
2019 Master Thesis

A Privacy-preserving Query
System using Fully

Homomorphic Encryption with
Real-world Implementation for
Medicine-Side Effect Search

A Thesis Submitted to the Department of Computer Science and
Communications Engineering, the Graduate School of Fundamental Science

and Engineering of Waseda University in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering

Submission Date: July 22nd, 2019

Advisor: Prof. Hayato Yamana
Research guidance: Research on Parallel and Distributed Architecture

Department of Computer Science and Communications
Engineering,

the Graduate School of Fundamental Science and
Engineering,

Waseda University
Student ID: 5117FG19-2

Yusheng Jiang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286964712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Privacy preservation during a search has become a serious problem in
recent years. There is a need to make sure that user queries that contain
sensitive private information are not abused or misused by a third party, in-
cluding the search provider. One way to conduct a privacy-preserving search
is to encrypt the user queries. However, traditional encryption methods are
only capable of protecting user privacy during a data transfer because the
query itself is decrypted at the query server. A query server is usually pro-
vided by an untrustworthy cloud provider, and the exposure of data may
therefore lead to the risk of a data breach.

Fully homomorphic encryption (FHE), being capable of conducting addi-
tion and multiplication over a ciphertext, naturally provides a solution to this
problem. Using FHE, the privacy of both the user queries and the database
of the search provider can be protected. In this paper, we propose a privacy-
preserving query system model. We implemented the proposed model on a
real-world medicine side-effect query system. We applied a filtering prior to
the query to reduce the size of the database and used multi-threading to
accelerate the search. The system was tested 10,000 times with a random
query over a database of 40,000 records of simulation data and completed
99.84% of the queries within 60 s, proving the real-world application of our
system.

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Fully homomorphic encryption (FHE) 3
2.2 FHE scheme . 3
2.3 SV packing and SIMD-style calculation 4

3 Related work 5
3.1 Private information retrieval (PIR) 5
3.2 PIR with homomorphic encryption 6

4 Proposed method 7
4.1 System . 7

4.1.1 Overview . 7
4.1.2 Privacy . 9
4.1.3 Procedure . 9

4.2 Real-world implementation 10
4.2.1 Description . 10
4.2.2 Specification . 12
4.2.3 Optimization . 13

4.3 Algorithm . 13
4.3.1 Preparation of content-encrypted query 13
4.3.2 Filtration over query’s plaintext part 14
4.3.3 Usage of SV packing 17
4.3.4 FHE calculation . 18
4.3.5 Decryption and postprocessing 19

4.4 Analysis of privacy during FHE calculation 21

5 Experimental evaluation 22
5.1 Experiment setup . 22
5.2 Simulation dataset . 22
5.3 Result . 23

5.3.1 Overall performance 23
5.3.2 Comparison between using different number of threads 25

i

6 Discussion 29
6.1 Evaluation . 29
6.2 Further optimization . 29

7 Conclusion 32

A Sampled running time data in Figure 5.1 38

B Sampled running time data in Figure 5.4 40

ii

Chapter 1

Introduction

As a quick and easy way to extract certain information from the Internet, a
search process is an important Internet service. As improvements to search
algorithms [9] and an upscaling of hardware features reach a turning point
[8], search service providers are now turning their attention to improving
the search experience of users. One important aspect of user satisfaction
regarding a search is whether the private information of the users is care-
fully protected and only used for query-related purposes. Security issues in
many global companies including Facebook [22] and Google [23] are raising
awareness regarding the importance of personal information security.

Because users want to hide their query content from leaking to a third
party or prevent misuse, they prefer to conduct a “search in local ,” namely,
they would like to access an entire database of a search provider, and choose
the information they need. However, search providers hold their databases
as important assets, and do not want users to have full access. Instead, they
only want to show users a small portion[16]. A dilemma occurs between pro-
tecting the privacy of users and “database’s privacy.” Thus, as a compromise,
search providers allow users to encrypt their query contents. However, this
method can only protect user data from leakage during a transfer. Search
providers, however, hold a secret key that still can decrypt the contents of a
user query. The contents of user queries remain under the threat of leakage
or misuse. A third party having access to the database of a search provider,
e.g., a cloud server provider, can access the contents of a user query in de-
crypted form. In addition, untrustworthy search providers may use such
contents in ways other than the intended query, e.g., selling the query his-
tory of the users to a third party. Currently, there exists several theoretical
researches covering the area [24, 4]. However, no real-world implementation
is ever carried out.

In Japan, which is a quickly aging society [11], medical care is an im-
portant topic. According to official data [26], over 3.5 million elderly people
over 65 years in age receive outpatient treatment each year, and more than

1

0.9 million received hospitalization treatment in 2014. When patients suffer
from side effects from a particular medicine, they usually ask pharmacists
for help. Although referring to the attached documentation of a medicine is
a way to find the potential ingredient causing a side effect, situations exist
in which the attached documentation is insufficiently comprehensive. As a
supplementary empirical method, pharmacists may refer to the medicinal
history of other patients and find similar situations, i.e., patients with the
same gender, a similar age, and who are taking at least one similar medicine
and are suffering from at least one similar symptom. It is the responsibil-
ity of pharmacies to protect the medicinal history of their customers from a
third party because such information is private and sensitive.

In the particular scenario related to medicine-side effect search, our goal is
to develop a scheme to ensure that the queried data and full medicinal history
of the patient remain safe during the entire query process. The contribution
of our work is that we construct a privacy-preserving query system and we
implement and evaluate its performance in consideration with the real-world
scenario of medicine-side effect search. The novelty of our research lies in two
points. First, we constructed the privacy-preserving query system, and we
are applying the system to a real-world situation. Second, we are bringing in
the research of privacy-preserving query system to the new area of medicine-
side effect search.

In this paper, we first introduce basic knowledge related with fully homo-
morphic encryption (FHE) in Chapter 2, followed by a brief review of related
studies in Chapter 3. We then describe our system using detailed algorithms
in Chapter 4, and show the experiment results in Chapter 5, followed with
a discussion including the evaluation and further optimization in Chapter 6.

2

Chapter 2

Preliminaries

2.1 Fully homomorphic encryption (FHE)

Under traditional encryption methods, decryption must be performed prior
to the calculations. Direct calculations over a ciphertext are not supported.
However, fully homomorphic encryption (FHE) supports an arbitrary num-
ber of additions and multiplications directly over a ciphertext.

FHE.Dec(FHE.Enc(a)⊕ FHE.Enc(b)) = a+ b

FHE.Dec(FHE.Enc(a)⊗ FHE.Enc(b)) = a× b
(2.1)

In Equation (2.1), a, b ∈ Z, FHE.Dec and FHE.Enc are methods used
in FHE, and ⊕ and ⊗ are additions and multiplications over a ciphertext in
FHE.

The idea of homomorphic encryption (HE) was first introduced in 1978
by Rivest et al. [15]. In 2009, Gentry introduced a practical scheme for FHE
implementation on arbitrary functions and a number of operations using an
ideal lattice [5]. In 2012, Brakerski, Gentry, and Vaikuntanathan introduced
the BGV scheme using ring-learning with errors (RLWE) [1]. In 2010, Smart
and Vercauteren introduced their SV packing technique to FHE and enabled
a single instruction/multiple data (SIMD) style operation to realize a speed-
up and compression [19]. IBM Research released an open-source library of
HElib based on the BGV scheme, which is one of the most popular FHE
libraries available [7]. Herein, we briefly introduce the FHE scheme and SV
packing.

2.2 FHE scheme

In the FHE scheme, the following algorithms are included[1]:

• FHE.SetUp(1λ): Given a security parameter λ, output a set of pa-
rameters for encryption, params.

3

• FHE.KeyGen(params): Generate a public/secret key pair, pk/sk,
and evaluation key, ek.

• FHE.Enc(pk,m): Given a public key pk and plaintext message m,
output the corresponding ciphertext, c.

• FHE.Dec(sk, c): Given a secret key sk and ciphertext c, output the
corresponding plaintext message, m.

• FHE.Eval(ek, f, (c1, ..., ct)): Given evaluation key ek, an arithmetic
circuit f that accepts t parameters, and t ciphertext c1 to ct, output a
ciphertext as an encrypted calculation result, cf .

2.3 SV packing and SIMD-style calculation

In [20], Smart and Vercauteren introduced a packing method that allows
encrypting a vector of plaintext into a single ciphertext. These multiple
plaintexts are stored separately in spaces called slots. The authors intro-
duced a SIMD-style operation on the packed ciphertext. In a SIMD-style
FHE calculation on ciphertexts, operations such as additions and multipli-
cations are conducted in a slot-wise manner. In our system, all operations
over a ciphertext are applied in a SIMD manner.

Figure 2.1 illustrate an example of SIMD operation in SV packing model
with FHE. In this figure, four integers 1, 2, 3, 4 is packed into Ciphertext 1,
and four other integers 4, 2, 3, 1 is packed into Ciphertext 2, both of them are
encrypted with FHE. Ciphertext 1 and Ciphertext 2 are both FHE cipher-
texts with four slots. When doing SIMD-style FHE addition and multipli-
cation, the operation is conducted in a slot-wise manner, and the result is
also a ciphertext with four slots, respectively.

Figure 2.1: Illustration of SIMD operation in SV packing model

4

Chapter 3

Related work

3.1 Private information retrieval (PIR)

A private information retrieval (PIR) scheme was first introduced by Chor
et al. in 1995 [2]. Kushilevitz and Ostrovsky constructed the first single-
database PIR in 1997 [10]. Since then, PIR has become one of the most
important cryptography schemes available [13].

Chor’s PIR scheme focused on protecting the query content as well as
the information inside the database. As described in Figure 3.1 an example
of PIR scheme is shown. The whole process of a query is under a certain
kind of encryption method, in which the query contents and the database are
both encrypted. In this example, we have item indices as 1, 2, 3, 4 and data
as A,B,C,D, and we want to find out the corresponding data for index
3, which is C. PIR focused on maintaining the privacy of both sides, so
the database side cannot gain knowledge of the query content, the index 3,
thus 3 cannot be directly decrypted. Also, we don’t want to show any other
information concerning A,B,D, thus we cannot also decrypt the database.
Thus, we first do SIMD subtraction of query content index with the list of
items indices, which results in an encrypted list of −2,−1, 0, 1. An operation
called “flip” is used here to change the content of this list. Any non-zero
result will be changed into zero, and any zero will be changed into one.
This operation can be done by decryption and pick out the zero part, then
recalculate the result list. In some specific cases, this operation can be done
without decryption. The resulting list containing only zeros and ones will
conduct a SIMD multiplication with the data list. The resulting list will
contain the query result information, here as C.

In addition, if we want the order of data not shown in the result, i.e.,
that the result C is not in position 3 in our example, we can use shuffling,
rotation or FHE totalsums to make a change to the result.

5

Figure 3.1: An example of the PIR scheme (exact match)

3.2 PIR with homomorphic encryption

The original work by Kushilevitz and Ostrovsky [10] has already resulted in
the introduction of a PIR protocol upon homomorphic encryption. Based
on Gentry’s improvement of homomorphic encryption [5], the implementa-
tion of PIR based on the HE scheme has become a reality [21, 24]. A set
of implementations of PIR using the HE scheme proved its usefulness in
various fields including cloud computing [6], chemical compound manage-
ment [16], data aggregation [14], and e-voting [17]. However, the schemes
applied in these studies are not suitable for use in our system. [14] and [16]
use additional homomorphic encryption (AHE), whereas[6] uses BGN homo-
morphic encryption and [17] uses ElGamal homomorphic encryption, which
differ from FHE. These methods are effective for specific types of arithmetic
circuits, but they are not suitable for our situation, in which a ciphertext
and plaintext are contained inside query content at the same time. Based
on[24], because FHE is theoretically suitable for any arbitrary arithmetic
circuit, we consider it to be a more suitable way to solve our problem. In
[4], Dong et al. introduced a general PIR scheme using FHE, although there
is still space for optimization for our specific problem.

6

Chapter 4

Proposed method

Currently, no real-world implementation of a privacy-preserving query sys-
tem on PIR using FHE scheme exists. In this research, we construct a
privacy-preserving query system and implement it in a real-world scenario of
medicine-side effect search. In our proposed method, the usage of filtration
with inverted indexes and the usage of multithreading accelerate our system,
which are novel to the PIR with FHE scheme.

In this Chapter, we will first describe the architecture of our system in
Section 4.1, then we specify our real-world problem of medicine-side effect
search in Section 4.2. After that, we will introduce the implementation with
detailed algorithms in Section 4.3, then we will analyze the privacy during
FHE calculation in Section 4.4.

4.1 System

4.1.1 Overview

For a simple description, we assume that we have only three parties in our
model: the cloud server, the client-side server, and the terminal device.

• The cloud server : an untrustworthy cloud server conducting FHE cal-
culations, provided by third-party cloud service providers, which holds
the encrypted database. Its job is only used to do calculation over
ciphertext, so it does not hold secret key sk.

• The client-side server : an intermediate party existing between the
terminal device which represents an end user and the cloud server,
which communicates with both ends. It is considered trustworthy,
which connects with the terminal device via local network channels
(e.g. WLAN). Its role is to conduct FHE encryption and decryption at
local, so it holds a somewhat stronger computation power, which does
not need to be higher than an ordinary desktop PC. It is considered

7

trustworthy with users’ point of view, so it can do encryption and
decryption job for query content and result. But it should not be able
to gain any access to an encrypted or decrypted database.

• The terminal device: a party representing trustworthy user devices
that send a query, e.g., tablet PCs, which is assumed to be used only
to send and receive. It is assumed to have no computational power, so
no calculation or encryption/decryption over FHE is conducted on this
device. This party can be viewed as the front-end part of our system.

Relations between these parties are shown in Figure 4.1.

Figure 4.1: Relation between parties

As shown in figure 4.1, data transfer relations are given as follows. A
user input the query content m from the terminal device and the content m
is sent to the client-side server, via local network. Then m was encrypted
using public key on the client-side server, and the encrypted Enc(m) is
sent to the cloud server to perform a query. During the FHE calculation,
non-privacy related data, which are represented as meta information, are
exchanged between the cloud server and the client-side server. After the
calculation is over, the encrypted result Enc(res) is sent to the client-side
server for decryption. The decrypted res will be shown to the end user on
the terminal device.

8

4.1.2 Privacy

With our system, we plan to use PIR on FHE over a privacy-related database.
A key pair was previously generated and distributed to each participant, as
shown in Figure 4.1. The key pair pk/sk is used for a certain time period
(e.g., a month) and renewed periodically. If there are multiple client-side
servers simultaneously exist, they will share the same sk.

Each party only has access to certain content. With our system, the
client-side server has access to the key pair pk/sk and evaluation key ek;
the terminal device has access to plaintext query content m; and cloud server
has access to the ciphertext database Enc(db), public key pk, and evaluation
key ek.

Plaintext content m only exists inside the terminal device and the client-
side server, and the plaintext database db is not accessible to any parties,
ensuring the privacy of the user’s query and database. The Enc(db) will
be prepared by the owner of the system or the holder of the database (aka.
an authority party, who does not participate in the search scheme shown in
Figure 4.1) previously and directly inputted or updated as a ciphertext.

4.1.3 Procedure

As the set-up of the system, the following preparation steps are conducted. In
step 1, the parameters for the encryption environment are prepared using the
client-side server. In step 2, the database holder prepares a fully encrypted
database Enc(db) and sends it to the cloud server.

1. step 1: The client-side server generates a public/secret key pair pk/sk,
and evaluation key ek, and share pk and ek with the cloud server.

2. step 2: The cloud server receives the entire encrypted database Enc(db)
offered by the database holder using pk for encryption.

During the search process, the following steps are conducted. In step 1,
the client-side server receives the query content from the terminal device.
Then the client-side server prepares the content-encrypted query, which is
also shown in Algorithm 1. In step 2, a comparison of m and db is conducted
using SIMD subtraction, and slots with zero as the subtraction result points
to the query result. To make sure the contents of the non-zero slots is not
shown to the client-side server, the subtraction result is multiplied with a
non-zero random integer r. In this way, the zero-containing slots will stay
in zero, while the contents of non-zero slots will be changed. This process is
described in Algorithm 4. In steps 3 to 5, the client-side server decrypts the
result, finds the zeros, and reports their indexes to the cloud server, whereas
the cloud server extracts these records accordingly, as shown in Algorithm
5.

9

1. step 1: The terminal device sends the query content m to the client-
side server. The client-side server encrypts the query content m using
pk, and sends the content-encrypted query Enc(m) to the cloud server.

2. step 2: The cloud server performs a SIMD-style subtraction between
Enc(m) and Enc(db), and then multiply the subtraction result Enc(m)⊖
Enc(db) with a non-zero random integer r. Then, the cloud server
sends the resulting ciphertext (Enc(m) ⊖ Enc(db)) ⊗ r to the client-
side server.

3. step 3: The client-side server uses sk to decrypt the resulting cipher-
text (Enc(m)⊖Enc(db))⊗ r to gain the plaintext (m−db)× r. Then,
the client-side server searches for slots with zeros, and gathers the in-
dexes of these slots. The client-side server then sends these indexes to
the cloud server.

4. step 4: The cloud server refers to Enc(db) according to the indexes,
access these parts and pack them as Enc(db′), then, send them to the
client-side server.

5. step 5: The client-side server uses sk to decrypt Enc(db′) to gain
plaintext db′, and shares them with the terminal device.

4.2 Real-world implementation

4.2.1 Description

Our goal is to construct and implement a privacy-preserving query system
using PIR on FHE. As an example of real-world implementation of the query
system, we choose the medicine-side effect query system as our experiment
situation. We focus on the situation that a patient drinks several medicine(s)
and suffers from several side effect(s). The patient goes to a pharmacy for
consultation over how to adjust the medicine usage in order to avoid the
side effect(s). In order to identify the cause of side effect(s), the pharmacist
needs to browse past patients’ experience for reference. The pharmacist
needs to query inside a full medicinal history database, which is serious
privacy-containing information. The pharmacist is especially interested in
finding “similar” situations inside the database, i.e., same gender and close
age with common medicine(s) and side effect(s), to help him/her make a
decision. Thus, we need to use FHE here to protect the data privacy of the
patient as well as other patients.

Figure 4.2 shows a flowchart that illustrates how the pharmacist judges
whether or not to refer to one specific record or not. The pharmacist will
first judge by comparing the gender and age difference. In Figure 4.2, we

10

arbitrarily set the age difference by 5. Thus, if age difference between the
record and the query content is smaller or equal to 5, and the gender is
the same, then the next judgement is applied, or else this record is ignored.
The next judgement is by comparing the medicine list and the side effect
list. If there is not at least one same medicine between the record and the
query content, the record is also ignored. This also goes for the side effect’s
comparison. After all these judgements are performed, the record will be
referred by the pharmacist.

Figure 4.2: A flowchart showing the logic to decide whether to refer to a
certain record or not when the allowed age difference is set as 5

Figure 4.3 shows an example dataset of the medicine-side effect query
system. As shown in Figure 4.3(a), in the database, we have private in-
formation of Alice, Bob, Cindy and David, in which their age and gender
are recorded, alongside with their medicinal history: the medicine ID list
and the side effect ID list, and the pharmacist instructions. Note that the
column “Alias” is not included in the real database, it is only used for better
depiction in this paper. Figure 4.3(b) shows that the query content contains
four parts: age, gender, list of medicine IDs and list of side effect IDs.

Our goal is to search “similar” cases to the query content from the
database. The search criteria are the same as described in Figure 4.2. Here,
we explain with an example query as shown in Figure 4.3(b): 1) Male, 2)
Age 71, 3) Medicine 1 and Medicine 2, and 4) Side effect β, γ, δ. In this
case, Bob’s case becomes one of the similar cases with the given query: The
recorded age is within 5 years from the query content, and the recording
objective is of the same gender along with the query content; The record’s
medicine list and side effect list both overlap with the query content’s coun-
terpart. Thus, Record ID 2 in Figure 4.3(a) will be removed of Bob’s personal

11

information, i.e., Alias, age and gender, then shown as a query result, shown
to the pharmacists as figure 4.3(c).

Figure 4.3: An example dataset of the medicine-side effect query system

The list of results will contain multiple records that meet the search
criteria. This brings up a question of whether the order of the results is
significant or not. If the order is important, then we need to consider on
how to sort the results. As a conclusive answer to this question, the order is
not significant because if the pharmacist is to make a comprehensive decision
based only on the query results, then he/she will need to read all of them.
Thus, we do not need to sort the list of results. In addition, because each
attribute has different criteria in judging the “similarity,” such as the age
difference, medicine list difference and side effect list difference, it is also
difficult to make a concrete judgement on how to sort. Especially, as the hit
record’s age information is not shown inside the query result, the ranking
decision is hard to make. The comparison between results is not in the range
of this thesis, and will not be discussed any further here.

4.2.2 Specification

Our goal is to provide a privacy-preserving scheme to extract information
that can support pharmacists in finding the reason for the occurrence of
side effects based on the medicinal history of the patient. To be specific, we
need records of patients with the following conditions for a comparison of
the query content:

• Gender: same

• Age: R years younger – R years older, R ∈ Z

• Medicine: At least one the same

• Side Effect: At least one the same

Sensitive information includes the gender and age information of the
patients, as well as other private information. Such information must be
kept encrypted during the entire query process.

12

4.2.3 Optimization

We can perform optimization in FHE calculation for our real-world case.
By using optimization, we can speed up as well as reducing memory space
consumption.

Query content m contains the following four types of data: age, gender,
list of medicines, and list of side effects. Here, we encrypt only age and gender
to avoid privacy leakage. The lists of medicines and side effects are handled
in plaintext format. Note that all data, mainly, the encrypted age, encrypted
gender, and the other two plaintexts, are transferred over encrypted channels,
such as AES, to keep them secured during their transfer. We separate m
into two parts:

• FHE-encrypted part: age and gender

• non-FHE-encrypted part: lists of medicines and side effects

Because the lists of medicines and side effects are not encrypted by the
FHE, the cloud server contains them in plaintext. Thus, we can apply a
filtering at the cloud server before the FHE calculation, reducing the size of
the database for calculation purposes. We apply the inverted index method
commonly used in search engines to conduct the filtering step [25], as shown
in Algorithm 2.

Because the cloud server is equipped with multiple CPU cores, we use
an NTL threading pool [18] in the cloud server side when conducting the
FHE calculations. In addition, as shown in Algorithm 3, SV packing is used.

4.3 Algorithm

In this section, we will describe our implementation in detail with five algo-
rithms, described in five subsections. Section 4.3.1 and Algorithm 1 describes
how content-encrypted query is prepared on the client-side server. Section
4.3.2 and Algorithm 2 describes how the encrypted database is filtered over
medicine ID list and side effect ID list on the cloud server. Section 4.3.3
and Algorithm 3 describes how we pack multiple ciphertextsinto one cipher-
text using SV packing on the cloud server. Section 4.3.4 and Algorithm 4
describes how we do the FHE calculation on the cloud server. Section 4.3.5
and Algorithm 5 describes the decryption and postprocessing steps after
receiving the FHE calculation results on the client-side server.

4.3.1 Preparation of content-encrypted query

The cloud server will receive a query content from the client-side server
prepared using Algorithm 1. Since Algorithm 1 is conducted on the client-
side server, we already have pk which is not included in the input. This

13

algorithm takes in 4 plaintexts as inputs: age, gender, a list of Medi, i ∈
{1, 2, ..n} which represents medicine IDs, a list of Sidei, i ∈ {1, 2, ..m} which
represents side effect IDs. This algorithm outputs a tuple query, which
contains three parts. A ciphertext c which packs up the information of age
and gender, the list of medicine IDs, and the list of side effect IDs. Figure
4.4 shows an example on how we prepare the content-encrypted query.

Herein, we use m′ as the grouped parameter from gender and age, com-
bining the FHE-related parameters into only a single parameter. This is
beneficial to reducing FHE calculation time complexity, as the “if”-statement
is not allowed in FHE arithmetic circuit. By reducing the number of param-
eters, we can reduce the numbers of FHE operations, especially, the numbers
of FHE multiplications in the calculation. So, it is important that we use a
grouped parameter to represent gender and age.

This grouping is supported according to [27], provided that each possible
pair of (age, gender) for humans will map to a unique m′ within [0, 255],
when the upper limit of the age difference is R ⩽ 5. Males are mapped to
[0, 127], and females are mapped to [128, 255]. Then m′ is encrypted using
the pk which is originally stored in the client-side server through FHE, which
results in the ciphertext c. The tuple query consisting of c, medicine ID list
and side effect ID list is the output of this Algorithm 1.

Figure 4.4: An illustration showing how we
prepare the content-encrypted query

As shown in figure 4.5, the age and gender part of database db is also en-
crypted by FHE, processed by a similar rule as the query. This is mentioned
in Section 4.1.3.

4.3.2 Filtration over query’s plaintext part

After receiving the query contents c, (Med1, ...,Medn), (Side1, ..., Sidem)
from the client-side server, the cloud server initiates to apply filtering with
an inverted index of the medicine InvMed and side effect InvSide, and a

14

Algorithm 1 QueryGen
Input age, gender, (Med1, ...,Medn), (Side1, ..., Sidem)
Output query

1: if gender is male then
2: m′ ← age+R
3: else
4: m′ ← age+ 128 +R
5: end if
6: c← FHE.Enc(pk,m′)
7: query ← c, (Med1, ...,Medn), (Side1, ..., Sidem)

Figure 4.5: An illustration showing how we prepare the encrypted database
Enc(db)

smaller part is extracted from db for the FHE calculation. The classical
pyramidal merge algorithm used in mergesort [3] will be operated over in-
verted indexes, making a smaller encrypted database Enc(db′) of size s for
the FHE calculation. The filtering is shown in Algorithm 2. This algorithm
is computed at the cloud server. This algorithm 2 receives the medicine
ID list (Med1, ...,Medn) and side effect ID list (Side1, ..., Sidem) as input,
and generates a filtered encrypted database Enc(db′) as an output. Within
this algorithm, Intersect(List) takes the intersection of several sets, and
Union(List) takes the union of several sets.

Figure 4.6 illustrates an example of filtration with inverted indexes. In
this example, we are still using the same database as Figure 4.3(a) and the
same input query as Figure 4.4. The inverted index by medicine ID InvMed
is shown in Figure 4.6(b), and the inverted index by side effect ID InvSide
is shown in Figure 4.6(c). As shown in Figure 4.6(b), the inverted index by
medicine ID is generated previously by the cloud server which records the

15

mapping relationships from the content medicine IDs to their locations in
the database. For example, medicine 1 is shown in record 1 and record 2, its
corresponding inverted index will be a list [1, 2].

Figure 4.6: Illustration of an example of filtration with inverted indexes

As given by Figure 4.6(d), the content-encrypted query, contains cipher-
text c, the medicine ID list [1, 2] and the side effect ID list [β, γ, δ]. In
algorithm 2, we will first filter by medicine IDs and generate a restricted list
of records ResMed, then filter by side effect IDs and generate a restricted
list of records ResSide, then generate the combined list of records Res. In
the end, we will refer to encrypted database Enc(db) by record ID list Res,
and generate the filtered database Enc(db′).

According to Figure 4.2, a record in the query result needs to have at least
one same medicine in its medicine list as that of the query content. Thus, we
take the union of the inverted indexes corresponding to the input medicine ID
list [1, 2] (marked by red in Figure 4.6(b)). Thus, in this example, ResMed is
the union of [1, 2] and [1, 3], which gives out [1, 2]∪ [1, 3] = [1, 2, 3]. The same
rule applies to side effect, which results in ResSide = [1, 3] ∪ [1, 4] ∪ [1, 2] =
[1, 2, 3, 4].

As mentioned in Section 4.2.1, a record’s medicine list and side effect
list should both overlap with the query content’s counterpart to be put into
the query result. Thus, we take the intersection of ResMed and ResSide,

16

which results in the combined list of records Res = ResMed ∩ ResSide =
[1, 2, 3] ∩ [1, 2, 3, 4] = [1, 2, 3]. The values of ResMed, ResSide and Res are
shown in Figure 4.6(e).

Algorithm 2 Filter
Input (Med1, ...,Medn), (Side1, ..., Sidem)
Output Enc(db′)

1: MergeListMed← []
2: for i← 1 to n do
3: MergeListMed.Append(InvMed[Medi])
4: end for ▷ MergeListMed stores inverted indexes for inputted

medicines
5: ResMed← Intersect(MergeListMed)
6: MergeListSide← []
7: for i← 1 to m do
8: MergeListSide.Append(InvSide[Sidei])
9: end for ▷ MergeListMed stores inverted indexes for inputted side

effects
10: ResSide← Intersect(MergeListSide)
11: Res← Union([ResMed,ResSide]) ▷ Res is a list of record IDs
12: Enc(db′)← []
13: for i in Res do
14: Enc(db′).Append(Enc(db)[i])
15: end for

4.3.3 Usage of SV packing

We use the SIMD calculation to speed up the FHE calculation, thus we
introduce SV packing [19] to our method. An illustration showing how SV
packing works for our scenario is shown in Figure 4.7 and Algorithm 3.

As shown in Figure 4.7(a), we are still using the same example database
previously used in Figure 4.3. As shown in Figure 4.7(b), an FHE ciphertext
contains a certain number of slots. The number of slots is predefined during
the FHE parameter setup. In our example, we predefine the number of slots
at 100. The result of Algorithm 2, Enc(db′), contains a list of ciphertexts.
SV packing’s goal is to pack these separated ciphertexts into a fewer number
of ciphertexts.

As shown in Figure 4.7(b), in the FHE ciphertext part of a single record
in Enc(db′), each slot is filled in the same value. We can SIMD multiply
them each with a corresponding position indicator l, which is a vector of
integers whose size equals the number of slots, i.e., 100. Position indicator
l is a one-hot vector in which the position corresponding to the record ID
is set to 1 and all other positions are set to 0. We can see in Figure 4.7(b),

17

Figure 4.7: Illustration of an example of using SV packing

after SIMD multiplication, each content is in the slot corresponding to its
record ID. Then, SIMD addition is performed on these resulting ciphertexts,
which results in the SV-packed encrypted database PackDB.

Note that in this example, the number of records does not exceed the
number of slots. When the number of records is greater than the number of
slots, PackDB refers to a list of multiple ciphertexts.

Algorithm 3 SVPack
Input Enc(db′)
Output PackDB

1: PackDB ← Enc(pk, 0)
2: for i← 1 to s do
3: l← all-zero integer list of size s
4: l[i]← 1 ▷ l act as a position indicator showing which slot to insert
5: PackDB ← PackDB ⊕ l ⊗ Enc(db′)[i]
6: end for

4.3.4 FHE calculation

We can then conduct a calculation over the ciphertext part using FHE to
complete the query process in cloud server. The calculation is illustrated in
Figure 4.8, and described by Algorithm 4.

18

Figure 4.8: Illustration of FHE calculation in server

The matching result should have the same gender as m and at an age
difference within R with the age information of m; hence, the target value
should be in [m−R,m+R] inside the original partial database db′. After the
SIMD subtraction of PackDB and c, we need to add it with [−R,+R] and
obtain 2R + 1 ciphertexts MetaRes. We can SIMD multiply these 2R + 1
ciphertexts into one ciphertext Enc(res) and send it back to the client-side
server for decryption, as shown in Algorithm 4. This algorithm takes place
inside the cloud server. In this algorithm, the outputs of Algorithm 1, c, and
Algorithm 3, PackDB are inputs. R which means the allowed difference in
age range is also taken as an input. The output is a ciphertext Enc(res)
waiting to be decrypted.

In this algorithm, first, we will generate the MetaRes, which is the 2R+1
PIR calculation results for each allowed age and gender set. Because any
occurrence of zero is considered as hit, we can avoid sending them all back
to the client-side server by multiplying them up. Here we use a pyramidal
way up method, i.e., multiply the neighboring two ciphertexts up inside the
MetaRes list until only one ciphertext remains. This is one of the best
routine ways to help to reduce FHE level growth. In the end, the result is
multiplied by a non-zero random integer, which turns out to be the output
of the whole algorithm, Enc(res).

4.3.5 Decryption and postprocessing

After receiving ciphertext Enc(res), the client-side server will apply a de-
cryption and request additional information, e.g., pharmacy instructions, as
shown in Algorithm 5. Algorithm 5 is run by the client-side server. Algo-

19

Algorithm 4 FHECalculate
Input PackDB, c,R
Output Enc(res)

1: MetaRes← []
2: for i← −R to +R do
3: MetaRes.Append(PackDB ⊖ c⊕ i)
4: end for ▷ MetaRes stores 2R+ 1 ciphertexts
5: while len(MetaRes) > 1 do
6: i← 1, j ← len(MetaRes)
7: while i < j do
8: MetaRes[i]←MetaRes[i]⊗MetaRes[j]
9: MetaRes.Remove(MetaRes[j])

10: i+ = 1, j− = 1
11: end while
12: end while ▷ Calculate product of sequences
13: Enc(res)←MetaRes[1]⊗ (random() + 1)

rithm 5 will also require information from the cloud server. Algorithm 5
receives the result of Algorithm 4, Enc(res) as input, and outputs the query
result.

In Algorithm 5, Enc(res) is decrypted to res. Then each item is checked
to see whether it is zero. If a zero is found, it represents that the correspond-
ing record should be listed in the query result. Then, the client-side server
will request the corresponding “pharmacy treatment instructions” informa-
tion from the cloud server. After last-step decryption, the result will be sent
to the terminal device.

Algorithm 5 Decrypt
Input Enc(res)
Output query result

1: res← FHE.Dec(pk,Enc(res))
2: for item in res do
3: if item is 0 then
4: request additional information related with the index of item from

cloud server
5: decrypt the responded additional information and send it to the

terminal device
6: end if
7: end for

20

4.4 Analysis of privacy during FHE calculation

We need to confirm that our system is really privacy-preserving, i.e., the
privacy of the user’s query and database is kept encrypted. From previous
description, we have already known that m is never decrypted inside the
cloud server, so it is safe. Now, we focus on offering proof that the privacy
of the database is kept safe.

In the metainformation transferred from cloud server to client-side
server, a ciphertext packed from a list of non-zeros and zeros is included.
An index is picked by client-side server after decryption. However, this does
not mean that the real index or alias is shown to users. Thanks to Algo-
rithm 2 and Algorithm 3, we are eventually making a new smaller database,
which differs from situation to situation. Thus, during each time of a search,
the query is eventually conducted inside a unique database. This proce-
dure makes it impossible to recover the original content of database db from
multiple times of trial query.

21

Chapter 5

Experimental evaluation

5.1 Experiment setup

We implemented the scheme in C++ using HElib (version: 1.0.0-beta0-
release-Jan19). We set up our client-side server on a desktop PC and the
cloud server on a cloud computing platform provided by Nifty Cloud. The
client-side server (desktop PC) was equipped with an 8-core Intel i7-8770
CPU and 16 GB of memory, with the CPU clock frequency at 3.20 GHz.
The cloud server was equipped with 28 virtual CPUs and 256 GB of mem-
ory, which corresponds to a physical server with 28 Intel Xeon E5-2697A v4
CPUs with clock frequency at 2.60 GHz. Both ends are using Ubuntu Linux
18.04 LTS as the operating system. To make full use of the system, the
maximum thread for the NTL threading pool was set as 28. The number of
slots is set at 100. The FHE parameters used in HElib were set as shown in
Table 5.1.

Table 5.1: HElib parameters

m p r L
12,097 257 1 11

5.2 Simulation dataset

We prepared the simulation dataset based on statistical data. We referred
to official data offered by the Japan Ministry of Health, Labor, and Welfare
[26], and by Statistics Japan [27]. From the statistical data, we gained
patient distribution over the different age periods and genders. In addition,
we assumed 2,000 types of medicines and 100 types of side effects, distributed
in occurrence according to a Pareto distribution [12]. We arbitrarily assumed
that each patient takes fewer than 20 different medicines and suffers from

22

fewer than five side effects. We cannot acquire the distribution data of the
number of medicines a patient is actually taking simultaneously, and the
distribution of the number of side effects a patient is actually suffering from
simultaneously, so we arbitrarily decide to generate the number of medicines
and the number of side effects uniformly, i.e., in the dataset 1

20 of the patients
are drinking a single kind of medicine, and 1

20 of the patients are drinking 20
kinds of medicines. Though lack of support in official data here, according
to Algorithm 2, increasing the number of medicines drinking eventually only
results in a bigger Enc(db′), which sets higher obstacles for our experiment.
Thus, this assumption does not make our conclusion any weaker. According
to these rules, we created a dataset with a size of 40,000.

5.3 Result

We conducted 10,000 randomly generated queries between the client-side
server and cloud server. The queries are generated based on the same distri-
bution for age, gender, list of medicines, and list of side effects as we generate
the simulation dataset. Each query is repeated 10 times then averaged, in
order to reduce the error from change of virtual machines during query.

5.3.1 Overall performance

The relation between the filtered data size and the query processing time is
shown in Figures 5.1, 5.2 and 5.3. A concrete sampled data is recorded in the
appendix. The distribution of the filtering percentage, i.e., the percentage of
filtered database size based on the original database size is shown in Table
5.2.

Table 5.2: Distribution of Filter Percentage

Filter Percentage Percentage for a Total of 10,000 Attempts
0% 60.80%

0%-1% 37.45%
1%-2% 0.62%
2%-5% 0.56%
5%-10% 0.28%
10%-20% 0.17%
20%-50% 0.10%
>50% 0.02%

From Figure 5.1 and Table 5.2, we can see that filtering is effective in
scaling down the database size. In 98.25% of all cases, the database was
scaled down to less than 400 items, which is only 1% of the original database

23

Figure 5.1: Relation between time consumption and filtered database size in
10,000 experiments

Figure 5.2: A closer view when filtered down to a dataset of 2.00%

24

Figure 5.3: A closer view showing the “stair”-like change in FHE execution
time

size. Using filtering, FHE calculations over the full database are not required,
which saves time and memory.

From Figure 5.2, we can observe an improvement through multithreading.
We set 100 as the slot number in a single ciphertext in our experiment. Thus,
in Figure 5.2, the server calculation time, which was originally considered the
most time-consuming, increases much more slowly after the filtered database
size s reaches 100.

As a general result, 99.84% of all queries completed the entire process,
i.e., from the completed collection of m at the terminal device to the complete
output, within 60 s.

As an observation by Linux command htop, the maximum memory usage
is approximately 2.48 GB.

5.3.2 Comparison between using different number of threads

In order to have a clearer picture of how multithreading affects the perfor-
mance of FHE calculation, we conducted a second experiment. We tested the
multithreading performance when setting the maximum threading numbers
to 1, 7, 14 and 28, and compared the FHE calculation time. Same as the pre-
vious experiment, each query is repeated 10 times then averaged to reduce
the error from change of virtual machines during query. This experiment

25

result is shown in Figure 5.4 and Figure 5.5.
From Figure 5.4, we can see that multithreading largely reduces the FHE

calculation time in the cloud server. For example, when the filtered database
size s is 4911, in terms of no threading in use, overall time is 236.72s with
FHE calculation time at 195.82s and communication time of 43.18s; in terms
of threading with maximum 28 threads, overall time is 61.74s, with FHE
calculation time only at 11.33s and communication time of 50.17s. We can
see that the most significant difference in time consumption lies in the FHE
calculation time.

Figure 5.4: Comparison of cloud server calculation time between different
maximum threading settings

Figure 5.6 is showing the comparison over acceleration ratio (FHE calcu-
lation time in the cloud server when single-threaded divided by when mul-
tithreaded) in FHE calculation time between different maximum threading
settings. This ratio represents how many times multithreading can accel-
erate the FHE calculation in the cloud server. The comparison is between
maximum 7, 14 and 28 threads.

From Figure 5.6 we can observe the difference between different maximum
number of threads in use. The acceleration ratio of maximum 7 threads in use
(represented by blue triangles in Figure 5.6) grows almost linear to filtered
database size s when s is in 0-700. After s > 700, the acceleration ratio starts
to stay around in a stable range around an average value of 5.90. As 700 = 7
(number of maximum threads) ×100 (number of items per chunk), we can

26

Figure 5.5: Comparison of overall time between different maximum threading
settings

infer that the acceleration ratio grows until all the threads are allocated with
a chunk of data, then the acceleration ratio fluctuates around a steady value.

A similar phenomenon is observed for maximum thread number at 14
and 28. The average value of acceleration ratio for maximum thread number
at 14 after s > 14× 100 is 8.82. The average value of acceleration ratio for
maximum thread number at 28 after s > 28× 100 is 16.15.

From this observation, we infer that the stable value of acceleration ratio
is positive related to the number of maximum threads in use.

27

Figure 5.6: Comparison of cloud server calculation time when single-threaded
divided by multithreaded time between different maximum threading set-
tings

28

Chapter 6

Discussion

6.1 Evaluation

The results of our experiment conducted on a simulation dataset show that
our privacy-preserving query system model is capable of conducting a search
for the side effects of a medicine.

A filtering application using an inverted index and multithreading was
successful in decreasing the time and memory use. From the results of Table
5.2, we can see that, in most cases, only less than 1% of the database needed
to be used in the calculation. If such filtering is not applied, an FHE calcula-
tion must be performed over a full database, resulting in a waste of both time
and memory. However, we must note that this emphasizing of importance
on filtration is based on our assumed distribution of patients’ data. Because
we cannot acquire real data, we have to use simulation data instead in our
experiment, which uses several arbitrary assumptions. If these assumptions
turn out to be very different from real data’s distribution, we cannot confirm
the reliability of our result. This point needs further exploration when we
can gain access to a real dataset.

From Figure 5.2, we can see that the server calculations require the
greatest amount of time for a filtered database size s of less than 500. At
greater than 500, the communication time, however, becomes the most time-
consuming part. We introduced an NTL threading pool in the server calcu-
lations. When s is less than 100, the process is the same as with a single
thread, and the server calculation time rapidly increases. When s is greater
than 100, multithreading is applied, and the increase in the calculation time
becomes much slower.

6.2 Further optimization

Observed from Figure 5.1, communication time takes up the largest portion
in overall time. When the filtered database size s grows, the size of trans-

29

ferred data grows in a way linear to s. In our implementation, we focused
on reducing the time for FHE calculation, but the reduction of transferred
data size is not included. This brings to the problem of how to reduce the
communication data size.

When we calculate the time complexity of our system, we can conclude
that the following three parts are included. In the following analysis, we use
s to represent the filtered database size, the same as defined in Section 4.3.

• FHE execution time. This represents the calculation time inside the
cloud server. When observing Figure 5.2, we can see that when multi-
threading is not utilized, i.e., when filtered database size s is between
0-100, it escalates quickly with s goes up, in a linear manner, i.e., O(s).
However, after multithreading, i.e., when s is greater than 100, the
shape of FHE execution time turns out to become a stair-like manner,
with 2,800 items as a stair (28 (max thread number) × 100 (number
of items per chunk)), i.e., O(s

2,800), shown in Figure 5.3.

• Communication time. In our consideration, the bandwidth and trans-
fer speed will stay unchanged during the process. It depends on the size
of Enc(m), meta information and Enc(res). The size of metainformation
contributes most to the packet amount, which is directly linear to s.
Thus, we can also consider that communication time as O(s).

• Decryption time. It depends on the size of Enc(res), which, to some
extent grows as s grows larger. This part cannot be properly predicted;
however, it is small enough to ignore.

Thus, we can consider that the overall time complexity should be O(α s
2,800+

βs). Herein we use α and β as a representation of coefficients in regard to
FHE execution time and communication time, as they differ in time scales.
Basically, the overall time complexity is still in a linear relation with s, thus
eventually an O(s) linear time complexity.

In our observation, β ≫ α
2,800 holds. This means that the time com-

plexity in referring to communication time is taking up a greater portion,
and this influence is shown in Figure 5.1 where s grows large enough. As
the communication time mainly depends on the transferred packet size and
bandwidth, we can consider solutions from two aspects. The first is to reduce
the packet size, but this is very difficult. A possible way is to consider using
compression like zip, however, we still need to consider that the time loss
for compression and decompression. Another possible way lies in that we
should find another way to express the status, i.e., find another ciphertext
expression for gender and age information, in which case we may possibly
make an easy “flip” of the result, so that we can avoid transferring big packets
of meta information data eventually. However, this needs further investiga-
tion in its feasibility in terms of mathematics. What is more, to reduce this

30

heavy time consumption, we can consider packing more slots into a single
ciphertext. However, this requires that we adjust the parameters to obtain
a larger packing capacity. The second is to solve the problem from physical
parts, e.g., expanding the bandwidth.

31

Chapter 7

Conclusion

In this research, we proposed a scheme for a privacy-preserving query system,
and implemented it into a real-world case. The novelty of our research is
that we made the first real-world implementation of an FHE-using privacy-
preserving query system, which is also the first real-world implementation
of PIR with the FHE scheme. This system can be useful in helping phar-
macists make a decision during treatment, while protecting the patients’ as
well as the database’s privacy. This system can conduct a query inside a
40,000-items scale FHE encrypted database within 60 seconds for 99.84%
of all cases. In 98.85% of all cases, we can even reach within 12.5 seconds
of overall running time per query session. From this observation, we can
confirm that our FHE-using privacy preserving query system is efficient in
time consumption.

Thanks to our collaborative work with Meiji Pharmaceutical University,
this system is estimated to become a real open-source product and will be
experimented in real-world pharmacies with real data. This is the first
real-world implementation of such a system using PIR over FHE, and we
confirmed the usefulness of the scheme through experiments conducted on
simulation datasets. In addition, this first implementation can bring further
research into transplanting this scheme in other various fields engaging pri-
vacy protection. We can estimate that fully homomorphic encryption will
be widely used in many cases around the world, in the future.

We still have problems left to be solved for this area of research. The
first problem is we need further proof of the reliability of our result, because
we are using a simulation dataset. To solve this problem, we need to gain
access to a real-world dataset.

Another problem lies in that we need the cut down on communication
cost, as this part cannot be accelerated by multithreading. To solve this
problem, we come up with two possible ways. One is to reduce the number
of packets necessary for transferring. We can use zip or other encoding ways
to help reduce this information amount. Another way is to physically enlarge

32

the number of packets that can be sent at a time, i.e., broaden the bandwidth.
However, both ways need further investigation. We will continuously explore
other possible ways to solving these problems.

33

Acknowledgement

This work was supported by JST CREST, Grant Number JPMJCR1503,
Japan.

I want to specially acknowledge Prof. Yamana for leading my way to the
field of computer science and the field of cryptography. His modest attitude
on formatting and referencing improves my academic reading and writing
greatly. He also offered the usage of a cloud server from Nifty Cloud so that
we can conduct the experiment directly.

I want to grant my thanks to Yu Ishimaki, Hiroki Sato, Yoshiko Ya-
sumura, Takuya Suzuki, Qiuyi Lyu and Arisa Tajima for their help in my
research. They helped me in solving many of my puzzles and taught me very
much in coding using HElib.

I want to thank Prof. Noguchi and Prof. Kanno from Meiji Pharmaceu-
tical University who offered the chance of collaborative research, so that we
can use and refer to their data collected from medicinal field. They also give
me instructions on the real-world implementation of this system.

34

Bibliography

[1] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, pages 309–
325. ACM, 2012.

[2] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private informa-
tion retrieval. In Proceedings of the IEEE 36th Annual Foundations of
Computer Science, pages 41–50. IEEE, 1995.

[3] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–
785, 1988.

[4] C. Dong and L. Chen. A fast single server private information retrieval
protocol with low communication cost. In Proceedings of the European
Symposium on Research in Computer Security, pages 380–399. Springer,
2014.

[5] C. Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st annual ACM symposium on Symposium on theory
of computing, pages 169–169. ACM Press, 2009.

[6] Y. HaiBin and Z. Ling. A secure private information retrieval in cloud
environment. In Proceedings of the 2016 International Conference on
Intelligent Networking and Collaborative Systems (INCoS), pages 388–
391. IEEE, 2016.

[7] S. Halevi and V. Shoup. Algorithms in HElib. In Proceedings of the 34rd
Annual International Cryptology Conference (CRYPTO 2014), pages
554–571. Springer Verlag, 2014.

[8] H. N. Khan, D. A. Hounshell, and E. R. Fuchs. Science and research
policy at the end of moore’s law. Nature Electronics, 1(1):14–21, 2018.

[9] L. Kotthoff. Algorithm selection for combinatorial search problems: A
survey. In Data Mining and Constraint Programming, pages 149–190.
Springer, 2016.

35

[10] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single
database, computationally-private information retrieval. In Proceedings
of the 38th Annual Symposium on Foundations of Computer Science,
pages 364–373. IEEE, 1997.

[11] N. Muramatsu and H. Akiyama. Japan: super-aging society preparing
for the future. The Gerontologist, 51(4):425–432, 2011.

[12] T. I. Oprea. Property distribution of drug-related chemical databases.
Journal of computer-aided molecular design, 14(3):251–264, 2000.

[13] R. Ostrovsky and W. E. Skeith. A survey of single-database private
information retrieval: Techniques and applications. In Proceedings of
the International Workshop on Public Key Cryptography, pages 393–
411. Springer, 2007.

[14] T. D. Ramotsoela et al. Data aggregation using homomorphic encryption
in wireless sensor networks. PhD thesis, University of Pretoria, 2015.

[15] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–
180, 1978.

[16] K. Shimizu, K. Nuida, H. Arai, S. Mitsunari, N. Attrapadung,
M. Hamada, K. Tsuda, T. Hirokawa, J. Sakuma, G. Hanaoka, et al.
Privacy-preserving search for chemical compound databases. BMC
bioinformatics, 16(18):S6, 2015.

[17] S. S. Shinde, S. Shukla, and D. Chitre. Secure e-voting using homo-
morphic technology. International Journal of Emerging Technology and
Advanced Engineering, 3(8):203–206, 2013.

[18] V. Shoup. NTL: A library for doing number theory.
http://www.shoup.net/ntl/, 2001.

[19] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. In Proceedings of the Interna-
tional Workshop on Public Key Cryptography, pages 420–443. Springer,
2010.

[20] N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations.
Designs, codes and cryptography, 71(1):57–81, 2014.

[21] V. Vaikuntanathan. Computing blindfolded: New developments in fully
homomorphic encryption. In Proceedings of the 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science, pages 5–16. IEEE,
2011.

36

[22] P. Waterfield and T. Revell. Huge new facebook data leak
exposed intimate details of 3M users. New Scientist, URL:
https://www.newscientist.com/article/mg23831782-100-huge-new-
facebook-data-leak-exposed-intimate-details-of-3m-users, May 2018.
Accessed: 2019-07-17.

[23] J. C. Wong and O. Solon. Google to shut down Google+ af-
ter failing to disclose user data leak. The Guardian, URL:
https://www.theguardian.com/technology/2018/oct/08/google-plus-
security-breach-wall-street-journal, Oct 2018. Accessed: 2019-07-17.

[24] X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino. Single-database private
information retrieval from fully homomorphic encryption. IEEE Trans-
actions on Knowledge and Data Engineering, 25(5):1125–1134, 2013.

[25] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus sig-
nature files for text indexing. ACM Transactions on Database Systems
(TODS), 23(4):453–490, 1998.

[26] 大臣官房統計情報部. 平成 26 年 (2014) 患者調査の概況.
https://www.mhlw.go.jp/toukei/saikin/hw/kanja/14/, Dec 2015.

[27] 総務省. 日本の統計: 2018. 日本統計協会, 2018.

37

Appendix A

Sampled running time data in
Figure 5.1

Table A.1 shows a selected portion from the running time data. All time
is marked in seconds, with two digits after decimal point. The “percentage”
column states how many queries is surpassed when sorting by corresponding
filtered database size s.

38

T
ab

le
A

.1
:

Sa
m

pl
e

of
ru

nn
in

g
ti

m
e

da
ta

(s
ec

on
ds

)

F
ilt

er
ed

da
ta

ba
se

si
ze

s
O

ve
ra

ll
ti

m
e

F
H

E
ca

lc
ul

at
io

n
ti

m
e

C
om

m
un

ic
at

io
n

ti
m

e
D

ec
ry

pt
io

n
ti

m
e

P
er

ce
nt

ag
e

0
0.

30
0.

00
0.

05
0.

00
>

0.
00

%
1

1.
99

0.
61

1.
16

0.
25

>
60

.8
0%

5
2.

17
0.

76
1.

18
0.

24
>

81
.9

1%
10

2.
35

0.
96

1.
16

0.
25

>
86

.1
6%

20
2.

74
1.

32
1.

19
0.

24
>

90
.0

3%
40

3.
27

2.
02

1.
02

0.
24

>
93

.4
6%

60
3.

99
2.

73
1.

03
0.

24
>

95
.0

2%
81

4.
83

3.
55

1.
04

0.
24

>
95

.9
2%

10
1

7.
62

5.
24

2.
14

0.
46

>
96

.7
4%

25
0

8.
44

5.
24

2.
98

0.
67

>
97

.4
9%

50
1

11
.8

0
5.

48
6.

07
1.

32
>

98
.5

9%
68

6
12

.5
7

5.
41

6.
93

1.
54

>
98

.8
4%

69
3

12
.4

3
5.

33
6.

87
1.

53
>

98
.8

5%
10

00
15

.6
1

5.
51

9.
87

2.
18

>
99

.1
1%

15
60

21
.6

4
5.

68
15

.7
4

3.
49

>
99

.4
0%

26
09

32
.7

6
6.

11
26

.4
2

5.
84

>
99

.5
6%

35
78

52
.6

6
12

.6
6

39
.7

8
8.

22
>

99
.7

4%
44

06
55

.8
1

11
.6

1
43

.9
8

9.
71

>
99

.8
3%

48
37

60
.5

6
11

.9
4

48
.3

8
10

.6
0

>
99

.8
4%

60
49

77
.2

9
16

.8
0

60
.2

6
13

.2
2

>
99

.8
6%

84
42

10
3.

58
19

.3
1

84
.0

4
18

.3
7

>
99

.8
8%

94
12

11
5.

12
22

.2
1

92
.6

7
20

.5
3

>
99

.9
3%

15
51

3
18

9.
95

36
.0

1
15

3.
71

33
.6

3
>

99
.9

7%
25

20
6

30
0.

79
52

.6
9

24
7.

85
54

.5
6

>
99

.9
8%

30
90

0
36

8.
29

65
.2

9
30

2.
77

66
.6

2
>

99
.9

9%

39

Appendix B

Sampled running time data in
Figure 5.4

Table B.1 shows a selected portion from the comparison between maximum
number of threads. All time is marked in seconds, with two digits after
decimal point. "Acceleration ratio" is calculated by single-threaded FHE
execution time divided by multithreaded FHE execution time.

40

T
ab

le
B

.1
:

Sa
m

pl
e

of
ru

nn
in

g
ti

m
e

da
ta

(s
ec

on
ds

)
in

co
m

pa
ri

so
n

of
m

ax
im

um
nu

m
be

r
of

th
re

ad
s

F
ilt

er
ed

da
ta

ba
se

si
ze

s
Si

ng
le

th
re

ad
ed

ti
m

e
7

th
re

ad
s

(A
cc

el
er

at
io

n
ra

ti
o)

1
4

th
re

ad
s

(A
cc

el
er

at
io

n
ra

ti
o)

2
8

th
re

ad
s

(A
cc

el
er

at
io

n
ra

ti
o)

1
0.

85
0.

52
1.

63
0.

58
1.

45
0.

60
1.

42
10

1.
15

0.
79

1.
45

0.
92

1.
23

0.
94

1.
21

85
3.

47
2.

89
1.

20
3.

59
0.

96
3.

61
0.

96
18

3
7.

32
4.

01
1.

82
5.

13
1.

42
5.

15
1.

41
20

7
9.

02
4.

02
2.

24
5.

31
1.

69
5.

17
1.

74
37

6
15

.1
1

4.
02

3.
75

5.
16

2.
93

5.
20

2.
90

48
4

20
.4

1
4.

05
5.

04
5.

25
3.

89
5.

20
3.

92
54

0
21

.7
3

4.
06

5.
35

5.
20

4.
18

5.
25

4.
14

68
8

27
.5

0
4.

12
6.

67
5.

27
5.

22
5.

50
5.

00
93

7
37

.8
7

8.
06

4.
70

5.
68

6.
67

5.
45

6.
95

10
12

40
.6

9
8.

17
4.

98
5.

33
7.

63
5.

74
7.

09
11

79
46

.7
0

8.
39

5.
57

5.
53

8.
45

5.
41

8.
64

13
45

53
.5

5
8.

27
6.

47
5.

55
9.

64
5.

46
9.

81
14

10
56

.6
1

9.
27

6.
10

6.
71

8.
44

5.
64

10
.0

3
24

76
97

.8
8

16
.3

9
5.

97
10

.7
8

9.
08

6.
14

15
.9

4
49

11
19

4.
41

29
.9

4
6.

49
21

.3
5

9.
11

11
.3

3
17

.1
5

65
39

26
0.

67
40

.7
3

6.
40

26
.8

0
9.

73
17

.3
4

15
.0

3

41

	Introduction
	Preliminaries
	Fully homomorphic encryption (FHE)
	FHE scheme
	SV packing and SIMD-style calculation

	Related work
	Private information retrieval (PIR)
	PIR with homomorphic encryption

	Proposed method
	System
	Overview
	Privacy
	Procedure

	Real-world implementation
	Description
	Specification
	Optimization

	Algorithm
	Preparation of content-encrypted query
	Filtration over query's plaintext part
	Usage of SV packing
	FHE calculation
	Decryption and postprocessing

	Analysis of privacy during FHE calculation

	Experimental evaluation
	Experiment setup
	Simulation dataset
	Result
	Overall performance
	Comparison between using different number of threads

	Discussion
	Evaluation
	Further optimization

	Conclusion
	Sampled running time data in Figure 5.1
	Sampled running time data in Figure 5.4

