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Abstract  

Numerous recent studies on future mobile communications have considered and 

proposed millimeter wave (mmWave) communication as a key enabling technology for 

the realization of massive connectivity in the 5G and beyond era. However, the 

propagating signals at mmWave suffers from high propagation loss and sensitivity to 

blockage, resulting for high outage probability and low signal to noise ratio (SNR). This 

thesis discusses the propagation characteristics of mmWave and presents results of 

simulations on 4 GHz, 28 GHz and 73 GHz for 5G Cellular in the dense urban 

environments. The simulations are performed with the MATLAB-based NYUSIM 

simulator to evaluate the performance of mmWave channel characteristics. The results 

of simulations are compared with previously conducted field measurements of other 

studies. Our research presents large-scale characteristics of mmWave such as path loss, 

delay spread and power delay profile for both line-of-sight (LOS) and non-line-of-sight 

(NLOS) cases. The work also compares directional and omnidirectional propagation in 

a relatively smaller microcell with 5 times larger cell to observe the performance 

differences and characteristics of different mmWave frequencies with the increase in 

the Tx-Rx distance. Our work shows that mmWave communications is feasible for all 

5G deployments within the range of microcell of up to 100 m for frequencies such as 

73 GHz and up to 500 m for lower frequencies such as 4 GHz to be utilized in the dense 

urban areas. 

Index terms—Millimeter wave cellular; Fifth Generation (5G); 

propagation characteristics; dense urban networks; channel characteristics; 4 

GHz; 28 GHz; 73 GHz 
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Chapter 1 

 

Introduction 

 

1.1 Background  

 

Wireless communication has witnessed very rapid growth in the past two decades 

and has become pervasive in our world. The most recent development in this field is 

application of millimeter wave (mmWave) band in the existing and emerging wireless 

systems deployments [1]. Recent studies show that the exponential growth in demand 

for data traffic will continue in the next decade, in which for example, global traffic 

annually will reach 4.8 Zettabytes (ZB) or 396 Exabytes (EB) per month by the end of 

2022, which is more than three times of 1.5 ZB per year and 122 EB per month, 

recorded for 2017 [2]. 

Cisco forecasts in [2], that Wi-Fi and mobile devices will account for 71 percent of 

worldwide traffic by 2022, which was only 52 percent in 2017, meanwhile, mobile data 

traffic will increase sevenfold from 2017 to 2022 at a 46 percent growth rate annually 

reaching 77.5 EB per month which will account for 20 percent for all IP traffic data. 

Comparing the estimated data traffic between 2022 in [2] and the recorded data traffic 

in 2012 in [3], which shows more than nine fold increase, from 43.6 EB per month to 

396 EB per month, it seems that it was a real alert that the challenge of capacity demand 
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sparked the efforts of both academia [4], [5], [6] and industry [7], [8] for finding new 

methods to overcoming it. Conventionally, reducing the cell size and proposing the 

advanced techniques of signal processing are used to enhance the system capacity, yet 

another powerful technique is to allocate large frequency spectrum such as the 

enormous amount of spectrum in mmWave bands for the usage in cellular networks [9].    

Numerous recent studies on future mobile communications have considered and 

proposed mmWave communication as a key enabling technology for the realization of 

the Internet of Things (IoT) in the 5G and beyond era [1], [4], [10], [11]. The 5G 

network is expected to support extremely large amounts of wireless traffic data and 

realize massive connectivity, while achieving better quality of service, energy-

efficiency and reliability, and with lower communication delay [1], [12], [13], [14]. The 

enormous amount of spectrum in the mmWave bands which is unparalleled compared 

to sub-6 GHz bands, along with introducing small cells and advanced signal processing 

techniques will provide unprecedented radio resource capacity for 5G and beyond 

wireless networks and will meet the capacity demand for traffic in the years to come 

[1], [9], [15], [16]. 

There are fundamental differences between existing wireless communication 

networks and future mmWave cellular communication, in which some of them are 

directivity, propagation loss, and sensitivity to blockage [1], [9], [10]. These differences 

pose several challenges in utilizing the full potentials of mmWave communications. To 

ensure an interference-free and reliable communication network in mmWave bands, 

efficient antennas with high directionality and massive antenna elements (AEs) are 

required to meet the massive connectivity especially in the dense urban environments. 

[4], [14]. To facilitate studying the 5G requirements and to provide technical design 

guidance, several deployment scenarios, have been proposed for 5G in literature [12], 

[17]. The need for availability of a heterogenous network such as 5G for the dense urban 

environments seems urgent. The growing number of connected devises, with high 
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traffic loads, outdoor, and outdoor to indoor coverage are the characteristics of this 

environment [12]. The deployment of 5G mmWave network in this environment is 

limited by several factors as well. The availability of buildings usually composed of 

concrete, bricks, glass, wood, etc., with the harsh characteristics of mmWave for 

penetration to these materials, and high atmospheric effects on mmWave compared to 

sub-6 GHz bands, causes high attenuation for the propagating signal and poor signal to 

noise ratio (SNR) [18]. 

As [9] reported, in order to study mmWave use cases for 5G, most of the 

measurement campaign as in [4], [18], [19] concentrated on dense urban environments.  

Based on the mentioned measurements, several channel models have been proposed. 

Since the considered mmWave bands for 5G deployments is very huge and is not 

financially and technically feasible to do measurement for the whole bandwidth, 

researchers are studying mmWave 5G conducting simulations to evaluate the 

propagation characteristics of mmWave for the 5G network.  

The purpose of this research is to focus on finding innovative solutions addressing 

the challenges of severe attenuation, antenna design and limiting propagation 

characteristics for 5G mmWave-enabled systems and applications. The focus of this 

work is on emerging antenna arrays for the usage in the portable mmWave devices and 

systems and not on fixed antennas of conventional microwave or fixed mmWave 

wireless systems. Therefore, the aim is to study the large-scale fading parameters of 

mmWave-enabled 5G systems propagations with a massive MIMO antenna in dense 

urban areas through comparing simulations with various already measured data such as 

in [18] and [20]. The focus of this research is on the propagation characteristics in the 

4 GHz, 28 GHz and 73 GHz bands as candidate and trialed bands for 5G deployment 

[20], [30]. 
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1.2 Objectives and Contributions of Thesis 

As the usage of massive multiple input and multiple output (MIMO) and millimeter 

wave communication for the dense 5G cellular network will be a reality soon, studying 

and investigating the related challenges, and evaluation of the performance of the 5G 

network is among the main objectives of this thesis, which in turns, will contribute to 

the ongoing research on as the following. 

 To effectively and efficiently use the mmWave spectrum in the heterogenous 

5G deployments for the dense urban environments, we propose a heterogenous 

dense cellular network architecture with a maximum radius cell of 100 m for 

73 GHz, 200 m for 28 GHz and 500 m for 4 Ghz. 

 To study the large-scale parameters such as path loss and shadow factor of 

propagation at mmWave bands and to verify the performance of the 5G 

network, we use the software simulation.   

 The other contribution is the study of 4 GHz propagation for 5G cellular 

network. Although 4 GHz has already been utilized in some applications, 

mobile communication will witness a large band in sub-6 GHz in 5G system. 

 

1.3 Organization of Thesis 

The rest of this thesis is structured as follows: 

 Chapter 2 reviews the literature on the evolution of the emerging cellular 

networks. The development of communication systems in recent years is 

discussed which will be followed by overviewing of 5G cellular networks. 

Then, the dense urban environment is introduced and its requirements in the 
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5G systems. The importance of millimeter wave as an enabling technology is 

briefed as well. 

 Chapter 3 provides a review on propagations at mmWave with the focus on 

the propagation characteristics on 5G bands. The millimeter wave spectrum is 

discussed and the propagation characteristics including the atmospheric effects 

on mmWaves is overviewed. Free space path loss, atmospheric losses, rain 

attenuation, and material penetration at mmWaves are explained. The 

applications of mmWave are reviewed which is followed by a summary. 

 In chapter 4, mmWave channel models, and accordingly system design is 

discussed. The mmWave channel modelling efforts and related challenges is 

studied and followed by introducing the system design consideration, model 

and scenario which will be used in this thesis.  

 Chapter 5 presents our results of simulations in the 4 GHz, 28 GHz and 73 

GHz bands for the 5G urban dense networks. The simulation results with 

consideration of UMi and UMa are discussed in details and different scenarios 

such as LOS and NLOS performance of the mentioned frequency bands are 

evaluated. 

 Finally, in chapter 6, we draw our conclusion based on the findings from 

previous chapters and present a study direction at the end of the same chapter. 

 

 

  



 

 

 

Chapter 2 

 

Literature Review  

 

2.1 Development of Wireless Communications 

 

The first wireless networks, by means of smoke signals, flashing mirrors, or 

semaphore flags, etc., were developed long before industrial revolution. More than one 

hundred and twenty years ago, Guglielmo Marconi demonstrated the first radio 

transmission, in mid 1890s, and era of radio communication started [21], [22]. Since 

then, wireless communications have evolved continually, and new methods and 

systems were introduced. A new era of wireless communication was born in the 1960s 

and 1970s after the introduction of cellular concept, and advancement in radio 

frequency hardware [22]. 

Today, wireless communication is the fastest growing engineering field with its 

wide spread applications prevailed in all aspects of 21st century humankind life. 

According to T.S. Rappaport et al. in [4], since the new era and the beginning of 1980, 

every 10 years has witnessed a new generation of wireless communication systems with 

more advanced technology in terms of data rate, spectrum efficiency, coverage and 

applications.  
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Although early wireless Local Area Networks (LANs) could not compete with 

wired Ethernet technology, the most successful application of wireless communication 

has been the cellular systems [21]. The 1st generation (1G) cellular was announced at 

the beginning of 1980’s, which was an analog system with a few kbps data rates and a 

lot of disadvantages. In 1993, the 2nd generation (2G) was introduced, which is a digital 

technology mainly used for voice communication and new capabilities such as roaming 

and Short Message Service (SMS) and with a bit rate of up to 64 kbps. Global System 

for Mobile communications (GSM) and Code Division Multiple Access (CDMA) and 

IS-95, were the famous technologies of 2G [10]. The data rate was improved by 

introducing upgrades into 2G, such as General Packet Radio Service (GPRS) and 

Enhanced Data Rate for GSM Evolution (EDGE) to 144 kbps and 384 kbps respectively 

[10]. 

The 3rd generation was introduced in 2000 with new technologies and features. The 

initial transmission rate was 2Mbps which was improved up to 30Mbps as the evolving 

technologies such as High-Speed Uplink/Downlink Packet Access (HSUPA/HSDP) 

were added to the network [10]. The 3rd Generation Project Partnership (3GPP) 

introduced Long Term Evolution (LTE) technology as the descendant of previous 

cellular generations which is considered as 4G and was followed by LTE-Advanced 

with even higher bit rate. The higher bit rate compared to 2G and 3G, and new 

applications such as Multimedia Messaging Service (MMS), Digital Video 

Broadcasting (DVB) and High Divination (HD) mobile TV are among the features 4G 

operators offer to the subscribers [10]. 

As cisco estimates in [2], the exponential growth in the demand for higher data 

traffic, and the other challenges 4G LTE is currently facing in terms of capacity, end to 

end latency, massive device connectivity, quality of service and cost [12], it is assumed 

must be addressed by 5G, a new generation of cellular networks with new features and 

new technologies. Evolution of 1G to 4G is shown in the Figure 2.1 from [10]. It shows 
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how the generations of wireless systems develops in terms of date rate, mobility, 

spectral efficiency and coverage. All these features increase when a new generation 

evolves. It also shows changing nature of the generations from circuit switched to 

packet switched and from fixed to vehicular along with differentiating between licensed 

and unlicensed spectrums. The next section will present a detailed overview of 5G and 

how it will address the challenges available toward its utilization. 

 

 

 
Figure 2.1.1Development of wireless communications and evolution of cellular networks [10] 

 

 

2.2 An overview of 5G Cellular Systems  

With the explosive growth of mobile traffic and exponentially increase in the 

demand of users for new services and applications, 5G mobile systems are now being 

designed to fulfill the requirements of these services, in terms of date rate, latency, 

reliability, and with low cost and massive connectivity. The early researches on 
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different aspects of 5G cellular system appeared in literature in mid-2013 [23], and after 

of the start of working on vision Recommendation of ITU-R for IMT-2020 in 2012.  

From that year on, several programs and projects initiated globally to deeply study 

5G and its enabling technologies in the years to come. The academia and industry under 

the following major projects such as the European Union framework program for 

research and innovation (Horizon 2020) [24] and 5G Infrastructure Public Private 

Partnership (5GPPP) [25] in Europe, NYU WIRELESS research center [26] and 5G 

Americas [27] in the United States, IMT-2020 (5G) Promotion Group in China [28], 

5G forum in Korea [29], the 5G Mobile communications promotion Forum (5GMF) 

[30] in Japan, have been actively promoting 5G research and development, in which in 

parallel 3GPP [31] and other concerned standardization bodies are finalizing the 5G 

NR and related standards. 

The emerging applications and new services for the mobile communications in 

2020 and beyond, and key capabilities and minimum requirements of IMT-2020 for the 

realization of envisioned usage scenarios was released in the ITU-R [32] in 2015. Some 

instance of environed usage scenarios for IMT for 2020 and beyond are depicted in 

Figure 2.2 [32].  

 

 

Figure 2.2  Usage scenarios for IMT 2020 and beyond [12], [32] 
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Figure 2.2 shows the three main use cases of enhanced Mobile Broadband (eMBB), 

massive machine type communications and ultra-reliable and low latency 

communications, for different applications and various technical requirements for IMT 

for 2020 and beyond. 

To fulfil the requirement for the envisioned applications and usage scenarios, ITU-R 

introduced some new capabilities with enhancements compared to the IMT-Advanced 

of 2012, as shown in Table 2.1[32]. 

 

Table 2.1  Minimum requirements of IMT 2020 and beyond [32] 

 

 

 

According to ITU-R, the values in the figure are milestones for the research and 

investigation and may be revised and developed based on the new findings. 

To find and examine the technologies meeting the proposed requirements, Rappaport 

et al. in [4], and S. Sun et al. in [33] presented the results of extensive measurements 

and proposed millimeter Wave for 5G cellular. Authors in [15], [34], [35] and [36] 

proposed beamforming (BF) and massive Multiple-Input Multiple-Output (MIMO) 
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with highly directional antenna arrays to mitigate the harsh propagation characteristics 

of mmWaves for 5G. Small cells with heterogenous systems for 5G was discussed in 

[11] and [39]. Along with these, network slicing for 5G was discussed in [37] and 

authors in [10] presented a general heterogenous architecture for 5G cellular and its 

emerging technologies and depicted how a heterogenous network combining of 

microcell, small cells, 5G Wi-Fi, D2D communication, wireless sensor networks along 

with massive MIMO and so on, will be used for 5G. 

As authors in [12] and numerous other researchers proposed the idea of splitting 

indoor and outdoor setups for 5G, and because of high penetration losses that millimeter 

wave have [41], our focus in this work is mainly on the outdoor environments, and 

indoor scenarios are beyond the scope of this thesis. In the following subsections, we 

will briefly review how dense urban environment will attract much of 5G use cases, 

and how millimeter wave will be a key enabling technology for the 5G dense urban 

environment deployments. 

 

2.3 Dense Urban Deployments  

The densification of cellular networks for the 3G intended to improve the 

transmission rate, with a density of 4-5 BSs/km2. For the 4G LTE-A, hotspot and 

femtocell BSs have been deployed with a density of 8-10 BSs/km2. To satisfy the 

requirements of 5G and benefiting the massive MIMO and millimeter wave 

technologies, the density of 5G is anticipated to be 40-50 BSs/km2, making it an ultra-

dense cellular network [38].  

Out of the 10 deployment scenarios studied by 3GPP [31], dense urban scenario is 

among the scenarios proposed for enhanced mobile broadband (eMBB). In this 

heterogeneous deployment scenario, the focus is on macro cells with micro cells in city 

centers and dense urban areas with high user densities. The main characteristics of this 
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scenario are outdoor and outdoor-to-indoor coverage with high traffic loads. In this 

scenario, the Inter-Site-Distance (ISD) of the macro cells is 200 m, containing 3 micro 

cells. The heights for macro cells and micro cells are 25 m and 10 m respectively. The 

carrier frequency for macro cell is 4 GHz and for micro cells includes around 30 GHz 

and around 70 GHz as well. The bandwidth for 4 GHz is up to 200 MHz and expands 

up to 1GHz for both around 30 GHz and around 70 GHz. In this scenario, 80 % of users 

are indoor having a speed of 3 km per hour and 20 % are in cars with a moving speed 

of 30 km per hour. [12], [32]. The motivating idea behind this densification in 5G 

networks seems to be the promising capabilities of millimeter wave which will be 

briefly reviewed in next section. 

 

2.4 Millimeter Wave as a Key Enabling Technology  

The rapid growth of wireless and mobile traffic and the global bandwidth shortage 

in sub-3 GHz bands has encouraged the exploration and use of underutilized millimeter 

wave spectrum to meet the requirements in 5G and beyond networks [4], [40]. The huge 

bandwidth of millimeter wave with much smaller antenna sizes which makes it possible 

to fit more antennas into a small printed circuit board, small package or on a chip, and 

massive MIMO, provide high data rates which are required in different 5G scenarios 

[1].Many researches have investigated and showed that mmWave communication can 

be used in different aspects of 5G, from small cell access providing multi-gigabit 

transmission rate and cellular access for high capacity and coverage when densely 

deployed, to wireless backhaul replacing the fiber based backhauls, still maintaining 

several Gbps data rates [39].  

According to [39], although there are several challenges to exploit the full benefits 

of mmWave communications, the presented solutions and proposed techniques on 

mmWaves are very promising which makes mmWave as a key enabling technology for 
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5G and beyond networks. In the chapter to follow, a detailed explanation of the 

mmWave propagation and its unique characteristics along with solutions for the highly 

attenuated bands in mmWaves will be presented.  
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Chapter 3 

 

Millimeter Wave Propagation 

  

3.1 Introduction  

The frequency band between 30 GHz and 300 GHz with the wavelengths from 10-

1 mm generally termed as the extremely high frequency (EHF) band by ITU, is referred 

to as millimeter-wave as well. However, the super high frequency (SHF) spectrum 

ranging from (3-30) GHz or centimeter-waves, due to their similar propagation 

characteristics and specially in the context of 5G, has been referred to as millimeter 

waves as well. By this, the term millimeter wave is generally referred to bands (3-300) 

GHz [7]. 

The spectrum in the millimeter-wave band has been already utilized for some 

applications, such as, satellite communications, radars [42], and point to point 

communication, but not for wireless cellular networks until recently [9]. Probably, the 

unfavorable propagation characteristics of mmWaves, poor penetration through 

buildings and obstacles, high atmospheric absorption, and with high sensitivity to 

blockage had caused the mmWave spectrum to be largely remained unused. 

Despite the high path loss and shadowing effects, mmWave frequencies remains 

highly attractive for future cellular networks [4]. Several studies recently reported 

multi-Gbps access communications using the mmWave [9], [35], [40]. The available 

large bandwidth at mmWaves, along with the processing techniques such as 
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beamforming (BF), highly directional antenna arrays, and of course massive MIMO 

makes the mmWave very suitable and optimal choice for dense networks and highly 

populated areas [38]. 

However, to utilize the full potential of mmWaves, the channel and characteristics 

of mmWave should be understood. In the next section we will overview the propagation 

characteristics of mmWave for 5G applications. 

 

3.2 Millimeter Wave Spectrum  

The current public cellular wireless communications use the microwave carrier 

frequency spectrum which is ranging from 700 MHz to 2.6 GHz with a total bandwidth 

of less than 780 MHz bandwidth [4]. However, there are much more frequency 

resources and bandwidth in the underdeveloped and underutilized high frequency 

spectrum between 30 GHz and 300 GHz, which is called millimeter wave, because of 

the wavelength of the spectrum ranging between 10 mm to 1 mm. 

As shown in Figure 3.1 below, the potential available 252 GHz bandwidth is a huge 

resource for many wireless applications including the mobile broadband. Since Oxygen 

absorption and water vapor in the atmosphere causes high attenuation, [7] and limits 

the propagations in some parts of this spectrum, about a 100 GHz millimeter wave 

spectrum are available for mobile communications mainly at sub 100-GHz bands. 
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Figure 3.1  Millimeter wave spectrum, along with oxygen and water vapor absorption 

bands [7] 

 

Based on the usage and wavelength of the sub-100 GHz bands, millimeter wave 

spectrum is divided and named into several bands. 

Table 3.1 [41] shows these bands with related frequency range and wavelengths. 

In each of these bands, some applications have been considered by different countries. 

The Q band, generally ranging from 30 GHz to 50 GHz is mainly used for satellite 

communications, astronomy and terrestrial microwave communications. A part of the 

V band, from 50 GHz to 75 GHz is called 60 GHz and is used for unlicensed wireless 

communications [43]. Some parts of E band such as 71 GHz to 76 GHz, 81 GHz to 86 

GHz and 92 GHz to 96 GHz has attracted attentions of standardization bodies for usage 

in fronthaul and backhaul networks specially in the United States [41]. The W band 

with small wavelength is suitable for satellite communications and deep space studies. 

 

Table 3.1  Millimeter Wav frequency bands designation for sub-100 GHz [41] 

 

Band designation Frequency Range (GHz) Wavelength (mm) 

Q 30-50 10.00-6.00 

U 40-60 7.50-5.00 

V 50-75 6.00-4.00 

E 60-90 5.00-3.33 

W 75-110 4.00-2.73 
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Kei et al. [40], listed the mmWave spectrum frequencies selected for 5G and 

beyond by four different organizations including World Radio Conference-15 (WRC-

15) in ITU-R, European Conference for Post and Telecommunication (CEPT) in EU, 

Federal Communication Commission (FCC) in the United States, and 5GMF [30] in 

Japan. The Table 3.2 shows that in addition to above 30 GHz bands, some parts of the 

7 GHz bandwidth between 22 GHz and 29 GHz which is also called 24 GHz band and 

allocated for automotive radar will be used for 5G as well.  

 

Table 3.2  Considered mmWave bands for 5G by different organizations [40] 
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3.3 Propagation Characteristics of MmWave at 5G Bands  

As it was mentioned, the propagation characteristics of millimeter wave frequencies 

are different from the sub-3 GHz bands. Also, each frequency at the huge spectrum of 

millimeter wave has different propagation characteristics, therefore, studying the 

characteristics of the candidate bands for 5G helps toward better understanding and 

proper modeling of mmWave channels for various 5G deployments scenarios. In this 

section we will review the major propagation characteristics of millimeter wave, 

including free space propagation, atmospheric losses, rain attenuation, material 

penetration and reflection coefficients. 

 

3.3.1 Atmospheric losses 

Millimeter wave wireless communications suffer from a larger propagation loss 

that the gas molecules in the Earth’s atmosphere cause, compared to microwave 

wireless systems at lower carrier frequencies. The atmospheric loss, which is called 

gaseous attenuation as well is caused by molecules absorbing some portion of 

propagating waves’ energy and vibrating proportionally to the carrier frequency [9]. 

The severe attenuations in millimeter waves are caused by oxygen (O2) gas and water 

vapor (H2O) gas [8], [41], [44]. There are several other inter-related factors such as 

temperature, altitude, pressure and the most important one, operating carrier frequency 

that defines the intensity of gaseous absorption [9]. 

Figure 3.2 [39], a simplified and combined conclusion of oxygen and water vapor 

attenuation on the millimeter wave, shows that both dry air (oxygen) and water vapor 

have effects on the propagation of high frequency bands. Considering the sea level with 

the maximum air density as the worst case for atmospheric attenuation, the O2 
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absorption peaks are observed at the 60 GHz with more than 10 dB/km and around 120 

GHz at 1.4 dB/km loss respectively.  

 

 

 

Figure 3.2  Specific attenuation of O2, H2O and rain at sea level [39] 

 

Also, it can be seen from the Figure 3.2 that the losses due to H2O molecules are 

at 23 GHz and 183 GHz with associated losses of 0.18 dB/km and 28.35 dB/km 

respectively. It can be observed that the three large attenuations which are at 60 GHz, 

183 GHz and around 323 GHz with the maximum attenuation of 38.6 dB/km at the 

latter, and two smaller peaks at 23 GHz and around 120 GHz, are generally called 

atmospheric attenuation resonant [8]. Since the O2 and H2O resonance bands do not 

match, it seems that the impact of atmospheric losses on millimeter wave is 

insignificant, especially on transmissions over short distances. 
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3.3.2 Rain attenuation 

The precipitation attenuation and losses due to the rain are significant in millimeter 

waves. Raindrops are roughly at the same size that the radio wavelengths are at 

millimeter wave frequencies. Therefore, millimeter wave signals are easily blocked by 

raindrops, in which as a result, energy of the signal is scattered, and its strength is lost 

[8], [41]. Based on some reports, the rain attenuation depends on the rate of rainfall. It 

has been reported that for the heavier rain falls, the rain loss of the signal gets higher. 

The data from the experimental measurements at 70 GHz show that in a situation of 

light rain at 1 mm per hour the signal loss is around 0.9 dB/km and meanwhile, for a 

larger rain rate of 50 mm per hour an exponential increase to 18.4 dB/km is recoded. 

In addition, the impact of rain is different on different frequency bands of 

millimeter waves. In the same rain rate, higher frequencies suffer larger rain losses. 

Compared to traditional wireless networks on microwave bands, rain attenuation at 

millimeter wave and designated sub-100 GHz bands for 5G are more problematic. 

However, with a shorter communication in the order of 200 m, the path loss due to rain 

attenuation is not significant. Thus, higher frequency millimeter waves are used in 

indoor scenarios and in the dense urban environments in a cell size not more than 200 

meters. 

 

3.3.3 Material Penetration 

The millimeter wave frequencies are also vulnerable to penetration loss and 

compared to low frequency waves, the mmWave cannot propagate well through most 

of solid materials such as walls, doors, room furniture [9], [18]. Thus, millimeter wave 

signals are easily obstructed, especially in densely urban areas with lots of buildings 

and crowds of people. Several measurement campaigns such as [18], [19], [20], have 
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been carried out in different environments to study the penetrability and path loss of 

millimeter waves. The Table 3.3 shows the results of indoor and outdoor experiments 

by Zhao H. et al [18] in New York City in 2012. According the table, the mmWave 

suffer more from penetration loss in outdoor environments. For example, the tinted 

glass with 3.8 cm thickness experiences a 40.1 dB penetration loss in outdoor. 

Meanwhile, clear glass has the minimum penetration loss of 3.6 dB in the indoor 

condition. 

 

Table 3.3  Penetration losses of different materials in dB/cm based on the 

measurements by [18] 

 

Environment Location Material 
Thickness 

(cm) 

Penetration 

Loss 

(dB) 

Outdoor  

Othmer 

Residence Hall 

Tinted 

Glass  
3.8  

40.1 

Warren Weaver Hall Brick 185.4 28.3 

Indoor   

MetroTech 

Center 

Clear 

Glass  
<1.3  

3.9 

Warren Weaver Hall 

Tinted 

Glass 
<1.3 

24.5 

Clear 

Glass 
<1.3 

3.6 

Wall 38.1 6.8 

 

3.4 Summary  

In this chapter, we presented the propagation characteristics of millimeter wave 

communication. The mmWaves suffer from higher atmospheric attenuation and are 

sensitive to blockage. To fully utilize the mmWave potential, a well-understood 

characteristic of each band will be needed.  
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Chapter 4 

 

Millimeter Wave Channel Modeling and 

System Design Consideration  

 

4.1 Introduction 

In the previous chapter, we discussed the fundamental characteristics of millimeter 

wave and explained how the mmWave characteristics are mainly different from 

traditional microwave bands. In this chapter, we discuss details of mmWave channel 

modelling, the available challenges toward it, and the considered large-scale and small-

scale fading components. Also, in order to characterize the channel model which will 

be used in this work, urban micro and urban macro channel models will be considered. 

We will focus on the 5G Channel Model (5GCM) which will be used for simulations 

and discussion in this thesis. 

 

4.2 The Millimeter Wave Channel Model  

The extensive mmWave propagation measurements by various research teams, 

measurement campaigns, and trial deployments has resulted in the feasibility of 

mmWave for mobile communication, in which as a result, the utilization of mmWave 
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seems to be a reality for near future 5G cellular systems [4], [19], [20], [46], [47]. 

However, the design and deployment of an efficient 5G network in mmWaves, like any 

other wireless systems, needs channel models based on a thorough understanding of 

physical behavior and measurements to analyze signaling protocols and air interfaces 

[1], [41], [48].  

The classification of channel models is done in to two categories of physical 

channel models and analysis-based channel models. The base for an analytical channel 

model is mathematical analysis, whilst the construction of a physical channel model is 

based on propagating signal characteristics between the transmitter and receiver 

antenna arrays [9]. In this work, we will consider the stochastic physical model which 

is based on extensive measurements, and the model is probabilistic for the description 

of the characteristics of spacial and temporal behavior of the multi path components 

(MPCs). The deterministic model generally has higher computational complexity. 

Another benefit of the stochastic channel models is its lower computational complexity 

with less time, which makes it suitable for simulation and system design [9]. 

 

4.3 Modelling Efforts in Millimeter Wave  

The aims for utilization of mmWave for 5G different scenarios have accelerated 

channel modeling for career frequencies in the range of 2 GHz up to 100 GHz. Several 

projects and organizations have investigated and proposed channel models for various 

frequency bands such as 28 GHz, 38 GHz, 60 GHz, and 73 GHz, and for different 

deployment scenarios such as indoor, outdoor, backhaul, etc. [9], [48].  

We will narrow down our focus only on the contributions on channel modeling for 

5G technology. In Table 4.1 [9], [48], a number of major organizations that have 

contributed for channel modeling for 5G and for different environments such as LOS 

and NLOS and various frequency bands are listed. 
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Table 4.1  MmWave channel modeling by different organizations and efforts [9]  

 

Technology Frequency year Channel 

Model 

Description 

5G 28 GHz, 

38 GHz, 

and 73 

GHz 

Since 

2011 

5GCM A lot of research efforts on 

millimeter wave channel modeling 

mainly at 28 GHz, 38 GHz, and 73 

GHz. Firstly, proposition on 

narrowband and then a number of 

wideband channels. [49] 

5G up to 100 

GHz 

2012 METIS 5G PPP millimeter wave channel 

model for mobile systems. The 

Model is according to WINNER Ⅱ 

and WINNER + channel modeling 

[55]. 

5G up to 100 

GHz 

2017 3GPP The new 3GPP series 38.900 

channel models which is an 

extension of 3GPP TR 36.873, 

commonly used for sub-6 GHz 

bands. The current model supports 

azimuthal and elevation 

characteristics of the channel. 

Different scenarios and sub-100 

GHz bands are supported [31]. 

5G 6-100 

GHz 

15 mmMAGIC An initiative of European 

Commission to investigate the 

employment of mmWaves for 5G. 

The mmMAGIC produced channel 

models based on intensive modelling 

and validation efforts benefiting a 

large amount of data from 22 

channel measurement campaigns. 

[9], [50] 
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Table 4.1 shows the four major organizations’ contribution to the mmWave 

channel modeling. We will suffice exploring these organizations to the descriptions in 

the table, unless for the 5GCM which will be used throughout this thesis and will be 

explained in detail. The efforts of 5G Channel Model is based on the extensive field 

measurements mainly at 28 GHz, 38 GHz, 60GHz, and 73GHz, by the NYU 

WIRELESS [26]. First a narrowband was proposed in [52] and then followed by 

wideband channel models of [20], [51]. Different scenarios including indoor, outdoor, 

device to device (D2D) and Vehicular-to-Vehicular (V2V) were considered in these 

channel models, with an emphasis on mobile access services [9].  

According to [48], although many participants of these standardization bodies 

overlap, but the final models somewhat ‘distinct’ and recent work has found 

discrepancies between the proposed models and measured results. This shows that there 

are several modelling challenges, in which the developed models so far, cannot 

adequately reflect all features of mmWaves. In the next subsection, we will briefly 

overview some of these challenges. 

 

4.4 Millimeter Wave Channel Modeling Challenges  

Numerous channel models have been developed and exist in the literature, as the 

major ones were summarized in Table 4.1 in previous section. However, based on the 

mmWave use cases especially for 5G, huge bandwidth, and mmWave nature, these 

models cannot reflect all the characteristics of mmWaves. The main challenge is to 

develop a single channel model to be usable throughout the entire mmWave spectrum 

with only modifying the parameters in respect to carrier frequency, scenario case, or 

based on the used environment [9]. This was recognized by some organizations but 

claimed by [55] not to be achievable. 
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 The main limitations of currently developed channel models are briefly 

highlighted in the areas of lack of measurements, huge bandwidth availability, dual 

mobility cases, directional antennas and massive array elements usage, which are 

among the challenging restrictions for the mmWave channel modeling [9], [48].   

Although there have been extensive measurement campaigns at mmWaves, the 

wide range of mmWaves needs to be studied further. The previous models were 

developed for narrow bands of sub-6 GHz, in which the usage for the huge bandwidth 

of mmWave impose some limitations. In the device-to-device (D2D) communications 

that both nodes are moving, a higher Doppler spread is expected which affects the 

channel. The utilization of directional antennas along with massive antenna arrays or 

massive MIMO at mmWaves will mitigate the higher Doppler spread and high 

attenuations, and this needs to be considered in the channel modeling [ 9]. 

 

4.5 System Design Consideration  

4.5.1 General Structure of mmWave Channel  

In the mmWave channel, the aggregation of different multi path components with 

a short symbol interval forms the impulse response of the channel. A cluster can be 

defined as a number of MPCs which has similar tempo-spatial characteristics [9] 

A model of aggregated channel matrix has been given in [9], 

 

               𝐻(𝑡) =∑ ∑ 𝐻𝑛𝑐𝑙, 𝑝(𝑡)
𝑁𝑝

𝑝

𝑁𝑐𝑙

𝑛𝑐𝑙
                   (4.1) 

 

where Ncl show the total number of aggregated clusters and Np is the number of the rays 

in the cluster, meanwhile Hncl, p (t) is a single multipath of p-th ray in the ncl-th cluster 

at time t. In the literature, the path loss is commonly considered in the LOS and NLOS 

scenarios. We will briefly explain each scenario in the follows.  
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4.5.2 LOS Probability Model 

In the literature on mmWave, it is common to describe the path loss for LOS and 

NLOS conditions separately. Therefore, a model is needed to predict whether a user 

equipment (UE) is within a clear LOS of a base station (BS) or is obstructed to be in an 

NLOS region [48]. The LOS probability is frequency-independent and is modeled as a 

function of distance between transmitter and receiver, which can be affected by 

environment layout.   

 

 

4.5.2.1 UMi LOS Probability 

 

As it was mentioned in the section 2.2 of chapter 2, the UMi scenario is defined for 

high user density areas with an inter-site distance (ISDs) of up to 200 m and BS height 

below rooftops. Different organizations have developed the UMi LOS probability 

models as shown in the Table 4.2 [48] below. We will suffice explaining for the 5GCM 

which will be used throughout this thesis and will be explained in detail. 

 

Table 4.2  LOS probability models of 5GCM in the UMi and UMa scenarios [48] 

 

 

UMi 

 

d1/d2 model: PLOS(d2D) = min (d1/d2D, 1) (1 - exp(-d2D=d2)) + exp(-

d2D=d2) 

NYU (squared) model: PLOS(d2D) = (min (d1/d2D, 1) (1 - exp(-

d2D/d2)) + exp(-d2D=d2))2 

d1/d2 model:  

d1 = 20 m, d2 = 39 m        

 

NYU (squared) model: d1 

= 22 m, d2 = 100 m  

 

UMa 

d1/d2 model: PLOS = (min (d1=d2D, 1) (1 - exp(-d2D/d2)) + exp(-

d2D/d2)) (1 + C (d2D, hUE) 

NYU (squared) model: PLOS = ((min (d1/d2D, 1) (1 - exp(-d2D/d2)) + 

exp(-d2D/d2)) (1 + C (d2D, hUE)))2 

d1/d2 model:        d1 = 

20 m, d2 = 66 m          

NYU (squared) model: d1 

= 20 m, d2 = 160 m 
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Table 4.2 shows the contribution of the 5GCM [49] for UMi and UMa scenarios 

which has introduced two LOS probability models in each scenario. The first one is 

similar to the 3GPP TR 38.901 outdoor model described in the literature, with slight 

difference in d1 and d2 values. The second one is NYU squared model [53], which adds 

a square on the last term. This model was developed based on intensive measurements 

in New York City [48].   

 

 

4.5.2.2 UMa LOS Probability 

 

In the Urban Macrocell (UMa) scenario, the UE height is in the ground level at 1.5 

m and BSs are typically mounted above rooftop at heights 25-30 m, and with an ISD 

up to 500 m [32]. The UMa LOS probabilities are given in the previous Table 4.2 [48], 

as well, which are identical to UMi LOS probability, with only differences in the d1 and 

d2 values.  

 

4.5.3 Large-Scale Path Loss Models 

Out of the three basic types of large-scale path loss models which are used for 

predicting the signal strength over distances, we use the close-in (CI) free space 

reference distance model with 1 m reference distance, throughout this work. The CI 

path loss is frequency dependent and use a close-in reference distance according to Friis’ 

law and given by [48], [54]: 

 

PLCI (fc, d3D) [dB]=FSPL) (fc, 1m) + 10n log10 (d3D) +χσ
CI                    (4.2) 
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where χσ
CI is the shadow fading (SF) as a zero mean Gaussian random variable with a 

standard deviation in dB, n is the path loss exponent (PLE), d3D> 1m, FSLP) (fC, 1m) 

is the free space path loss at frequency fC in GHz at 1 m and the FSPL is calculated as: 

 

FSPL (fC, 1m) [dB] = 20log10 (4πfc x 109/c) = 32.4+ 20log10 (fC) [dB]          (4.3)                                  

 

where c is the speed of light in a vacuum, 3 x 108 m/s. The CI links path loss of different 

frequencies to the free space path loss at 1 m according to the Friis’ law and researches 

report that it has shown more accuracy and less complexity [50], comparing with others. 

The path loss models are generally created omnidirectional with the assumption of unity 

gain antennas [48]. 

 

4.5.3.1 UMi Large-Scale Path LOS  

 

The UMi scenario is commonly considered as street canyon or open square 

situations, as it can be seen in the Table 4.3 [48]. The 5GCM [49] has chosen the CI for 

modeling the UMi LOS path loss. In the CI path loss model, only the Path Loss 

Exponent (PLE), a single parameter, is determined to minimize the model error of mean 

loss over distance through optimization. However, in the Floating Intercept (FI) also 

known as ABG model, three parameters namely α, β and γ need to be optimized to 

minimize the model error [48].  
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Table 4.3  Omnidirectional Path loss models in the UMi scenario [48] 

    

 
 

 

4.5.3.2 UMa Large-Scale Path LOS 

 

The 5GCM [49] has introduced three UMa path loss models, CI, CI with a 

frequency-weighted (CIF) and ABG. The ABG and CIF are considered for the NLOS 

scenario while CI is used for the LOS condition. The path loss models of 5GCM and 

other organizations are explained in the Table 4.4 [48] below. 
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Table 4.4  Omnidirectional Path loss models in the UMa scenario 

 

 
 

4.6 Considered Model for Urban Dense Environments  

Among the existing channel models developed by different groups, 5GCM [49], 

and 3GPP channel models are mostly referenced to in this thesis. In this research, the 

NYUSIM simulator [56] is used for all simulations as it has been shown in [53] that it 

has more accuracy than 3GPP. The NYUSIM simulator has been developed by NYU 

WIRELESS at the New York University, and is based on the channel modeling of 

5GCM [49], benefiting from extensive mmWave field measurements in various cities 

in the United States and in the Republic of Korea. For the dense urban environment of 

this research case, we will consider the UMi and UMa scenarios with different 

frequency bands, and with the 5GCM developed channel models.   
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Chapter 5 

 

Performance Evaluation and Discussion  

In this chapter we evaluate and compare the performance of mmWave large-scale 

fading such as path loss, shadowing factor and delay spread through simulations on the 

three considered frequencies of 28 GHz, 73 GHz and 4 GHz for the dense urban 

environments.  

   

5.1 Simulation Setup  

Our simulation set up consisting of channel parameters and antenna properties for an 

outdoor millimeter wave propagation is as follows. We have simulated 28 GHz and 73 

GHz frequencies for UMi scenario with an 800 MHz bandwidth over MIMO channel 

of 16X4 ULA antenna arrays. Also, for the UMa scenario, 4 GHz with a 200 MHz 

bandwidth, based on the requirements of 3GPP 5G NR, is simulated with an 8X2 ULA 

arrays. Both scenarios are simulated in the NYUSIM, simulator [56]. The NYUSIM 

simulator uses the Close-in approach for path loss calculation as was discussed in 

chapter 4. The simulator contains all the parameters affecting the radiation of mmWave 

including the large-scale parameters of Line-of-Sight (LOS), Non- Line-of Sight 

(NLOS) and path loss, and, small-scale parameters such as foliage attenuation. The 

propagation frequency range of the simulator is from 0.5 GHz to 100 GHz and has 

considered different scenarios of Urban Micro (UMi), Urban Macro (UMa) and Rural 

Macro (RMa). 
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The channel parameters and antenna design properties at NYUSIM simulator are set 

as follows. For the propagation properties, the UMi and UMa scenarios is considered 

with both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) and the TX-RX 

separation distance is ranging from 10 to 500 m. The atmospheric effects including 

barometric pressure, humidity, temperature and rate rain are specified as 1015 mbar, 

50%, 10 °C and 5 mm/hr, a typical weather condition in January in Tokyo, respectively. 

The foliage attenuation is 0.4 dB/m and the distance between the foliage is set to 10 m 

in any randomly selected location. The channel parameters and antenna properties are 

set as shown in Table 5.1. 

 

Table 5.1  Channel parameters and Antenna Properties for UMi and UMa scenarios 

 

Channel Parameters  Specification 

UMi Scenario UMa Scenario 

Carrier Frequency  28 GHz, 73 GHz 4 GHz 

Bandwidth  800 MHz 200 MHz 

Height of BS 25 m Not considered 

Temperature  10 °C 

TX-RX Separation  10-500 m 

Number of RX locations 500 

Foliage attenuation  0.4 dB/m x 10 m 

Distance within foliage 10 m 

TX Power 30 dBm 

TX Array Type, Nt ULA, 16 ULA, 8 

RX Array Type, Nr ULA, 4 ULA, 2 

TX Antenna Spacing 0.5 λ 

RX Antenna Spacing 0.5 λ 

Modulation  OFDM 
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5.2 Simulation Results  

As it was mentioned in the previous section, the simulations have been conducted 

on three frequencies which are among the list of frequencies to be used in 5G access 

systems, namely, 28 GHz and 73 GHz for the urban microcell (UMi) scenario of radius 

not more than 200 meters, and 4 GHz for the urban microcell (UMa) of up to 500 m for 

dense urban environments. Since path loss and shadowing are the two important 

variations in the propagation and determining the received signal power, we show the 

simulation results of the channel extracting the values for these variations. Generally, 

path loss and shadowing are mainly caused by transmission distance and obstruction in 

the signal path, therefor we evaluate these variations for the LOS and NLOS cases under 

the directional and omnidirectional conditions for different distances for the considered 

frequencies. Also, directional and omnidirectional power delay profiles (PDPs) for each 

considered frequency are compared in LOS or NLOS cases, and among the simulated 

frequencies.  

 

5.2.1 Dense urban microcell (UMi) scenario 

As we explained in section 2.3, the main characteristics of the dense urban 

environment is outdoor and outdoor-to-indoor coverage with high traffic loads. 

Considering the high penetration loss at mmWave and as authors in [12] also proposed 

splitting the outdoor and indoor 5G access, our focus on this work is on the outdoor 

UMi scenario which seems to be the main deployment of 5G for dense urban areas with 

few dozen meters of Inter-Site-Distance (ISDs). In this section, we will investigate the 

performance of 28 and 73 GHz bands with the range of TX-RX distances at 200 m and 

100 m respectively, for both LOS and NLOS cases. The performance of each case will 

be considered for both omnidirectional and directional conditions. The PDPs of LOS 
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cases are compared for the directional and omnidirectional conditions for each utilized 

frequency at a randomly TX-RX distance as well. 

 

 

5.2.1.1 28 GHz performance  

 

In our simulation the first carrier frequency is the frequency band of 28 GHz. The 

28 GHz frequency band enjoys very interest and popularity for the future 5G mmWave 

access, although it was excluded from the WRC-15 nominated bands for IMT-2020 

deployments [12]. Also, according to 5GMF [30], most of the mmWave field 

measurements for 5G in Japan are conducted in 28 GHz and 4 GHz, which both 

probably have the support of Japanese government in the WRC-19 for 5G bands. 

The simulations result of the directional and omnidirectional path loss, the 

aggregated path loss exponent (PLE) and directional best PLE for the LOS and NLOS 

cases is shown in the Figure 5.1. The figure depicts the performance at 500 randomly 

selected RXs by NYUSIM simulator [56] ranging from 10 m to 500 m, as the lower 

and upper bounds from the TX respectively, and under the channel parameters 

described in previous section.     
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(a)  

 

 

 

 

 

 

 

 

 

 

 

   (b) 

Figure 5.1. Omnidirectional and directional path loss values generated with 500 

simulation runs for the 28 GHz UMi, (a) LOS and (b) NLOS scenarios. n denotes the 

path loss exponent (PLE), σ is the shadow fading standard deviation, "omni" represents 

omnidirectional, "dir" denotes directional, "dir-best" means the direction with the 

strongest received power, "Ant." denotes antenna, "AZ" and "EL" stand for azimuth 

and elevation, respectively. 
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The Figure 5.1 shows that the path loss increases linearly as distance increases and 

it is higher for directional propagations in both cases and is even highest under the 

NLOS conditions. Figure 5.1 (a) shows that directional PLE at 3.2 with a shadowing 

factor (SF) σdir=11.8 dB is higher than the omnidirectional PLE of 2.2 and σomni=4.1 

dB, as in the literature for the LOS. However, the directional best PLE, or strongest 

possible link created in directional path, is very close to omnidirectional PLE. Moreover, 

as seen in Figure 5.1 (b), the path loss increases faster for the NLOS scenario than LOS, 

with regards to increase in distance due to obstruction on the signal path. For the 

directional path in NLOS case, the PLE increases to 4.2 and with a shadowing factor of 

12.2, dB, yet a with a directional best value of only 0.1 and 0.2 dB, PLE and SF 

respectively, higher than in the omnidirectional propagation. The results suggest that 

higher directional PLE for both NLOS and LOS cases in 28 GHz is probably because 

antenna arrays are often not optically aligned on boresight. This problem can be 

addressed by using steerable beam antennas as investigated in [19]. The results also 

suggest that omnidirectional propagation path loss at 28 GHz is not drastically higher 

than those in the current microwave systems within the UMi scenario.   

Figure 5.2 shows the directional power delay profile (PDP) with strongest power 

and the omnidirectional PDP for the 28 GHz at a randomly selected RX location at 

200.8 m in the UMi LOS case. The path loss and PLE of both directional and 

omnidirectional conditions show small difference, as it can also be seen for the RMS 

delay spread (στ) with a short time difference. However, the received signal power for 

omnidirectional is more than two times weaker than in directional. The simulation 

results are comparable to the field measurements in [6], [20] and [46] as well. The 

results suggest that directional propagation in LOS case is not much greater than 

omnidirectional for the smaller cells of up to 200 m at 28 GHz.  
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(a)                                      

(b) 

   

Figure 5.2  Omnidirectional PDP and Directional Power Delay Profiles with 

strongest power at 28 GHz at 200.8 m TX-RX separation in UMi LOS case. "Ant." 

denotes antenna. 

 

 

5.2.1.2  73 GHz performance  

 

The 73 GHz band is another popular frequency that has attracted interests from 

academia for research and industry for commercial applications. Researchers achieved 

multi-Gigabit per second wireless links at 73 GHz and it has been used for 5G trial by 

some companies as well. It is still a popular frequency band for 5G deployments in 

urban areas. 

The simulation results of 73 GHz band of the directional and omnidirectional path 

loss, the PLE and directional best PLE for the LOS and NLOS cases is shown in the 

Figure 5.3.  
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(a) 

 

    

(b) 

Figure 5.3 Omnidirectional and directional path loss values generated with 500 

simulation runs for the 73 GHz UMi, (a) LOS and (b) NLOS scenarios. 
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Similar to the 28 GHz, Figure 5.3 shows that the path loss increases linearly as 

distance increases and it is higher for directional propagations in both cases. 

Figure 5.3 (a) shows that the PLE and SF of 73 GHz is smaller than 28 GHz under the 

same channel condition. On the other hand, Figure 5.3 (b), shows that for the NLOS 

case in the 73 GHz, multipath components (MPCs) are not detectable as a threshold of 

168 dB path loss floor as was set for measurement campaign in [19]. The results suggest 

that 73 GHz is applicable for both LOS and NLOS in the ISDs less than 100 m for the 

dense urban areas cellular networks as shown in [51].  

Figure 5.4 shows the PDPs for directional and omnidirectional propagations at 73 

GHz at 101.9 m. Similar to 28 GHz, there are small differences in PLE and PL. However, 

it can be seen that ratio of the omnidirectional to directional delay spread, στ in this 

UMi LOS case is in the order of 4 times which is higher than to field measurements 

[46]. The results suggest that omnidirectional delay spread for LOS at 73 GHz is greater 

meanwhile, it receives much higher number of multipath component than directional 

propagation. 

 

               (a)                                  (b)    

  
Figure 5.4  Omnidirectional PDP and Directional Power Delay Profiles with 

strongest power at 73 GHz at 101.9 m UMi LOS case. "Ant." denotes antenna. 
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5.2.2 Dense urban macro (UMa) scenario 

The urban macro scenario for a millimeter wave deployment was illustrated in 

section 2.3 based on 3GPP [31] definition. The ISD for this scenario is up to 200 m 

since our frequency is 4 GHz, we will consider a cell radios of 500 m for this case. 

 

5.2.1.3  4 GHz Performance  

 

The 4 GHz has attracted many attentions recently to be among the bands which 

will be allocated for 5G in WRC-19. Some countries such as japan has already started 

field measurements and tests on this frequency [3]. 

Similar to the 28 GHz and 73 Ghz, we will examine the path loss, PLE and best 

PLE for 4 GHz band as well. However, for the PDPs the NLOS case has been 

considered for 4 GHz. Figure 5.5 shows the simulated path loss for different conditions.  

 

 

  (a) 
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(b) 

 

Figure 5.2.1 Omnidirectional and directional path loss values generated with 500 simulation runs for 

the 4 GHz UMa, (a) LOS and (b) NLOS scenarios. 

Figure 5.5 Omnidirectional and directional path loss values generated with 500 simulation runs for 

the 4 GHz UMa, (a) LOS and (b) NLOS scenarios. 

                      

Since 4 GHz is a sub-6 GHz band, based on the 3GPP [31] recommendation, a 

wide bandwidth of up to 200 MHz can be used in this band for application in 5G. Figure 

5.5 shows that the PLE of both LOS and NLOS of 4 GHz is similar to the 28 GHz and 

73 GHz. However, Figure 5.5 (a) shows that the SF at σdir=15.1 dB is larger than both 

previous frequencies. Similarly, shadow factor for NLOS is greater than other studied 

frequencies. Next, we will observe the PDPs performance for this frequency band in 

Figure 5.6.  
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(a)                                  (b) 

 

Figure 5.6  Omnidirectional PDP and Directional Power Delay Profiles with 

strongest power at 4 GHz at 499.6 m UMa NLOS case. "Ant." denotes antenna. 

 

 

  Figure 5.6 shows the PDPs for directional and omnidirectional propagations at 4 

GHz at 499.6 m TX-RX separation. Similar to 28 GHz and 73 GHz, the PLE and PL 

are close in values in each case. However, it can be seen that ratio of the 

omnidirectional to directional delay spread, στ in this UMa NLOS case is in the order 

of 7 times which is aligned with the field measurements [46]. The results suggest that 

a number of multiple components are detectable for NLOS case at 4 GHz in the range 

of 500 m, with a comparable path loss to other mmWave frequencies. 

 

  The results of this study show that the considered mmWave frequency bands have 

the capability to be used in the 5G mobile network, by overcoming some propagation 

challenges, for all scenarios. Simulations have shown that propagation in microcell in 

LOS and NLOS cases has path loss within the compensable range for propagation. 

The results also suggest that using microcells of less than 100 m for 73 GHz, 200 m 

for 28 GHz and up to 500 m for 4 GHz will suited for 5G access transmission. 

However, it should be taken into account that based on report in [46], the outage 

probability for 28 GHz within 200 m is about 20 %, but it increases dramatically to 

57 % beyond 200 m. 
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Chapter 6 

 

Conclusion and Future Work 

 

6.1 Conclusion  

  Millimeter Wave communication is a key enabling technological for the realization 

of the Internet of Things in the 5G and beyond networks. In this thesis, we studied the 

propagation characteristics of mmWave in a dense urban environment for a 

heterogenous 5G network. The results in this study show that mmWave has the 

capabilities to be used in the 5G cellular outdoor networks by overcoming some 

propagation challenges for the massive connectivity in the dense urban areas.  

We reviewed the propagation characteristics of millimeter wave and highlighted the 

differences that mmWaves show in terms of higher rain and atmosphere attenuation and 

more sensitivity to blockage, compared to traditional wireless communications.  The 

efforts for mmWave channel modeling was discussed and some developed channel 

models were introduced. We also described the details of the considered channel model 

for urban dense environments. 

We finally presented the performance evaluation of the 28 GHz, 73 GHz and 4 GHz 

mmWave bands in a dense UMi and UMa environment. The results have shown that 

propagation in this environment in LOS and NLOS cases has path loss within the 

compensable range for propagation. However, the path loss in the NLOS case for 
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directional propagation is higher compared to omnidirectional path loss and increases 

rapidly with increase in the distance. 

In conclusion, large-scale characteristics of the studied mmWave bands have shown 

good potentials for usage in the urban dense area. High gain directional antenna arrays 

with massive MIMO are considered to overcome the severe path loss challenges in 

some specific circumstances.  

 

6.2 Future Work  

  As an extension, our future work will investigate other mmWave propagation 

scenarios such as Outdoor-to-Indoor (O2I) and penetration into buildings which poses 

other challenges towards deployment of mmWave in the 5G and beyond wireless 

networks. Also, we will focus on the directional transmissions at mmWave frequencies 

employing massive antenna arrays, to study and propose efficient beamforming 

techniques mitigating directional propagation loss. This leads to consider time-efficient 

beam training techniques for estimation of channel state information at mmWaves with 

narrower beams and with high directionality as well.  In this regard, our future work 

focus will be on consideration of innovative algorithms for channel estimation in 

designing hybrid beamforming as a promising architecture for future mmWave mobile 

communications.  
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Research Achievements  

1. Ahmad S. Seraj and Takuro Sato, “Propagation Challenges for 5G MillimeterWave-

enabled Communication Systems: The UMi Scenario”, The 37th JSST Annual 

International Conference on Simulation Technology, Hokkaido, Japan, Sep. 2018 
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