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Abstract 
   Recommender systems analyze user behaviors and users’ feedback information to 
recommend potentially desirable items. Users may have sufficient experience in their focused 
domains, however, they may lack experience in unfamiliar domains, leading to drop in 
accuracy of the recommender systems. Therefore cross-domains recommender systems, a 
system which analyzes the user information from both their familiar and unfamiliar domains, 
become an important emerging research topic. Weighted Irregular Tensor Factorization (WITF) 
was proposed as an algorithm to leverage cross-domain feedbacks across all users, which 
achieved higher accuracy than the algorithm which leverages feedbacks from a particular 
domain. WITF considers the dataset as an irregular tensor containing different items for each 
domain. According to the tensor theory, irregular tensor must be transferred into a regular 
tensor, where each domain contains the same items, before executing tensor factorization to 
obtain the user's latent factors. Therefore, WITF must assign a weight on each domain to ensure 
the minimal data loss during the transformation. We define this kind of irregular tensor 
factorization as “lossless irregular tensor factorization”, where the “lossless” represents the 
minimal data loss during an irregular tensor transferring to a regular tensor. To search for the 
optimal domain weight configuration is a complex and time-consuming procedure. Thus, 
WITF simply adopts an empirical domain weight configurations. However, the performance of 
WITF can be optimized by searching for the optimal domain weight configuration on each 
domain. In this paper, we propose a model which combines Apache Spark® and genetic 
algorithm to search for the optimal domain weight configurations for WITF efficiently, then 
using the obtained optimal configuration to generate more precise users’ latent factors to make 
recommendations. Experimental evaluation using two sizes of datasets shows 4.2% and 6.3% 
better accuracy in comparison with the WITF. The experiments show that our proposed method 
can execute on Spark platform efficiently and has the ability to search the optimal domain 
weights configurations of the WITF model. 
 
Keywords --- Cross-domain Recommender Systems, Irregular Tensor 
Factorization, Parallel Genetic Algorithm, Apache Spark® 
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1. Introduction 

   With the development of the Internet, the number and variety of contents on the Internet 
continue to increase, and users have higher demands on searching and recommendation. 
Recommender systems, which makes accurate and personalized recommendations using user’s 
difference, interest and experiences, become more and more important and have been widely 
used in many fields. 
   Collaborative filtering (CF) [1] is the most used algorithm of recommender systems and 
have been used in many applications, such as Amazon and Netflix. However, the data sparsity 
problem, such that many users do not have data in the CF recommender systems, always affects 
the performance of the CF recommender systems. Therefore, researchers have proposed a 
variety of algorithms that adopt additional data into CF recommender system. In general, users 
always have sufficient experience in their focused domains but lack experience in other 
domains. Therefore, the cross-domain recommender systems, which leverage cross-domain 
feedback data across all users to learn the user's latent factors, become an important research 
topic.  
   Weighted irregular tensor factorization (WITF) [2] is a model that considers cross-domain 
information by considering the multiple domains dataset as an irregular tensor. In this model, 
the weight must be assigned on each domain to ensure the minimal data loss after transferred 
into a regular tensor followed by processing the tensor factorization to make recommendation. 
However, WITF model simply adopts an empirical domain weights configurations which 
decide the weight by the number of items of each domain. Therefore, a method to search the 
optimal weights configuration for WITF model is indispensable to improve its performance. 
   This study mainly works on combining the WITF model with genetic algorithm on Spark 
to search the optimal weights configurations for making more accurate recommendations and 
reduce the execution time. Genetic algorithm [3] is commonly used to generate high-quality 
solutions for optimization and searching problems. In addition, WITF model and genetic 
algorithm are suitable to process on parallel. In order to speed up the computation, we adopt 
Spark[4] which is a powerful distributed computing platform and has been an important part 
of the big data analytics ecosystem.  

1.1 Organization 

   This paper includes six sections. In section 2, we discuss the backgrounds of cross-domain 
recommender systems, irregular tensor factorization, genetic algorithm, and Spark. In section 
3, we discuss the related work based on cross-domain recommender systems and irregular 
tensor factorization. In section 4, the proposed method which combines WITF and genetic 
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algorithm on Spark is described. In section 5, we showed the experiments and evaluation of 
the proposed method. Conclusions are in section 6. 
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2. Background 

2.1 Notations 

   Table 1 describes notations referred to in this paper. 

Table 1.  Notations 

 

2.2 Cross-domain Recommender System 

   In the real-world environment, users have sufficient experience in their focused domains 

but lack experience in other domains. Once we used the information from users’ familiar 

domains as auxiliary data, recommender systems could perform better in recommending 

potentially desirable items to the users in unfamiliar domains. Therefore, the Cross-domain 

recommender systems become an important emerging research topic. Cross-domain 

collaborative filtering (CDCF) [5] is an important research topic which focuses on product 

Notation Description 

x A tensor 

𝑿 A matrix (user-item rating matrix) 

𝑿𝒌 The matrix of domain k 

𝑿𝒌,𝒊,: A row (vector) of domain matrix 𝑿𝒌 

𝑿𝒌,:,𝒋 A column (vector) of domain matrix 𝑿𝒌 

𝑿𝒊,: A row (vector) of matrix X 

𝑿:,𝒋 A column (vector) of matrix X 

𝑼 User latent factor matrix 

𝑽 Item latent factor matrix 

𝑪 Domain latent factor matrix 

𝑰 Identity matrix 

{ω
k
} A set of domain weights, 1 ≤ k ≤ 𝑲,		K is the domain count 

𝑿 𝐹 Frobenius Norm of matrix X 

⊛ Hadamard product 
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domains. Besides the product domains, time, spatial, and other domains are also adopted to 

researches related to CDCF. Since matrix factorization (MF) is a widely-used model of CF 

recommender systems, cross-domain matrix factorization (CDMF) [6] has been proposed as 

an improvement technique of the CDCF method. 

2.3 Irregular Tensor Factorization 

   In CF recommender systems, dyadic user-item relationship is considered as a core 

relationship. To use additional data such as tags and time, some researches adopt the tensor 

factorization (TF) [7] to process the triadic relationships, e.g., user-item-tag, user-item-time. 

Tensor factorization has two kinds of models: CP decomposition [7] and Tucker decomposition 

[7]. As shown in Figure 1, CP decomposition decomposes a tensor into a sum of component 

vectors, e.g., 𝑼𝒊,:	,	𝑪𝒊,: and 𝑽𝒊,:, of the three latent factor matrices U, V and C. Compare to CP 

decomposition, Tucker decomposition decomposes a tensor into one core tensor 𝒈 and three 

latent factor matrices, e.g., U, V and C.  

 

Figure 1.  Two models of Tensor Factorization 

   To adopt the two kinds of models, the tensor must be a regular tensor that each domain 

contains the same items. Unfortunately, almost all datasets from the real world cannot be 

considered as a regular tensor with the same items in each domain. On the contrary, the datasets 

can be considered as an irregular tensor each of whose domains contains specific items. As 

shown in Figure 2, it is necessary to transfer the irregular tensor into the regular tensor which 

has the same set of virtual items. However, during the transfer, it is inevitable to have a data 

loss [2]. 

   Therefore, we must ensure the data loss is minimal since we expect to utilize the origin data 
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from the irregular tensor as much as possible, and then obtain the most accurate latent factors 

by processing factorization for the regular tensor which transferred from the irregular tensor. 

We define this kind of irregular tensor factorization as the “lossless irregular tensor 

factorization”, where the “lossless” represents the data loss is minimum during an irregular 

tensor transferring to a regular tensor. 

 

Figure 2.  Irregular Tensor Factorization  

2.4 Genetic Algorithm 

   Genetic algorithm is commonly used to generate high-quality solutions to optimize and 

search problems by relying on bio-inspired genetic operations such as mutation, crossover, and 

selection. The procedures of genetic algorithm are shown in Figure 3.  

 

Figure 3.  Procedures of Genetic Algorithms 

   In the step of initial populations, several sets of variables (parameters) are randomly 

selected within the search space. Each set of variables is called an individual or a chromosome, 

and each individual has randomness and fairness. In the step of encoding, individuals or 
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chromosomes are represented as a list in a certain way, and each element of the list is a gene. 

In the step of fitness evaluation, the objective function value of a question is used to measure 

the fitness of an individual. Once the fitness of all the individuals reach to a convergence, the 

individual with best fitness will be chosen as a solution. Otherwise, the fitness evolution and 

the operator of genetic algorithm will repeat until the fitness of all the individuals reach to a 

convergence.  

   The rest three procedures are the operators of genetic algorithm. The selection operator 

utilizes random rules to select individuals with high fitness value and to eliminate poor genes. 

Several pairs of individuals will be randomly selected as parents for gene exchange to generate 

children when processing the crossover operator of genetic algorithm. As for the mutation 

operator of genetic algorithm, each individual has a probability to be chosen, and each gene of 

the individual will change with a certain probability. 

   Those bio-inspired operators could be processed in parallel to speed up. To improve the 

algorithm, researchers have refined each bio-inspired operator. For example, roulette wheel 

selection [3] and tournament selection [8] have been proposed to improve the selection operator. 

Binary mutation and Gaussian mutation [9] have been proposed to improve the mutation 

operator. Even after it has been decades since the proposal of the genetic algorithm, it has been 

widely used up to these days. 

2.5 Apache Spark 

   Although MapReduce has been implemented in large-scale data-intensive applications on 

commodity clusters successfully, some other applications do not suit to use MapReduce. Those 

applications contain many iterative algorithms which reuse a working set of data across 

multiple parallel operations. Therefore, a new framework named Spark has been distributed by 

Apache to support those applications. Spark contains two main new features to retain the 

scalability and fault tolerance of MapReduce. They are resilient distributed datasets [4] which 

store data on memory, and directed acyclic graph (DAG) of Spark [4] which achieves the fault-

tolerance of Spark.   

   As shown in Figure 4.(a), Spark stores data in RDDs and those RDDs are divided into 

partitions that are processed on parallel. In addition, Spark RDDs have two kinds of operations 

for users, e.g., transformation and action operations. As shown the DAG of Spark in Figure 

4.(b), it is a set of vertices and edges, where vertices represent the RDDs and the edges 
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represent the operations to be applied on RDD. When calling an action operation, the created 

DAG is submitted, and the results of the action operation are computed according to the DAG. 

When calling an actions operation, the created DAG is submitted and the results of the action 

operation are computed according to the DAG, therefore the fault-tolerance of Spark is 

achieved. 

 
Figure 4.  RDD and DAG of Spark 

   As shown in Figure 5, the architecture of a Spark cluster contains three components; they 

are Spark driver program, cluster manager and Spark workers. The Spark driver program 

converts the users’ applications into tasks and schedule and send tasks on Spark workers. The 

cluster manager manages the resources of whole cluster as a plugin of Spark, and Spark can 

run different external cluster managers. A Spark worker contains a number of executors, which 

have multiple cores (≥ 1) inside, to execute tasks and return the results to the Spark driver 

program.  

 

Figure 5.  The Architecture of Spark cluster 
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   An experiment conducted by the Apache official showed that Spark is 10x faster than 

Hadoop in iterative machine learning jobs. Recently, Spark has played an important role in the 

field of big data analytics ecosystem. 
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3. Related Work 

3.1 Weighted Irregular Tensor Factorization (WITF) 

   Hu et al. proposed a weighted irregular tensor factorization (WITF) model [2] to leverage 

cross-domain feedback data across all users to learn the users' latent factors that are more 

accurate than the users' latent factors only in a particular domain. Epinions dataset [10], the 

dataset used to evaluate WITF, contains multiple domains while each domain contains different 

items. WITF considers the dataset as an irregular tensor, in which each domain contains 

different items, and then executes the tensor factorization to obtain the user's latent factors. 

According to the tensor theory, the irregular tensor must be transferred into a regular tensor, in 

which each domain contains the same items, to execute the tensor factorization.  

   Due to the inevitable data loss in irregular tensor transformation, WITF model utilizes a set 

of domain weights to reduce the data loss as shown in Figure 6.  

 

Figure 6.  Domain Weights Configuration 

   The WITF model provides an objective function, which is based on CP decomposition, to 

describe the data loss. It is shown as Formula 1 [2], where ω5 is the domain weight for each 

domain X5, and	W5 is the weight for each entry in domain X5. Σ5 is the diagonal matrix 

which is constructed based on the latent factor vector C5 which belongs to domain matrix C. 

P5 is the additional constraints [11] for obtaining the unique value of the Frobenius Norm 

( … ?) in the objective function. 

 

𝐽 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑼,𝑽,𝑪

1
2

𝜔J

K

JLM

𝑾J ⊛ (𝑿J − 𝑼𝚺J(𝑷J𝑽)T) U
V 										𝑠. 𝑡. 𝑃JT𝑃J = 𝑰									(1) 
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   WITF model adopts a specific set of domain weights {ω5} and then processes iterations 

while updating U, V, C and P5 in each iteration until the objective function converges. The 

convergence value of the objective function could be considered as the minimal data loss of 

the irregular tensor factorization with a specific set of domain weights {ω5}. In addition, the 

WITF model also has proof that adopting the optimal domain weights configuration could 

minimalize the data loss. 

   Searching for the optimal domains weight configuration for the WITF model is a complex 

and time-consuming procedure. Therefore, WITF model simply adopts an empirical domain 

weights configuration which assigns the domain weights based on the ratios of ratings in each 

domain. Since the recommendations accuracy of WITF can be optimized by searching for the 

optimal domain weight configurations. A method to search the optimal domain weights 

configuration for WITF model is necessary. 
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4. Proposed Method 

4.1 Overview 

   We propose a model which combines Spark and genetic algorithm to search for the optimal 

domain weight configurations for WITF model efficiently, then use the obtained optimal 

configuration to generate more precise user’s latent factors to make recommendations. Here，

Spark is an efficient and powerful large-scale data processing engine. Genetic algorithm is easy 

to be parallelized and widely used to search solutions for a complex problem, and it is suitable 

for complex computing problem such as searching optimal domain weights configuration for 

WITF model. In addition, WITF model is also suitable for parallelization. Therefore, the 

parallelization of genetic algorithm and WITF can speed up the computation when using 

genetic algorithm to search the optimal domain weights configurations for WITF model.  

4.2 Architecture 

   Although genetic algorithm is easy to be parallelized and widely used to search the 

solutions for a complex problem, genetic algorithm is not suitable for problems with complex 

fitness evaluation. However, our proposed method utilizes the WITF model, which has a lot of 

complex computations, as the fitness evaluation. Therefore, we propose a two-phase Spark 

parallelization scheme to process WITF model and genetic algorithm efficiently. 

  The Spark RDDs are one of the core components of Spark. The RDDs store the data in 

memory to reduce the time of data I/O, and have various and efficient methods for users to use. 

Therefore, Spark users always separate the large data into partitions and store them into RDDs, 

then process those data on Spark in parallel.  

  For our proposed method, WITF and genetic algorithm operators, such as crossover and 

mutation, are the time-consuming parts. To speed up these operations, we process the WITF 

model as the first phase parallelization. In the first phase, the data of WITF, e.g., 𝑿𝒌	, U, V, 

and C, are stored in RDDs and are computed in parallel inside the WITF model. This phase is 

shown as Algorithm 1 
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Algorithm 1: Parallelization of WITF Model [2] 

[U, V, C, {𝑷𝒌}] = (function) Parallel_WITF({𝑿𝒌}, {ω5}) , where 1 ≤ k ≤ 𝑲,		K is the domain count 

Input:   {ω5} is set of domain weights 

         𝑿𝒌 is the data matrix for each domain 

Output:  U is the latent factor matrix for users 

         C is the latent factor matrix for domains 

         V, 𝑷𝒌 are the latent factor matrices for items 

  Begin 

     Initialization: 

          1:  Randomly Initialize U, C 

          2:  V = I 

          3:  𝑷𝒌 = 𝑨𝑩𝑻, with the SVD: 𝑿𝒌𝑻𝑼𝚺𝒌𝑽𝑻 ≈ 𝑨𝚺𝑩𝑻 

  Iteration: 

          4:  Generate tensor with each 𝑿𝒌 

          5:  Update 𝑼𝒊 of each user i in parallel by WITF theory 

          6:  Update 𝑪𝒌 of each domain k in parallel by WITF theory 

          7:  Update V as a whole by WITF theory 

          8:  Update 𝑷𝒌 of each domain k in parallel by WITF theory 

    Repeat 4-8 until the objective function convergence 

          9:  Return U, V, C, {𝑷𝒌} 

  End 
 

   The second phase parallelization is for genetic algorithm operators. We use the RMSE (root 

mean square error) [12] metrics, which is calculated by using the returned U, V, C, {𝑷𝒌} from 

WITF model, as a fitness value of each individual ({ω5}). The RMSE is defined as Formula 2, 

where 𝑌c is the user’s real rating, i.e, ground truth, for item i, and 𝑌d is the predicted rating of 

the user to item i. In general, the smaller value of the RMSE represents better accuracy of the 

recommendations. 
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𝑅𝑀𝑆𝐸 =
(𝑌c − 𝑌d)Vi

cLM
𝑁

																			(2) 

   We store the individuals in RDDs and process those operators in parallel on Spark. This 

phase is shown as Algorithm 2.  

 

Algorithm 2: Parallel Genetic Algorithm with WITF  

Input:   {ω5} is the initial set of domain weights 

         𝑿𝒌 is the data matrix for each domain 

         𝑮𝒎𝒂𝒙 is the maximum number of generations of genetic algorithm 

Output:  {𝝍𝒌}is the optimal set of domain weights   

Begin   

   Initial Population: 

         1:  Make initial population by {ω5} 

    Generation Iteration of Genetic Algorithm: 

         2:  for each individual {ω5} in population do   

         3:    [U, C, V, 𝑷𝒌] = Parallel_WITF({𝑿𝒌}, {ω5}) 

         4:    Calculate RMSE by [U, C, V, 𝑷𝒌] 

         5:    Save the RMSE as the fitness value of {ω5}  

         6:  end for 

         7:  Selection of the population in parallel 

         8:  Crossover of the population in parallel 

         9:  Mutation of the population in parallel 

    Repeat 2-9 for 𝑮𝒎𝒂𝒙 times: 

         10:  {𝝍𝒌} is the {ω5} which obtain minimal RMSE 

         11:  Return {𝝍𝒌} 

  End 
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5. Experimental Evaluation 

5.1 Datasets and Environment 

   The Epinions datasets [10] is extracted from the Epinions website, which is an e-commerce 

website and has multiple domains of products. The users can review ratings, which are integers 

from 1 to 5, to products of different domains, and products on each domain are unique to each 

domain. Therefore, we select five domains which have most ratings from the Epinions datasets 

and pre-process the data to discard users who are lack of feedbacks on those five selected 

domains. Table 2 shows the two sizes datasets we used in our experiment; the Table 2.(a) shows 

the statistic of the “small” dataset and Table 2.(b) shows the statistic of the “large” dataset. In 

the “small” dataset, we first remained the users who have at least ten ratings in each selected 

domain, and then remained the items which have been rated by at least ten remained users. 

Similar with the “small” dataset, we remained the users who have at least five ratings in each 

selected domain, and then remained the items which have been rated by at least five remained 

users in the “large” dataset. 

Table 2. Two sizes datasets 

(a). “small” Dataset Statistic 

 #Users #Items #Ratings 

Domain 1 2,403 1,104 14,960 

Domain 2 2,403 320 7,350 

Domain 3 2,403 1,362 30,490 

Domain 4 2,403 1,050 10,223 

Domain 5 2,403 761 8,733 

 (b). “large” Dataset Statistic 

 #Users #Items #Ratings 

Domain 1 6,682 1,771 27,786 

Domain 2 6,682 702 13,802 

Domain 3 6,682 2,318 47,972 

Domain 4 6,682 2,459 22,448 

Domain 5 6,682 1,786 18,925 
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   We process the experiment on four servers, and the environment of each server is shown 

as Table 3. In our experimental Spark cluster, one server has been configured as the Spark 

master server to process the Spark driver program and Spark cluster manager. The other three 

servers have been configured as the Spark workers, which are also named as the Spark slaves 

servers, to process Spark tasks. 

Table 3.  Experiment Environment of each server 

OS CPU #CPU(Core) Memory 

CentOS 

7.5 

Intel Xeon CPUE5-2620  

v4 @ 2.10GHz 

2 Physical 

16 Logical 

128GB 

 

5.2 Implementation of Genetic Algorithm 

5.2.1  Initial Population and Encoding 

   The genetic algorithm has two major encoding methods, binary-encoding [3] and float-

encoding [13]. The binary-encoding method represents an individual as a series of binary 

values. On the contrary, the float-encoding method, which is also known as real-value encoding, 

represents an individual as a series of float values. Compare with the binary-encoding method, 

the float-encoding method is suitable for questions that have a large search space which is 

similar with searching the optimal domain weights for the WITF model. Therefore, we adopted 

the float-encoding method for our implementation to make the initial population. It is shown 

in Figure 7.  

 
Figure 7. Initial Population 
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   The individuals (chromosomes) of the initial population, where the individual count n was 

set as 16, in genetic algorithm is a set of domain weights {ω5}. Due to the dataset we used has 

five domains, each individual has five domain weights, where each domain weight 𝛚𝐤, 1 ≤

𝑘 ≤ 𝟓，is considered as a gene inside an individual (chromosome).   

   The WITF model can obtain a specific RMSE value with the domain weights based on the 

ratios of rating counts of each domain, and the domain weights configuration is represented as 

the initial individual with the “blue” genes in the Figure 7. In addition, the search space of the 

domain weights is very large. Therefore, to reduce the search space, we utilized the “blue” 

individual as the initial individual, and each individual, such as “red” individual, “green” 

individual in Figure 7 and so on, of the initial population was mutated from the “blue” 

individual. The mutation algorithm is the Gaussian Mutation [9] which was also adopted as the 

algorithm of the mutation operator of genetic algorithm for our proposed method. 

   Based on the mutation algorithm, as shown in Figure 7, each gene ω5 in an individual is 

mutated from the gene ω5 in the “blue” individual based on the normal distribution 𝑵(𝝎, 𝝈), 

where 𝝎 is gene ω5 in the “blue” individual. Since the current generation is the initial, the 

𝒈 in the Figure 7 is 0, and the 𝝈 turns to be 𝝎. 

5.2.2  Fitness Valuation 

   As our proposed method was proposed for searching the optimal domain weights 

configurations for the WITF model, the fitness value of each individual becomes as the 

recommendation accuracy (RMSE) of the WITF model by using the domain weights in the 

individual. 

5.2.3  Selection Operator 

   We adopted the tournament selection [8], which is shown as Figure 8, as the selection 

operator of genetic algorithms. The tournament selection first selects K individuals at random 

and then selects the individual, which has the best fitness among the K selected individuals, as 

a parent of the next generation. After selected a parent, tournament selection put back all the K 

selected individuals and repeats those two step until it has selected enough parents for the next 

generation. 
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Figure 8. Tournament Selection 

5.2.4  Crossover Operator 

   We adopted the whole arithmetic recombination [14], which is shown in Figure 9, as the 

crossover operation of genetic algorithm. The whole arithmetic recombination is the most 

commonly used crossover operator for float-encoding genetic algorithm and works by taking 

the weighted sum of the two parental alleles for each gene in children. The parameter 𝛼 is in 

the interval	(𝟎	, 𝟏), and we let the 𝛼 = 0.25 which is usually used.  

 
Figure 9. Crossover based on Whole Arithmetic Recombination 

5.2.5  Mutation Operator 

   As we have discussed in section 5.2.1, the Gaussian mutation [9] is used as the mutation 

operator which is shown in Figure 10. Each individual has a probability for processing mutation 

and we adopted the probability as 0.5. In addition, an individual, which will be processed 

mutation, also has a probability of each gene for processing mutation and we adopted the 

probability as 0.2 in our experiment. Due to the large of the search space, the used values of 

two probabilities are larger than usually used values for obtaining new individuals easily.  
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Figure 10. Mutation based on Gaussian Mutation 

5.3 Parallelization Evaluation of WITF model 

5.3.1 Parallelization Granularity of WITF model 

   In a Spark cluster, many computing resources are contained and considered as executors. 

To manage those executors in the cluster, Spark provides a driver program to send tasks, which 

contain both data and instructions, and receives the results when executors finish their assigned 

tasks. An efficient program on Spark should execute its procedures on the Spark executors as 

long as possible. 

   Among the procedures of our proposed method, the most time-consuming procedures are 

the fitness evaluation, which compute the RMSE value of the WITF model by using the domain 

weights configuration of each individual. As we have discussed the WITF model in section 3.1, 

WITF model executes iterations to update its parameters, e.g., U, C, V, and 𝑷𝒌 , until reaching 

the convergence. Therefore, the efficiency of each iteration of WITF model is important for 

the overall efficiency of our proposed method.  

   The “small” dataset we used has five selected domains and 2,403 users. Based on the WITF 

model, the procedures to update parameters C and V, which are described as the step 6 and step 

7 in Algorithm 1 of section 4.2, have to process a two-level loop. The first-level loop is the 

loop for the five selected domains, and each domain has a second-level for the 2,403 users. We 

first utilized the users as the element of Spark RDDs. Due to the two-level loop of the 

procedures to update C and V, we implement five RDDs for each procedure. As it is shown in 

Figure 11, each RDD of domain stores all 2,403 users as elements and divides users into a 

number of partitions. When updating the C and V on each domain, the Spark driver program 
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sends those partitions and broadcast necessary data to Spark executors.  

 

Figure 11. RDDs for users in each domain 

   As we implement the WITF model on Spark by using Spark Python API and web UI 

provided by Spark to monitor the program run on Spark, we can analyze the timeline of an 

iteration of WITF model we implement by using the “small” dataset on a server with 16 

executors which have one core in each executor. The timeline is shown as Figure 12:  

 
Figure 12.  Timeline of a WITF iteration by using domain RDDs on Spark Cluster  

(“small” datasets, 16 executors, 1 core in each executor) 

   The “red” bars in Figure 12 represent the period of Spark executors executing the tasks. On 

the contrary, the rest parts in Figure 12 represent the period when Spark driver program is 

executing and the Spark executors are idle. The total execution time of a WITF iteration by 

using domain RDDs is 296 seconds, and time ratio between executors executing time with a 

WITF iteration executing time is just 48.8%. According to the timeline, when processing the 

procedure of update C on each domain, the Spark driver program spent too much time to send 

RDDs partitions and broadcasted necessary data to the Spark executors.  

   To reduce the execution time of Spark driver program, we have adopted a different way to 

construct the RDDs to update parameters C and V. As it is shown in Figure 13, we re-
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constructed the two-level loop as a one-level loop, so that each element in the one-level loop 

consists of a pair of domain and user. Those pairs are also stored as the element of a whole pair 

RDD [4]. 

 
Figure 13. Pair RDD  

   The timeline of a WITF iteration by using the Pair RDD on Spark is shown as Figure 13. 

It is the same as Figure 11, the gray bars in Figure 14 represent the period of Spark executors 

executing the tasks. On the contrary, rest parts in the figure represent the period when Spark 

driver program is executing and executors are idle. The total execution time of one time WITF 

iteration by using the pair RDDs is 224 seconds reduced from 296 seconds. The ratio of time 

between executors executing time with an WITF iteration executing time is 67.9% improved 

from 48.8%. The improvement shows that choose a suitable parallelization granularity is 

important for an efficient parallel computing application.  

 

Figure 14.  Timeline of a WITF iteration by using pair RDDs on Spark Cluster 

(“small” datasets, 16 executors, 1 core in each executor) 
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   Due to the Spark driver program having to broadcast large-scale data to the executors, the 

execution time of Spark driver program is still too long between the procedure “Update U” and 

procedure “Update C”.  

5.3.2 Efficiency Evaluation of WITF model on Spark Cluster 

   We have processed a series of experiments by using the two sizes datasets to evaluated our 

implementation of the WITF model on our Spark cluster, which contains one master server and 

three slaves servers (16 cores in each server, 48 cores in total). We first processed experiments 

with different numbers of Spark executors which contain one core inside. Then, we processed 

experiments with different numbers of Spark executors which contain multiple cores inside 

and all 48 cores are used.   

5.3.2.1 Executors with one core inside  

   First, we processed three group experiments for the two sizes of datasets by setting 16, 32 

and 48 executors with one core inside. The results of execution time (minutes) of a WITF 

iteration is shown in Figure 15. According to the results, the execution time of a WITF Iteration 

has a slight increase with the increase of the used Spark executors while using either “small” 

or “large” dataset.  

 
Figure 15.  Execution Time of a WITF Iteration 

   The reason, why the execution time was increase when we utilized more executors (cores), 

is that those executors only contain one core inside and the computation ability of each executor 
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was limited. In addition, the communications between the Spark driver program and the Spark 

executors, e.g., data broadcast and task results return, were increased by utilizing more 

executors. Therefore, the execution time of a WITF iteration was increased even we have 

utilized more computation resources. 

5.3.2.2 Executors with multiple cores inside 

   Since the experiment results by setting the Spark executors with one core inside show that 

the executor computation ability is limited, we have processed a series of experiments of the 

two sizes of datasets by setting the Spark executors with multiple cores inside (48 cores in 

total). The results of the execution time of a WITF iteration for the two datasets are shown in 

Figure 16.  

   According to the results in Figure 16, the execution time of a WITF iteration is decreased 

with the increase of cores in each executor and the with the decrease of executors. The 

execution time tends to be stable when the core’s number is more than eight in each executor 

(the executor’s number is less than six, 48 cores in total). When using the “large” dataset, the 

best execution time, which was obtained with three executors (16 cores in each), is 59.96% 

faster than the worst execution time which was obtained with 48 executors (one core in each). 

When using the “small” dataset, the best execution time, which was obtained with three 

executors (16 cores in each), is 40.04% faster than the worst execution time which was obtained 

with 48 executors (one core in each). 

 
Figure 16.  Execution Time of a WITF Iteration with different multiple cores Spark executors  
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   As for the ratio between the executing time on executors with the whole execution time of 

a WITF iteration, the results for the two sizes of datasets are shown in Figure 17. Similar with 

the result in Figure 16, the execution time ratios are also decreased with the core’s numbers 

increase in each executor and the executor’s numbers decrease, and also tends to be stable 

when the core’s number is more than eight in each executor (the executor’s number is less 

than six, 48 cores in total).  

 

Figure 17.  Execution Time Ratios of a WITF Iteration with different multiple cores Spark executors 

   The results in Figure 16 and 17 show that the more cores in each Spark executor could 

increase the computation ability of each Spark executor and reduce the execution time of the 

tasks processed on each Spark executor. Even the less executors could reduce the 

communications between the Spark driver program and then reduce the execution time on the 

Spark driver program, the execution time ratio, which is between the time on the Spark 

executors with the total execution time, is still decreased. It means that the decrease of the 

Spark driver program execution time is much less than the decrease of the Spark executors 

execution time while setting more cores in each executor and less executors in our experiments. 

In other words, our implementation of the WITF model could have better efficiency 

performance in the Spark cluster with high computation ability executors. 

5.4 Evaluation of Execution Time 

   We initialized the population of genetic algorithm with 16 individuals and set three 
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executors (16 cores in each, 48 in total), and then execute our implementation of proposed 

method for 50 generations by using the two sizes of datasets. Based on the execution time, we 

obtain the execution time statistics shown as Table 4:  

Table 4.  Genetic Algorithm Execution Time  

(a).  “Small” Dataset 

Procedure Average Execution time (min.) 

1 Generation 172.62 

1 Individual 10.63 

  (b).  “Large” Dataset  

Procedure Average Execution time (min.) 

1 Generation 382.93 

1 Individual 23.93 

 

5.5 Genetic Algorithm Generation Evaluation 

   We also have calculated the mean fitness (RMSE) value of all 16 individuals in each 

generation, and record the minimum fitness (RMSE) value as the best RMSE of all 16 

individuals in each generation. In addition, we chose the RMSE value calculated by using the 

WITF model’s empirical domain weights configuration, which decides the domain weights by 

the number of ratings in each domain, as the baseline.  

 

Figure 18.  Genetic Algorithm Generations Evaluation by using the “small” dataset 
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   For the “small” dataset, the comparison of those three value in each generation is shown in 

Figure 18. The “red” line represents the baseline. The “golden” polyline represent the mean 

fitness (RMSE) value of each generation, and the “green” polyline represent the best fitness 

(RMSE) value of each generation. As we can see on the figure, the mean and best fitness 

(RMSE) value of each generation tend to be stable and better than initial individuals mean and 

best fitness (RMSE) values with the generation grows. After the 22nd generation, the best 

fitness (RMSE) values are better than the baseline, and tend to be stable after 41st generation. 

Before the 34th generation, the mean fitness (RMSE) values are worse than the baseline, then 

after the 39th generation, the mean fitness (RMSE) values are better than the baseline and 

approach to the best fitness (RMSE). That represents that the search result of genetic algorithm 

reaches to convergence in our proposed method. In addition, the best RMSE by using the “small” 

dataset among all generations has been improved by 4.2% comparing with the baseline.  

 

Figure 19.  Genetic Algorithm Generations Evaluation by using the “large” dataset 

   For the “large” dataset, the result, which is shown in Figure 19, is similar with the results 

of the “small” dataset. Due to the “large” dataset is sparser than the “small” dataset, the baseline, 

mean fitness (RMSE) and best fitness (RMSE) are worse than the fitness value for the “small” 

dataset, and the mean fitness (RMSE) are worse than the baseline among all the 50 generations. 

However, as similar with the result of the “small” dataset, the mean fitness (RMSE) would 

approach to the best fitness (RMSE) after enough generations. After the 14th generation, the 

best fitness (RMSE) values are better than the baseline, and then tend to be stable after 38th 



 

 29 

generation. In addition, the best RMSE by using the “large” dataset among all generations has 

been improved by 6.3% comparing with the baseline. 

   The result shows that our proposed method has the ability to search and obtain the optimal 

domain weights configuration for WITF to make recommendations which has the best RMSE.  
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6. Conclusion 

   In this paper, we proposed a method which combines the WITF model and genetic 

algorithm to search the optimal domain weights configuration of WITF model for more 

accurate recommendations. To make the computation efficiently, we adopted parallelization 

into both the WITF model and genetic algorithm, then implemented and evaluated our 

proposed method on Spark platform.  

   We evaluated two sizes of datasets on a Spark cluster which contains 48 cores, and analyzed 

the experiment results of each dataset. The evaluation results showed that our method and 

implementation has the ability to search the optimal domain weights configuration for WITF 

model. For the “small” dataset, our proposed method has searched a domain weight 

configuration with 4.2% RMSE improvement. For the “large” dataset, our proposed method 

has searched a domain weight configuration with the 6.3% RMSE improvement.  

The efficiency evaluation results show that parallelization implementation of the WITF 

model could have better efficiency performance in the Spark cluster with high computation 

ability executors. However, this method should be compared the accuracy of recommendations 

with several baseline methods in the future. 
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