

2019 Master’s Thesis

Secure Naïve Bayes Classification Protocol over
Encrypted Data Using Fully Homomorphic Encryption

A Thesis Submitted to the Department of Computer Science and

Communications Engineering, the Graduate School of Fundamental
Science and Engineering of Waseda University in Partial Fulfillment of the

Requirements for the Degree of Master of Engineering

Submission Date: July 22nd, 2019

Advisor: Prof. Hayato Yamana
Research guidance: Research on Parallel and Distributed Architecture

Department of Computer Science and Communications Engineering,

Graduate School of Fundamental Science and Engineering,
Waseda University

Student ID: 5117FG27-0

Yoshiko Yasumura

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286964719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract
Machine learning classification has a wide range of applications. In the big data era, a
client may need to classify a large amount of data that has many features, resulting in a
heavy computation at the client. Using a cloud server to outsource such classification
tasks, we can reduce this computational burden. At the same time, an entity may wish to
provide a classification model and classification services to such clients as a part of
Machine Learning as a Service (MLaaS). However, applications such as medical
diagnosis require sensitive data from the entity and the client that they may not want to
reveal to the cloud such as the classification model and client’s data.
 Fully homomorphic encryption (FHE), in which an arbitrary number of arithmetic
operations can be performed over encrypted data without decryption, enables secure
computation. By applying FHE to machine learning classification, the client can
outsource classification tasks to a cloud server without revealing any data. However, the
existing studies on machine learning classification over FHE do not achieve the scenario
of outsourcing classification tasks to a cloud server while preserving the privacy of the
classification model, client’s data and result from the cloud.

In this work, we apply FHE to a naïve Bayes classifier and propose a secure
classification protocol in which we preserve the privacy of the classification model,
client’s data, and result while outsourcing the computations to a cloud server. In our
protocol, the cloud does not learn anything about the classification model, client’s data or
result, and the client learns only the result. To the best of our knowledge, our work is the
first to present a concrete classification protocol that satisfies the above scenario.

We implemented our protocol on HElib and tested its performance by measuring its
computation time and communication cost. Our experimental results show that our
protocol runs in 1.5 s with 4.0 MB of communication cost for classifying a data using a
two-class classifier.

ii

Contents

1. Introduction …...1

2. Preliminaries ...4
2.1. Fully Homomorphic Encryption (FHE) ..4

2.2. Naïve Bayes classifier ...5

3. Related Work ..6

3.1. Secure classification over FHE ..6

3.2. Secure training and classification over FHE ...7

3.3. Summary of classification protocols ..9

4. Proposed Protocol ..10

4.1. Protocol Overview ..10

4.2. Setup and Model Encryption ...11

4.3. Classification Protocol ..11

4.4. Security Analysis ..14

5. Performance Evaluation ..15

5.1. Data Sets and Experimental Environment ...15

5.2. Experimental Results16

5.3. Discussion ..19

6. Optimization of the Proposed Protocol ..20

6.1. Optimization for single data classification ..20

6.1.1. Optimization of the TotalSums operation ..20

6.1.2. Modification to the classification protocol ..22

6.1.3. Change in computation time ..24

6.2. Classification of Multiple Data ..25

6.3. Parallelization at Comparison ..26

7. Conclusion ..27

Acknowledgement ..28

Reference ..29

Publications31

1

1. Introduction

In recent years, machine learning classification has been used in various applications from
spam classification to medical diagnosis. In the big data era, a client may need to classify
a large amount of data that has many features, leading to a heavy computational burden
at the client’s local resource. To reduce this computational burden on the client, it can
outsource the classification tasks to a cloud server and obtain the classification result.
However, applications such as medical diagnosis require sensitive data that the client may
not want to reveal to the cloud. Clients can encrypt their sensitive data to ensure its
privacy then upload them to the cloud, but classification cannot be performed when the
data are encrypted by a traditional encryption scheme such as the advanced encryption
standard (AES).

Fully homomorphic encryption (FHE) [1] is an encryption scheme that achieves secure
computation by enabling an arbitrary number of arithmetic operations over encrypted data
without decryption. By applying FHE to machine learning classification, we can realize
secure classification over encrypted data at a cloud server while preserving the privacy of
the client’s data. By doing so, the client can securely outsource their data classification
tasks and reduce the computational burden at the client side. There are, however, several
challenges when applying FHE to machine learning such as its high computational cost
as well as its difficulty to compute over real numbers, perform divisions and use if-
statements. Thus, the application of FHE to machine learning is currently widely
researched.

In this work, we consider the scenario in which an entity wishes to provide a
classification model and classification services at a cloud server as a part of Machine
Learning as a Service (MLaaS), but while preserving the privacy of the classification
model because it is trained using data that are as equally sensitive as the client’s data. In
such scenario, in addition to preserving the privacy of the client’s data, preserving the
privacy of the classification model becomes important as well. Thus, the ideal scenario
would be to outsource the client’s classification tasks to a cloud server while preserving
the privacy of the client’s data and result from the cloud as well as preserving the privacy
of the classification model from both the cloud and client.

Several studies have been conducted on the secure classification of encrypted data
using FHE for various classifiers. Studies such as [2-7] proposed various secure
classification protocols under different system models for different scenarios. These
methods, however, do not achieve the ideal scenario of outsourcing the classification
tasks to a cloud server while preserving the privacy of the client’s data and result from
the cloud, and the privacy of the classification model from both the cloud and client.
Studies that focus on both training and classification over encrypted data have been
conducted as well. Studies such as [8-13] proposed machine learning methods in which
the functions used in the classifiers are approximated so that the training can be performed

2

using FHE. Although these studies focus on the classification phase as well, they do not
mention any real-world system model or protocol for this phase.

Kim et al. [14] and Li et al. [15] proposed a protocol for both secure training and
classification in which they introduce a third party who holds the secret key of the system
and is responsible for decryption of all ciphertext, which we will refer to as a decryption
server in this paper. By doing so, both the cloud server and client will not be able to
decrypt each other’s data. In Kim et al.’s work, however, some information about the
classification model and client’s data is leaked to the decryption server through the
intermediate results during classification. In Li et al.’s work, they use expensive proxy
re-encryption to re-encrypt ciphertexts. Their proxy re-encryption is based on the
bootstrapping technique proposed by Gentry [1] which involves heavy computation that
lasts from a few seconds to a few minutes [16] and can lead to a potential bottleneck. In
fact, this proxy re-encryption is unnecessary as the protocol can be realized without it. In
addition, because the proposed protocol by Li et al. is generic, it does not indicate any
concrete classification method using FHE despite its limitations, which is the challenging
part when applying FHE to any application.

As such, the existing studies on machine learning classification over FHE do not
achieve the ideal scenario of outsourcing the classification tasks to a cloud server while
preserving the privacy of the client’s data and result from the cloud, and the privacy of
the classification model from both the cloud and client. In these works, it is either i) the
classification is performed at the cloud, but some information about the classification
model, client’s data and/or intermediate results is revealed to the participating parties [4,
7, 14], or ii) the privacy of the classification model, client’s data, and the intermediate
results are preserved, but the classification is performed at the client [2, 3, 7]. In case of
Li et al.’s work [15], their protocol achieves the ideal scenario, but adopts expensive
proxy re-encryption and does not describe any concrete classification method.

In this paper, we focus on the naïve Bayes classifier and propose a secure classification
protocol to achieve the ideal scenario. Although we focus on the naïve Bayes classifier
in this work, our protocol can be applied to other machine learning algorithms with some
modifications to the protocol. Like in the works by Kim et al. [14] and Li et al. [15], we
introduce a trusted third party, which we refer to as a trusted authority (TA), who holds
the secret key of the FHE used in the system and is responsible for the decryption of all
ciphertexts. By introducing a TA who holds the secret key, we can ensure the privacy of
the classification model from both the cloud and client, and the client’s data from the
cloud because they cannot decrypt anything without the secret key. However, if we simply
let the TA decrypt all ciphertexts, the classification result will be known to the TA, which
the client may not desire. Thus, we blind the intermediate and classification results so that
the TA does not learn anything even after decryption. Also, our protocol does not require
the expensive proxy re-encryption as in Li et al.’s work.

3

More concretely, our proposed protocol satisfies the following requirements:
• classification is outsourced to a cloud server;
• the classification model is stored in the cloud as a ciphertext;
• participating parties do not learn anything about the classification model, client’s

data or result;
• the client learns only the classification result and nothing else.

The contributions of our work are as follows: First, our protocol satisfies all the above
requirements as opposed to the existing works in which at least one requirement remains
unsatisfied. Second, our protocol does not involve the expensive and unnecessary proxy
re-encryption used in Li et al.’s work and thus achieves higher computational efficiency.
To the best of our knowledge, our work is the first to present a concrete classification
method that satisfies all the above requirements.

The rest of this paper is organized as follows. In Section 2, we review FHE and the
naïve Bayes classifier. In Section 3, we present related works on machine learning over
FHE in detail. In Section 4, we propose our system model and the secure classification
protocol. In Section 5, we present our experimental results. In Section 6, we present some
techniques that can be applied to our proposed protocol to optimize the computational
cost. Finally, we give our conclusion in Section 7.

4

2. Preliminaries

2.1. Fully homomorphic encryption (FHE)
Fully homomorphic encryption (FHE) [1] is an encryption scheme that achieves secure
computation by enabling an arbitrary number of arithmetic operations over encrypted data
without decryption. The notion of FHE was first introduced by Rivest et al. [17] in 1978.
After their work, the realization of FHE remained as an open problem until the first
feasible construction was given by Gentry [1] in 2009. Following Gentry’s work, many
FHE schemes were proposed over the years such as the GSW scheme proposed by Gentry
et al. [18], the BGV scheme proposed by Brakerski et al. [19], and the B/FV scheme based
on works by Brakerski [20] and Fan and Vercauteren [21].

Using FHE to encrypt data, we can securely outsource computations over encrypted
data to a third party without revealing any information on the data. There are, however,
several challenges to FHE such as its high computational cost as well as its difficulty to
compute over real numbers, perform divisions, and use if-statements. Also, multiplication
operations are computationally more expensive than addition operations. Despite these
current challenges, there are many potential applications of FHE to various tasks such as
data mining [22], database queries [23], and machine learning [2-15] so that computation
can be outsourced to a third party, such as a cloud server, while preserving the privacy of
sensitive data. Thus, studies on FHE and its application are currently widely under
research.
 FHE consists of three algorithms: KeyGen,Enc+, , and Dec-, . Here, KeyGen takes
FHE parameters 𝑝𝑎𝑟𝑎𝑚 and security parameter l as inputs, and outputs a pair of secret
key 𝑠𝑘 and public key 𝑝𝑘; Enc+,(𝑚) denotes a ciphertext of message 𝑚, which may be
a vector of values, encrypted by a given 𝑝𝑘; and Dec-,(𝑐𝑡) denotes the decryption result
of a ciphertext 𝑐𝑡 decrypted by a given 𝑠𝑘 . Concretely, FHE allows addition and
multiplication operations such that Dec-,(Enc+,(𝑚8)⨁Enc+,(𝑚:)) = 𝑚8 + 𝑚: and
Dec-,(Enc+,(𝑚8)⨂Enc+,(𝑚:)) = 𝑚8𝑚:, where ⨁ and ⨂ are homomorphic addition
and multiplication operations, respectively. It is also possible to perform a homomorphic
operation between a ciphertext and plaintext, e.g. Dec-,(Enc+,(𝑚8)⨁𝑚:) = 𝑚8 + 𝑚:
and Dec-,(Enc+,(𝑚8)⨂𝑚:) = 𝑚8𝑚:, which is computationally less expensive than a
homomorphic operation between two ciphertexts. For simplicity, we use the same
symbols ⨁ and ⨂ to denote homomorphic operations between a ciphertext and a
plaintext as well.

Smart and Vercauteren [24] proposed a packing (or batching) technique for FHE in
which multiple values can be encrypted into a single ciphertext so that single instruction
multiple data (SIMD) style operations can be performed over each encrypted value. More
specifically, using the packing technique, we can construct a ciphertext consisting of 𝑠
slots, where 𝑠 depends on the FHE parameters, then encrypt multiple values by storing
each value into a slot and encrypting it as a single ciphertext. A SIMD style operation

5

between two ciphertexts (or between a ciphertext and a plaintext vector) takes place as a
slot-wise operation. Moreover, the slots within the ciphertext can be rotated, like in a
linear array. Using the packing technique and SIMD style operations, we can efficiently
process multiple values simultaneously.

2.2. Naïve Bayes classifier
The naïve Bayes classifier is a simple yet powerful classifier that is used for a wide range
of applications. The classifier is based on Bayes’ theorem and assumes that features are
independent of each other.

The naïve Bayes classifier takes input data 𝒙 = (𝑥8, 𝑥:,… , 𝑥A), where 𝑓 is the number
of feature values, and outputs a classification probability 𝑝C = 𝑝(𝐶 = 𝑐C|𝑋 = 𝒙) for each
class 𝑐C, where 𝑖 = 1, 2,… ,𝑁 and 𝑁 is the number of classes. The classification model
consists of class probability 𝑝(𝐶 = 𝑐C) for each class 𝑐C, which is the probability that class
𝑐C occurs, and conditional probability 𝑝(𝑋K = 𝑥K⌊𝐶 = 𝑐C) for each 𝑥K and each 𝑐C, which
is the probability that feature value 𝑥K occurs in 𝑐C . Based on Bayes’ theorem and an
assumption that features are independent of each other, the classification probability 𝑝C is
calculated as follows:

 𝑝C = 𝑝(𝐶 = 𝑐C|𝑋 = 𝒙)

						=
𝑝(𝐶 = 𝑐C)𝑝(𝑋 = 𝒙⌊𝐶 = 𝑐C)

𝑝(𝑋 = 𝒙) 			

	= 𝑝(𝐶 = 𝑐C)∏ 𝑝O𝑋K = 𝑥K|𝐶 = 𝑐CP
A
KQ8 . (1)

Once 𝑝C for each class is obtained, the classifier takes the class 𝑐C with the highest 𝑝C and
outputs it as the final classification result.

In this work, we use log probabilities to calculate the classification probability 𝑝C .
Using log probabilities, we can calculate 𝑝C using only addition instead of multiplication,
and thus reduce the computational cost over FHE. Taking the logarithm of Equation (1),
we obtain the following:

 𝑝′C = log𝑝(𝐶 = 𝑐C) + ∑ log𝑝(𝑋K = 𝑥K|𝐶 = 𝑐C)
A
KQ8 (2)

6

3. Related Work

In this section, we introduce the related works on machine learning over FHE in more
detail. In Section 3.1, we introduce related works focusing on classification of encrypted
data using FHE. In Section 3.2, we introduce related works focusing on both training and
classification using FHE.

3.1. Secure classification over FHE
In this section, we introduce related works that focus only on classification of encrypted
data using FHE. In all these works, it is assumed that the classification model has already
been trained.

Bost et al. [2] proposed secure classification protocols for three classifiers: naïve Bayes,
decision trees, and hyperplane decisions. Their protocols use two additive homomorphic
encryption schemes that enable only addition operations, namely quadratic residuosity
(QR) and Paillier, and FHE to perform classification. In their work, the classification
model is assumed to be trained on plaintext data, then encrypted and stored in a cloud
server. At classification, the encrypted model is sent from the cloud server to the client,
who then computes the classification probability for each class. Then, the client interacts
with the cloud server multiple times using the two additive HE to obtain the index of the
class with the highest probability. In their protocol, FHE is used in the decision tree
classifier to efficiently compute data using SIMD. Their protocol, however, has
disadvantages that the client computes the classification probability and must interact
multiple times with the cloud server, causing computational burden on the client.

Wood et al. [3] proposed a secure classification protocol for the naïve Bayes classifier
based on [2] with a different comparison method. However, it still has the same
disadvantages that the client computes the classification probability and must interact
multiple times with the cloud server.

Sun et al. [4] proposed an FHE scheme and applied it to the same classifiers as in [2].
In their work, the classification model is stored at the cloud server as a ciphertext. At
classification, the classification probabilities are computed at the cloud, but multiple
interactions occur between the client and cloud when computing for the class with the
highest probability. More importantly, some information about the classification model
is revealed to the client through the intermediate results that are decrypted by the client.

Khedr et al. [5] focused on two classifiers, Bayesian spam filter and decision tree, and
proposed an optimized FHE scheme for the two classifiers based on mathematical
observations of FHE. Although they have applied their proposed FHE scheme to the two
classifiers and proposed a classification method, they did not indicate any real-world
system model or protocol.

Dowlin et al. [6] proposed a classification method for neural networks using FHE. In
their method, the classification model is trained using a regular neural network and
plaintext data. To perform classification of encrypted data over FHE, they replaced

7

functions used in the neural network (e.g., replaced the activation function with a low-
degree polynomial) so that FHE can be used efficiently. Although they have indicated the
classification method, they did not indicate any real-world system model or protocol as
well.

Park et al. [7] proposed two secure classification protocols for the naïve Bayes
classifier in which there is a data provider that trains the classification model on plaintext
data, a cloud server, and multiple clients. The first protocol is a server-centric protocol,
in which classification is outsourced to a cloud server, but the model is stored in the cloud
as a plaintext. In the server-centric protocol, clients have their own pair of keys that is
used to encrypt their data when outsourcing classification to the cloud. Because the model
needs to be encrypted for each client to perform classification, the model cannot be stored
in the cloud as a ciphertext. The second protocol is a user-centric protocol, in which the
classification model is encrypted but the classification is performed at the client (user).
In the user-centric protocol, a single pair of keys is used within the system and is
maintained by the cloud server. Instead of storing the classification model in the cloud,
the data provider encrypts it and directly sends it to the client. Then, the client performs
the classification, blinds the result and sends it to the cloud for decryption. Once
decrypted, the cloud sends back the blinded result to the client, who then unbinds it to
obtain the classification result. In this protocol, computational burden is induced on the
client as the client performs the classification. In summary, the two protocols have a trade-
off between the privacy of the classification model and computational burden on the client.

3.2. Secure training and classification over FHE
In this section, we introduce related works that focus on both training a classification
model over encrypted data and classification of encrypted data using FHE.

Aslett et al. [8] proposed a tailored algorithm for naïve Bayes classifier and decision
trees in which the operations within the classifiers are replaced with addition and
multiplication operations such that FHE can be used to train a classification model over
encrypted data. Graepel et al. [9] focused on Linear Means classifier and Fisher’s Linear
Discriminant classifier in which they expressed the two classifiers using a low-degree
polynomial to avoid division operations, which is difficult to perform using FHE. Several
studies have been conducted on training neural networks [10, 11] and logistic regression
[12, 13] in which they approximate the activation functions in neural networks and the
sigmoid functions in logistic regression using low-degree polynomials so that FHE can
be used. These studies on secure training over encrypted data using FHE focus on
approximating the functions used in the classifiers so that the training can be performed
using FHE. Although these works also indicate the classification method, they do not
mention any real-world system model or protocol.

Training classifiers over encrypted data has a major challenge in its computational
complexity. As noted in [6], training classifiers, especially neural networks, is currently
computationally expensive even with plaintext data. Thus, applying FHE to neural

8

network will make the training even more expensive and thus not practical for real-world
systems. In addition, training over encrypted data will make it difficult to inspect data and
the trained model, and to tune the parameters for training the neural network.

Kim et al. [14] proposed a secure training and classification protocol for the naïve
Bayes classifier in which the privacy of the classification model is preserved while
outsourcing the computation to a cloud server. In their protocol, they introduce a
decryption server who holds the secret key and is responsible for decryption of all
ciphertexts. In their protocol, the class indexes are permuted so that the decryption server
does not learn the actual index of the intermediate results and the classification result.
However, the decryption server learns all the values that are being compared, and thus
learns some information about the client’s input and the classification model. In addition,
their proposed protocol involves many multiplication operations, which can, in fact, be
optimized by using log probabilities and addition operations.

Li et al. [15] proposed a general protocol for both secure training and classification
over encrypted data. In their work, the privacy of the classification model, client’s data,
and its result are preserved while outsourcing the computation to a cloud server. In their
protocol, each client has their own public key 𝑝𝑘V and secret key 𝑠𝑘V pair, which is used
to encrypt their own data when outsourcing their data to the cloud for computation. As
computation cannot be performed when data are encrypted under a different key, proxy
re-encryption based on Gentry’s [1] bootstrapping technique is used to re-encrypt the
ciphertexts so that it is encrypted under a common public key 𝑝𝑘W. To prevent the cloud
from decrypting the client’s data, a decryption server, which holds 𝑠𝑘Wand is responsible
for decrypting the intermediate results, is introduced.

In the training phase, they consider the scenario where data providers (clients) wants
to jointly train a classifier without revealing their data to each other. Each data provider
encrypts their data with their 𝑝𝑘V and sends the encrypted data to the cloud along with a
re-encryption key that is needed to re-encrypt the data. Upon receiving the encrypted data
and re-encryption key, the cloud server re-encrypts the data so that they are encrypted
under 𝑝𝑘W. Then, the cloud server trains the classifier using the encrypted data.

Similarly, in the classification phase, each client encrypts their data with their keys
𝑝𝑘V, then sends the encrypted data and re-encryption key to the cloud. The cloud re-
encrypts the data under 𝑝𝑘W, then performs the classification. Once the classification has
been performed, the cloud blinds the result with a random number and sends it to the
decryption server, which decrypts the blinded result. The decryption server encrypts the
blinded result with 𝑝𝑘V and sends it to the cloud. The cloud server removes the random
number from the ciphertext using 𝑝𝑘V, then sends it to the client, who decrypts the data
with 𝑠𝑘V to obtain the classification result.

Their proposed protocol preserves the privacy of the classification model, client’s data,
and result. However, bootstrapping, which the proxy re-encryption is based on, is an
expensive operation and may produce a bottleneck because the cloud will need to re-
encrypt all clients’ data. In fact, this proxy re-encryption is unnecessary as the clients can

9

encrypt their data using 𝑝𝑘W from the start of the protocol. In addition, because their
protocol is generic, it does not indicate any concrete training or classification method
using FHE, which is the challenging part when applying FHE to any applications.

3.3. Summary of classification protocols
We summarize the classification protocols of the related works in Table 1. We omit works
that do not indicate any real-world system models, protocols or methods as we focus on
devising a secure classification protocol and method in this paper. Many works focus on
the naïve Bayes classifier because it is a simple and fast yet powerful classifier and one
of the common classifiers that is used for various applications.

As can be seen from Table 1, the past studies on machine learning classification over
FHE do not achieve the ideal scenario of outsourcing the classification tasks to a cloud
server while preserving the privacy of the client’s data and result from the cloud, and the
privacy of the classification model from both the cloud and client. In these works, it is
either i) the classification is performed at the cloud, but some information about the
classification model, client’s data and/or intermediate results is revealed to the
participating parties, or ii) the privacy of the classification model, client’s data, and the
intermediate results are preserved, but the classification is performed at the client.

Table 1. Summary of classification protocols of related work

Year Related Work Classifier
Privacy of

Classification
at

Number
of

parties
Classification

model
Intermediate

results

2015 Bost et al. [2]

Naïve Bayes,
decision tree,
hyperplane

decision

Preserved Preserved Client 2

2018 Wood et al. [3] Naïve Bayes Preserved Preserved Client 2

2018 Sun et al. [4]

Naïve Bayes,
decision tree,
hyperplane

decision

Preserved Not preserved Cloud 2

2017 Park et
al. [7]

Server-
centric

Naïve Bayes

Not preserved Preserved Cloud 3

User-
centric Preserved Preserved Client 3

2018 Kim et al. [14] Naïve Bayes Preserved Not preserved Cloud 3

10

4. Proposed Method

In this section, we present our naïve Bayes classification protocol. We consider the
scenario in which we have i) a model provider who wants to provide a classification
model for a classification service while preserving the privacy of their classification
model, and ii) clients who want to outsource the classification task to reduce the
computational burden at the client while preserving the privacy of their data and the result.
As such, we consider the scenario in which the classification task is outsourced to a cloud
server, which we refer to as a computation server (CS), while preserving the privacy of
the classification model, client’s data, and classification result. We also introduce a
trusted third party, which we refer to as a trusted authority (TA), who holds the secret key
of the FHE used in the system and is responsible for the decryption of all ciphertexts.

In our protocol, no participating parties learn anything about the classification model,
client’s data, or classification result during classification of data. The client learns only
the classification result and does not learn anything about the classification model that
was used to classify the data. Although the TA is responsible for decryption of all
ciphertexts, we ensure that it does not learn any information on the classification model,
client’s data, or result. Like other works [7, 15], we assume that all participating parties
are honest-but-curious, i.e., they follow the protocol but try to learn some information,
and that the participating parties do not collude with each other.

In this work, we assume that the classification model is trained over plaintext by a
model provider, who then encrypts and uploads the classification model to a CS. To
encrypt the classification model with FHE, the class probabilities and the conditional
probabilities need to be represented as integers. Thus, after taking the logarithm of the
probabilities, each value is scaled and rounded to integers. Precisely, we define the above
operation as 𝑝X(𝑌) = ⌊𝑆 log 𝑝(𝑌)⌋ , where 𝑆 is the scaling factor.

In our protocol, we use the BGV scheme proposed by Brakerski et al. [19], which
allows us to encrypt vector of integers and use SIMD style operations. The client’s data
are represented as a feature vector 𝒙 and encrypted as a single ciphertext.

4.1. Protocol Overview
A high-level overview of our classification protocol is shown in Fig. 1, where we have a
model provider, multiple clients, a CS, and a TA. First, the model provider encrypts the
classification model and uploads it to the CS for storage. At classification, a client
encrypts their data and generates a permutation vector, then sends them to the CS as a
query. Upon receiving the query, the CS computes the classification probability 𝑝′Cfor
each class and then permutes the results using the permutation vector. To obtain the
permuted class index with the highest 𝑝′C , the CS interacts with the TA to perform
comparisons. After all comparisons, the TA sends the obtained permuted index to the
client, who reverses the permutation to obtain the classification result. During the protocol,
the CS and TA do not learn anything about the classification model or the client’s data.

11

Fig. 1. Overview of our system model and protocol

4.2. Setup and Model Encryption
At setup, the TA runs FHE’s KeyGen algorithm with given 𝑝𝑎𝑟𝑎𝑚 and l to generate a
pair of secret key	𝑠𝑘 and public key 𝑝𝑘. The TA distributes 𝑝𝑘 to the CS, model provider
and clients. The model provider then encrypts the trained classification model using 𝑝𝑘.
From here on, we use ⟦𝑚⟧ to denote Enc+,(𝑚).

To efficiently utilize the SIMD style operations of FHE, the model provider stores the
class probability for class 𝑐C and all conditional probabilities for class 𝑐C into a vector 𝒗V`
of length f+1, where 𝒗V`[𝑗] = 𝑝′(𝑋K = 𝑥K|𝐶 = 𝑐C) and 𝒗V`[𝑓 + 1] = 𝑝′(𝐶 = 𝑐C) , then
encrypts it as a single ciphertext. Thus, the encrypted classification model is a set of
ciphertexts ⟦𝒗⟧ = de𝒗Vfg, e𝒗Vhg,… , e𝒗Vigj , where 𝑁 is the number of classes. After
encrypting the classification model, the model provider uploads it to the CS so that clients
can use it for classification. The information of 𝑁, 𝑓, and how the vector was constructed
must be made public so that the clients can construct the feature vector accordingly.

4.3. Classification Protocol
At classification, a client represents his/her data as a feature vector 𝒙 of length 𝑓 + 1
based on the public vector information. 𝒙 consists of 0 and 1 where 𝒙[𝑗] is set to 1 iff
feature 𝑥K exists, and 0 otherwise. In addition, 𝒙[𝑓 + 1] is set to 1 as well. Then, the client
encrypts 𝒙 with 𝑝𝑘 and also generates a permutation vector 𝜋 of length 𝑁, where 𝑁 is the
number of classes, which will be later used to permute the ciphertexts to hide the
classification result from the TA. The client then sends the encrypted data ⟦𝒙⟧ and

12

permutation vector 𝜋 to the CS as a query. Upon receiving the query from the client, the
CS performs the classification protocol as shown in Algorithm 1, which we describe
below.

For each class 𝑐C , the CS multiplies ⟦𝒙⟧ with encrypted model e𝒗V`g to extract the
probabilities corresponding to the client’s data. If the value of 𝒙 at the 𝑗-th position is 1,
the value of 𝒗V` at the 𝑗-th position corresponding to 𝑝′(𝑋K = 𝑥K⌊𝐶 = 𝑐C) can be extracted;
otherwise, it will be 0. Then, the CS sums the values in all the slots using TotalSums
operation proposed by Halevi and Shoup [25], which is shown in Algorithm 2, to obtain
the classification probability ⟦𝒑′C⟧, where all slots contain the value 𝑝′C. Once ⟦𝒑′C⟧ for
each class is calculated, the CS permutes the ciphertexts using 𝜋 as {e𝒑′n(C)g}C∈[8,q]. Then,
the CS interacts with the TA to perform comparisons so that the TA obtains 𝑖𝑛𝑑𝑒𝑥, which
is the permuted class index 𝜋(𝑖) with the highest 𝑝′C , but without revealing any
information about the client’s data or the classification model to the CS or TA from the
intermediate results.

Our comparison protocol, which is based on Wood et al.’s work [3], compares two
values at a time. For simplicity, we denote the two values to be compared as ⟦𝒂⟧ and ⟦𝒃⟧,
which contain value 𝑎 and 𝑏, respectively, in all the slots. Let 𝒢 denote a set of linear
polynomials of the form 𝑔(𝑥) = 𝐴𝑥 where 𝐴 is a positive integer. As 𝑔 is a linear
polynomial with positive coefficient, we obtain 𝑔(𝑎) − 𝑔(𝑏) ≥ 0 when 𝑎 ≥ 𝑏 and
𝑔(𝑎) − 𝑔(𝑏) < 0 otherwise. It is crucial that 𝑔 is randomly chosen from sufficiently
large range of polynomials in 𝒢 while ensuring that 𝑔(𝑥) does not exceed the plaintext
space.

In our protocol, the CS randomly choose 𝑔 ∈ 𝒢 at each comparison and computes
⟦𝒉⟧ = ⟦𝑔(𝒂)⟧ ⊝ ⟦𝑔(𝒃)⟧ = 𝑔(⟦𝒂⟧)⊝ 𝑔(⟦𝒃⟧), where ⊝ is a homomorphic subtraction.
Since 𝑔(𝑥) is the same as a scalar multiplication, 𝑔(⟦𝒂⟧) = ⟦𝑔(𝒂)⟧. The CS sends ⟦𝒉⟧
to the TA who decrypts it to obtain ℎ. If ℎ ≥ 0, the TA updates 𝑖𝑛𝑑𝑒𝑥 and generates a
ciphertext ⟦𝒅⟧ = ⟦𝟏⟧ , which is an encryption of a vector whose values are all 1.
Otherwise, the TA does not update 𝑖𝑛𝑑𝑒𝑥 and generates ⟦𝒅⟧ = ⟦𝟎⟧ , which is an
encryption of a vector whose values are all 0. The TA sends ⟦𝒅⟧ to the CS, who then
computes (⟦𝒅⟧⨂⟦𝒂⟧)⨁((1⊝ ⟦𝒅⟧)⨂⟦𝒃⟧). The resulting ciphertext is a ciphertext of the
higher value, which will be used at the next comparison. The comparison is repeated until
we finish comparing all values. In the protocol, the TA does not learn which class is the
actual classification result from 𝑖𝑛𝑑𝑒𝑥 because it does not know 𝜋. Also, as 𝑔 is different
for every comparison, the TA will not be able to learn anything about the classification
model or client’s data from ℎ. Once all comparisons are made, the TA sends 𝑖𝑛𝑑𝑒𝑥 to the
client, who reverses the permutation to obtain the actual index 𝑖 and the classification
result 𝑐C.

13

Algorithm 1: Classification protocol
Client’s inputs: encrypted data ⟦𝒙⟧, permutation vector 𝜋
CS’s inputs: encrypted model ⟦𝒗⟧ = de𝒗Vfg, e𝒗Vhg, … , e𝒗Vigj, a set of polynomials 𝒢
TA’s inputs: secret key 𝑠𝑘, public key 𝑝𝑘
1 CS:
2 for i=1 to N do
3 ⟦𝒕𝒆𝒎𝒑⟧ ← ⟦𝒙⟧⨂e𝒗V`g ▷extract matching probabilities
4 ⟦𝒑′C⟧ ← TotalSums(⟦𝒕𝒆𝒎𝒑⟧)
5 end for
6 Permute ciphertexts as {e𝒑′n(C)g}C∈[8,q]
7 TA:
8 𝑖𝑛𝑑𝑒𝑥 ← 1
9 CS:
10 ⟦𝒎𝒂𝒙⟧ ← e𝒑′n(8)g
11 for i=2 to N do
12 CS:
13 Randomly choose 𝑔 ∈ 𝒢
14 ⟦𝒉⟧ ← 𝑔Oe𝒑′n(C)gP ⊝ 𝑔(⟦𝒎𝒂𝒙⟧)
15 Sends ⟦𝒉⟧ to TA
16 TA:
17 ℎ ← Dec-,(⟦𝒉⟧) ▷all slots of ⟦𝒉⟧ are value ℎ
18 if ℎ ≥ 0: 𝑑 ← 1, 𝑖𝑛𝑑𝑒𝑥 ← 𝑖
19 if ℎ < 0: 𝑑 ← 0
20 ⟦𝒅⟧ ← Enc+,(𝑑)
21 Sends ⟦𝒅⟧ to CS
22 CS:
23 ⟦𝒎𝒂𝒙⟧ ← (⟦𝒅⟧⨂e𝒑′n(C)g)⨁((1⊝ ⟦𝒅⟧)⨂⟦𝒎𝒂𝒙⟧)
24 end for
25 TA:
26 Sends 𝑖𝑛𝑑𝑒𝑥 to client
27 Client:
28 𝑖 ← 𝜋�8(𝑖𝑛𝑑𝑒𝑥)
29 Output class 𝑐C as the classification result

14

4.4. Security Intuition
We provide an intuitive security analysis of our protocol. In our protocol, a client sends
his/her encrypted data and a permutation vector to the CS as a query. The CS calculates
the classification probability ⟦𝑝′C⟧ over FHE using the encrypted classification model and
encrypted data. Because ⟦𝑝′C⟧ is calculated over FHE, the CS does not learn anything.
When comparing values to find the class index with the highest 𝑝′C, the CS first permutes
the vector of ciphertexts that encrypts the classification probabilities, then sends to the
TA the difference between two encrypted values that is blinded by 𝑔, which is randomly
chosen from 𝒢 at every comparison. As the difference is blinded, the TA does not learn
anything about the values that are being compared or their difference when it decrypts the
ciphertexts. Based on the decrypted result, the TA updates 𝑖𝑛𝑑𝑒𝑥 to the permuted class
index 𝜋(𝑖) with the highest 𝑝′C and generates a new ciphertext. Although the TA knows
𝑖𝑛𝑑𝑒𝑥, it does not learn the actual class index as the TA does not know 𝜋 and thus cannot
reverse the permutation. The TA sends the new ciphertext to the CS who performs
computation to obtain a ciphertext that encrypts the higher value, but the CS does not
learn anything because the computation is performed over FHE. At the end of all
comparisons, the TA sends 𝑖𝑛𝑑𝑒𝑥 to the client, who reverses the permutation to obtain
the final classification result. As the client receives only the class index, it does not learn
anything about the classification model that was used to classify the data.
 Thus, no participating parties learn anything about the classification model, client’s
data, or classification result during classification, and the client learns only the
classification result and does not learn anything about the classification model that was
used to classify the data.

Algorithm 2: TotalSums(𝑢)	[25]
Input: FHE ciphertext 𝑢
1 𝑣 ← 𝑢, 𝑒 ← 1, 𝑛 ←	number of slots in 𝑢
2 𝑘 ← number of bits in 𝑛 ▷if 𝑛 = 5, 𝑘 = 3
3 for i=k-2 down to 0 do
4 𝑣 ← 𝑣⨁(𝑣 ≫ 𝑒)
5 𝑒 ← 2𝑒
6 𝑏 ← 𝑏𝑖𝑡K(𝑛) ▷𝑗-th bit of 𝑛 where bit 0 is the LSB
7 if b=1:
8 𝑣 ← 𝑢⨁(𝑣 ≫ 𝑒)
9 𝑒 ← 𝑒 + 1
10 end if
11 end for
12 Return 𝑣 as the result

15

5. Experimental Evaluation

In this experimental evaluation, we evaluate the performance of our protocol by
measuring its computation time and communication cost. To assess the communication
cost, we measured the size of the ciphertexts that are transferred throughout the entire
system instead of measuring the communication time because communication time
depends on the network bandwidth.
 We implemented and evaluated only our protocol because Li et al.’s work [15], which
is the only work that achieves the ideal scenario, does not have a concrete classification
method and involves heavy proxy re-encryption, which is based on the bootstrapping
technique by Gentry [1] that lasts from a few seconds to a few minutes [16].

We compare the performance of our classification protocol for the following two
cases: i) the case in which the number of feature values is fixed but the number of classes
vary, and ii) the opposite case in which the number of classes is fixed but the number of
feature values vary.

5.1. Data Sets and Experimental Environment

In our experimental evaluation, we used the Breast Cancer Wisconsin (Original) data
set (2 classes with 9 feature attributes) and the Car Evaluation data set (4 classes with 6
feature attributes) from the UCI machine learning repository [26]. The Breast Cancer data
set has 9 feature attributes with 10 feature values each and the Car Evaluation data set has
6 feature attributes with 21 distinct feature values in total. As client’s data will be
represented as a feature vector of length 𝑓 + 1, where 𝑓 is the number of feature values,
the length of the feature vector is 91 and 22 for the Breast Cancer data set and the Car
Evaluation data set, respectively. We modified the Car Evaluation data set to evaluate the
performance for two-class and three-class classification by eliminating some classes from
the data set as needed. The classification models for the two data sets used in our
experiment were trained on plaintext data. Then, the class and conditional probabilities
were represented as integers in the range of 0 to 79 by scaling and rounding after taking
the logarithm of the probabilities. From Equation (2), the highest possible classification
probability 𝑝X��� for the Breast Cancer data set and the Car Evaluation data set is 790
and 533, respectively. We summarize the above information in Table 2.

We implemented our proposed secure classification protocol using the FHE library
HElib1, which implements the BGV scheme using C++. In our experiment, we used the
parameters listed in Table 3, where the parameters 𝑚, 𝑝, 𝑟, log𝑞 are the FHE system
parameters 𝑝𝑎𝑟𝑎𝑚 and l is the security parameter. The parameters were chosen so that
sufficiently large range of 𝑔 can be randomly chosen from 𝒢. With these parameters, a
ciphertext have 218 slots available, which is a sufficient number of slots to encrypt a
feature vector for both data sets.

1 https://github.com/homenc/HElib

16

The experiment was run on 64-bit Ubuntu 16.04 LTS, Intel Core i7-4770 CPU @ 3.40
GHz x 4, with 23.5 GiB memory using a single thread. Although our system scenario
involves a model provider, client, CS, and TA, the same machine was used for all parties.

Table 2. Experimental Data Sets

Data Set
Number of

classes
Number of

feature attributes
Number of

feature values
Length of

feature vector
𝑝X���

Breast
Cancer

2 9 90 91 790

Car
Evaluation

2, 3, 4 6 21 22 533

Table 3. FHE Parameters

𝑚 𝑝 𝑟 log𝑞 l
11,119 2 18 180 119

5.2. Experimental Results
In this section, we present the experimental results of our classification protocol. Each
experimental result is the average of 20 trials.

Before we present the experimental results of our classification protocol, we first
present the computation times for the basic FHE algorithms: KeyGen, Enc, and Dec.
We measured the time it takes to set up the system by generating the public key and secret
key pair, to encrypt a single vector, and to decrypt a ciphertext during comparison. We
also measured the size of a newly encrypted ciphertext. The results are presented in Table
4. As the results show, the KeyGen algorithm takes approximately 40 seconds, but this
algorithm needs to be run only once at the initial setup. Thereafter, the encryption and
decryption of a single vector requires only several milliseconds.
 In our protocol, we encrypt the class probability and all conditional probabilities for
class 𝑐C as a single vector. Thus, the computation time required for the model provider to
encrypt the classification model and the communication cost to upload the encrypted
model increase linearly with respect to the number of classes N.

Next, we present the computation time and the communication cost for classifying a
single feature vector of data using the Breast Cancer Wisconsin (Original) data set. We
also present the result for two-class, three-class, and four-class classifiers using the Car
Evaluation data set, which has been modified as described previously.

In this experiment, we measured the computation time for the whole protocol, from
the client encrypting a feature vector and generating a permutation vector to the client
obtaining the classification result by reversing the permutation on the result returned from
the TA. To assess the communication cost, we measured the total size of the ciphertexts
that were transferred throughout the entire system from start to finish. More specifically,

17

we measured the communication cost between the client and CS, and between the CS and
TA where most of the communication takes place. We omit the communication cost
between the TA and client because only a plaintext of a few bytes will be sent from the
TA to the client.

The experimental results are summarized in Table 5 and Fig. 2. In Fig. 2, we show
only the experimental results for the Car Evaluation data set. As we can see, the
computation time and communication cost increase linearly with respect to the number
of classes. We can also see that the experimental results for both two-class classification
data sets are very similar, demonstrating that the number of feature attributes or feature
values does not affect the results of our protocol. In addition, the communication cost
between the client and TA is the same regardless of the number of classes because the
client only needs to send a single ciphertext and a plaintext permutation vector.

In fact, the burden on the client is very small as the client only needs to encrypt his/her
data and generate a permutation vector that is sent as a plaintext. Because the client
obtains his/her classification result as a plaintext, the burden on the client to classify data
is just a single encryption operation and sending of the ciphertext and permutation vector,
which is 0.016 s computation time and 1.5 MB communication cost.

To provide more insight, we measured the computation time for calculating 𝑝′C for a
single class 𝑐C and obtained a computation time of 0.695 s. Because we calculate 𝑝′C for
each class, the total computation time for calculating 𝑝′C for all classes is 𝑂(𝑁), where N
is the number of classes. This consumes more than half of the computation time of the
entire protocol. We also measured the computation time and communication cost for
comparing two values and obtained 0.144 s and 4.0 MB, respectively. We can see that
the computation time for comparison is smaller than the computation time for calculating
𝑝′C. The total computation time and communication cost for obtaining the class with the
highest 𝑝′C is 𝑂(𝑁), where 𝑁 is the number of classes. Also, we can see that most of the
communication cost of the entire protocol occurs during these comparisons, which is
between the CS and TA.

Lastly, we note that the experimental results do not include the communication time
that will exist in a real-world system. Instead, as mentioned previously, we measured the
total size of the ciphertexts that would be transferred throughout the system to determine
the communication cost because the communication time depends on the network
bandwidth. Thus, in a real-world system, our protocol requires additional time for
classification. However, the additional communication time should not be a concern
because the size of the data transferred from the client to the CS is not large (about 1.5
MB) and we can assume that the network bandwidth between the CS and TA will be
large.

Our experimental results show that our protocol runs in 1.6 s with 4.0 MB of
communication cost for classifying a data using a two-class classifier, increasing linearly
with respect to the number of classes, while preserving the privacy of the classification
model, client’s data, and classification results. The burden on the client is very low

18

because the protocol requires only a single encryption of his/her data (about 0.016 s) and
the generation of the permutation vector (a few milliseconds), which is sent to the CS as
a query of about 1.5 MB in size, and the client receives the classification result as a
plaintext. The computation time and communication cost at the CS and TA increase in
comparison, but this will not be a problem because such servers have large computational
resources and large network bandwidth.

Table 4. KeyGen, Encryption, and Decryption Times

Time (s)
Ciphertext Size (MB)

KeyGen Enc Dec
38.577 0.016 0.008 1.5

Table 5. Computation Time and Communication Cost

Data Set
Number

of classes
Time (s)

Transferred Data Size (MB)
Between

Client and CS
Between

CS and TA
Total

Breast Cancer 2 1.549

1.5

 2.5 4.0

Car
Evaluation

2 1.551 2.5 4.0
3 2.420 6.5 8.0
4 3.283 10.5 12.0

Fig. 2. Computation Time and Communication Cost for Car Evaluation Data Set

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4

C
om

m
un

ic
at

io
n

C
os

t (
M

B
)

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Number of classes

Communication Cost

Computation Time

19

5.3. Discussion
In this experimental evaluation, we implemented and evaluated only our protocol’s
performance because Li et al.’s work [15] does not have a concrete classification method
and involves heavy proxy re-encryption, which is based on the bootstrapping technique
by Gentry [1] that lasts from a few seconds to a few minutes [16]. Their proxy re-
encryption is performed once per data to re-encrypt the data under a common public key.
However, the proxy re-encryption is only an initial step before performing the
classification, whose method is abstracted in the paper. In fact, their proxy re-encryption
is unnecessary as the clients can encrypt their data using the system’s common public key
instead of using their own set of keys. Thus, while their proxy re-encryption lasts from a
few seconds to a few minutes in addition to the actual classification of data, our
classification protocol completes in approximately 3.3 s for a four-class classifier. Thus,
our proposed protocol has higher computational efficiency.

In our experiment, each of the probabilities in our classification model were
represented as an integer in the range of 0 to 79. We note that it is possible to express
each probability using a larger range of integers, such as 0 to 200, and still obtain the
same computation time and communication cost as in our experimental results as the
computation time and communication cost are independent of the values that are
encrypted.

Similarly, we can classify data that has more number of feature attributes or feature
values and obtain the same computation time and communication cost because we
perform operations over all the slots within the ciphertext using the SIMD style operations.
Thus, the number of operations, computation time, and communication cost is
independent of the number of feature attributes or feature values within a data. In fact, we
have already shown in our experimental results that the number of feature attributes or
feature values within a data set does not affect the computation time and communication
cost of our classification protocol.

It is important to note, however, that we must ensure that 𝑔 ∈ 𝒢 will be randomly
chosen such that 𝑔(𝑝X���), where 𝑝X��� is the highest possible classification probability,
does not exceed the plaintext space. Also, if the number of feature values exceeds the
number of slots within a ciphertext, some modifications of the protocol will be needed,
such as using two ciphertexts to represent the feature vector. In the above two cases, we
could also choose a different set of FHE parameters to increase the plaintext space and/or
the number of slots, which may require a longer computation time and higher
communication cost depending on the parameters.

20

6. Optimization of the Proposed Protocol

The proposed classification protocol and the experimental results, shown in Section 4 and
5 respectively, can be regarded as the basic protocol and its performance for classifying
a single data without any optimization for given data sets. Thus, the performance of the
proposed protocol is the same for any data set; independent from the way the probabilities
are represented or the length of a feature vector.

In this section, we present some techniques that can be applied to our proposed
protocol so that the computation time can be optimized for each data set. In Section 6.1,
we present some techniques for optimizing the computation time when classifying a
single data. In Section 6.2, we present a technique for classifying multiple data
simultaneously using a single ciphertext by extending the techniques from Section 6.1. In
Section 6.3, we indicate a part in the proposed protocol that can be run in parallel.

6.1. Optimization for single data classification
In this section, we present a technique that can be applied to our proposed protocol in
order to optimize the computation time when classifying a single data.
 In Section 6.1.1, we describe the technique for optimizing the computation time by
modifying the TotalSums operation. In Section 6.1.2, we present additional modification
to the classification protocol that is necessary to ensure the privacy of intermediate results.
In Section 6.1.3, we present the expected change in computation time between the
unmodified and modified protocol.

6.1.1. Optimization of the 𝐓𝐨𝐭𝐚𝐥𝐒𝐮𝐦𝐬 operation

In Section 5.3, we have discussed that the computation time and communication cost of
our proposed protocol is independent from the number of feature attributes or feature
values within a data set. This is because we perform the TotalSums operation on all the
slots within a ciphertext when calculating the classification probability 𝑝′. However, to
calculate 𝑝′, we only need to sum 𝑠 slots within the ciphertext, where 𝑠 is the length of
the client’s feature vector. Thus, by summing only 𝑠 slots within the ciphertext, we can
reduce the computation time during classification. The required modification of the
TotalSums operation, whose original operation is shown in Algorithm 2, is very small
since we only need to initialize 𝑛 with the length 𝑠 of a feature vector instead of
initializing with the number of slots in a ciphertext.

Table 6 shows the computation time for performing TotalSums on 218 slots (all slots
in a ciphertext), 91 slots (length of a feature vector for the Breast Cancer data set), and 22
slots (length of a feature vector for the Car Evaluation data set). As we can see from the
result, the computation time decreases with respect to the number of slots. The decrease
in computation time is not linear with respect to the number of slots because the
TotalSums operation runs in 𝑂(log 𝑠) where 𝑠 is the number of slots we perform the

21

summation on. As we sum the values within a ciphertext to calculate 𝑝′ for each class 𝑐C,
the total expected decrease in computation time during classification is linear to the
number of classes.

Table 6. Computation time of unmodified and modified TotalSums

Number
of slots

Unmodified Modified
218 slots 91 slots 22 slots

Time (s) 0.622 0.474 0.234

It is important to note, however, that reduction in the number of slots 𝑠 which we sum
does not necessary improve the computation time. As it can be seen from Fig. 3, the
computation time could largely change between two consecutive values. This is mainly
because the number of operations in TotalSums depends on the number of bit 1 in 𝑠 (ex.
91 = 1011011:). Thus, it is possible to further optimize the computation time by adding
dummy feature values to the feature vector in order to adjust 𝑠 for more optimal
computation time or by using the unmodified TotalSums operation. Concretely, we can
choose an optimal number of slots 𝑠�� such that 𝑠 ≤ 𝑠�� ≤ 𝑠 + 𝑤 , where 𝑤 is a
margin for adjusting 𝑠, to optimize the computation time. An example for when 𝑤=8 is
shown in Fig. 4. In this case, we can improve the computation time by up to 1.45 times
compared to that of 𝑠 without any adjustment.

Fig. 3. Computation time of TotalSums for different number of slots

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 20 40 60 80 100 120 140 160 180 200 220

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Number of slots s

Modified
Unmodified

22

Fig. 4. Computation time of TotalSums after adjusting the number of slots

6.1.2. Modification to the classification protocol

To securely perform classification without revealing any data to any parties, we require
one additional modification to the classification protocol. During the comparisons in our
proposed protocol, the CS randomly chooses 𝑔 ∈ 𝒢 ⟦, calculates 𝒉⟧ = 𝑔(⟦𝒂⟧) ⊝ 𝑔(⟦𝒃⟧),
then sends ⟦𝒉⟧ to the TA. The TA decrypts ⟦𝒉⟧ to obtain ℎ and continues the protocol.
When TotalSums operation is performed on all slots in a ciphertext, the resulting
ciphertext have the summed value in all the slots of a ciphertext. Thus, it was ensured that
⟦𝒉⟧ will have value ℎ in all the slots. However, when we modify the TotalSums
operation to perform summation on 𝑠 slots, only one slot within the ciphertext have the
value ℎ while other slots contain partial summations. If we continue the protocol with
only the modified TotalSums operation and apply 𝑔 to all slots within a ciphertext, the
function 𝑔 will be revealed to the TA from the values when it is decrypted. If 𝑔 is
revealed, the TA will be able to obtain some information on the classification model and
client’s data from the decrypted result. Thus, it becomes necessary to mask all the other
slots by multiplying the slots with 0. As such, instead of multiplying all slots with 𝑔, we
multiply the ciphertext with a one-hot vector in which the position corresponding to where
the summed value is located is set to 𝑔 and all other positions are set to 0. The position
for setting 𝑔 can be easily determined from the data set. Thus, the resulting ciphertext
⟦𝒉⟧ will also be a one-hot vector where one slot is ℎ and all other slots are 0. Upon
receiving and decrypting ⟦𝒉⟧ to obtain ℎ , the TA continues the same protocol as
described in Section 4.

Fig. 5 shows an example of the resulting ciphertext and the needed operations after the
TotalSums operation for both the unmodified and modified cases.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 20 40 60 80 100 120 140 160 180 200 220

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Number of slots s

Original
Optimized Slots

23

Fig. 5. Difference between the unmodified and modified TotalSums operation

In FHE, a multiplication operation between a ciphertext and a plaintext vector containing
non-uniform values is computationally more expensive than a multiplication between a
ciphertext and a plaintext vector that contains uniform values. Thus, the computation time
for each comparison of the modified protocol becomes more expensive than that of the
unmodified protocol. Table 7 shows the computation time for comparing two values after
performing TotalSums on 218 slots (all slots in a ciphertext), 91 slots (length of a feature
vector for the Breast Cancer data set), and 22 slots (length of a feature vector for the Car
Evaluation data set). We can see from the result that, indeed, the computation time for
each comparison has increased for both data sets after the modification of the protocol.
Also, we can see that the time for comparison is different between the case for 91 slots
and 22 slots. This is due to the characteristics of FHE that the computation time is affected
by prior operations performed on the ciphertext. In Fig. 6, we show the computation time
for comparing two values for when we perform the TotalSums operation on different
number of slots. From the figure, we can see that although some variations occur, the
computation time is mostly constant.

Table 7. Computation time for comparing two values

Number
of slots

Unmodified Modified
218 slots 91 slots 22 slots

Time (s) 0.143 0.365 0.333

24

Fig. 6. Computation time of comparing two values for different number of slots

6.1.3. Change in computation time

In Table 8, we show the total computation time of the classification protocol after the two
modifications presented in Section 6.1.1 and 6.1.2. From the results, we can see that the
modified classification protocol has better computation time compared to that of the
unmodified protocol. Also, while the unmodified protocol has same computation time for
both two-class classifiers, the modified protocol now has different computation time
because the TotalSums operation is now modified for each data set. We note that there is
no change in the communication cost as the number and the size of ciphertexts that is
transferred throughout the system does not change from these modifications.

Table 8. Computation time of the modified classification protocol

Data set
Length of

feature vector
Number

of classes
Time (s)

Unmodified Modified
Breast Cancer 91 2 1.549 1.458

Car Evaluation 22
2 1.551 0.962
3 2.420 1.601
4 3.283 2.240

We note that although we can optimize the classification protocol by modifying the
TotalSums operation and the comparison protocol, there may be cases where the
unmodified protocol has better performance than the modified protocol. The total
expected change in classification time between unmodified and modified protocol is
Δ𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = (Δ𝐶𝑜𝑚𝑝𝑎𝑟𝑒 ∗ (𝑁 − 1)) − (Δ𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑚 ∗ 𝑁) , where 𝑁 is the

0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40

0 20 40 60 80 100 120 140 160 180 200 220

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Number of slots s

25

number of classes. When Δ𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is positive, the computation time increases
compared to the unmodified protocol. In Fig. 7, we show the total estimated change in
classification time Δ𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 when 𝑁 = 2 for different number of slots 𝑠 which
we perform the 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑚 on. As we can see from the figure, for larger value of 𝑠, there
are several instances in which Δ𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is positive, indicating that the
computation time increases compared to the unmodified protocol. In such cases, using
the unmodified protocol will be more efficient when classifying a single data.

Fig. 7. Estimated change in classification time for different number of slots when 𝑁=2

6.2. Classification of Multiple Data
By extending the modifications presented in Section 6.1, we can classify multiple data
simultaneously using a single ciphertext. In the modified protocol, we perform
summation on only 𝑠 slots in a ciphertext, where 𝑠 is the length of a feature vector, then
proceed with the protocol by focusing on the slot that contains the classification
probability 𝑝′. Thus, if there are sufficient slots, we can pack multiple feature vectors into
a single ciphertext and perform classification on multiple data simultaneously using a
single ciphertext. By performing the modified TotalSums operation on 𝑠 slots, we can
calculate 𝑝′ for each encrypted feature vector at the same time. Then, at comparison, the
CS chooses different 𝑔 ∈ 𝒢 for each data to be compared and masks all other slots so that
it becomes 0, similar to what we described in Section 6.1. The TA continues the protocol,
but now managing 𝑖𝑛𝑑𝑒𝑥 for each data and ⟦𝒅⟧ is now a vector whose slots
corresponding to each data are set to 0 or 1 depending on the decrypted value ℎ for that
data and the rest are set to 0. No additional modifications are necessary to classify
multiple data using a single ciphertext.

-1.00
-0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40
0.60
0.80

0 20 40 60 80 100 120 140 160 180 200 220

ΔC
la

ss
ifi

ca
tio

n
Ti

m
e

(s
)

Number of slots s

Modified
Unmodified

26

 Table 9 shows the experimental results of the modified classification protocol for
classifying multiple data using a single ciphertext. The number of data per ciphertext,
which we denote as 𝑛𝑢𝑚𝐷𝑎𝑡𝑎, is calculated as 𝑛𝑢𝑚𝐷𝑎𝑡𝑎 = ⌊𝑠/𝑡⌋ where 𝑠 is the length
of a feature vector and 𝑡 is the total number of slots within a ciphertext, which is 218 in
our experiment. As we can see from Table 9, the computation time is not largely different
from the experimental results shown in Table 8 when we are classifying a single data per
ciphertext but with the optimized summation. The computation time for classifying
multiple data is slightly longer because the TA now updates 𝑖𝑛𝑑𝑒𝑥 and set value for a slot
within ⟦𝒅⟧ by checking the decrypted value for each data. Of course, as we are now
classifying multiple data at once, the throughput of the classification protocol has
increased. Although we packed 2 and 9 data per ciphertext for the Breast Cancer data set
and Car Evaluation data set, respectively, it is possible to pack fewer data into a ciphertext
at classification as well.
 We finally note that in Fig. 7, we have shown that the computation time for classifying
a single data with the modified protocol may be longer than that of the unmodified
protocol depending on the number of slots. However, in cases in which we can pack
multiple data into a single ciphertext, the total computation time may increase but the
throughput of the modified protocol may be higher compared to the unmodified protocol.

Table 9. Computation time of the modified classification protocol

Data set
Length of a

feature vector
Number of data
per ciphertext

Number of
classes

Time (s)
Time (s)
per data

Breast
Cancer

91
1

2
1.458 1.458

2 1.464 0.732

Car
Evaluation

22

1
2 0.962 0.962
3 1.601 1.601
4 2.240 2.240

9
2 0.964 0.107
3 1.615 0.179
4 2.268 0.252

6.3. Parallelization of Comparison
In our classification protocol, the CS and TA perform the comparisons one at a time,
updating ⟦𝒎𝒂𝒙⟧ to a ciphertext of the higher value over FHE. We can optimize this step
by running multiple comparisons in parallel so that the comparisons occur in a tree-like
structure rather than linearly. Although the total number of comparisons that will be made
is the same, we can reduce the computation time as they will be running in parallel.

27

7. Conclusion

In this paper, we proposed a secure naïve Bayes classification protocol over encrypted
data using FHE. Our proposed protocol allows a model provider to provide a
classification model and classification service while preserving the privacy of the
classification model from all participating parties and allows clients to outsource data
classification to a cloud server while preserving the privacy of their data and classification
result from the participating entities. The client learns only the classification result and
does not learn anything about the classification model that was used to classify the data.

Our experimental results show that our protocol runs in 1.5 s with 4.0 MB of
communication cost for classifying a data using a two-class classifier while preserving
the privacy of the classification model, client’s data, and results. Our experimental results
also show that the computation time and communication cost increases linearly with
respect to the number of classes. The burden on the client at classification is very small,
making the utmost use of the cloud servers by outsourcing the classification tasks. In
addition, we indicated several techniques that could be used to modify our protocol in
order to optimize the computation time for a given data set such as optimization of the
TotalSums operation, and extension of it to enable classification of multiple data
simultaneously. By doing so, we reduced the computation time from 1.5 s to 1.0 s for a
two-class classification of the Car Evaluation data set while classifying 9 data at once.
Although we focused on naïve Bayes in this work, our protocol can be easily modified
for other machine learning algorithms.

Potential future works are as follows: i) measure the real-world communication cost
and time with varying network bandwidth to evaluate the performance of the proposed
classification protocol, and ii) apply the proposed classification protocol to other machine
learning algorithms. Also, choosing the optimal FHE parameters for a given dataset is an
open problem.

28

Acknowledgement

Upon completion of this paper, I would like to thank Professor Yamana who has given
me many advices and support towards completion of this thesis. I would also like to thank
all the lab members, especially members of SC group, for various advices and discussions
throughout the years.
 This work was supported by JST CREST Grant Number JPMJCR1503, Japan.

29

Reference

[1] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of the Annual ACM
Symposium on Theory of Computing (STOC ’09), pp. 169–178 (2009).

[2] Bost, R., Popa R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted
data. In: Network and Distributed System Security Symposium (NDSS), pp. 1–14 (2015).

[3] Wood, A., Shpilrain, V., Najarian, K., Mostashari, A., Kahrobaei, D.: Private-Key Fully
Homomorphic Encryption for Private Classification. In: International Congress on
Mathematical Software (ICMS 2018), pp. 475–481 (2018).

[4] Sun, S., Zhang, P., Liu, J.K., Yu, J., Xie, W.: Private machine learning classification based
on fully homomorphic encryption. In: IEEE Transactions on Emerging Topics in Computing
(Early Access), pp. 1–13 (2018).

[5] Khedr, A., Gulak, G., Vaikuntanathan, V.: SHIELD: scalable homomorphic implementation
of encrypted data-classifiers. In: IEEE Transactions on Computers, vol. 65, Issue 9, pp. 2848–
2858 (2016).

[6] Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy.
In: International Conference on Machine Learning, pp. 201–210 (2016).

[7] Park, H., Kim, P., Kim, H., Park, K.W., Lee, Y.: Efficient machine learning over encrypted
data with non-interactive communication. In: Computer Standards & Interfaces, vol. 58, pp.
87–108 (2017).

[8] Aslett, L.J.M., Esperança, P.M., Holmes, C.C.: Encrypted statistical machine learning: new
privacy preserving methods. In: arXiv preprint arXiv:1508.06845 (2015).

[9] Graepel, T., Lauter, K., Naehrig, M.: ML Confidential: Machine Learning on Encrypted Data.
In: Information Security and Cryptology – ICISC 2012, LNCS, vol. 4586, pp.1–21 (2012).

[10] Chabanne, H., Wargny, A., Milgram, J.: Privacy-preserving classification on deep neural
network. Cryptology ePrint Archive, Report 2017/035 (2017).

[11] Hesamifard, E., Takabi, H., Ghasemi, M., Jones, C.: Privacy-preserving Machine Learning in
Cloud. In: Proc. of the 2017 on Cloud Computing Security Workshop (CCSW ’17), pp. 39–
43 (2017).

[12] Chen H., Gilad-Bachrach, R., Han, K., Huang, Z., Jalali, A., Laine, K., Lauter, K.: Logistic
regression over encrypted data from fully homomorphic encryption. Cryptology ePrint
Archive, Report 2018/462 (2018).

[13] Han, K., Hong, S., Cheon, J.H., Park, D.: Efficient Logistic Regression on Large Encrypted
Data. Cryptology ePrint Archive, Report 2018/662 (2018).

[14] Kim, S., Omori, M., Hayashi, T., Omori, T., Wang, L., Ozawa, S.: Privacy-Preserving Naive
Bayes Classification Using Fully Homomorphic Encryption. In: International Conference on
Neural Information Processing (ICONIP 2018), pp. 349–358 (2018).

[15] Li, P., Li, J., Huang, Z., Gao, C., Chen, W., Chen, K.: Privacy-preserving outsourced
classification in cloud computing. In: Cluster Computing, March 2018, vol. 21, Issue 1, pp.
277–286 (2018).

[16] Chen, H., Han, K.: Homomorphic Lower Digits Removal and Improved FHE Bootstrapping.
Cryptology ePrint Archive, Report 2018/067 (2018).

[17] Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In:
Foundations of Secure Computation, pp. 169–180 (1978).

30

[18] Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning with Errors:
Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In: Advances in Cryptology
– CRYPTO 2013, LNCS, vol. 8042, pp. 75–92 (2013).

[19] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption
without bootstrapping. In: Proc. of the 3rd Innovations in Theoretical Computer Science
Conference, pp. 309–325 (2012).

[20] Brakerski, Z.: Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP. In: Advances in Cryptology – CRYPTO 2012, LNCS, vol. 7417, pp. 868–886
(2012).

[21] Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption. Cryptology
ePrint Archive, Report 2012/144 (2012).

[22] Imabayashi, H., Ishimaki, Y., Umayabara, A., Sato, H., Yamana, H.: Secure Frequent Pattern
Mining by Fully Homomorphic Encryption with Ciphertext Packing. In: Data Privacy
Management and Security Assurance, LNCS, vol. 9963, pp. 181–195 (2016).

[23] Chen, H., Laine, K., Rindal, P.: Fast Private Set Intersection from Homomorphic Encryption.
In: Proc. of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’17), pp. 1243–1255 (2017).

[24] Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operation. In: Designs, Codes and
Cryptography, vol. 71, issue 1, pp. 57–81 (2014).

[25] Halevi, S., Shoup, V.: Algorithms in HElib. In: Advances in Cryptology – CRYPTO 2014,
LNCS, vol. 8616, pp. 554–571 (2014).

[26] Dua, D., Graff, C.: UCI Machine Learning Repository. Tech. rep. (2019),
http://archive.ics.uci.edu/ml

31

Publications
• Yoshiko Yasumura, Hiroki Imabayashi, and Hayato Yamana, “Attribute-based

Proxy Re-encryption Method for Revocation in Cloud Storage”, Proc. of 2017
IEEE Int’l Conf. on Big Data, pp. 4858–4860, (2017).

• Yoshiko Yasumura, Hiroki Imabayashi, and Hayato Yamana, “Attribute-based
Proxy Re-encryption Method for Revocation in Cloud Storage: Reduction of
Communication Cost at Re-encryption”, Proc. of 2018	 IEEE 3rd International
Conference on Big Data Analysis (ICBDA), pp. 312–318, (2018).

