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Abstract

Fully homomorphic encryption (FHE) allows arbitrary computation on
encrypted data without any decryption key. However, ring-LWE-based FHE
schemes have a problematic feature: ciphertext size increases with every
homomorphic multiplication. Furthermore, the computation cost of homo-
morphic multiplication linearly increases with increasing input sizes. To
overcome this, these FHE schemes support a special operation called relin-

earization, which can reduce the ciphertext size. Relinearization requires
almost the same amount of computation cost as that of the homomorphic
multiplication, which takes a few to hundreds of milliseconds. Thus, deter-
mining when and the number of times to relinearize a ciphertext in a given
arithmetic circuit to evaluate in order to minimize the total computation
cost is an important task. This problem has been proved to be an NP-hard
problem, and is called the relinearize problem.

In this study, we design an approximation algorithm to address the re-
linearize problem. The algorithm runs in polynomial time, and we experi-
mentally con�rmed that the output of the algorithm is nearly the same as
the optimal solution. In particular, we show that the output is exactly equal
to the optimal one in a speci�c case.



Contents

1 Introduction 1

2 Background and Related Work 3
2.1 Bootstrap Problem . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Relinearize Problem . . . . . . . . . . . . . . . . . . . . . . . 5

3 Problem Formulation 6
3.1 An Example of Relinearize Problem . . . . . . . . . . . . . . 8
3.2 Naïve Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Proposed Method 10
4.1 Polynomial-time Algorithm . . . . . . . . . . . . . . . . . . . 10
4.2 The Optimal Case . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Comparison of Methods . . . . . . . . . . . . . . . . . . . . . 15

5 Experimental Result 17

6 Conclusion 19

A How much we can speed-up by the Relinearize Problem 25

i



Chapter 1

Introduction

Fully homomorphic encryption (FHE) allows evaluation of any circuit on
encrypted data without decryption. FHE enables us to securely delegate
computation on sensitive data to a third party while retaining data con�den-
tiality. Starting from Gentry's �rst construction [20], various FHE schemes
have been proposed [5, 6, 21, 15, 19]. FHE has a wide range of applications,
including machine learning on encrypted data [4, 22, 18], private genomic
analysis [23], and private database query [3].

Though several years of research have improved the e�ciency of FHE,
homomorphic operations are still heavy compared to operations on plain-
texts. Therefore, speeding up computations over FHE should be addressed
not only from the cryptographic aspect but also from the application aspect,
i.e., how to use it. Typically, a function to be executed can be represented as
an arithmetic circuit. The circuit forms a directed acyclic graph (DAG), al-
lowing optimizations to be performed on the graph. Although we can apply
a general optimization strategy used in traditional compilers to the graph,
the same optimization strategy is not su�cient when the circuit is evaluated
over FHE because some FHE-speci�c operations cannot be represented on
the graph.

In this study, we focus on the B/FV scheme [5, 19], one of the most
e�cient and widely used FHE schemes. For example, various implementa-
tions [28, 27] and applications to secure computation [18, 1] with the B/FV
scheme are published. In the B/FV scheme, a ciphertext is a vector of
polynomials; the length of a ciphertext just after encryption is 2. When ho-
momorphic multiplication is performed on the ciphertext, the length of the
ciphertext increases. The computation time of homomorphic addition and
multiplication is proportional to the ciphertext length. As a result, both time
and space complexity grow as the computation with multiplication proceeds
because the ciphertext length continues to increase as well. Thus, controlling
the ciphertext length is critical. To control the length of the ciphertext, the
B/FV scheme supports an operation called relinearization, which reduces
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the length of the ciphertext. Relinearization approximately involves the
same amount of computation cost as that of homomorphic multiplication. A
simple strategy to handle the ciphertext length is to relinearize the cipher-
text after every multiplication; however, this strategy is not always optimal.
Given a circuit, we can reduce the total computation time by adjusting both
when and the number of times to relinearize a ciphertext. This optimization
problem, called relinearize problem, was �rst introduced by Chen in 2018 [10]
and proved to be NP-hard.

In this study, we design a polynomial-time approximation algorithm to
address the relinearize problem. We show that our method outputs nearly
the same result as the optimal one, or equal to in a speci�c case. More
precisely, our contributions are as follows:

• We propose a polynomial-time approximation algorithm to the relin-
earize problem, adapting the idea used in the bootstrap problem [26].

• We experimentally show that our algorithm outputs nearly the same
result as the optimal solution.

• We prove that in a speci�c FHE parameter setting, our algorithm out-
puts exactly the same result as the optimal one.

The remainder of this thesis is organized as follows. We �rst describe
the related work in Chapter 2, followed by a formulation of the relinearize

problem in Chapter 3. Then, we present our proposed algorithm and explain
the case where the result is equal to the optimal one in Chapter 4 and provide
evaluation results in Chapter 5. Finally, we conclude the study in Chapter 6.
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Chapter 2

Background and Related Work

Homomorphic encryption is a useful tool to realize secure computation. How-
ever, there are some di�erences with the computation on the plaintext, which
makes it di�cult to build an application over FHE as follows:

• We cannot use any branching based on an encrypted value.

• We cannot use traditional table-lookup from an encrypted input.

• We can encrypt multiple plaintexts as a batch into a single ciphertext
and evaluate them in a single-instruction multiple-data manner.

• Operations such as bootstrapping and relinearization, described in Sec-
tion 2.1 and in Section 2.2, are essential but are not usually mentioned
in a high-level algorithm description because these operations are used
for the maintenance of a ciphertext and do not modify the underlying
plaintext.

Thus, devising a well-optimized algorithm on encrypted data is more di�-
cult than on the plaintexts. It is important to bridge the gap between an
algorithm written in a high-level programming language and a sequence of
low-level operations on the encrypted data. This translation can be seen as
a compiler for FHE.

There exist several compiler-like studies that translate computation from
a user-friendly language to algorithms that can be directly handled by FHE [8,
9, 17, 16]. The main focus of these studies was to reduce the complexity of
homomorphic operations and simplify a process to write applications for se-
cure computation. The authors of these studies mentioned some optimization
capabilities but did not discuss optimization techniques in detail.

A few research studies focused on optimizations considering character-
istics of FHE. In FHE, the smaller the multiplicative depth of the circuit1,

1The multiplicative depth of the circuit is de�ned as the largest number of multiplica-
tions an input ciphertext will be applied to through the circuit.
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the smaller the parameters we can use and the faster the evaluation of the
circuit. Carpov et al. [7] proposed a heuristic optimization technique to re-
duce the multiplicative circuit depth. They used an associative rule and a
distribution rule to modify the evaluation order while keeping the same �nal
output, and lowered the multiplicative depth of the circuit, though the total
number of arithmetic operations including both additions and multiplica-
tions increased.

Addition and multiplication are explicitly shown in a data-�ow graph.
In contrast, bootstrapping and relinearization operations are used only for
the maintenance of a ciphertext and do not modify the underlying plaintext.
Thus, both operations are not shown in the data-�ow graph. When we opti-
mize the usage of these operations, it is di�cult to adopt tools or strategies
used in other research areas like circuit synthesis or compiler for CPUs. Ex-
amples of circuit optimizations speci�c to the FHE are the bootstrap problem

and the relinearize problem; we explain them below.

2.1 Bootstrap Problem

All the existing FHE schemes have the same property; every ciphertext in-
cludes some amount of noise that grows with every arithmetic operation.
If the amount of noise reached the predetermined threshold, the decryption
result is incorrect. To keep the amount of noise within the threshold, we
need an operation called bootstrapping to reduce the noise. However, the
bootstrapping takes huge computation time. Given a circuit to evaluate,
minimizing the number of bootstrapping operations directly results in re-
ducing the entire computation time. The minimization problem is called the
bootstrap problem.

Previous research on the bootstrap problem focused on leveled FHE. In
the leveled FHE, the parameter level L ∈ N+ is decided upon key generation,
and this parameter indicates the number of times that the homomorphic
multiplication can be applied to each ciphertext between the bootstrapping.

The bootstrap problem was �rst pointed out by Lepoint and Paillier [24]
in 2013, and they modeled the problem based on a boolean satis�ability
problem. Later, in 2015, Paindavoine and Vialla [26] analyzed the bootstrap
problem using graph theory. The bootstrap problem is NP-hard due to a re-
duction from the vertex cover problem. In particular, Paindavoine and Vialla
showed that in the case where level L = 2, the problem is solved in polyno-
mial time by a reduction to (s, t) min-cut. Here, we de�ne a data-�ow graph
G = {V,E} with vertices V and edges E. The maximum-�ow algorithm runs
in O(|V ||E|) [25]; thus, the bootstrap problem under L = 2 can be solved
in O(|V ||E|). In 2017, Benehamouda et al. [2] proposed a L-approximation
algorithm for the bootstrap problem using linear programming and dynamic
programming, and showed this approximation is a theoretical bound.
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2.2 Relinearize Problem

Bootstrapping involves heavy computation, which takes a few seconds to
a few minutes, in ring-based state-of-the-art schemes [12, 13, 11]. Owing
to this heavy computation, many researchers are trying to build a practical
application with a low depth circuit in which the homomorphic operations are
completed without invoking the bootstrapping. In such cases, the bottleneck
of the homomorphic computation is not the bootstrapping but homomorphic
multiplication and relinearization.2 Therefore, the bootstrap problem is no
longer a concern.

If we consider a ciphertext as a vector of polynomials and denote the
length of a ciphertext c as l(c) (≥ 2), multiplication over ciphertexts as ⊗,
and addition as ⊕, then l(c1 ⊗ c2) = l(c1) + l(c2) − 1 and l(c1 ⊕ c2) =
max(l(c1), l(c2)). By performing homomorphic multiplication, the length
of the ciphertext increases and the computation time and memory cost of
multiplication also increases. The relinearization can reduce the length of
the ciphertext but incurs almost the same amount of the cost as that of the
homomorphic multiplication. Here, the question is when and the number
of times a ciphertext should be relinearized in a given circuit in order to
minimize the total computation time while keeping both the data-�ow graph
and the underlying plaintext the same. This is called the relinearize problem.

The relinearize problem was �rst observed by Chen [10] in 2018. Chen
proved that the problem is an NP-hard and provided a polynomial-time algo-
rithm for the special case where each vertex has at most 1 out-degree. How-
ever, there are many circuits that have a vertex with 2 or more out-degrees,
and thus the applicable circuits are limited in real-world applications. There
is no other practical approach to the relinearize problem to the best of our
knowledge.

2This is because homomorphic additions are less time-consuming compared to multi-
plications or relinearizations.
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Chapter 3

Problem Formulation

In this chapter, we formally describe the relinearize problem, following Chen's
de�nition [10].

De�nition 1. An arithmetic circuit is a directed acyclic graph (DAG) G =
(V,E), where there are three kinds of vertices:

• input vertices that have in-degree 0 and out-degree 1.

• output vertices that have in-degree 1 and out-degree 0.

• add/multiply operation vertices that have in-degree 2 and out-degree
1.

We denote e = (v1, v2) ∈ E as an edge from vertex v1 to vertex v2
({v1, v2} ∈ V ).

De�nition 2. The relinearize problem is an integer programming problem
on an arithmetic circuit. For every vertex i, we maintain three integer vari-
ables xi, l(i) and lnew(i) during the homomorphic evaluation of G. xi (≥ 0)
denotes the number of relinearizations executed just after the evaluation of
add or multiply operation at vertex i. l(i) (≥ 2) denotes the length of the
ciphertext at vertex i after the evaluation but before performing relineariza-
tion. lnew(i) (≥ 2) denotes the length of the ciphertext at vertex i after exe-
cuting both evaluation and relinearizations.1 Thus, lnew(i) = l(i)−xi holds.
We denote the two parents of vertex i by p1(i) and p2(i). We denote the kind
of vertex i by t(i). t(i) is one of {⊗,⊕, in, out}, where ⊗ is a multiply opera-
tion over ciphertexts, ⊕ is an add operation, in is an input, and out is an out-
put. We denote the computation time of a single relinearization by kr (> 0).
We denote the computation time of a multiplication with input lengths of
lnew(p1(i)) and lnew(p2(i)) by kml(i) = km(lnew(p1(i)) + lnew(p2(i)) − 1),

1When we do not relinearize at vertex i, l(i) = lnew(i) holds.
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Table 3.1: Notations and De�nitions
Notation De�nition

G a graph
E a set of edges in a graph
V a set of vertices
xi the number of relinearizations executed at vertex i
l(i) the length of the ciphertext at vertex i after the evaluation

but before performing relinearization
lnew(i) the length of the ciphertext at vertex i after executing both

evaluation and relinearizations
t(i) the kind of vertex i
⊗ homomorphic multiply operation veretx
⊕ homomorphic add operation vertex
in input vertex
out output vertex
kr the computation time of a single relinearization
Km a factor of proportionality of a computation time of a homo-

morphic multiplication

where km (> 0) is a factor of proportionality.2 Then, the relinearize problem
on G is
minimize

kr
∑
i∈V

xi + km
∑

t(i)=⊗,i∈V

(lnew(i) + xi) (3.1)

subject to

lnew(i) ≥ 2 for all i

lnew(i) ≥ lnew(p1(i)) + lnew(p2(i))− 1− xi if t(i) = ⊗
lnew(i) ≥ lnew(p1(i))− xi if t(i) = ⊕
lnew(i) ≥ lnew(p2(i))− xi if t(i) = ⊕
lnew(i) = 2, xi = 0 if t(i) = in

lnew(p1(i))− xi = 2 if t(i) = out

xi, l
new(i) ∈ Z for all i


(3.2)

The de�nitions of variables we used is summarized in Table 3.1.
The second to the fourth constraints in Equation (3.2) are relations of

input and output ciphertext lengths at each operation vertex. We use ≥
instead of = because we can increase a ciphertext length by homomorphically
adding a constant ciphertext encrypting 0 whose ciphertext length is lnew(i).

2In this work, kr and km are given parameters, measured beforehand. We ignore
the time of the homomorphic addition because it is several magnitudes faster than both
multiplication and relinearization.
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(a)

p1 p2 p3

(b)

(c)

p4 p5 p6

(d)

(e)(a) = p1 × p2
(b) = (a) × p3
(c) = p4 × p5
(d) = (c) × p6
(e) = (b) + (d)

×

×

×

×

＋

×

＋

: in / out vertex

: add vertex

: multiplication vertex

Figure 3.1: A circuit example.

Note that the original de�nition by Chen [10] consists of four kinds of
vertices: the same three kinds of vertices in De�nition 1 and square operation
vertices. We omit square operation vertices because they can be replaced by
a multiply operation vertex with a multi-edge input. Moreover, we add
the constraints that the lengths of the ciphertext at both input and output
vertices should be 2. This is because we followed what general compilers do,
that is, they divide a given code into multiple blocks and later concatenate
these blocks of inputs and outputs so that every input and output should
satisfy the same condition.

The de�nition above assumes the B/FV scheme. This problem can be
considered for other ring-based FHE schemes such as the BGV scheme [6]
and the approximate HE [14].

3.1 An Example of Relinearize Problem

For example, we consider the circuit shown in Figure 3.1. In this circuit,
there are six input variables (vertices from p1 to p6), one output variable,
four multiply operation vertices and one add operation vertex.

Firstly, we consider a simple strategy in which we relinearize at every
multiply operation vertex. From the constraints in Equation (3.2), length of
each ciphertext at every input vertex from p1 to p6 is 2. At the multiply
operation vertices from (a) to (d), the length of each output ciphertext l(i)
is 3. They becomes 2 after applying relinearizations, i.e. xi = 1, lnew(i) = 2.
Thus, the objective value de�ned in Equation (3.1) is 4kr +12km. Secondly,
instead of relinearizing at vertex (b) and (d), we can relinearize at (e)

while maintaining the constraints. In this case, the objective value becomes
3kr + 12km, which is smaller than the previous one. Lastly, even when we
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relinearize twice at the vertex (e) and not at the other vertices, it satis�es the
constraints and the objective value is now 2kr +14km. As long as kr > 2km,
the last strategy is preferred; otherwise, the second strategy is preferable.

As observed here, the optimal case depends on both the circuit and pa-
rameters kr and km.

3.2 Naïve Solution

The simplest solution is that we relinearize at every multiply operation ver-
tex. However, this is not optimal in some cases such as the example shown
in Section 3.1.

From De�nition 2, the problem is integer linear programming (ILP),
which is an NP-hard problem. However, we can use a solver to obtain the
optimal result, though the time and space complexity are not bounded by a
polynomial.
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Chapter 4

Proposed Method

In this chapter, we propose an approximation algorithm for the relinearize
problem, followed by a proof of the special case where our method outputs
exactly the same result as the optimal one.

In our proposed method, we add the following constraint to the previous
formulation in Equation (3.2):

l(i) = lnew(i) + xi ≤ 3 for all i (4.1)

This constraint restricts the length of every ciphertext to 2 or 3. With this
constraint, the problem can be reduced to (s, t) min-cut problem and be
solved in polynomial time.

4.1 Polynomial-time Algorithm

The relinearize problem with the additional constraint in Equation (4.1)
can be solved in polynomial time by reduction to a (s, t) min-cut problem.
This reduction method is inspired by Paindavoine and Vialla's approach [26]
proposed for a special case of the bootstrap problem.

Before describing our algorithm, we de�ne an interesting-path to support
our explanation.

De�nition 3. An interesting-path in a data-�ow graph is a path v1, . . . , vk
where t(v1) = ⊗ and t(vi) = ⊕, i ∈ [2, k] holds and there exists an edge
(vk, vk+1) such that t(vk+1) ∈ {⊗, out} holds.

Our proposed algorithm is shown in Algorithm 1. Here, we will provide
the explanation and proofs in detail below.

Lemma 1. The relinearize problem restricted by the additional constraint
Equation (4.1) can be solved by minimizing the number of vertices to perform
a relinearization in the graph.
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𝑙(𝑎) = 3

𝑙'() 𝑝+ 𝑐 = 3

Figure 4.1: An example of interesting-path including multiple relineariza-
tions.

Proof. If some multiply operation vertex v accepts a ciphertext of length 3
as its input, then the length of the resulting ciphertext l(v) is greater than 3,
which breaks Equation (4.1). Thus, every multiply operation vertex should
accept only ciphertexts of length 2 as its inputs, i.e., the term (lnew(i) + xi)
of Equation (3.1) is always 3, a �xed value. As a result, we only need to min-
imize the term kr

∑
i∈V xi of Equation (3.1). Since kr is a �xed parameter,

it is enough to minimize
∑

i∈V xi, which is the number of relinearizations in
the graph, to solve the relinearize problem under the constraints in Equa-
tion (4.1). Furthermore, because the maximum length of the ciphertext is 3,
we relinearize a ciphertext at most once in each vertex, i.e., xi = {0, 1}.

Now, the situation is similar to the special case of the bootstrap problem
under L = 2 discussed in [26]. In both situations, we have to minimize the
number of vertices at which perform bootstrapping or relinearization. In the
bootstrap problem, we have to perform bootstrapping one or more times in
every interesting-path. In our case, we have to perform relinearization one
or more times in every interesting-path. Note that in both cases, we perform
bootstrapping or relinearization one or more times. This is because, for
example in the relinearize problem case, even if the length of a ciphertext
becomes 2 by performing relinearization in the interesting-path, a subsequent
add operation in the interesting-path might have another input in which the
ciphertext length is 3, which reverts it to a length 3 ciphertext. In this case,
we need multiple relinearizations in one interesting-path. For example in
Figure 4.1, let us cosider the interesting-path that ends vertex (c). As l(a) =
3 and (a) outputs to multiply operation vertex (b), we must perform a
relinearization at (a). In additon, because (c) receives a length 3 ciphertext
as its input and outputs to multiply operation vertex (d), a relinearization

11



Algorithm 1 Determining the minimum set of vertices to perform a relin-
earization
Require: G = (V,E) ▷ data-�ow graph representing the circuit
Ensure: Vrelin ▷ set of vertices to relinearize
1: G← G ∪ {s, t}
2: for all {(u, v)

∣∣ ∀e ∈ E, e = (u, v), {u, v} ∈ V, t(v) = ⊗} do
3: E ← E \ e
4: E ← E ∪ {(u, t)}
5: end for
6: for all {v

∣∣ ∀v ∈ V, t(v) = ⊗} do
7: E ← E ∪ {(s, v)}
8: end for
9: for all {v

∣∣ ∀v ∈ V, t(v) =out} do
10: E ← E ∪ {(v, t)}
11: end for
12: return Vrelin ← minimal (s, t) separator

at (c) is also required. Thus, the interesting-path includes relinearizations
at (a) and (c).

On a DAG G = {V,E} with vertices s, t ∈ V , (s, t) separator W is a
subset of V in which every path from s to t has at least one vertex in W .
Here, we will construct a new DAG from the given data-�ow graph G such
that s is connected to the �rst vertices of every interesting-path to and the
last vertices of each interesting-path are connected to t. Then, by calculating
(s, t) separator, every interesting-path includes at least one separator vertex.
Here, we can split the new graph into two subgraphs by the separator nodes;
in one subgraph, the length of each output ciphertext is 2, and in the other,
the length of each output ciphertext is 3. Relinearizations are performed
at the nodes selected as separators. Such a graph is constructed by the
procedure as shown in Algorithm 1.

In the algorithm, given a data-�ow graph G, we �rstly add vertices s and
t to V . Then, we replace every edge (u, v), where t(v) = ⊗, to (u, t). Next,
we add an edge from s to all of the multiply operation vertices. Lastly, we
add an edge from all of the output vertices to t.

In the example as shown in Figure 4.2, the size of the minimum (s, t)
separator is 5, which is a set of every multiply operation vertices for instance.

Lemma 2. The minimum set of vertices to perform a relinearization in the
graph is obtained by using a minimal (s, t) separator problem.

Proof. By the graph construction in Algorithm 1, all of the (s, t) paths �rst
pass through a multiply operation vertex, followed by passing through only
add operation vertices. All of the interesting-path in the original graph are
enumerated by all of the (s, t) paths in the new graph. Now, as we have
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Figure 4.2: An example of graph conversion.

to pick up one or more vertices from each interesting-path as a vertex to
perform relinearization, (s, t) separator is a set of vertices that satis�es our
constraints. Thus, minimum (s, t) separators in the new graph coincides
with the minimum set of vertices to perform a relinearization.

Theorem 1. The relinearize problem restricted by the additional constraint
Equation (4.1) is solved in O(|V ||E|) time.

Proof. From Lemma 1 and Lemma 2, performing Algorithm 1 solves the
problem. The graph construction runs in O(|V |+ |E|) time. The number of
vertices and edges in the new graph are still O(|V |) and O(|E|), respectively.
The minimal (s, t) separator can be solved by the (s, t)min-cut, which runs is
O(|V ||E|) time. Overall, this algorithm runs in O(|V ||E|) time and outputs
the minimum number of vertices to perform a relinearization.

Note that our proposed algorithm depends only on the data-�ow graph,
and not on the FHE parameters kr, km. This feature enables us to divide the
optimization process into circuit optimization and FHE parameter selection.
For example, we can �rst optimize the circuit and the relinearization schedul-
ing, followed by a selection of the FHE parameters. In contrast, the naïve
ILP solution described in Section 3.2 requires kr and km as given parameters.
Thus, our method simpli�es the optimization process.

4.2 The Optimal Case

Our proposed method is an approximation algorithm and thus not always
optimal. However, in the case where kr ≤ km is satis�ed, the algorithm
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outputs exactly the same objective value as the optimal one.
For simplicity, we de�ne the variables R and M as

R =
∑
i∈V

xi, M =
∑

t(i)=⊗,i∈V

(lnew(i) + xi) (4.2)

, where R is the total number of relinearizations in a given graph and M is
the number of multiplications weighted by l(i) in the graph. We note that
l(i) = lnew(i)+xi holds. Then, we are able to rewrite our objective function
of Equation (3.1) as follows.

krR+ kmM (4.3)

Before we prove the optimality of our proposed method, we consider an
extreme case where km →∞. In this case, the best strategy is to minimize
M . In our method, as we discussed in the proof of Lemma 1, every mul-
tiplication only accepts ciphertexts of length 2 as its input, i.e., M is the
minimum value. Thus, the proposed algorithm outputs the optimal result in
this extreme case.

First, we de�ne an operation AddRelin(G,S, v).

De�nition 4. AddRelin(G,S, v) is an operation to output a feasible solution
of the relineaize problem for a data-�ow graph G = {V,E}, where S is also
a feasible solution of the relinearize problem and v ∈ V is a vertex in which
both l(v) ≥ 4 and t(v) = ⊗ holds. The operation outputs S′ by the procedure
as follows; As l(v) ≥ 4 is satis�ed, lnew(p1(v)) ≥ 3 or lnew(p2(v)) ≥ 3 is
satis�ed. Without loss of generality, let us assume lnew(p1(v)) ≥ 3. Let S′

be the same as S but with the additional relinearization of the ciphertext
at vertex p1(v), i.e., xp1(v) increases by one and both lnew(p1(v)) and l(v)
decreases by one. Though lnew(p1(v)) and lnew(v) decrease, they are still
greater than or equal to 2 and satisfy all the constraints.

We denote obj(S) as the objective value, i.e. the resulting value of Equa-
tion (3.1), of the relinearize problem for G under a feasible solution S. Now,
by denoting S′ = AddRelin(G,S, v), we will compare obj(S′) against obj(S).
By adding relinearization at vertex p1(v), R increases by 1 and M decreases
by 1. Inserting add operation vertices does not have any in�uence on the
objective value. Thus, the following equation holds.

obj(S′) = obj(S) + kr − km (4.4)

Furthermore, we note that l(v) in S′ is decreased by 1 compared to S.

Now, we are ready to prove the optimality of our algorithm under kr ≤
km.
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Lemma 3. When kr < km is satis�ed, l(i) ≤ 3 for all i ∈ V holds in the
optimal solution of the relinearize problem.

Proof. We assume that in the optimal solution SOPT of the relinearize prob-
lem on the graph G, there exists a vertex u ∈ V , which satis�es l(u) ≥ 4.
Here, we only consider u as a multiply operation vertex. This is because the
length of the ciphertext at an add operation vertex is the same as one of its
parent vertices. Thus, if there exists a vertex u with l(u) ≥ 4 and t(u) = ⊕,
there also exists its ancestor vertex u′ ∈ V that satis�es l(u′) ≥ l(u) and
t(u′) = ⊗. We denote S′ = AddRelin(G,SOPT , u). From Equation (4.4),
we have obj(S′) = obj(SOPT ) + kr − km < obj(SOPT ). However, SOPT is
already the minimized solution. This contradiction proves that l(i) ≤ 3 for
all i under kr < km.

Lemma 4. When kr = km is satis�ed, any optimal solution of the relinearize
problem SOPT can be converted into another optimal solution S′

OPT in which
l(i) ≤ 3 for all i ∈ V holds.

Proof. Let SOPT be the optimal solution of the relinearize problem in graph
G and with the same discussion in the proof of Lemma 3 there exists a
vertex u ∈ V that satis�es l(u) ≥ 4, t(u) = ⊗. We denote S′

OPT =
AddRelin(G,SOPT , u). By applying kr = km to Equation (4.4), we have
obj(S′

OPT ) = obj(SOPT ). Thus, by comparing S′
OPT with SOPT , we are

able to reduce l(u) by one without a�ecting obj(SOPT ). By repeating this
procedure, we can replace all l(u) ≥ 4 by l(u) = 3.

Theorem 2. When kr ≤ km is satis�ed, there exists the optimal solution of
the relinearize problem that satis�es l(i) ≤ 3 for all i ∈ V .

Proof. A feasible solution always exists because a simple strategy that re-
linearizes ciphertext at every multiply operation vertex is always a feasible
solution of the problem. Thus, the theorem follows Lemma 3 and Lemma
4.

In summary, our method outputs the optimal solution under kr ≤ km
because even if we add a constraint Equation (4.1), we can obtain the same
objective value from the optimal solution as one without the constraint.

4.3 Comparison of Methods

Now, we have the following four methods to the relinearize problem.

1. Simple method that relinearizes ciphertext at every multiply opera-
tion vertex.

2. Naïve method that optimally solves ILP described in Section 3.2.
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Table 4.1: Comparison of methods to solve relinearize problem
Applicable Circuits Result Complexity

Simple Any Heuristic O(|V |)
Naïve Any Optimal Exponential
Proposed Any Near-optimal O(|V ||E|)
Chen's [10] Limited Optimal O(|V |4)

3. Our approximation method proposed in this paper.

4. Chen's metthod [10] for the special case in which every out-degree
is one, mentioned in Section 2.2.

Table 4.1 shows the summary of the above four methods.
Note that in a general graph O(|E|) = O(|V |2) holds, but in a data-�ow

graph, every vertex's in-degree is at most 2, thus O(|E|) = O(|V |) holds.
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Chapter 5

Experimental Result

In this chapter, we discuss the practicality of our method based on the exper-
iments with several circuits from [29]. Their characteristics are summarized
in Table 5.1.

To obtain the optimal objective value, we used the Gurobi Optimizer1

as an ILP solver. In order to obtain the result of our method, we have to
calculate the (s, t) min-cut of the graph, which we implemented from scratch
in C++. Both experiments were run on a desktop computer with Intel Core
i7-4790 CPU @ 3.60 GHz and 16 GB of RAM running Ubuntu 18.04.1 LTS
and gcc 7.3.0.

We applied both our method and the naïve method described in Sec-
tion 3.2 to the circuits with various FHE parameters kr, km. We calculated
the ratio of the objective value krR+kmM obtained from our method to the
optimal one from the naïve method to summarize in Table 5.2. We omitted
the result under the condition kr < km, in which the ratio should be always
1 because our method outputs the optimal solution as proved in Section 4.2.
The experimental result shows that even if kr > km, our approximation
method is nearly optimal and all results are within 1% approximation error.

Table 5.3 compares the optimization run-time of our method and the
naïve method. Each run-time was measured 20 times then averaged. Since
the naïve method with the ILP solver depends on the FHE parameters kr, km,
we �rst measured with each parameter and took the average. Our method,
on the other hand, does not depend on kr, km and thus put only a single
column for our method. The table shows that the proposed method runs 10
or more times faster than the naïve method. It can be easily estimated from
the complexities of Table 4.1 that with a larger circuit, our method becomes
more e�cient than the naïve method.

In summary, our method decreases the optimization time from exponen-
tial to polynomial time, only with slight sacri�ce of the objective value.

1http://www.gurobi.com/
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Table 5.1: Circuits used for our experiment
Circuit File Name |V | |E| # add # mul

adder_64bit 759 887 265 494
AES-non-expanded 33,616 33,872 68,00 26,816
comparator_32bit_signed_lt 300 364 150 150
DES-non-expanded 30,313 30,441 18,124 12,189
md5 77,861 78,373 29,084 48,777
mult_32x32 12,374 12,438 5,926 6,448
sha-1 106,601 107,113 37,300 69,301
sha-256 236,112 236,624 90,825 145,287

Table 5.2: Ratio of the approximated objective value to the optimal value
Circuit, (kr, km) (10, 1) (5, 1) (3, 1) (2, 1) (1, 1)

adder_64bit 1.0000 1.0000 1.0000 1.0000 1.0000
AES-non-expanded 1.0000 1.0000 1.0000 1.0000 1.0000
comparator_32bit_signed_lt 1.0000 1.0000 1.0000 1.0000 1.0000
DES-non-expanded 1.0000 1.0000 1.0000 1.0000 1.0000
md5 1.0058 1.0034 1.0016 1.0005 1.0000
mult_32x32 1.0002 1.0002 1.0001 1.0000 1.0000
sha-1 1.0087 1.0053 1.0025 1.0010 1.0000
sha-256 1.0080 1.0047 1.0022 1.0009 1.0000

Note: A value of 1.0000 indicates that the result of our method is optimal. A smaller
value indicates better approximation.

Table 5.3: Optimization run-time

Circuit File, (kr, km)
Naïves [ms] Proposed

[ms]
Speed Upa

(10, 1) (5, 1) (3, 1) (2, 1) (1, 1) Avg.

adder_64bit 3.817 3.643 3.637 3.666 3.662 3.685 0.078 47.2
AES-non-expanded 892.729 835.516 802.444 694.378 691.067 783.227 72.980 10.7
comparator_32bit_signed_lt 2.262 2.174 2.173 2.176 2.173 2.192 0.072 30.4
DES-non-expanded 276.059 276.376 271.879 271.747 255.942 270.401 12.205 22.2
md5 1985.374 1387.921 1685.531 1298.942 1147.082 1500.970 77.300 19.4
mult_32x32 141.867 109.668 115.414 112.689 107.150 117.358 4.589 15.6
sha-1 3420.731 2381.683 2376.709 1837.956 1709.175 2345.251 105.012 22.3
sha-256 9686.367 5613.053 5481.531 5077.008 4630.607 6097.713 394.893 15.4

aSpeed Up is the average optimization time of naive method divided by the optimization
time of proposed method.

18



Chapter 6

Conclusion

In this paper, we proposed an approximation algorithm for the relinearize
problem by adding one strong constraint and reducting to (s, t) min-cut
problem. Though our proposed algorithm is approximated, the experimental
results demonstrated that it is nearly optimal in practical circuits. Further-
more, we proved that under a speci�c FHE parameter, our algorithm out-
oputs optimal solution. Moreover, because our algorithm does not depend
on the FHE parameters, users can adjust the parameters after optimizing
the relinearization scheduling. However, selecting optimal FHE parameters
is not an easy task and remains to be addressed in a future study.
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Appendix A

How much we can speed-up by

the Relinearize Problem

Here, for reference, we show how much computation time can be reduced by
solving the relinearize problem. Now, we have four solutions to the relin-
earize problem listed in Section 4.3. We examined the estimated total com-
putation time krR+ kmM , the objective value of the ILP, for each method.
Of course, the Simple solution outputs the longest computation time, the
Naïve outputs the shortest and the optimal, and the Proposed outputs a
result between the two. We summarized the ratio of the Naïve to the Sim-
ple and the Proposed to the Simple in Table A.1. Though solving the
relinearize problem does not reduce the computation time in some cases, it
generally reduces a certain amount of the computation time. Here, we can-
not apply Chen's method [10] because this method has a strong limitation
to the applicable circuit described in Section 2.2.
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Table A.1: Ratio of the objective values. The upper row is the ratio of the
result from the optimal strategy to the simple strategy, and the lower row is
the ratio of the result from our approximation method to the simple strategy.
Circuit (kr, km) (10, 1) (5, 1) (3, 1) (2, 1) (1, 1) (1, 2) (1, 3) (1, 5) (1, 10)

adder_64bit
Optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Approx. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AES-non-expanded
Optimal 0.6570 0.7213 0.7771 0.8216 0.8885 0.9363 0.9554 0.9721 0.9856
Approx. 0.6570 0.7213 0.7771 0.8216 0.8885 0.9363 0.9554 0.9721 0.9856

comparator_32bit_signed_lt
Optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Approx. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

DES-non-expanded
Optimal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Approx. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

md5
Optimal 0.9892 0.9926 0.9952 0.9969 0.9984 0.9991 0.9994 0.9996 0.9998
Approx. 0.9950 0.9960 0.9968 0.9974 0.9984 0.9991 0.9994 0.9996 0.9998

mult_32x32
Optimal 0.9995 0.9996 0.9997 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000
Approx. 0.9997 0.9998 0.9998 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000

sha-1
Optimal 0.9824 0.9874 0.9916 0.9943 0.9971 0.9983 0.9988 0.9993 0.9996
Approx. 0.9910 0.9927 0.9941 0.9953 0.9971 0.9983 0.9988 0.9993 0.9996

sha-256
Optimal 0.9699 0.9773 0.9833 0.9875 0.9927 0.9958 0.9971 0.9982 0.9991
Approx. 0.9776 0.9818 0.9855 0.9884 0.9927 0.9958 0.9971 0.9982 0.9991
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