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Abstract 
Machine learning classification has a wide range of applications. In the big data era, a 
client may need to classify a large amount of data that has many features, resulting in a 
heavy computation at the client. Using a cloud server to outsource such classification 
tasks, we can reduce this computational burden. At the same time, an entity may wish to 
provide a classification model and classification services to such clients as a part of 
Machine Learning as a Service (MLaaS). However, applications such as medical 
diagnosis require sensitive data from the entity and the client that they may not want to 
reveal to the cloud such as the classification model and client’s data. 
 Fully homomorphic encryption (FHE), in which an arbitrary number of arithmetic 
operations can be performed over encrypted data without decryption, enables secure 
computation. By applying FHE to machine learning classification, the client can 
outsource classification tasks to a cloud server without revealing any data.  However, the 
existing studies on machine learning classification over FHE do not achieve the scenario 
of outsourcing classification tasks to a cloud server while preserving the privacy of the 
classification model, client’s data and result from the cloud. 

In this work, we apply FHE to a naïve Bayes classifier and propose a secure 
classification protocol in which we preserve the privacy of the classification model, 
client’s data, and result while outsourcing the computations to a cloud server. In our 
protocol, the cloud does not learn anything about the classification model, client’s data or 
result, and the client learns only the result. To the best of our knowledge, our work is the 
first to present a concrete classification protocol that satisfies the above scenario. 

We implemented our protocol on HElib and tested its performance by measuring its 
computation time and communication cost. Our experimental results show that our 
protocol runs in 1.5 s with 4.0 MB of communication cost for classifying a data using a 
two-class classifier. 
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1. Introduction 

In recent years, machine learning classification has been used in various applications from 
spam classification to medical diagnosis. In the big data era, a client may need to classify 
a large amount of data that has many features, leading to a heavy computational burden 
at the client’s local resource. To reduce this computational burden on the client, it can 
outsource the classification tasks to a cloud server and obtain the classification result. 
However, applications such as medical diagnosis require sensitive data that the client may 
not want to reveal to the cloud. Clients can encrypt their sensitive data to ensure its 
privacy then upload them to the cloud, but classification cannot be performed when the 
data are encrypted by a traditional encryption scheme such as the advanced encryption 
standard (AES). 

Fully homomorphic encryption (FHE) [1] is an encryption scheme that achieves secure 
computation by enabling an arbitrary number of arithmetic operations over encrypted data 
without decryption. By applying FHE to machine learning classification, we can realize 
secure classification over encrypted data at a cloud server while preserving the privacy of 
the client’s data. By doing so, the client can securely outsource their data classification 
tasks and reduce the computational burden at the client side. There are, however, several 
challenges when applying FHE to machine learning such as its high computational cost 
as well as its difficulty to compute over real numbers, perform divisions and use if-
statements. Thus, the application of FHE to machine learning is currently widely 
researched. 

In this work, we consider the scenario in which an entity wishes to provide a 
classification model and classification services at a cloud server as a part of Machine 
Learning as a Service (MLaaS), but while preserving the privacy of the classification 
model because it is trained using data that are as equally sensitive as the client’s data. In 
such scenario, in addition to preserving the privacy of the client’s data, preserving the 
privacy of the classification model becomes important as well. Thus, the ideal scenario 
would be to outsource the client’s classification tasks to a cloud server while preserving 
the privacy of the client’s data and result from the cloud as well as preserving the privacy 
of the classification model from both the cloud and client.  

Several studies have been conducted on the secure classification of encrypted data 
using FHE for various classifiers. Studies such as [2-7] proposed various secure 
classification protocols under different system models for different scenarios. These 
methods, however, do not achieve the ideal scenario of outsourcing the classification 
tasks to a cloud server while preserving the privacy of the client’s data and result from 
the cloud, and the privacy of the classification model from both the cloud and client. 
Studies that focus on both training and classification over encrypted data have been 
conducted as well. Studies such as [8-13] proposed machine learning methods in which 
the functions used in the classifiers are approximated so that the training can be performed 
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using FHE. Although these studies focus on the classification phase as well, they do not 
mention any real-world system model or protocol for this phase.  

Kim et al. [14] and Li et al. [15] proposed a protocol for both secure training and 
classification in which they introduce a third party who holds the secret key of the system 
and is responsible for decryption of all ciphertext, which we will refer to as a decryption 
server in this paper. By doing so, both the cloud server and client will not be able to 
decrypt each other’s data. In Kim et al.’s work, however, some information about the 
classification model and client’s data is leaked to the decryption server through the 
intermediate results during classification. In Li et al.’s work, they use expensive proxy 
re-encryption to re-encrypt ciphertexts. Their proxy re-encryption is based on the 
bootstrapping technique proposed by Gentry [1] which involves heavy computation that 
lasts from a few seconds to a few minutes [16] and can lead to a potential bottleneck. In 
fact, this proxy re-encryption is unnecessary as the protocol can be realized without it. In 
addition, because the proposed protocol by Li et al. is generic, it does not indicate any 
concrete classification method using FHE despite its limitations, which is the challenging 
part when applying FHE to any application. 

As such, the existing studies on machine learning classification over FHE do not 
achieve the ideal scenario of outsourcing the classification tasks to a cloud server while 
preserving the privacy of the client’s data and result from the cloud, and the privacy of 
the classification model from both the cloud and client. In these works, it is either i) the 
classification is performed at the cloud, but some information about the classification 
model, client’s data and/or intermediate results is revealed to the participating parties [4, 
7, 14], or ii) the privacy of the classification model, client’s data, and the intermediate 
results are preserved, but the classification is performed at the client [2, 3, 7]. In case of 
Li et al.’s work [15], their protocol achieves the ideal scenario, but adopts expensive 
proxy re-encryption and does not describe any concrete classification method. 

In this paper, we focus on the naïve Bayes classifier and propose a secure classification 
protocol to achieve the ideal scenario.  Although we focus on the naïve Bayes classifier 
in this work, our protocol can be applied to other machine learning algorithms with some 
modifications to the protocol. Like in the works by Kim et al. [14] and Li et al. [15], we 
introduce a trusted third party, which we refer to as a trusted authority (TA), who holds 
the secret key of the FHE used in the system and is responsible for the decryption of all 
ciphertexts. By introducing a TA who holds the secret key, we can ensure the privacy of 
the classification model from both the cloud and client, and the client’s data from the 
cloud because they cannot decrypt anything without the secret key. However, if we simply 
let the TA decrypt all ciphertexts, the classification result will be known to the TA, which 
the client may not desire. Thus, we blind the intermediate and classification results so that 
the TA does not learn anything even after decryption. Also, our protocol does not require 
the expensive proxy re-encryption as in Li et al.’s work.  
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More concretely, our proposed protocol satisfies the following requirements:  
• classification is outsourced to a cloud server;  
• the classification model is stored in the cloud as a ciphertext; 
• participating parties do not learn anything about the classification model, client’s 

data or result; 
• the client learns only the classification result and nothing else. 

The contributions of our work are as follows: First, our protocol satisfies all the above 
requirements as opposed to the existing works in which at least one requirement remains 
unsatisfied. Second, our protocol does not involve the expensive and unnecessary proxy 
re-encryption used in Li et al.’s work and thus achieves higher computational efficiency. 
To the best of our knowledge, our work is the first to present a concrete classification 
method that satisfies all the above requirements. 

The rest of this paper is organized as follows. In Section 2, we review FHE and the 
naïve Bayes classifier. In Section 3, we present related works on machine learning over 
FHE in detail. In Section 4, we propose our system model and the secure classification 
protocol. In Section 5, we present our experimental results. In Section 6, we present some 
techniques that can be applied to our proposed protocol to optimize the computational 
cost. Finally, we give our conclusion in Section 7. 
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2. Preliminaries  

2.1. Fully homomorphic encryption (FHE) 
Fully homomorphic encryption (FHE) [1] is an encryption scheme that achieves secure 
computation by enabling an arbitrary number of arithmetic operations over encrypted data 
without decryption. The notion of FHE was first introduced by Rivest et al. [17] in 1978. 
After their work, the realization of FHE remained as an open problem until the first 
feasible construction was given by Gentry [1] in 2009. Following Gentry’s work, many 
FHE schemes were proposed over the years such as the GSW scheme proposed by Gentry 
et al. [18], the BGV scheme proposed by Brakerski et al. [19], and the B/FV scheme based 
on works by Brakerski [20] and Fan and Vercauteren [21].  

Using FHE to encrypt data, we can securely outsource computations over encrypted 
data to a third party without revealing any information on the data. There are, however, 
several challenges to FHE such as its high computational cost as well as its difficulty to 
compute over real numbers, perform divisions, and use if-statements. Also, multiplication 
operations are computationally more expensive than addition operations. Despite these 
current challenges, there are many potential applications of FHE to various tasks such as 
data mining [22], database queries [23], and machine learning [2-15] so that computation 
can be outsourced to a third party, such as a cloud server, while preserving the privacy of 
sensitive data. Thus, studies on FHE and its application are currently widely under 
research. 
 FHE consists of three algorithms: KeyGen,Enc+, , and Dec-, . Here, KeyGen takes 
FHE parameters 𝑝𝑎𝑟𝑎𝑚 and security parameter l as inputs, and outputs a pair of secret 
key 𝑠𝑘 and public key 𝑝𝑘; Enc+,(𝑚) denotes a ciphertext of message 𝑚, which may be 
a vector of values, encrypted by a given 𝑝𝑘; and Dec-,(𝑐𝑡) denotes the decryption result 
of a ciphertext 𝑐𝑡  decrypted by a given 𝑠𝑘 . Concretely, FHE allows addition and 
multiplication operations such that Dec-,(Enc+,(𝑚8)⨁Enc+,(𝑚:)) = 𝑚8 + 𝑚: and 
Dec-,(Enc+,(𝑚8)⨂Enc+,(𝑚:)) = 𝑚8𝑚:, where ⨁ and ⨂ are homomorphic addition 
and multiplication operations, respectively. It is also possible to perform a homomorphic 
operation between a ciphertext and plaintext, e.g. Dec-,(Enc+,(𝑚8)⨁𝑚:) = 𝑚8 + 𝑚: 
and Dec-,(Enc+,(𝑚8)⨂𝑚:) = 𝑚8𝑚:, which is computationally less expensive than a 
homomorphic operation between two ciphertexts. For simplicity, we use the same 
symbols ⨁  and ⨂  to denote homomorphic operations between a ciphertext and a 
plaintext as well. 

Smart and Vercauteren [24] proposed a packing (or batching) technique for FHE in 
which multiple values can be encrypted into a single ciphertext so that single instruction 
multiple data (SIMD) style operations can be performed over each encrypted value. More 
specifically, using the packing technique, we can construct a ciphertext consisting of 𝑠 
slots, where 𝑠 depends on the FHE parameters, then encrypt multiple values by storing 
each value into a slot and encrypting it as a single ciphertext. A SIMD style operation 
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between two ciphertexts (or between a ciphertext and a plaintext vector) takes place as a 
slot-wise operation. Moreover, the slots within the ciphertext can be rotated, like in a 
linear array. Using the packing technique and SIMD style operations, we can efficiently 
process multiple values simultaneously.  

 
2.2. Naïve Bayes classifier 
The naïve Bayes classifier is a simple yet powerful classifier that is used for a wide range 
of applications. The classifier is based on Bayes’ theorem and assumes that features are 
independent of each other.  

The naïve Bayes classifier takes input data 𝒙 = (𝑥8, 𝑥:,… , 𝑥A), where 𝑓 is the number 
of feature values, and outputs a classification probability 𝑝C = 𝑝(𝐶 = 𝑐C|𝑋 = 𝒙) for each 
class 𝑐C, where 𝑖 = 1, 2,… ,𝑁 and 𝑁 is the number of classes. The classification model 
consists of class probability 𝑝(𝐶 = 𝑐C) for each class 𝑐C, which is the probability that class 
𝑐C occurs, and conditional probability 𝑝(𝑋K = 𝑥K⌊𝐶 = 𝑐C) for each 𝑥K and each 𝑐C, which 
is the probability that feature value 𝑥K  occurs in 𝑐C . Based on Bayes’ theorem and an 
assumption that features are independent of each other, the classification probability 𝑝C is 
calculated as follows: 

                  𝑝C = 𝑝(𝐶 = 𝑐C|𝑋 = 𝒙)  

						=
𝑝(𝐶 = 𝑐C)𝑝(𝑋 = 𝒙⌊𝐶 = 𝑐C)

𝑝(𝑋 = 𝒙) 			 

	= 𝑝(𝐶 = 𝑐C)∏ 𝑝O𝑋K = 𝑥K|𝐶 = 𝑐CP
A
KQ8 .      (1) 

Once 𝑝C for each class is obtained, the classifier takes the class 𝑐C with the highest 𝑝C and 
outputs it as the final classification result. 

In this work, we use log probabilities to calculate the classification probability 𝑝C . 
Using log probabilities, we can calculate 𝑝C using only addition instead of multiplication, 
and thus reduce the computational cost over FHE. Taking the logarithm of Equation (1), 
we obtain the following: 

       𝑝′C = log𝑝(𝐶 = 𝑐C) + ∑ log𝑝(𝑋K = 𝑥K|𝐶 = 𝑐C)
A
KQ8     (2) 
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3. Related Work 

In this section, we introduce the related works on machine learning over FHE in more 
detail. In Section 3.1, we introduce related works focusing on classification of encrypted 
data using FHE. In Section 3.2, we introduce related works focusing on both training and 
classification using FHE. 

 
3.1. Secure classification over FHE 
In this section, we introduce related works that focus only on classification of encrypted 
data using FHE. In all these works, it is assumed that the classification model has already 
been trained. 

Bost et al. [2] proposed secure classification protocols for three classifiers: naïve Bayes, 
decision trees, and hyperplane decisions. Their protocols use two additive homomorphic 
encryption schemes that enable only addition operations, namely quadratic residuosity 
(QR) and Paillier, and FHE to perform classification. In their work, the classification 
model is assumed to be trained on plaintext data, then encrypted and stored in a cloud 
server. At classification, the encrypted model is sent from the cloud server to the client, 
who then computes the classification probability for each class. Then, the client interacts 
with the cloud server multiple times using the two additive HE to obtain the index of the 
class with the highest probability. In their protocol, FHE is used in the decision tree 
classifier to efficiently compute data using SIMD. Their protocol, however, has 
disadvantages that the client computes the classification probability and must interact 
multiple times with the cloud server, causing computational burden on the client. 

Wood et al. [3] proposed a secure classification protocol for the naïve Bayes classifier 
based on [2] with a different comparison method. However, it still has the same 
disadvantages that the client computes the classification probability and must interact 
multiple times with the cloud server. 

Sun et al. [4] proposed an FHE scheme and applied it to the same classifiers as in [2]. 
In their work, the classification model is stored at the cloud server as a ciphertext. At 
classification, the classification probabilities are computed at the cloud, but multiple 
interactions occur between the client and cloud when computing for the class with the 
highest probability. More importantly, some information about the classification model 
is revealed to the client through the intermediate results that are decrypted by the client. 

Khedr et al. [5] focused on two classifiers, Bayesian spam filter and decision tree, and 
proposed an optimized FHE scheme for the two classifiers based on mathematical 
observations of FHE. Although they have applied their proposed FHE scheme to the two 
classifiers and proposed a classification method, they did not indicate any real-world 
system model or protocol. 

Dowlin et al. [6] proposed a classification method for neural networks using FHE. In 
their method, the classification model is trained using a regular neural network and 
plaintext data. To perform classification of encrypted data over FHE, they replaced 
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functions used in the neural network (e.g., replaced the activation function with a low-
degree polynomial) so that FHE can be used efficiently. Although they have indicated the 
classification method, they did not indicate any real-world system model or protocol as 
well.   

Park et al. [7] proposed two secure classification protocols for the naïve Bayes 
classifier in which there is a data provider that trains the classification model on plaintext 
data, a cloud server, and multiple clients. The first protocol is a server-centric protocol, 
in which classification is outsourced to a cloud server, but the model is stored in the cloud 
as a plaintext. In the server-centric protocol, clients have their own pair of keys that is 
used to encrypt their data when outsourcing classification to the cloud. Because the model 
needs to be encrypted for each client to perform classification, the model cannot be stored 
in the cloud as a ciphertext. The second protocol is a user-centric protocol, in which the 
classification model is encrypted but the classification is performed at the client (user). 
In the user-centric protocol, a single pair of keys is used within the system and is 
maintained by the cloud server. Instead of storing the classification model in the cloud, 
the data provider encrypts it and directly sends it to the client. Then, the client performs 
the classification, blinds the result and sends it to the cloud for decryption. Once 
decrypted, the cloud sends back the blinded result to the client, who then unbinds it to 
obtain the classification result. In this protocol, computational burden is induced on the 
client as the client performs the classification. In summary, the two protocols have a trade-
off between the privacy of the classification model and computational burden on the client.  

 
3.2. Secure training and classification over FHE 
In this section, we introduce related works that focus on both training a classification 
model over encrypted data and classification of encrypted data using FHE. 

Aslett et al. [8] proposed a tailored algorithm for naïve Bayes classifier and decision 
trees in which the operations within the classifiers are replaced with addition and 
multiplication operations such that FHE can be used to train a classification model over 
encrypted data. Graepel et al. [9] focused on Linear Means classifier and Fisher’s Linear 
Discriminant classifier in which they expressed the two classifiers using a low-degree 
polynomial to avoid division operations, which is difficult to perform using FHE. Several 
studies have been conducted on training neural networks [10, 11] and logistic regression 
[12, 13] in which they approximate the activation functions in neural networks and the 
sigmoid functions in logistic regression using low-degree polynomials so that FHE can 
be used. These studies on secure training over encrypted data using FHE focus on 
approximating the functions used in the classifiers so that the training can be performed 
using FHE. Although these works also indicate the classification method, they do not 
mention any real-world system model or protocol. 

Training classifiers over encrypted data has a major challenge in its computational 
complexity. As noted in [6], training classifiers, especially neural networks, is currently 
computationally expensive even with plaintext data. Thus, applying FHE to neural 
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network will make the training even more expensive and thus not practical for real-world 
systems. In addition, training over encrypted data will make it difficult to inspect data and 
the trained model, and to tune the parameters for training the neural network. 

Kim et al. [14] proposed a secure training and classification protocol for the naïve 
Bayes classifier in which the privacy of the classification model is preserved while 
outsourcing the computation to a cloud server. In their protocol, they introduce a 
decryption server who holds the secret key and is responsible for decryption of all 
ciphertexts. In their protocol, the class indexes are permuted so that the decryption server 
does not learn the actual index of the intermediate results and the classification result. 
However, the decryption server learns all the values that are being compared, and thus 
learns some information about the client’s input and the classification model. In addition, 
their proposed protocol involves many multiplication operations, which can, in fact, be 
optimized by using log probabilities and addition operations. 

Li et al. [15] proposed a general protocol for both secure training and classification 
over encrypted data. In their work, the privacy of the classification model, client’s data, 
and its result are preserved while outsourcing the computation to a cloud server. In their 
protocol, each client has their own public key 𝑝𝑘V and secret key 𝑠𝑘V pair, which is used 
to encrypt their own data when outsourcing their data to the cloud for computation. As 
computation cannot be performed when data are encrypted under a different key, proxy 
re-encryption based on Gentry’s [1] bootstrapping technique is used to re-encrypt the 
ciphertexts so that it is encrypted under a common public key 𝑝𝑘W. To prevent the cloud 
from decrypting the client’s data, a decryption server, which holds 𝑠𝑘Wand is responsible 
for decrypting the intermediate results, is introduced. 

In the training phase, they consider the scenario where data providers (clients) wants 
to jointly train a classifier without revealing their data to each other. Each data provider 
encrypts their data with their 𝑝𝑘V and sends the encrypted data to the cloud along with a 
re-encryption key that is needed to re-encrypt the data. Upon receiving the encrypted data 
and re-encryption key, the cloud server re-encrypts the data so that they are encrypted 
under 𝑝𝑘W. Then, the cloud server trains the classifier using the encrypted data. 

Similarly, in the classification phase, each client encrypts their data with their keys 
𝑝𝑘V, then sends the encrypted data and re-encryption key to the cloud. The cloud re-
encrypts the data under 𝑝𝑘W, then performs the classification. Once the classification has 
been performed, the cloud blinds the result with a random number and sends it to the 
decryption server, which decrypts the blinded result. The decryption server encrypts the 
blinded result with 𝑝𝑘V and sends it to the cloud. The cloud server removes the random 
number from the ciphertext using 𝑝𝑘V, then sends it to the client, who decrypts the data 
with 𝑠𝑘V  to obtain the classification result. 

Their proposed protocol preserves the privacy of the classification model, client’s data, 
and result. However, bootstrapping, which the proxy re-encryption is based on, is an 
expensive operation and may produce a bottleneck because the cloud will need to re-
encrypt all clients’ data. In fact, this proxy re-encryption is unnecessary as the clients can 
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encrypt their data using 𝑝𝑘W from the start of the protocol. In addition, because their 
protocol is generic, it does not indicate any concrete training or classification method 
using FHE, which is the challenging part when applying FHE to any applications.  
 
3.3. Summary of classification protocols 
We summarize the classification protocols of the related works in Table 1. We omit works 
that do not indicate any real-world system models, protocols or methods as we focus on 
devising a secure classification protocol and method in this paper. Many works focus on 
the naïve Bayes classifier because it is a simple and fast yet powerful classifier and one 
of the common classifiers that is used for various applications.  

As can be seen from Table 1, the past studies on machine learning classification over 
FHE do not achieve the ideal scenario of outsourcing the classification tasks to a cloud 
server while preserving the privacy of the client’s data and result from the cloud, and the 
privacy of the classification model from both the cloud and client. In these works, it is 
either i) the classification is performed at the cloud, but some information about the 
classification model, client’s data and/or intermediate results is revealed to the 
participating parties, or ii) the privacy of the classification model, client’s data, and the 
intermediate results are preserved, but the classification is performed at the client.  

Table 1. Summary of classification protocols of related work 

Year Related Work Classifier 
Privacy of 

Classification 
at 

Number 
of 

parties 
Classification 

model 
Intermediate 

results 

2015 Bost et al. [2] 

Naïve Bayes, 
decision tree, 
hyperplane 

decision 

Preserved Preserved Client 2 

2018 Wood et al. [3] Naïve Bayes Preserved Preserved Client 2 

2018 Sun et al. [4] 

Naïve Bayes, 
decision tree, 
hyperplane 

decision 

Preserved Not preserved Cloud 2 

2017 Park et 
al. [7] 

Server-
centric 

Naïve Bayes 

Not preserved Preserved Cloud 3 

User-
centric Preserved Preserved Client 3 

2018 Kim et al. [14] Naïve Bayes Preserved Not preserved Cloud 3 
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4. Proposed Method 

In this section, we present our naïve Bayes classification protocol. We consider the 
scenario in which we have i) a model provider who wants to provide a classification 
model for a classification service while preserving the privacy of their classification 
model, and ii) clients who want to outsource the classification task to reduce the 
computational burden at the client while preserving the privacy of their data and the result. 
As such, we consider the scenario in which the classification task is outsourced to a cloud 
server, which we refer to as a computation server (CS), while preserving the privacy of 
the classification model, client’s data, and classification result. We also introduce a 
trusted third party, which we refer to as a trusted authority (TA), who holds the secret key 
of the FHE used in the system and is responsible for the decryption of all ciphertexts.  

In our protocol, no participating parties learn anything about the classification model, 
client’s data, or classification result during classification of data. The client learns only 
the classification result and does not learn anything about the classification model that 
was used to classify the data. Although the TA is responsible for decryption of all 
ciphertexts, we ensure that it does not learn any information on the classification model, 
client’s data, or result. Like other works [7, 15], we assume that all participating parties 
are honest-but-curious, i.e., they follow the protocol but try to learn some information, 
and that the participating parties do not collude with each other. 

In this work, we assume that the classification model is trained over plaintext by a 
model provider, who then encrypts and uploads the classification model to a CS. To 
encrypt the classification model with FHE, the class probabilities and the conditional 
probabilities need to be represented as integers. Thus, after taking the logarithm of the 
probabilities, each value is scaled and rounded to integers. Precisely, we define the above 
operation as 𝑝X(𝑌) = ⌊𝑆 log 𝑝(𝑌)⌋ , where 𝑆 is the scaling factor. 

In our protocol, we use the BGV scheme proposed by Brakerski et al. [19], which 
allows us to encrypt vector of integers and use SIMD style operations. The client’s data 
are represented as a feature vector 𝒙 and encrypted as a single ciphertext. 

 

4.1. Protocol Overview 
A high-level overview of our classification protocol is shown in Fig. 1, where we have a 
model provider, multiple clients, a CS, and a TA. First, the model provider encrypts the 
classification model and uploads it to the CS for storage. At classification, a client 
encrypts their data and generates a permutation vector, then sends them to the CS as a 
query. Upon receiving the query, the CS computes the classification probability 𝑝′Cfor 
each class and then permutes the results using the permutation vector. To obtain the 
permuted class index with the highest 𝑝′C , the CS interacts with the TA to perform 
comparisons. After all comparisons, the TA sends the obtained permuted index to the 
client, who reverses the permutation to obtain the classification result. During the protocol, 
the CS and TA do not learn anything about the classification model or the client’s data. 
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Fig. 1. Overview of our system model and protocol 
 
4.2. Setup and Model Encryption 
At setup, the TA runs FHE’s KeyGen algorithm with given 𝑝𝑎𝑟𝑎𝑚 and l to generate a 
pair of secret key	𝑠𝑘 and public key 𝑝𝑘. The TA distributes 𝑝𝑘 to the CS, model provider 
and clients. The model provider then encrypts the trained classification model using 𝑝𝑘. 
From here on, we use ⟦𝑚⟧ to denote Enc+,(𝑚). 

To efficiently utilize the SIMD style operations of FHE, the model provider stores the 
class probability for class 𝑐C and all conditional probabilities for class 𝑐C  into a vector 𝒗V` 
of length f+1, where 𝒗V`[𝑗] = 𝑝′(𝑋K = 𝑥K|𝐶 = 𝑐C)  and 𝒗V`[𝑓 + 1] = 𝑝′(𝐶 = 𝑐C) , then 
encrypts it as a single ciphertext. Thus, the encrypted classification model is a set of 
ciphertexts ⟦𝒗⟧ = de𝒗Vfg, e𝒗Vhg,… , e𝒗Vigj , where 𝑁  is the number of classes. After 
encrypting the classification model, the model provider uploads it to the CS so that clients 
can use it for classification. The information of 𝑁, 𝑓, and how the vector was constructed 
must be made public so that the clients can construct the feature vector accordingly. 
 
4.3. Classification Protocol 
At classification, a client represents his/her data as a feature vector 𝒙 of length 𝑓 + 1 
based on the public vector information. 𝒙 consists of 0 and 1 where 𝒙[𝑗] is set to 1 iff 
feature 𝑥K exists, and 0 otherwise. In addition, 𝒙[𝑓 + 1] is set to 1 as well. Then, the client 
encrypts 𝒙 with 𝑝𝑘 and also generates a permutation vector 𝜋 of length 𝑁, where 𝑁 is the 
number of classes, which will be later used to permute the ciphertexts to hide the 
classification result from the TA. The client then sends the encrypted data ⟦𝒙⟧  and 
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permutation vector 𝜋 to the CS as a query. Upon receiving the query from the client, the 
CS performs the classification protocol as shown in Algorithm 1, which we describe 
below. 

For each class 𝑐C , the CS multiplies ⟦𝒙⟧ with encrypted model e𝒗V`g to extract the 
probabilities corresponding to the client’s data. If the value of 𝒙 at the 𝑗-th position is 1, 
the value of 𝒗V` at the 𝑗-th position corresponding to 𝑝′(𝑋K = 𝑥K⌊𝐶 = 𝑐C) can be extracted; 
otherwise, it will be 0. Then, the CS sums the values in all the slots using TotalSums 
operation proposed by Halevi and Shoup [25], which is shown in Algorithm 2, to obtain 
the classification probability ⟦𝒑′C⟧, where all slots contain the value 𝑝′C. Once ⟦𝒑′C⟧ for 
each class is calculated, the CS permutes the ciphertexts using 𝜋 as {e𝒑′n(C)g}C∈[8,q]. Then, 
the CS interacts with the TA to perform comparisons so that the TA obtains 𝑖𝑛𝑑𝑒𝑥, which 
is the permuted class index 𝜋(𝑖)  with the highest 𝑝′C , but without revealing any 
information about the client’s data or the classification model to the CS or TA from the 
intermediate results.  

Our comparison protocol, which is based on Wood et al.’s work [3], compares two 
values at a time. For simplicity, we denote the two values to be compared as ⟦𝒂⟧ and ⟦𝒃⟧, 
which contain value 𝑎 and 𝑏, respectively, in all the slots. Let 𝒢 denote a set of linear 
polynomials of the form 𝑔(𝑥) = 𝐴𝑥  where 𝐴  is a positive integer. As 𝑔  is a linear 
polynomial with positive coefficient, we obtain 𝑔(𝑎) − 𝑔(𝑏) ≥ 0  when 𝑎 ≥ 𝑏  and 
𝑔(𝑎) − 𝑔(𝑏) < 0 otherwise. It is crucial that 𝑔 is randomly chosen from sufficiently 
large range of polynomials in 𝒢 while ensuring that 𝑔(𝑥) does not exceed the plaintext 
space. 

In our protocol, the CS randomly choose 𝑔 ∈ 𝒢  at each comparison and computes 
⟦𝒉⟧ = ⟦𝑔(𝒂)⟧ ⊝ ⟦𝑔(𝒃)⟧ = 𝑔(⟦𝒂⟧)⊝ 𝑔(⟦𝒃⟧), where ⊝ is a homomorphic subtraction. 
Since 𝑔(𝑥) is the same as a scalar multiplication, 𝑔(⟦𝒂⟧) = ⟦𝑔(𝒂)⟧. The CS sends ⟦𝒉⟧ 
to the TA who decrypts it to obtain ℎ. If ℎ ≥ 0, the TA updates 𝑖𝑛𝑑𝑒𝑥 and generates a 
ciphertext ⟦𝒅⟧ = ⟦𝟏⟧ , which is an encryption of a vector whose values are all 1. 
Otherwise, the TA does not update 𝑖𝑛𝑑𝑒𝑥  and generates ⟦𝒅⟧ = ⟦𝟎⟧ , which is an 
encryption of a vector whose values are all 0. The TA sends ⟦𝒅⟧ to the CS, who then 
computes (⟦𝒅⟧⨂⟦𝒂⟧)⨁((1⊝ ⟦𝒅⟧)⨂⟦𝒃⟧). The resulting ciphertext is a ciphertext of the 
higher value, which will be used at the next comparison. The comparison is repeated until 
we finish comparing all values. In the protocol, the TA does not learn which class is the 
actual classification result from 𝑖𝑛𝑑𝑒𝑥 because it does not know 𝜋. Also, as 𝑔 is different 
for every comparison, the TA will not be able to learn anything about the classification 
model or client’s data from ℎ. Once all comparisons are made, the TA sends 𝑖𝑛𝑑𝑒𝑥 to the 
client, who reverses the permutation to obtain the actual index 𝑖 and the classification 
result 𝑐C. 
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Algorithm 1: Classification protocol 
Client’s inputs: encrypted data ⟦𝒙⟧, permutation vector 𝜋  
CS’s inputs: encrypted model ⟦𝒗⟧ = de𝒗Vfg, e𝒗Vhg, … , e𝒗Vigj, a set of polynomials 𝒢 
TA’s inputs: secret key 𝑠𝑘, public key 𝑝𝑘 
1 CS:  
2   for i=1 to N do 
3     ⟦𝒕𝒆𝒎𝒑⟧ ← ⟦𝒙⟧⨂e𝒗V`g          ▷extract matching probabilities 
4     ⟦𝒑′C⟧ ← TotalSums(⟦𝒕𝒆𝒎𝒑⟧)  
5   end for 
6   Permute ciphertexts as {e𝒑′n(C)g}C∈[8,q] 
7 TA: 
8   𝑖𝑛𝑑𝑒𝑥 ← 1 
9 CS: 
10   ⟦𝒎𝒂𝒙⟧ ← e𝒑′n(8)g 
11 for i=2 to N do 
12   CS: 
13     Randomly choose 𝑔 ∈ 𝒢 
14     ⟦𝒉⟧ ← 𝑔Oe𝒑′n(C)gP ⊝ 𝑔(⟦𝒎𝒂𝒙⟧) 
15     Sends ⟦𝒉⟧ to TA 
16   TA:  
17     ℎ ← Dec-,(⟦𝒉⟧)                  ▷all slots of ⟦𝒉⟧ are value ℎ 
18     if ℎ ≥ 0: 𝑑 ← 1, 𝑖𝑛𝑑𝑒𝑥 ← 𝑖 
19     if ℎ < 0: 𝑑 ← 0 
20     ⟦𝒅⟧ ← Enc+,(𝑑) 
21     Sends ⟦𝒅⟧ to CS 
22   CS: 
23     ⟦𝒎𝒂𝒙⟧ ← (⟦𝒅⟧⨂e𝒑′n(C)g)⨁((1⊝ ⟦𝒅⟧)⨂⟦𝒎𝒂𝒙⟧) 
24 end for 
25 TA: 
26     Sends 𝑖𝑛𝑑𝑒𝑥 to client 
27 Client: 
28   𝑖 ← 𝜋�8(𝑖𝑛𝑑𝑒𝑥)  
29   Output class 𝑐C as the classification result 
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4.4. Security Intuition 
We provide an intuitive security analysis of our protocol. In our protocol, a client sends 
his/her encrypted data and a permutation vector to the CS as a query. The CS calculates 
the classification probability ⟦𝑝′C⟧  over FHE using the encrypted classification model and 
encrypted data. Because ⟦𝑝′C⟧ is calculated over FHE, the CS does not learn anything. 
When comparing values to find the class index with the highest 𝑝′C, the CS first permutes 
the vector of ciphertexts that encrypts the classification probabilities, then sends to the 
TA the difference between two encrypted values that is blinded by 𝑔, which is randomly 
chosen from 𝒢 at every comparison. As the difference is blinded, the TA does not learn 
anything about the values that are being compared or their difference when it decrypts the 
ciphertexts. Based on the decrypted result, the TA updates 𝑖𝑛𝑑𝑒𝑥 to the permuted class 
index 𝜋(𝑖) with the highest 𝑝′C and generates a new ciphertext. Although the TA knows 
𝑖𝑛𝑑𝑒𝑥, it does not learn the actual class index as the TA does not know 𝜋 and thus cannot 
reverse the permutation. The TA sends the new ciphertext to the CS who performs 
computation to obtain a ciphertext that encrypts the higher value, but the CS does not 
learn anything because the computation is performed over FHE. At the end of all 
comparisons, the TA sends 𝑖𝑛𝑑𝑒𝑥 to the client, who reverses the permutation to obtain 
the final classification result. As the client receives only the class index, it does not learn 
anything about the classification model that was used to classify the data. 
 Thus, no participating parties learn anything about the classification model, client’s 
data, or classification result during classification, and the client learns only the 
classification result and does not learn anything about the classification model that was 
used to classify the data. 

  

Algorithm 2: TotalSums(𝑢)	[25] 
Input: FHE ciphertext 𝑢  
1 𝑣 ← 𝑢, 𝑒 ← 1, 𝑛 ←	number of slots in 𝑢 
2 𝑘 ← number of bits in 𝑛               ▷if 𝑛 = 5, 𝑘 = 3 
3 for i=k-2 down to 0 do 
4   𝑣 ← 𝑣⨁(𝑣 ≫ 𝑒) 
5   𝑒 ← 2𝑒 
6   𝑏 ← 𝑏𝑖𝑡K(𝑛)                     ▷𝑗-th bit of 𝑛 where bit 0 is the LSB 
7   if b=1: 
8     𝑣 ← 𝑢⨁(𝑣 ≫ 𝑒) 
9     𝑒 ← 𝑒 + 1 
10   end if 
11 end for 
12 Return 𝑣 as the result 
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5. Experimental Evaluation 

In this experimental evaluation, we evaluate the performance of our protocol by 
measuring its computation time and communication cost. To assess the communication 
cost, we measured the size of the ciphertexts that are transferred throughout the entire 
system instead of measuring the communication time because communication time 
depends on the network bandwidth. 
 We implemented and evaluated only our protocol because Li et al.’s work [15], which 
is the only work that achieves the ideal scenario, does not have a concrete classification 
method and involves heavy proxy re-encryption, which is based on the bootstrapping 
technique by Gentry [1] that lasts from a few seconds to a few minutes [16]. 

We compare the performance of our classification protocol for the following two 
cases: i) the case in which the number of feature values is fixed but the number of classes 
vary, and ii) the opposite case in which the number of classes is fixed but the number of 
feature values vary. 

 
5.1. Data Sets and Experimental Environment 

In our experimental evaluation, we used the Breast Cancer Wisconsin (Original) data 
set (2 classes with 9 feature attributes) and the Car Evaluation data set (4 classes with 6 
feature attributes) from the UCI machine learning repository [26]. The Breast Cancer data 
set has 9 feature attributes with 10 feature values each and the Car Evaluation data set has 
6 feature attributes with 21 distinct feature values in total. As client’s data will be 
represented as a feature vector of length 𝑓 + 1, where 𝑓 is the number of feature values, 
the length of the feature vector is 91 and 22 for the Breast Cancer data set and the Car 
Evaluation data set, respectively. We modified the Car Evaluation data set to evaluate the 
performance for two-class and three-class classification by eliminating some classes from 
the data set as needed. The classification models for the two data sets used in our 
experiment were trained on plaintext data. Then, the class and conditional probabilities 
were represented as integers in the range of 0 to 79 by scaling and rounding after taking 
the logarithm of the probabilities. From Equation (2), the highest possible classification 
probability 𝑝X��� for the Breast Cancer data set and the Car Evaluation data set is 790 
and 533, respectively. We summarize the above information in Table 2. 

We implemented our proposed secure classification protocol using the FHE library 
HElib1, which implements the BGV scheme using C++. In our experiment, we used the 
parameters listed in Table 3, where the parameters 𝑚, 𝑝, 𝑟, log𝑞  are the FHE system 
parameters 𝑝𝑎𝑟𝑎𝑚 and l is the security parameter. The parameters were chosen so that 
sufficiently large range of 𝑔 can be randomly chosen from 𝒢. With these parameters, a 
ciphertext have 218 slots available, which is a sufficient number of slots to encrypt a 
feature vector for both data sets. 
                                                             
1  https://github.com/homenc/HElib 
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The experiment was run on 64-bit Ubuntu 16.04 LTS, Intel Core i7-4770 CPU @ 3.40 
GHz x 4, with 23.5 GiB memory using a single thread. Although our system scenario 
involves a model provider, client, CS, and TA, the same machine was used for all parties. 

Table 2. Experimental Data Sets 

Data Set 
Number of 

classes 
Number of 

feature attributes 
Number of 

feature values 
Length of 

feature vector 
𝑝X���  

Breast 
Cancer 

2 9 90 91 790 

Car 
Evaluation 

2, 3, 4 6 21 22 533 

Table 3. FHE Parameters 

𝑚 𝑝 𝑟 log𝑞 l 
11,119 2 18 180 119 

 
5.2. Experimental Results 
In this section, we present the experimental results of our classification protocol. Each 
experimental result is the average of 20 trials.  

Before we present the experimental results of our classification protocol, we first 
present the computation times for the basic FHE algorithms: KeyGen, Enc, and Dec. 
We measured the time it takes to set up the system by generating the public key and secret 
key pair, to encrypt a single vector, and to decrypt a ciphertext during comparison. We 
also measured the size of a newly encrypted ciphertext. The results are presented in Table 
4. As the results show, the KeyGen algorithm takes approximately 40 seconds, but this 
algorithm needs to be run only once at the initial setup. Thereafter, the encryption and 
decryption of a single vector requires only several milliseconds. 
 In our protocol, we encrypt the class probability and all conditional probabilities for 
class 𝑐C  as a single vector. Thus, the computation time required for the model provider to 
encrypt the classification model and the communication cost to upload the encrypted 
model increase linearly with respect to the number of classes N.  

Next, we present the computation time and the communication cost for classifying a 
single feature vector of data using the Breast Cancer Wisconsin (Original) data set. We 
also present the result for two-class, three-class, and four-class classifiers using the Car 
Evaluation data set, which has been modified as described previously.  

In this experiment, we measured the computation time for the whole protocol, from 
the client encrypting a feature vector and generating a permutation vector to the client 
obtaining the classification result by reversing the permutation on the result returned from 
the TA. To assess the communication cost, we measured the total size of the ciphertexts 
that were transferred throughout the entire system from start to finish. More specifically, 
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we measured the communication cost between the client and CS, and between the CS and 
TA where most of the communication takes place. We omit the communication cost 
between the TA and client because only a plaintext of a few bytes will be sent from the 
TA to the client.  

The experimental results are summarized in Table 5 and Fig. 2. In Fig. 2, we show 
only the experimental results for the Car Evaluation data set. As we can see, the 
computation time and communication cost increase linearly with respect to the number 
of classes. We can also see that the experimental results for both two-class classification 
data sets are very similar, demonstrating that the number of feature attributes or feature 
values does not affect the results of our protocol. In addition, the communication cost 
between the client and TA is the same regardless of the number of classes because the 
client only needs to send a single ciphertext and a plaintext permutation vector. 

In fact, the burden on the client is very small as the client only needs to encrypt his/her 
data and generate a permutation vector that is sent as a plaintext. Because the client 
obtains his/her classification result as a plaintext, the burden on the client to classify data 
is just a single encryption operation and sending of the ciphertext and permutation vector, 
which is 0.016 s computation time and 1.5 MB communication cost. 

To provide more insight, we measured the computation time for calculating 𝑝′C  for a 
single class 𝑐C and obtained a computation time of 0.695 s. Because we calculate 𝑝′C for 
each class, the total computation time for calculating 𝑝′C   for all classes is 𝑂(𝑁), where N 
is the number of classes. This consumes more than half of the computation time of the 
entire protocol. We also measured the computation time and communication cost for 
comparing two values and obtained 0.144 s and 4.0 MB, respectively. We can see that 
the computation time for comparison is smaller than the computation time for calculating 
𝑝′C. The total computation time and communication cost for obtaining the class with the 
highest 𝑝′C is 𝑂(𝑁), where 𝑁 is the number of classes. Also, we can see that most of the 
communication cost of the entire protocol occurs during these comparisons, which is 
between the CS and TA. 

Lastly, we note that the experimental results do not include the communication time 
that will exist in a real-world system. Instead, as mentioned previously, we measured the 
total size of the ciphertexts that would be transferred throughout the system to determine 
the communication cost because the communication time depends on the network 
bandwidth. Thus, in a real-world system, our protocol requires additional time for 
classification. However, the additional communication time should not be a concern 
because the size of the data transferred from the client to the CS is not large (about 1.5 
MB) and we can assume that the network bandwidth between the CS and TA will be 
large. 

Our experimental results show that our protocol runs in 1.6 s with 4.0 MB of 
communication cost for classifying a data using a two-class classifier, increasing linearly 
with respect to the number of classes, while preserving the privacy of the classification 
model, client’s data, and classification results. The burden on the client is very low 
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because the protocol requires only a single encryption of his/her data (about 0.016 s) and 
the generation of the permutation vector (a few milliseconds), which is sent to the CS as 
a query of about 1.5 MB in size, and the client receives the classification result as a 
plaintext. The computation time and communication cost at the CS and TA increase in 
comparison, but this will not be a problem because such servers have large computational 
resources and large network bandwidth. 

Table 4. KeyGen, Encryption, and Decryption Times 

Time (s) 
Ciphertext Size (MB) 

KeyGen Enc Dec 
38.577 0.016 0.008 1.5 

Table 5. Computation Time and Communication Cost 

Data Set 
Number 

of classes 
Time (s) 

Transferred Data Size (MB) 
Between 

Client and CS 
Between  

CS and TA 
Total 

Breast Cancer 2 1.549 

1.5 

  2.5   4.0 

Car 
Evaluation 

2 1.551   2.5   4.0 
3 2.420   6.5   8.0 
4 3.283 10.5 12.0 

 

 
Fig. 2. Computation Time and Communication Cost for Car Evaluation Data Set 
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5.3. Discussion 
In this experimental evaluation, we implemented and evaluated only our protocol’s 
performance because Li et al.’s work [15] does not have a concrete classification method 
and involves heavy proxy re-encryption, which is based on the bootstrapping technique 
by Gentry [1] that lasts from a few seconds to a few minutes [16]. Their proxy re-
encryption is performed once per data to re-encrypt the data under a common public key. 
However, the proxy re-encryption is only an initial step before performing the 
classification, whose method is abstracted in the paper. In fact, their proxy re-encryption 
is unnecessary as the clients can encrypt their data using the system’s common public key 
instead of using their own set of keys. Thus, while their proxy re-encryption lasts from a 
few seconds to a few minutes in addition to the actual classification of data, our 
classification protocol completes in approximately 3.3 s for a four-class classifier. Thus, 
our proposed protocol has higher computational efficiency. 

In our experiment, each of the probabilities in our classification model were 
represented as an integer in the range of 0 to 79. We note that it is possible to express 
each probability using a larger range of integers, such as 0 to 200, and still obtain the 
same computation time and communication cost as in our experimental results as the 
computation time and communication cost are independent of the values that are 
encrypted. 

Similarly, we can classify data that has more number of feature attributes or feature 
values and obtain the same computation time and communication cost because we 
perform operations over all the slots within the ciphertext using the SIMD style operations. 
Thus, the number of operations, computation time, and communication cost is 
independent of the number of feature attributes or feature values within a data. In fact, we 
have already shown in our experimental results that the number of feature attributes or 
feature values within a data set does not affect the computation time and communication 
cost of our classification protocol.  

It is important to note, however, that we must ensure that 𝑔 ∈ 𝒢 will be randomly 
chosen such that 𝑔(𝑝X���), where 𝑝X��� is the highest possible classification probability, 
does not exceed the plaintext space. Also, if the number of feature values exceeds the 
number of slots within a ciphertext, some modifications of the protocol will be needed, 
such as using two ciphertexts to represent the feature vector. In the above two cases, we 
could also choose a different set of FHE parameters to increase the plaintext space and/or 
the number of slots, which may require a longer computation time and higher 
communication cost depending on the parameters. 
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6. Optimization of the Proposed Protocol 

The proposed classification protocol and the experimental results, shown in Section 4 and 
5 respectively, can be regarded as the basic protocol and its performance for classifying 
a single data without any optimization for given data sets. Thus, the performance of the 
proposed protocol is the same for any data set; independent from the way the probabilities 
are represented or the length of a feature vector. 

In this section, we present some techniques that can be applied to our proposed 
protocol so that the computation time can be optimized for each data set. In Section 6.1, 
we present some techniques for optimizing the computation time when classifying a 
single data. In Section 6.2, we present a technique for classifying multiple data 
simultaneously using a single ciphertext by extending the techniques from Section 6.1. In 
Section 6.3, we indicate a part in the proposed protocol that can be run in parallel. 
 
6.1. Optimization for single data classification 
In this section, we present a technique that can be applied to our proposed protocol in 
order to optimize the computation time when classifying a single data. 
 In Section 6.1.1, we describe the technique for optimizing the computation time by 
modifying the TotalSums operation. In Section 6.1.2, we present additional modification 
to the classification protocol that is necessary to ensure the privacy of intermediate results. 
In Section 6.1.3, we present the expected change in computation time between the 
unmodified and modified protocol. 
 
6.1.1. Optimization of the 𝐓𝐨𝐭𝐚𝐥𝐒𝐮𝐦𝐬 operation 

In Section 5.3, we have discussed that the computation time and communication cost of 
our proposed protocol is independent from the number of feature attributes or feature 
values within a data set. This is because we perform the TotalSums operation on all the 
slots within a ciphertext when calculating the classification probability 𝑝′. However, to 
calculate 𝑝′, we only need to sum 𝑠 slots within the ciphertext, where 𝑠 is the length of 
the client’s feature vector. Thus, by summing only 𝑠 slots within the ciphertext, we can 
reduce the computation time during classification. The required modification of the 
TotalSums operation, whose original operation is shown in Algorithm 2, is very small 
since we only need to initialize 𝑛  with the length 𝑠  of a feature vector instead of 
initializing with the number of slots in a ciphertext.  

Table 6 shows the computation time for performing TotalSums on 218 slots (all slots 
in a ciphertext), 91 slots (length of a feature vector for the Breast Cancer data set), and 22 
slots (length of a feature vector for the Car Evaluation data set). As we can see from the 
result, the computation time decreases with respect to the number of slots. The decrease 
in computation time is not linear with respect to the number of slots because the 
TotalSums operation runs in 𝑂(log 𝑠) where 𝑠 is the number of slots we perform the 
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summation on. As we sum the values within a ciphertext to calculate 𝑝′ for each class 𝑐C, 
the total expected decrease in computation time during classification is linear to the 
number of classes. 

Table 6. Computation time of unmodified and modified TotalSums  

Number 
of slots 

Unmodified Modified 
218 slots 91 slots 22 slots 

Time (s) 0.622 0.474 0.234 
 

It is important to note, however, that reduction in the number of slots 𝑠 which we sum 
does not necessary improve the computation time. As it can be seen from Fig. 3, the 
computation time could largely change between two consecutive values. This is mainly 
because the number of operations in TotalSums depends on the number of bit 1 in 𝑠 (ex. 
91 = 1011011:). Thus, it is possible to further optimize the computation time by adding 
dummy feature values to the feature vector in order to adjust 𝑠  for more optimal 
computation time or by using the unmodified TotalSums operation. Concretely, we can 
choose an optimal number of slots 𝑠��   such that 𝑠 ≤ 𝑠��  ≤ 𝑠 + 𝑤 , where 𝑤  is a 
margin for adjusting 𝑠, to optimize the computation time. An example for when 𝑤=8 is 
shown in Fig. 4. In this case, we can improve the computation time by up to 1.45 times 
compared to that of 𝑠 without any adjustment.  
 

 
Fig. 3. Computation time of TotalSums for different number of slots 
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Fig. 4. Computation time of TotalSums after adjusting the number of slots 

 
6.1.2. Modification to the classification protocol 

To securely perform classification without revealing any data to any parties, we require 
one additional modification to the classification protocol. During the comparisons in our 
proposed protocol, the CS randomly chooses 𝑔 ∈ 𝒢 ⟦, calculates 𝒉⟧ = 𝑔(⟦𝒂⟧) ⊝ 𝑔(⟦𝒃⟧), 
then sends ⟦𝒉⟧ to the TA. The TA decrypts ⟦𝒉⟧ to obtain ℎ and continues the protocol. 
When TotalSums  operation is performed on all slots in a ciphertext, the resulting 
ciphertext have the summed value in all the slots of a ciphertext. Thus, it was ensured that 
⟦𝒉⟧  will have value ℎ  in all the slots. However, when we modify the TotalSums 
operation to perform summation on 𝑠 slots, only one slot within the ciphertext have the 
value ℎ while other slots contain partial summations. If we continue the protocol with 
only the modified TotalSums operation and apply 𝑔 to all slots within a ciphertext, the 
function 𝑔  will be revealed to the TA from the values when it is decrypted. If 𝑔  is 
revealed, the TA will be able to obtain some information on the classification model and 
client’s data from the decrypted result. Thus, it becomes necessary to mask all the other 
slots by multiplying the slots with 0. As such, instead of multiplying all slots with 𝑔, we 
multiply the ciphertext with a one-hot vector in which the position corresponding to where 
the summed value is located is set to 𝑔 and all other positions are set to 0. The position 
for setting 𝑔 can be easily determined from the data set. Thus, the resulting ciphertext 
⟦𝒉⟧ will also be a one-hot vector where one slot is ℎ and all other slots are 0. Upon 
receiving and decrypting ⟦𝒉⟧  to obtain ℎ , the TA continues the same protocol as 
described in Section 4. 

Fig. 5 shows an example of the resulting ciphertext and the needed operations after the 
TotalSums operation for both the unmodified and modified cases.  
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Fig. 5. Difference between the unmodified and modified TotalSums operation 

In FHE, a multiplication operation between a ciphertext and a plaintext vector containing 
non-uniform values is computationally more expensive than a multiplication between a 
ciphertext and a plaintext vector that contains uniform values. Thus, the computation time 
for each comparison of the modified protocol becomes more expensive than that of the 
unmodified protocol. Table 7 shows the computation time for comparing two values after 
performing TotalSums on 218 slots (all slots in a ciphertext), 91 slots (length of a feature 
vector for the Breast Cancer data set), and 22 slots (length of a feature vector for the Car 
Evaluation data set). We can see from the result that, indeed, the computation time for 
each comparison has increased for both data sets after the modification of the protocol. 
Also, we can see that the time for comparison is different between the case for 91 slots 
and 22 slots. This is due to the characteristics of FHE that the computation time is affected 
by prior operations performed on the ciphertext. In Fig. 6, we show the computation time 
for comparing two values for when we perform the TotalSums operation on different 
number of slots. From the figure, we can see that although some variations occur, the 
computation time is mostly constant. 

Table 7. Computation time for comparing two values 

Number 
of slots 

Unmodified Modified 
218 slots 91 slots 22 slots 

Time (s) 0.143 0.365 0.333 
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Fig. 6. Computation time of comparing two values for different number of slots 

 
6.1.3. Change in computation time 

In Table 8, we show the total computation time of the classification protocol after the two 
modifications presented in Section 6.1.1 and 6.1.2. From the results, we can see that the 
modified classification protocol has better computation time compared to that of the 
unmodified protocol. Also, while the unmodified protocol has same computation time for 
both two-class classifiers, the modified protocol now has different computation time 
because the TotalSums operation is now modified for each data set. We note that there is 
no change in the communication cost as the number and the size of ciphertexts that is 
transferred throughout the system does not change from these modifications. 

Table 8. Computation time of the modified classification protocol 

Data set 
Length of 

feature vector 
Number 

of classes 
Time (s) 

Unmodified Modified 
Breast Cancer 91 2 1.549 1.458 

Car Evaluation 22 
2 1.551 0.962 
3 2.420 1.601 
4 3.283 2.240 

 
We note that although we can optimize the classification protocol by modifying the 
TotalSums  operation and the comparison protocol, there may be cases where the 
unmodified protocol has better performance than the modified protocol. The total 
expected change in classification time between unmodified and modified protocol is 
Δ𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = (Δ𝐶𝑜𝑚𝑝𝑎𝑟𝑒 ∗ (𝑁 − 1)) − (Δ𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑚 ∗ 𝑁) , where 𝑁  is the 
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number of classes. When Δ𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is positive, the computation time increases 
compared to the unmodified protocol. In Fig. 7, we show the total estimated change in 
classification time Δ𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 when 𝑁 = 2 for different number of slots 𝑠 which 
we perform the 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑚 on. As we can see from the figure, for larger value of 𝑠, there 
are several instances in which Δ𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  is positive, indicating that the 
computation time increases compared to the unmodified protocol. In such cases, using 
the unmodified protocol will be more efficient when classifying a single data.  
 

  
Fig. 7. Estimated change in classification time for different number of slots when 𝑁=2 

 
6.2. Classification of Multiple Data 
By extending the modifications presented in Section 6.1, we can classify multiple data 
simultaneously using a single ciphertext. In the modified protocol, we perform 
summation on only 𝑠 slots in a ciphertext, where 𝑠 is the length of a feature vector, then 
proceed with the protocol by focusing on the slot that contains the classification 
probability 𝑝′. Thus, if there are sufficient slots, we can pack multiple feature vectors into 
a single ciphertext and perform classification on multiple data simultaneously using a 
single ciphertext. By performing the modified TotalSums operation on 𝑠 slots, we can 
calculate 𝑝′ for each encrypted feature vector at the same time. Then, at comparison, the 
CS chooses different 𝑔 ∈ 𝒢 for each data to be compared and masks all other slots so that 
it becomes 0, similar to what we described in Section 6.1. The TA continues the protocol, 
but now managing 𝑖𝑛𝑑𝑒𝑥  for each data and ⟦𝒅⟧  is now a vector whose slots 
corresponding to each data are set to 0 or 1 depending on the decrypted value ℎ for that 
data and the rest are set to 0. No additional modifications are necessary to classify 
multiple data using a single ciphertext. 
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 Table 9 shows the experimental results of the modified classification protocol for 
classifying multiple data using a single ciphertext. The number of data per ciphertext, 
which we denote as 𝑛𝑢𝑚𝐷𝑎𝑡𝑎, is calculated as 𝑛𝑢𝑚𝐷𝑎𝑡𝑎 = ⌊𝑠/𝑡⌋ where 𝑠 is the length 
of a feature vector and 𝑡 is the total number of slots within a ciphertext, which is 218 in 
our experiment. As we can see from Table 9, the computation time is not largely different 
from the experimental results shown in Table 8 when we are classifying a single data per 
ciphertext but with the optimized summation. The computation time for classifying 
multiple data is slightly longer because the TA now updates 𝑖𝑛𝑑𝑒𝑥 and set value for a slot 
within ⟦𝒅⟧ by checking the decrypted value for each data. Of course, as we are now 
classifying multiple data at once, the throughput of the classification protocol has 
increased. Although we packed 2 and 9 data per ciphertext for the Breast Cancer data set 
and Car Evaluation data set, respectively, it is possible to pack fewer data into a ciphertext 
at classification as well.  
 We finally note that in Fig. 7, we have shown that the computation time for classifying 
a single data with the modified protocol may be longer than that of the unmodified 
protocol depending on the number of slots. However, in cases in which we can pack 
multiple data into a single ciphertext, the total computation time may increase but the 
throughput of the modified protocol may be higher compared to the unmodified protocol.  

Table 9. Computation time of the modified classification protocol 

Data set 
Length of a 

feature vector 
Number of data 
per ciphertext 

Number of 
classes 

Time (s) 
Time (s) 
per data  

Breast 
Cancer 

91 
1 

2 
1.458 1.458 

2 1.464 0.732 

Car 
Evaluation 

22 

1 
2 0.962 0.962 
3 1.601 1.601 
4 2.240 2.240 

9 
2 0.964 0.107 
3 1.615 0.179 
4 2.268 0.252 

 
6.3. Parallelization of Comparison 
In our classification protocol, the CS and TA perform the comparisons one at a time, 
updating ⟦𝒎𝒂𝒙⟧ to a ciphertext of the higher value over FHE. We can optimize this step 
by running multiple comparisons in parallel so that the comparisons occur in a tree-like 
structure rather than linearly. Although the total number of comparisons that will be made 
is the same, we can reduce the computation time as they will be running in parallel.  
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7. Conclusion 

In this paper, we proposed a secure naïve Bayes classification protocol over encrypted 
data using FHE. Our proposed protocol allows a model provider to provide a 
classification model and classification service while preserving the privacy of the 
classification model from all participating parties and allows clients to outsource data 
classification to a cloud server while preserving the privacy of their data and classification 
result from the participating entities. The client learns only the classification result and 
does not learn anything about the classification model that was used to classify the data. 

Our experimental results show that our protocol runs in 1.5 s with 4.0 MB of 
communication cost for classifying a data using a two-class classifier while preserving 
the privacy of the classification model, client’s data, and results. Our experimental results 
also show that the computation time and communication cost increases linearly with 
respect to the number of classes. The burden on the client at classification is very small, 
making the utmost use of the cloud servers by outsourcing the classification tasks. In 
addition, we indicated several techniques that could be used to modify our protocol in 
order to optimize the computation time for a given data set such as optimization of the 
TotalSums  operation, and extension of it to enable classification of multiple data 
simultaneously. By doing so, we reduced the computation time from 1.5 s to 1.0 s for a 
two-class classification of the Car Evaluation data set while classifying 9 data at once.  
Although we focused on naïve Bayes in this work, our protocol can be easily modified 
for other machine learning algorithms.  

Potential future works are as follows: i) measure the real-world communication cost 
and time with varying network bandwidth to evaluate the performance of the proposed 
classification protocol, and ii) apply the proposed classification protocol to other machine 
learning algorithms. Also, choosing the optimal FHE parameters for a given dataset is an 
open problem.  
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