44 1.08 0.81 

C 5.5 4 3 2 1.1 

variables of XR and X4 is limited, and the COVs of these two random variables are almost 

same compared to the case without updating (case 0). Meanwhile, for the random 

variables associated with inspection information, the COVs of them are indicted to be 

decreased after updating using observed data (see Figure 5.3 (b), (c), (d), (e) and (g)). 

Similar results are also obtained for the other cases. In particular, for the random variable 

of X2 shown in Figure 5.3(d), the difference is small before and after updating, but obvious 

decrease of COV could be seen in other cases as presented in Figure 5.4. 

After updating the parameters of random variables, a new distribution for predicted 

deformation on the vault of shield tunnel can be calculated. As shown in Figure 5.5, the 

influence of each type of inspection information on the distribution of predicted 
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(a) XR                                                            (b) Xs 

  

(c) X1                                                            (d) X2 

  

(e) X3                                                            (f) X4 

 

(g) X5 

Figure 5.3 CDF of random variables before and after updating (Case 0, 2, 5, 7, 10) 
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Figure 5.4 CDF of X2 before and after updating (Case 0, 1, 3, 8, 9) 

deformation on the vault are very different, the most sensitive observed results should be 

the measured deformation on the vault. Since the predicted deformation is updated by the 

measured deformation directly, COV of predicted deformation decreases most 

significantly. However, for the cases updated using the chloride contents in segmental 

linings, there is not so much different for the distribution of predicted deformation among 

each cases. Therefore, the measured structural deformation could provide the most 

accurate and helpful information for performing the structural performance assessment of 

existing shield tunnels. 

According to the updated parameters of random variables presented in Figure 5.3, 

the time-dependent COVs of deformation on the vault of shield tunnels for these cases 

are depicted in Figure 5.6. As shown in this figure, the COVs of predicated deformation 

on the vault decrease after updating. Especially for the case 10 updated using the three 
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vault, the COV decreases most significantly, compared with the cases only using one type 
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(a) Updating using crack width  

 

(b) Updating using chloride content distribution   

 

 (c) Updating using measured displacement on vault 

Figure 5.5 Distribution of predicted deformation on vault of shield tunnel before 

and after updating 
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Figure 5.6 COV of deformation on the vault of shield tunnels (Case 0, 2, 5, 7, 10) 

 

Figure 5.7 Time-dependent failure probability of shield tunnels (Case 0, 2, 5, 7, 10) 

 

Figure 5.8 Time-dependent failure probability of shield tunnels (Case 0, 7, 11) 
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like time interval for inspection in 5 years or 10 years, is extremely advisable to predict 

structural performance of existing segmental linings more accurately, so that the 

maintenance actions could be carried out in time. 

Furthermore, the time-dependent failure probability of segmental linings before 

updating and after updating are shown in Figure 5.7. Since the COV of predicated 

deformation on the vault of shield tunnels reduces, structural reliability should be more 

accurate than that without updating, and more inspection results could be beneficial for 

performing a more precise reliability assessment. Meanwhile, the failure probabilities for 

the shield tunnels updated at 50 years (case 11) and 70 years (case 7) by a same measured 

displacement of vault are presented in Figure 5.8. According to this figure, in order to 

ensure the structural serviceability and safety of RC shield tunnels over their entire life-

cycle, a strict limit for the deformation of shield tunnel is required, especially for the 

structures with a longer remaining lifetime. 

5.5 Chapter Summary 

(1) A framework for estimating time-dependent structural performance of existing RC 

shield tunnels in a marine environments was proposed. In this framework, an 

updating process for structural reliability assessment using SMCS incorporating with 

inspection results, such as chloride contents distribution in segmental linings, 

corrosion-induced crack width and measured structural deformation, was illustrated. 

(2) The effect of different type of inspection information on the updated estimates of RC 

segmental linings was discussed. With respect to the measured structural deformation, 

it could be regarded as the most helpful information for performing a more accurate 

structural reliability assessment of existing structures. This result should be taken 

into consideration for the decision-making process of establishing a reliability-based 

assessment criteria for existing RC shield tunnels using observed information. 



 

96 

 

(3) To decrease the uncertainty of structural reliability estimates, it is extremely 

advisable to increase the inspection frequency (i.e. a shorter time interval for 

inspection) during structural life-cycle and collect more inspection results. This 

procedure can improve the estimating precision and support the decision-making 

process for structural maintenance and repair during their remaining lifetime. 
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Chapter 6: Conclusions and Future Works 

6.1 Conclusions  

In this research, considering the corrosion-induced deterioration of segmental linings, 

life-cycle durability design and structural performance assessment of RC shield tunnels 

in coastal regions has been studied based on the probabilistic methodology. First of all, 

three original and novel flowcharts are proposed to consider the topics that (1) Time-

variant structural performance analysis of shield tunnels in coastal regions; (2) Life-cycle 

reliability-based durability design of shield tunnels in coastal regions; (3) Updating time 

dependent structural reliability of existing shield tunnels. According to the flowcharts, six 

originally primary achievements in this study are summarized as below: 

(1) A probabilistic model for estimating the hazard associated with the underground 

chloride in coastal regions was established. Based on this model, the effect of the 

aggressive environment on RC tunnel structures could be quantified.    

(2) To study the corrosion-induced deterioration of concrete segments under the coupling 

effects of chloride attack and loading, the deterioration processes of segmental linings 

were experimentally illustrated using corrosion-accelerated specimens of a tunnel 

segment.  Based on the experimental results, damage models associated with loading-

induced and deteriorating damage in segmental linings was proposed. Meanwhile, 

steel corrosion in RC segments depending on loading effect was revealed. 

(3) A novel probabilistic model for evaluating time-dependent distribution of chloride in 

segmental linings was established with the impact of hydrostatic pressure. And thus, 

the time to corrosion initiation can be estimated considering the combined effects of 

chloride contents and hydrostatic pressure. According to this probabilistic model, it 

reveals that, for undersea shield tunnels, the external reinforcement in segmental 
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linings generally undergoes high corrosion risks because of the high hydrostatic 

pressure and high concentration of aggressive agents. 

(4)  A computational procedure to integrate the underground chloride hazard around 

shield tunnel into time-variant reliability of shield tunnels in coastal regions was 

proposed. In this procedure, structural performance degradation induced by steel 

corrosion has been emphasized; meanwhile, the influences of hydrostatic pressure, 

structural location and material properties on structural failure were quantified.  

(5) With respect to the new shield tunnel in coastal regions, a reliability-based durability 

design criterion for shield tunnel, considering the influence of chloride hazard and 

hydrostatic pressure, was proposed based on the partial factor method; According to 

this proposed design approach, a maximum design value of water to cement ratio for 

RC segment was suggested depending on different marine environments.   

(6) In term of existing shield tunnel in coastal regions, a novel updating process for 

structural reliability using inspection results has been illustrated based on Sequential 

Monte Carlo Simulation. According to the updating results, measured structural 

deformation from on-site monitoring was indicated to have a significant influence on 

improving the estimating precision for structural performance of existing tunnels; 

meanwhile, a short inspection interval and more inspection results also strongly 

contribute to decrease the uncertainty of existing structures during their remaining 

lifetime.  

6.2 Future works 

This research presented a big framework to study life-cycle performance of RC shield 

tunnels in a marine environment, but it only emphasized on the deterioration of segmental 

linings due to external reinforcement corrosion. With respect to the durability of RC 

shield tunnels, structural performance during their life-cycle is influenced by multiply 
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factors, and structural degradation process is very complex. Therefore, further researches 

on life-cycle performance of RC shield tunnels should be carried out, and some 

suggestions for future works are proposed as follows. 

(1) In engineering, segmental joints have high risks of seepage and leakage due to high 

water pressure and gap at the segment joint, it is easy to make the bolt corroded. To 

study the deterioration of joint, two primary contents should be considered. First, the 

transport process of seawater through the joint should be revealed, which could be 

used to estimate the time to corrosion initiation of bolts. Numerical simulation is 

suggested to study the transport process of seawater due to coupling effects of 

different material properties and complex component shape around joint. Second, the 

mechanical performance of deteriorated joint should be studied based on experimental 

testing, which could be used to improve the accuracy of structural performance 

assessment for deteriorated shield tunnels during structural lifetime. 

(2) In terms of the internal reinforcement of segmental linings, they are subjected to 

attacks from air-born aggressive agents in the internal service environment of shield 

tunnels, such as carbonation-induced corrosion, chloride-induced corrosion for 

tunnels close to sea. Accordingly, the influence of air-bone aggressive agents in shield 

tunnels on deterioration of segmental linings should be considered. Next, the 

deterioration process of segmental linings due to corrosion of internal reinforcement 

and external reinforcement is recommended to be studied. 

(3) In this study, structural integrity degradation of shield tunnels was considered. 

However, for the real structures, local deterioration of structures is more common 

than integrity deterioration. Accordingly, local deterioration mechanism for structural 

component should be revealed; next, an approach for estimating structural 

performance due to local deterioration are suggested to be established.  
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(4) With respect to the updating process for structural performance assessment of existing 

tunnels, it is complex for engineers to carry out this full-probabilistic approach based 

on inspection information. In engineering, semi-probabilistic approach using simple 

formula and probabilistic parameters is more easily accepted due to convenience. 

Therefore, it is suggested, based on the SMCS updating method, to establish a semi-

probabilistic approach using inspection information to evaluate the structural 

performance of existing tunnels. 

(5) Since China and Japan are located in Circum-Pacific Earthquake Zone, high seismic 

hazard generally causes RC shield tunnels in coastal regions of these two countries 

undergo a high risk of structural failure, especially for the deteriorated shield tunnels. 

Therefore, life-cycle reliability assessment of RC shield tunnels under multiple 

hazards, including underground chloride hazard and seismic hazard, should be carried 

out. 
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