

A Lossless Irregular Tensor Factorization for

Cross-domain Recommender System with Genetic

Algorithm on Spark

A Thesis Submitted to the Department of Computer Science and Communications Engineering, the

Graduate School of Fundamental Science and Engineering of Waseda University in Partial

Fulfillment of the Requirements for the Degree of Master of Engineering	

Submission Date: February 1st, 2019

Guodong Xue

(5117FG11-3) 

Advisor: Prof. Hayato Yamana

Research guidance: Research on Parallel and Distributed Architecture

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286963355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Abstract
 Recommender systems analyze user behaviors and users’ feedback information to
recommend potentially desirable items. Users may have sufficient experience in their focused
domains, however, they may lack experience in unfamiliar domains, leading to drop in
accuracy of the recommender systems. Therefore cross-domains recommender systems, a
system which analyzes the user information from both their familiar and unfamiliar domains,
become an important emerging research topic. Weighted Irregular Tensor Factorization (WITF)
was proposed as an algorithm to leverage cross-domain feedbacks across all users, which
achieved higher accuracy than the algorithm which leverages feedbacks from a particular
domain. WITF considers the dataset as an irregular tensor containing different items for each
domain. According to the tensor theory, irregular tensor must be transferred into a regular
tensor, where each domain contains the same items, before executing tensor factorization to
obtain the user's latent factors. Therefore, WITF must assign a weight on each domain to ensure
the minimal data loss during the transformation. We define this kind of irregular tensor
factorization as “lossless irregular tensor factorization”, where the “lossless” represents the
minimal data loss during an irregular tensor transferring to a regular tensor. To search for the
optimal domain weight configuration is a complex and time-consuming procedure. Thus,
WITF simply adopts an empirical domain weight configurations. However, the performance of
WITF can be optimized by searching for the optimal domain weight configuration on each
domain. In this paper, we propose a model which combines Apache Spark® and genetic
algorithm to search for the optimal domain weight configurations for WITF efficiently, then
using the obtained optimal configuration to generate more precise users’ latent factors to make
recommendations. Experimental evaluation using two sizes of datasets shows 4.2% and 6.3%
better accuracy in comparison with the WITF. The experiments show that our proposed method
can execute on Spark platform efficiently and has the ability to search the optimal domain
weights configurations of the WITF model.

Keywords --- Cross-domain Recommender Systems, Irregular Tensor
Factorization, Parallel Genetic Algorithm, Apache Spark®

 3

Contents
1. Introduction .. 4

1.1 Organization .. 4

2. Background .. 6
2.1 Notations ... 6
2.2 Cross-domain Recommender System .. 6
2.3 Irregular Tensor Factorization ... 7
2.4 Genetic Algorithm ... 8
2.5 Apache Spark ... 9

3. Related Work .. 12
3.1 Weighted Irregular Tensor Factorization (WITF) ... 12

4. Proposed Method ... 14
4.1 Overview ... 14
4.2 Architecture ... 14

5. Experimental Evaluation .. 17
5.1 Datasets and Environment .. 17
5.2 Implementation of Genetic Algorithm ... 18

5.2.1 Initial Population and Encoding .. 18
5.2.2 Fitness Valuation ... 19
5.2.3 Selection Operator ... 19
5.2.4 Crossover Operator ... 20
5.2.5 Mutation Operator ... 20

5.3 Parallelization Evaluation of WITF model ... 21
5.3.1 Parallelization Granularity of WITF model .. 21
5.3.2 Efficiency Evaluation of WITF model on Spark Cluster .. 24

5.4 Evaluation of Execution Time .. 26
5.5 Genetic Algorithm Generation Evaluation ... 27

6. Conclusion .. 30

References ... 31

Acknowledgement .. 33

Publication .. 34

 4

1. Introduction

 With the development of the Internet, the number and variety of contents on the Internet
continue to increase, and users have higher demands on searching and recommendation.
Recommender systems, which makes accurate and personalized recommendations using user’s
difference, interest and experiences, become more and more important and have been widely
used in many fields.
 Collaborative filtering (CF) [1] is the most used algorithm of recommender systems and
have been used in many applications, such as Amazon and Netflix. However, the data sparsity
problem, such that many users do not have data in the CF recommender systems, always affects
the performance of the CF recommender systems. Therefore, researchers have proposed a
variety of algorithms that adopt additional data into CF recommender system. In general, users
always have sufficient experience in their focused domains but lack experience in other
domains. Therefore, the cross-domain recommender systems, which leverage cross-domain
feedback data across all users to learn the user's latent factors, become an important research
topic.
 Weighted irregular tensor factorization (WITF) [2] is a model that considers cross-domain
information by considering the multiple domains dataset as an irregular tensor. In this model,
the weight must be assigned on each domain to ensure the minimal data loss after transferred
into a regular tensor followed by processing the tensor factorization to make recommendation.
However, WITF model simply adopts an empirical domain weights configurations which
decide the weight by the number of items of each domain. Therefore, a method to search the
optimal weights configuration for WITF model is indispensable to improve its performance.
 This study mainly works on combining the WITF model with genetic algorithm on Spark
to search the optimal weights configurations for making more accurate recommendations and
reduce the execution time. Genetic algorithm [3] is commonly used to generate high-quality
solutions for optimization and searching problems. In addition, WITF model and genetic
algorithm are suitable to process on parallel. In order to speed up the computation, we adopt
Spark[4] which is a powerful distributed computing platform and has been an important part
of the big data analytics ecosystem.

1.1 Organization

 This paper includes six sections. In section 2, we discuss the backgrounds of cross-domain
recommender systems, irregular tensor factorization, genetic algorithm, and Spark. In section
3, we discuss the related work based on cross-domain recommender systems and irregular
tensor factorization. In section 4, the proposed method which combines WITF and genetic

 5

algorithm on Spark is described. In section 5, we showed the experiments and evaluation of
the proposed method. Conclusions are in section 6.

 6

2. Background

2.1 Notations

 Table 1 describes notations referred to in this paper.

Table 1. Notations

2.2 Cross-domain Recommender System

 In the real-world environment, users have sufficient experience in their focused domains

but lack experience in other domains. Once we used the information from users’ familiar

domains as auxiliary data, recommender systems could perform better in recommending

potentially desirable items to the users in unfamiliar domains. Therefore, the Cross-domain

recommender systems become an important emerging research topic. Cross-domain

collaborative filtering (CDCF) [5] is an important research topic which focuses on product

Notation Description

x A tensor

𝑿 A matrix (user-item rating matrix)

𝑿𝒌 The matrix of domain k

𝑿𝒌,𝒊,: A row (vector) of domain matrix 𝑿𝒌

𝑿𝒌,:,𝒋 A column (vector) of domain matrix 𝑿𝒌

𝑿𝒊,: A row (vector) of matrix X

𝑿:,𝒋 A column (vector) of matrix X

𝑼 User latent factor matrix

𝑽 Item latent factor matrix

𝑪 Domain latent factor matrix

𝑰 Identity matrix

{ω
k
} A set of domain weights, 1 ≤ k ≤ 𝑲,		K is the domain count

𝑿 𝐹 Frobenius Norm of matrix X

⊛ Hadamard product

 7

domains. Besides the product domains, time, spatial, and other domains are also adopted to

researches related to CDCF. Since matrix factorization (MF) is a widely-used model of CF

recommender systems, cross-domain matrix factorization (CDMF) [6] has been proposed as

an improvement technique of the CDCF method.

2.3 Irregular Tensor Factorization

 In CF recommender systems, dyadic user-item relationship is considered as a core

relationship. To use additional data such as tags and time, some researches adopt the tensor

factorization (TF) [7] to process the triadic relationships, e.g., user-item-tag, user-item-time.

Tensor factorization has two kinds of models: CP decomposition [7] and Tucker decomposition

[7]. As shown in Figure 1, CP decomposition decomposes a tensor into a sum of component

vectors, e.g., 𝑼𝒊,:	,	𝑪𝒊,: and 𝑽𝒊,:, of the three latent factor matrices U, V and C. Compare to CP

decomposition, Tucker decomposition decomposes a tensor into one core tensor 𝒈 and three

latent factor matrices, e.g., U, V and C.

Figure 1. Two models of Tensor Factorization

 To adopt the two kinds of models, the tensor must be a regular tensor that each domain

contains the same items. Unfortunately, almost all datasets from the real world cannot be

considered as a regular tensor with the same items in each domain. On the contrary, the datasets

can be considered as an irregular tensor each of whose domains contains specific items. As

shown in Figure 2, it is necessary to transfer the irregular tensor into the regular tensor which

has the same set of virtual items. However, during the transfer, it is inevitable to have a data

loss [2].

 Therefore, we must ensure the data loss is minimal since we expect to utilize the origin data

 8

from the irregular tensor as much as possible, and then obtain the most accurate latent factors

by processing factorization for the regular tensor which transferred from the irregular tensor.

We define this kind of irregular tensor factorization as the “lossless irregular tensor

factorization”, where the “lossless” represents the data loss is minimum during an irregular

tensor transferring to a regular tensor.

Figure 2. Irregular Tensor Factorization

2.4 Genetic Algorithm

 Genetic algorithm is commonly used to generate high-quality solutions to optimize and

search problems by relying on bio-inspired genetic operations such as mutation, crossover, and

selection. The procedures of genetic algorithm are shown in Figure 3.

Figure 3. Procedures of Genetic Algorithms

 In the step of initial populations, several sets of variables (parameters) are randomly

selected within the search space. Each set of variables is called an individual or a chromosome,

and each individual has randomness and fairness. In the step of encoding, individuals or

 9

chromosomes are represented as a list in a certain way, and each element of the list is a gene.

In the step of fitness evaluation, the objective function value of a question is used to measure

the fitness of an individual. Once the fitness of all the individuals reach to a convergence, the

individual with best fitness will be chosen as a solution. Otherwise, the fitness evolution and

the operator of genetic algorithm will repeat until the fitness of all the individuals reach to a

convergence.

 The rest three procedures are the operators of genetic algorithm. The selection operator

utilizes random rules to select individuals with high fitness value and to eliminate poor genes.

Several pairs of individuals will be randomly selected as parents for gene exchange to generate

children when processing the crossover operator of genetic algorithm. As for the mutation

operator of genetic algorithm, each individual has a probability to be chosen, and each gene of

the individual will change with a certain probability.

 Those bio-inspired operators could be processed in parallel to speed up. To improve the

algorithm, researchers have refined each bio-inspired operator. For example, roulette wheel

selection [3] and tournament selection [8] have been proposed to improve the selection operator.

Binary mutation and Gaussian mutation [9] have been proposed to improve the mutation

operator. Even after it has been decades since the proposal of the genetic algorithm, it has been

widely used up to these days.

2.5 Apache Spark

 Although MapReduce has been implemented in large-scale data-intensive applications on

commodity clusters successfully, some other applications do not suit to use MapReduce. Those

applications contain many iterative algorithms which reuse a working set of data across

multiple parallel operations. Therefore, a new framework named Spark has been distributed by

Apache to support those applications. Spark contains two main new features to retain the

scalability and fault tolerance of MapReduce. They are resilient distributed datasets [4] which

store data on memory, and directed acyclic graph (DAG) of Spark [4] which achieves the fault-

tolerance of Spark.

 As shown in Figure 4.(a), Spark stores data in RDDs and those RDDs are divided into

partitions that are processed on parallel. In addition, Spark RDDs have two kinds of operations

for users, e.g., transformation and action operations. As shown the DAG of Spark in Figure

4.(b), it is a set of vertices and edges, where vertices represent the RDDs and the edges

 10

represent the operations to be applied on RDD. When calling an action operation, the created

DAG is submitted, and the results of the action operation are computed according to the DAG.

When calling an actions operation, the created DAG is submitted and the results of the action

operation are computed according to the DAG, therefore the fault-tolerance of Spark is

achieved.

Figure 4. RDD and DAG of Spark

 As shown in Figure 5, the architecture of a Spark cluster contains three components; they

are Spark driver program, cluster manager and Spark workers. The Spark driver program

converts the users’ applications into tasks and schedule and send tasks on Spark workers. The

cluster manager manages the resources of whole cluster as a plugin of Spark, and Spark can

run different external cluster managers. A Spark worker contains a number of executors, which

have multiple cores (≥ 1) inside, to execute tasks and return the results to the Spark driver

program.

Figure 5. The Architecture of Spark cluster

 11

 An experiment conducted by the Apache official showed that Spark is 10x faster than

Hadoop in iterative machine learning jobs. Recently, Spark has played an important role in the

field of big data analytics ecosystem.

 12

3. Related Work

3.1 Weighted Irregular Tensor Factorization (WITF)

 Hu et al. proposed a weighted irregular tensor factorization (WITF) model [2] to leverage

cross-domain feedback data across all users to learn the users' latent factors that are more

accurate than the users' latent factors only in a particular domain. Epinions dataset [10], the

dataset used to evaluate WITF, contains multiple domains while each domain contains different

items. WITF considers the dataset as an irregular tensor, in which each domain contains

different items, and then executes the tensor factorization to obtain the user's latent factors.

According to the tensor theory, the irregular tensor must be transferred into a regular tensor, in

which each domain contains the same items, to execute the tensor factorization.

 Due to the inevitable data loss in irregular tensor transformation, WITF model utilizes a set

of domain weights to reduce the data loss as shown in Figure 6.

Figure 6. Domain Weights Configuration

 The WITF model provides an objective function, which is based on CP decomposition, to

describe the data loss. It is shown as Formula 1 [2], where ω5 is the domain weight for each

domain X5, and	W5 is the weight for each entry in domain X5. Σ5 is the diagonal matrix

which is constructed based on the latent factor vector C5 which belongs to domain matrix C.

P5 is the additional constraints [11] for obtaining the unique value of the Frobenius Norm

(… ?) in the objective function.

𝐽 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑼,𝑽,𝑪

1
2

𝜔J

K

JLM

𝑾J ⊛ (𝑿J − 𝑼𝚺J(𝑷J𝑽)T) U
V 										𝑠. 𝑡. 𝑃JT𝑃J = 𝑰									(1)

 13

 WITF model adopts a specific set of domain weights {ω5} and then processes iterations

while updating U, V, C and P5 in each iteration until the objective function converges. The

convergence value of the objective function could be considered as the minimal data loss of

the irregular tensor factorization with a specific set of domain weights {ω5}. In addition, the

WITF model also has proof that adopting the optimal domain weights configuration could

minimalize the data loss.

 Searching for the optimal domains weight configuration for the WITF model is a complex

and time-consuming procedure. Therefore, WITF model simply adopts an empirical domain

weights configuration which assigns the domain weights based on the ratios of ratings in each

domain. Since the recommendations accuracy of WITF can be optimized by searching for the

optimal domain weight configurations. A method to search the optimal domain weights

configuration for WITF model is necessary.

 14

4. Proposed Method

4.1 Overview

 We propose a model which combines Spark and genetic algorithm to search for the optimal

domain weight configurations for WITF model efficiently, then use the obtained optimal

configuration to generate more precise user’s latent factors to make recommendations. Here，

Spark is an efficient and powerful large-scale data processing engine. Genetic algorithm is easy

to be parallelized and widely used to search solutions for a complex problem, and it is suitable

for complex computing problem such as searching optimal domain weights configuration for

WITF model. In addition, WITF model is also suitable for parallelization. Therefore, the

parallelization of genetic algorithm and WITF can speed up the computation when using

genetic algorithm to search the optimal domain weights configurations for WITF model.

4.2 Architecture

 Although genetic algorithm is easy to be parallelized and widely used to search the

solutions for a complex problem, genetic algorithm is not suitable for problems with complex

fitness evaluation. However, our proposed method utilizes the WITF model, which has a lot of

complex computations, as the fitness evaluation. Therefore, we propose a two-phase Spark

parallelization scheme to process WITF model and genetic algorithm efficiently.

 The Spark RDDs are one of the core components of Spark. The RDDs store the data in

memory to reduce the time of data I/O, and have various and efficient methods for users to use.

Therefore, Spark users always separate the large data into partitions and store them into RDDs,

then process those data on Spark in parallel.

 For our proposed method, WITF and genetic algorithm operators, such as crossover and

mutation, are the time-consuming parts. To speed up these operations, we process the WITF

model as the first phase parallelization. In the first phase, the data of WITF, e.g., 𝑿𝒌	, U, V,

and C, are stored in RDDs and are computed in parallel inside the WITF model. This phase is

shown as Algorithm 1

 15

Algorithm 1: Parallelization of WITF Model [2]

[U, V, C, {𝑷𝒌}] = (function) Parallel_WITF({𝑿𝒌}, {ω5}) , where 1 ≤ k ≤ 𝑲,		K is the domain count

Input: {ω5} is set of domain weights

 𝑿𝒌 is the data matrix for each domain

Output: U is the latent factor matrix for users

 C is the latent factor matrix for domains

 V, 𝑷𝒌 are the latent factor matrices for items

 Begin

 Initialization:

 1: Randomly Initialize U, C

 2: V = I

 3: 𝑷𝒌 = 𝑨𝑩𝑻, with the SVD: 𝑿𝒌𝑻𝑼𝚺𝒌𝑽𝑻 ≈ 𝑨𝚺𝑩𝑻

 Iteration:

 4: Generate tensor with each 𝑿𝒌

 5: Update 𝑼𝒊 of each user i in parallel by WITF theory

 6: Update 𝑪𝒌 of each domain k in parallel by WITF theory

 7: Update V as a whole by WITF theory

 8: Update 𝑷𝒌 of each domain k in parallel by WITF theory

 Repeat 4-8 until the objective function convergence

 9: Return U, V, C, {𝑷𝒌}

 End

 The second phase parallelization is for genetic algorithm operators. We use the RMSE (root

mean square error) [12] metrics, which is calculated by using the returned U, V, C, {𝑷𝒌} from

WITF model, as a fitness value of each individual ({ω5}). The RMSE is defined as Formula 2,

where 𝑌c is the user’s real rating, i.e, ground truth, for item i, and 𝑌d is the predicted rating of

the user to item i. In general, the smaller value of the RMSE represents better accuracy of the

recommendations.

 16

𝑅𝑀𝑆𝐸 =
(𝑌c − 𝑌d)Vi

cLM
𝑁

																			(2)

 We store the individuals in RDDs and process those operators in parallel on Spark. This

phase is shown as Algorithm 2.

Algorithm 2: Parallel Genetic Algorithm with WITF

Input: {ω5} is the initial set of domain weights

 𝑿𝒌 is the data matrix for each domain

 𝑮𝒎𝒂𝒙 is the maximum number of generations of genetic algorithm

Output: {𝝍𝒌}is the optimal set of domain weights

Begin

 Initial Population:

 1: Make initial population by {ω5}

 Generation Iteration of Genetic Algorithm:

 2: for each individual {ω5} in population do

 3: [U, C, V, 𝑷𝒌] = Parallel_WITF({𝑿𝒌}, {ω5})

 4: Calculate RMSE by [U, C, V, 𝑷𝒌]

 5: Save the RMSE as the fitness value of {ω5}

 6: end for

 7: Selection of the population in parallel

 8: Crossover of the population in parallel

 9: Mutation of the population in parallel

 Repeat 2-9 for 𝑮𝒎𝒂𝒙 times:

 10: {𝝍𝒌} is the {ω5} which obtain minimal RMSE

 11: Return {𝝍𝒌}

 End

 17

5. Experimental Evaluation

5.1 Datasets and Environment

 The Epinions datasets [10] is extracted from the Epinions website, which is an e-commerce

website and has multiple domains of products. The users can review ratings, which are integers

from 1 to 5, to products of different domains, and products on each domain are unique to each

domain. Therefore, we select five domains which have most ratings from the Epinions datasets

and pre-process the data to discard users who are lack of feedbacks on those five selected

domains. Table 2 shows the two sizes datasets we used in our experiment; the Table 2.(a) shows

the statistic of the “small” dataset and Table 2.(b) shows the statistic of the “large” dataset. In

the “small” dataset, we first remained the users who have at least ten ratings in each selected

domain, and then remained the items which have been rated by at least ten remained users.

Similar with the “small” dataset, we remained the users who have at least five ratings in each

selected domain, and then remained the items which have been rated by at least five remained

users in the “large” dataset.

Table 2. Two sizes datasets

(a). “small” Dataset Statistic

 #Users #Items #Ratings

Domain 1 2,403 1,104 14,960

Domain 2 2,403 320 7,350

Domain 3 2,403 1,362 30,490

Domain 4 2,403 1,050 10,223

Domain 5 2,403 761 8,733

 (b). “large” Dataset Statistic

 #Users #Items #Ratings

Domain 1 6,682 1,771 27,786

Domain 2 6,682 702 13,802

Domain 3 6,682 2,318 47,972

Domain 4 6,682 2,459 22,448

Domain 5 6,682 1,786 18,925

 18

 We process the experiment on four servers, and the environment of each server is shown

as Table 3. In our experimental Spark cluster, one server has been configured as the Spark

master server to process the Spark driver program and Spark cluster manager. The other three

servers have been configured as the Spark workers, which are also named as the Spark slaves

servers, to process Spark tasks.

Table 3. Experiment Environment of each server

OS CPU #CPU(Core) Memory

CentOS

7.5

Intel Xeon CPUE5-2620

v4 @ 2.10GHz

2 Physical

16 Logical

128GB

5.2 Implementation of Genetic Algorithm

5.2.1 Initial Population and Encoding

 The genetic algorithm has two major encoding methods, binary-encoding [3] and float-

encoding [13]. The binary-encoding method represents an individual as a series of binary

values. On the contrary, the float-encoding method, which is also known as real-value encoding,

represents an individual as a series of float values. Compare with the binary-encoding method,

the float-encoding method is suitable for questions that have a large search space which is

similar with searching the optimal domain weights for the WITF model. Therefore, we adopted

the float-encoding method for our implementation to make the initial population. It is shown

in Figure 7.

Figure 7. Initial Population

 19

 The individuals (chromosomes) of the initial population, where the individual count n was

set as 16, in genetic algorithm is a set of domain weights {ω5}. Due to the dataset we used has

five domains, each individual has five domain weights, where each domain weight 𝛚𝐤, 1 ≤

𝑘 ≤ 𝟓，is considered as a gene inside an individual (chromosome).

 The WITF model can obtain a specific RMSE value with the domain weights based on the

ratios of rating counts of each domain, and the domain weights configuration is represented as

the initial individual with the “blue” genes in the Figure 7. In addition, the search space of the

domain weights is very large. Therefore, to reduce the search space, we utilized the “blue”

individual as the initial individual, and each individual, such as “red” individual, “green”

individual in Figure 7 and so on, of the initial population was mutated from the “blue”

individual. The mutation algorithm is the Gaussian Mutation [9] which was also adopted as the

algorithm of the mutation operator of genetic algorithm for our proposed method.

 Based on the mutation algorithm, as shown in Figure 7, each gene ω5 in an individual is

mutated from the gene ω5 in the “blue” individual based on the normal distribution 𝑵(𝝎, 𝝈),

where 𝝎 is gene ω5 in the “blue” individual. Since the current generation is the initial, the

𝒈 in the Figure 7 is 0, and the 𝝈 turns to be 𝝎.

5.2.2 Fitness Valuation

 As our proposed method was proposed for searching the optimal domain weights

configurations for the WITF model, the fitness value of each individual becomes as the

recommendation accuracy (RMSE) of the WITF model by using the domain weights in the

individual.

5.2.3 Selection Operator

 We adopted the tournament selection [8], which is shown as Figure 8, as the selection

operator of genetic algorithms. The tournament selection first selects K individuals at random

and then selects the individual, which has the best fitness among the K selected individuals, as

a parent of the next generation. After selected a parent, tournament selection put back all the K

selected individuals and repeats those two step until it has selected enough parents for the next

generation.

 20

Figure 8. Tournament Selection

5.2.4 Crossover Operator

 We adopted the whole arithmetic recombination [14], which is shown in Figure 9, as the

crossover operation of genetic algorithm. The whole arithmetic recombination is the most

commonly used crossover operator for float-encoding genetic algorithm and works by taking

the weighted sum of the two parental alleles for each gene in children. The parameter 𝛼 is in

the interval	(𝟎	, 𝟏), and we let the 𝛼 = 0.25 which is usually used.

Figure 9. Crossover based on Whole Arithmetic Recombination

5.2.5 Mutation Operator

 As we have discussed in section 5.2.1, the Gaussian mutation [9] is used as the mutation

operator which is shown in Figure 10. Each individual has a probability for processing mutation

and we adopted the probability as 0.5. In addition, an individual, which will be processed

mutation, also has a probability of each gene for processing mutation and we adopted the

probability as 0.2 in our experiment. Due to the large of the search space, the used values of

two probabilities are larger than usually used values for obtaining new individuals easily.

 21

Figure 10. Mutation based on Gaussian Mutation

5.3 Parallelization Evaluation of WITF model

5.3.1 Parallelization Granularity of WITF model

 In a Spark cluster, many computing resources are contained and considered as executors.

To manage those executors in the cluster, Spark provides a driver program to send tasks, which

contain both data and instructions, and receives the results when executors finish their assigned

tasks. An efficient program on Spark should execute its procedures on the Spark executors as

long as possible.

 Among the procedures of our proposed method, the most time-consuming procedures are

the fitness evaluation, which compute the RMSE value of the WITF model by using the domain

weights configuration of each individual. As we have discussed the WITF model in section 3.1,

WITF model executes iterations to update its parameters, e.g., U, C, V, and 𝑷𝒌 , until reaching

the convergence. Therefore, the efficiency of each iteration of WITF model is important for

the overall efficiency of our proposed method.

 The “small” dataset we used has five selected domains and 2,403 users. Based on the WITF

model, the procedures to update parameters C and V, which are described as the step 6 and step

7 in Algorithm 1 of section 4.2, have to process a two-level loop. The first-level loop is the

loop for the five selected domains, and each domain has a second-level for the 2,403 users. We

first utilized the users as the element of Spark RDDs. Due to the two-level loop of the

procedures to update C and V, we implement five RDDs for each procedure. As it is shown in

Figure 11, each RDD of domain stores all 2,403 users as elements and divides users into a

number of partitions. When updating the C and V on each domain, the Spark driver program

 22

sends those partitions and broadcast necessary data to Spark executors.

Figure 11. RDDs for users in each domain

 As we implement the WITF model on Spark by using Spark Python API and web UI

provided by Spark to monitor the program run on Spark, we can analyze the timeline of an

iteration of WITF model we implement by using the “small” dataset on a server with 16

executors which have one core in each executor. The timeline is shown as Figure 12:

Figure 12. Timeline of a WITF iteration by using domain RDDs on Spark Cluster

(“small” datasets, 16 executors, 1 core in each executor)

 The “red” bars in Figure 12 represent the period of Spark executors executing the tasks. On

the contrary, the rest parts in Figure 12 represent the period when Spark driver program is

executing and the Spark executors are idle. The total execution time of a WITF iteration by

using domain RDDs is 296 seconds, and time ratio between executors executing time with a

WITF iteration executing time is just 48.8%. According to the timeline, when processing the

procedure of update C on each domain, the Spark driver program spent too much time to send

RDDs partitions and broadcasted necessary data to the Spark executors.

 To reduce the execution time of Spark driver program, we have adopted a different way to

construct the RDDs to update parameters C and V. As it is shown in Figure 13, we re-

 23

constructed the two-level loop as a one-level loop, so that each element in the one-level loop

consists of a pair of domain and user. Those pairs are also stored as the element of a whole pair

RDD [4].

Figure 13. Pair RDD

 The timeline of a WITF iteration by using the Pair RDD on Spark is shown as Figure 13.

It is the same as Figure 11, the gray bars in Figure 14 represent the period of Spark executors

executing the tasks. On the contrary, rest parts in the figure represent the period when Spark

driver program is executing and executors are idle. The total execution time of one time WITF

iteration by using the pair RDDs is 224 seconds reduced from 296 seconds. The ratio of time

between executors executing time with an WITF iteration executing time is 67.9% improved

from 48.8%. The improvement shows that choose a suitable parallelization granularity is

important for an efficient parallel computing application.

Figure 14. Timeline of a WITF iteration by using pair RDDs on Spark Cluster

(“small” datasets, 16 executors, 1 core in each executor)

 24

 Due to the Spark driver program having to broadcast large-scale data to the executors, the

execution time of Spark driver program is still too long between the procedure “Update U” and

procedure “Update C”.

5.3.2 Efficiency Evaluation of WITF model on Spark Cluster

 We have processed a series of experiments by using the two sizes datasets to evaluated our

implementation of the WITF model on our Spark cluster, which contains one master server and

three slaves servers (16 cores in each server, 48 cores in total). We first processed experiments

with different numbers of Spark executors which contain one core inside. Then, we processed

experiments with different numbers of Spark executors which contain multiple cores inside

and all 48 cores are used.

5.3.2.1 Executors with one core inside

 First, we processed three group experiments for the two sizes of datasets by setting 16, 32

and 48 executors with one core inside. The results of execution time (minutes) of a WITF

iteration is shown in Figure 15. According to the results, the execution time of a WITF Iteration

has a slight increase with the increase of the used Spark executors while using either “small”

or “large” dataset.

Figure 15. Execution Time of a WITF Iteration

 The reason, why the execution time was increase when we utilized more executors (cores),

is that those executors only contain one core inside and the computation ability of each executor

 25

was limited. In addition, the communications between the Spark driver program and the Spark

executors, e.g., data broadcast and task results return, were increased by utilizing more

executors. Therefore, the execution time of a WITF iteration was increased even we have

utilized more computation resources.

5.3.2.2 Executors with multiple cores inside

 Since the experiment results by setting the Spark executors with one core inside show that

the executor computation ability is limited, we have processed a series of experiments of the

two sizes of datasets by setting the Spark executors with multiple cores inside (48 cores in

total). The results of the execution time of a WITF iteration for the two datasets are shown in

Figure 16.

 According to the results in Figure 16, the execution time of a WITF iteration is decreased

with the increase of cores in each executor and the with the decrease of executors. The

execution time tends to be stable when the core’s number is more than eight in each executor

(the executor’s number is less than six, 48 cores in total). When using the “large” dataset, the

best execution time, which was obtained with three executors (16 cores in each), is 59.96%

faster than the worst execution time which was obtained with 48 executors (one core in each).

When using the “small” dataset, the best execution time, which was obtained with three

executors (16 cores in each), is 40.04% faster than the worst execution time which was obtained

with 48 executors (one core in each).

Figure 16. Execution Time of a WITF Iteration with different multiple cores Spark executors

 26

 As for the ratio between the executing time on executors with the whole execution time of

a WITF iteration, the results for the two sizes of datasets are shown in Figure 17. Similar with

the result in Figure 16, the execution time ratios are also decreased with the core’s numbers

increase in each executor and the executor’s numbers decrease, and also tends to be stable

when the core’s number is more than eight in each executor (the executor’s number is less

than six, 48 cores in total).

Figure 17. Execution Time Ratios of a WITF Iteration with different multiple cores Spark executors

 The results in Figure 16 and 17 show that the more cores in each Spark executor could

increase the computation ability of each Spark executor and reduce the execution time of the

tasks processed on each Spark executor. Even the less executors could reduce the

communications between the Spark driver program and then reduce the execution time on the

Spark driver program, the execution time ratio, which is between the time on the Spark

executors with the total execution time, is still decreased. It means that the decrease of the

Spark driver program execution time is much less than the decrease of the Spark executors

execution time while setting more cores in each executor and less executors in our experiments.

In other words, our implementation of the WITF model could have better efficiency

performance in the Spark cluster with high computation ability executors.

5.4 Evaluation of Execution Time

 We initialized the population of genetic algorithm with 16 individuals and set three

 27

executors (16 cores in each, 48 in total), and then execute our implementation of proposed

method for 50 generations by using the two sizes of datasets. Based on the execution time, we

obtain the execution time statistics shown as Table 4:

Table 4. Genetic Algorithm Execution Time

(a). “Small” Dataset

Procedure Average Execution time (min.)

1 Generation 172.62

1 Individual 10.63

 (b). “Large” Dataset

Procedure Average Execution time (min.)

1 Generation 382.93

1 Individual 23.93

5.5 Genetic Algorithm Generation Evaluation

 We also have calculated the mean fitness (RMSE) value of all 16 individuals in each

generation, and record the minimum fitness (RMSE) value as the best RMSE of all 16

individuals in each generation. In addition, we chose the RMSE value calculated by using the

WITF model’s empirical domain weights configuration, which decides the domain weights by

the number of ratings in each domain, as the baseline.

Figure 18. Genetic Algorithm Generations Evaluation by using the “small” dataset

 28

 For the “small” dataset, the comparison of those three value in each generation is shown in

Figure 18. The “red” line represents the baseline. The “golden” polyline represent the mean

fitness (RMSE) value of each generation, and the “green” polyline represent the best fitness

(RMSE) value of each generation. As we can see on the figure, the mean and best fitness

(RMSE) value of each generation tend to be stable and better than initial individuals mean and

best fitness (RMSE) values with the generation grows. After the 22nd generation, the best

fitness (RMSE) values are better than the baseline, and tend to be stable after 41st generation.

Before the 34th generation, the mean fitness (RMSE) values are worse than the baseline, then

after the 39th generation, the mean fitness (RMSE) values are better than the baseline and

approach to the best fitness (RMSE). That represents that the search result of genetic algorithm

reaches to convergence in our proposed method. In addition, the best RMSE by using the “small”

dataset among all generations has been improved by 4.2% comparing with the baseline.

Figure 19. Genetic Algorithm Generations Evaluation by using the “large” dataset

 For the “large” dataset, the result, which is shown in Figure 19, is similar with the results

of the “small” dataset. Due to the “large” dataset is sparser than the “small” dataset, the baseline,

mean fitness (RMSE) and best fitness (RMSE) are worse than the fitness value for the “small”

dataset, and the mean fitness (RMSE) are worse than the baseline among all the 50 generations.

However, as similar with the result of the “small” dataset, the mean fitness (RMSE) would

approach to the best fitness (RMSE) after enough generations. After the 14th generation, the

best fitness (RMSE) values are better than the baseline, and then tend to be stable after 38th

 29

generation. In addition, the best RMSE by using the “large” dataset among all generations has

been improved by 6.3% comparing with the baseline.

 The result shows that our proposed method has the ability to search and obtain the optimal

domain weights configuration for WITF to make recommendations which has the best RMSE.

 30

6. Conclusion

 In this paper, we proposed a method which combines the WITF model and genetic

algorithm to search the optimal domain weights configuration of WITF model for more

accurate recommendations. To make the computation efficiently, we adopted parallelization

into both the WITF model and genetic algorithm, then implemented and evaluated our

proposed method on Spark platform.

 We evaluated two sizes of datasets on a Spark cluster which contains 48 cores, and analyzed

the experiment results of each dataset. The evaluation results showed that our method and

implementation has the ability to search the optimal domain weights configuration for WITF

model. For the “small” dataset, our proposed method has searched a domain weight

configuration with 4.2% RMSE improvement. For the “large” dataset, our proposed method

has searched a domain weight configuration with the 6.3% RMSE improvement.

The efficiency evaluation results show that parallelization implementation of the WITF

model could have better efficiency performance in the Spark cluster with high computation

ability executors. However, this method should be compared the accuracy of recommendations

with several baseline methods in the future.

 31

References

[1] P. Resnick, N. Iacovou, M.Suchak, P.Bergstrom, and J.Riedl, GroupLens: An Open

Architecture for Collaborative Filtering of Netnews, Proceedings of ACM Conference on

Computer Supported Cooperative Work (CSCW1994), pp.175-186, 1994.

[2] L. Hu, L. Cao, J. Cao, Z. Gu, G. Xu, and D. Yang. Learning informative priors from

heterogeneous domains to improve recommendation in cold-start user domains, ACM Trans.

Inf. Syst. Vol.35, No.2, Article 13, 2016.

[3] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley. 1989

[4] Zaharia M, Chowdhury M, Das T, Dave A, Ma j, McCauley M, Franklin M, Shenker S,

Stoica I, Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster

computing, Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation, Berkeley, 2012.

[5] B. Li. Cross-domain collaborative filtering: A brief survey, Proceedings of the 2011 IEEE

23rd international Conference on Tools with Artificial Intelligence, 2011.

[6] W. Pan, E. W. Xiang, N. N. Liu, and Q. Yang, Transfer learning in collaborative filtering

for sparsity reduction. Proceedings of the 24th AAAI Conference on Artificial Intelligence,

2010.

[7] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., Vol.51,

No.3, pp.455–500, 2009.

[8] D. E. Goldberg and K. Deb, A comparative analysis of selection schemes used in genetic

algorithms, Foundations of Genetic Algorithms, Vol.1, pp.69-93, 1991.

[9] T. Back and H.-P. Schwefel, An Overview of Evolutionary Algorithms for Parameter

Optimization, Evolutionary Computation,Vol.1, No.1, pp.1-23, 1993.

[10] S. Meyffret , E. Guillot , L. Médini, and F. Laforest, RED: a Rich Epinions Dataset for

Recommender Systems, Dataset for Recommender Systems, 2014.

[11] H. A. L. Kiers, J. M. F. Ten Berge, and R. Bro. Parafac2—part I. A direct fitting algorithm

for the parafac2 model, Journal of Chemometrics, Vol.13, pp.275-294, 1999.

[12] CJ. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the root

mean square error (RMSE) in assessing average model performance, Climate Research, Vol.30,

 32

No.1, pp.79-82, 2005.

[13] C. T. Su and W. T. Tyen, A Genetic Algorithm Approach Employing Systems,

Proceedings of International Congress on Modeling and Simulation, pp. 1444-1449, 1997.

[14] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer,

3rd edition, 1996.

[15] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, “Item-Based Collaborative Filtering

Recommendation Algorithms”, Proceeding of the 10th international conference on World

Wide Web, WWW 2001. 2001

 33

Acknowledgement

 I would like to give my deepest gratitude to Professor Yamana, who has given lots of

comments and instructions for my research and my master thesis. Besides the comments and

instructions about research, Professor Yamana also have make many chances for me to attend

and join the projects which could improve my ability.

 Also, I would like to give my thanks to Satoshi Hasegawa and Takumi Zamami, who are

the member of DMM.com company, for receiving many advice about my research.

 Last but not least, I would like to thank all the lab members. I have got many advice from

them on each seminar and group discussion. It is my great honor to be one of the Yamana Lab.

 34

Publication

Guodong Xue, Seiki Miyamoto, Takumi Zamami, Hayato Yamana. “A Lossless Irregular

Tensor Factorization for Cross-domain Recommender System with Genetic Algorithm on

Spark” in DEIM 2019

