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ABSTRACT: Benchmark calculations with the Spin-Component-Scaled CC2
variants SCS-CC2 and SOS-CC2 are presented for the electronically excited
valence and Rydberg states of small- and medium-sized molecules. Besides the
vertical excitation energies and excited state gradients, the potential energy
surfaces are also investigated via scans following the forces that act in the
Franck−Condon region. The results are compared to the regular CC2 ones, as
well as higher level methods CCSD, CCSD(T)(a)*, and CCSDT. The results
indicate that a large fraction of the flaws of CC2 revealed by earlier studies
disappears if spin-component scaling is employed. This makes these variants
attractive alternatives of their unscaled counterparts, offering competitive
accuracy of vertical excitation energies of both valence and Rydberg type states
and reliable potential energy surfaces, while also maintaining a low-power-scaling
computational cost with the system size.

1. INTRODUCTION

The application of quantum chemical methods for electroni-
cally excited states is subject to wide scientific interest due to
their role in spectroscopy, biological processes, photovoltaics,
and many other fields. As these research areas are turning
toward larger and larger molecules, efficient methods for
theoretical characterization are warranted. Excited states are,
however, generally more difficult to describe than the ground
state, and many cost-effective computational approaches are
unreliable or perform inconsistently for excited states. In the
applications, the equation of motion (EOM)1−3 or linear
response (LR)4−8 versions of coupled cluster (CC) theory9−11

gained a high level of popularity in the past decade, thanks to
their black-box applicability and reliability based mostly on
their hierarchical structure.
As the excited state CC variants that account for the triple

excitations are generally too expensive to be used for larger
systems, lower-level approaches are mostly chosen, ones that
scale with no more than the sixth, but preferably with the fifth
or even fourth power of the system size: EOM-CCSD1,2 and
its approximations CC2,7 EOM-CCSD(2),12 partitioned
EOM-MBPT(2),13 and many others.
As the performance of such approximate methods is highly

inconsistent, many of them have been extensively bench-
marked in the past years by our group14−17 and others,18−26

addressing the quantification of errors for each method for
vertical excitation energies, transition moments, and potential
energy surfaces. In a recent study by our group,15 the popular
CC2 method7 was found to perform very badly for Rydberg-
type excited states, despite being accurate for the valence-type
ones. Subsequently, our investigation16 found that the latter
should rather be regarded as a result of fortuitous error

cancellation, which does not occur for the Rydberg states.
Recently, we also found17 that the accuracy observable for the
vertical excitation energies of valence states does not extend to
the associated surfaces and energy derivatives either. The CC2
level excited state gradients and surface plots that follow these
forces showed a surprisingly bad performance when compared
to high-level reference data for many states where otherwise a
very good vertical excitation energy is obtained.
Since, however, a cost-effective and reliable CC method is

highly demanded, it is reasonable to investigate various
modifications of CC2 theory that may offer better accuracy.
One of such modifications is the introduction of spin-
component-scaling by Grimme and co-workers27,28 which was
found to slightly reduce the errors for excited state bond
distances and adiabatic excitation energies of small inorganic
molecules by Hellweg et al.,29 as well as the error of 0−0
transitions for a large set of organic molecules by Winter et
al.30 These studies, however, did not focus on situations where
CC2 shows a subpar performance, and thus, the improve-
ments relative to regular CC2 were less significant.
In this study, we investigate the performance of spin-

component-scaled variants of CC2 using the methodology and
test systems of refs 16 and 17. We benchmark the accuracy of
vertical excitation energies of valence- and Rydberg-type
states, as well as the gradients and potential energy surfaces
(PES) of several excited states of some representative systems.
As reference, we use high level ab initio data obtained by CC
methods involving triple excitations: EOM-CCSDT,31 EOM-
CCSD(T)(a)*,32 and CC3-LR.8 This way, we aim to quantify
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the effect of spin-component scaling on the reliability and
consistency of CC2, investigate the impact of the exact values
of the spin-component scaling factors, and thereby address the
ways to remedy the previously revealed flaws of CC2 while
also retaining its attractive computational cost.
In the following section, we briefly present the concept of

spin-component-scaled CC2 methods. (For a detailed review
about spin-component-scaled models, the reader is advised to
read the excellent review of Grimme and co-workers.28)
Subsequently, we review the methodology and test systems of
this study (the ones already used in refs 16 and 17, followed
by the presentation of results for excitation energies, excited
state gradients, and potential energy surfaces. The paper
concludes with a discussion of the findings.

2. METHODS

2.1. Spin-Component-Scaled CC2 methods. The
concept of spin-component scaling (SCS), i.e., the introduc-
tion of multiplicative constants for the parallel-spin and
antiparallel-spin components of the energy expression, was
originally proposed by Grimme27 for second-order Møller−
Plesset perturbation theory (MP2) and by Jung et al.33 with
the presentation of the scaled opposite-spin MP2 (SOS-MP2)
method. The proposed empirical scaling factors Cαα and Cββ

for the parallel-spin components of the SCS-MP2 energy were
Css = 1/3, while for the antiparallel part a value of Cαβ = Cβα =
Cos = 6/5 has been suggested. These choices were later
justified by Szabados,34 who showed that they are close to
what can be obtained with a two-parameter scaling of the
zeroth order Hamiltonian satisfying Feenberg’s minimal
condition. In the SOS-MP2 method, Css is set to zero, while
Cos is adjusted to 1.3. Neglecting the parallel-spin components
entirely has the advantage that, if combined with the
resolution of identity (RI) approximation, the computational
scaling can be reduced to no more than the fourth power of
the system size.35

The generalization of SCS and SOS to CC2 for ground and
excited states was done by Haẗtig and co-workers.29,35 More
recently, Winter and Haẗtig reported the implementation of
SOS-CC2 using the RI approximation that features the
analytic evaluation of the excited state gradient.36 The scaling
factors Cσσ′, with σ and σ′ referencing α or β spins, are
introduced into the CC2 energy expression

∑= ⟨ | ̃ + [ ̃ ̂ ]| ⟩
σσ

σσ

σσ

−
′

′
′

E HF H C H T HF,SCS CC2 2
(1)

where H̃ is the T̂1-transformed Hamiltonian H̃ = exp(− T̂1)Ĥ
exp(T̂1) and T̂2

σσ′ refers to the double excitation cluster
operator

∑̂ = ̂ ̂ ̂ ̂
σσ

σ σ σ σ

′
′

† †
′T t a a a a

iajb

ij
ab

a b j i2 , , , ,

(2)

with a ̂† and a ̂ being creation and annihilation operators,
respectively, on occupied orbitals i, j and virtual orbitals a, b.
The same scaling factors are applied in the equations
determining the ground state singles amplitudes. The vertical
excitation energies are obtained from the diagonalization of
the CC2 Jacobian matrix A

with τ̂1 and τ̂2 representing the set of single and double
excitation operators, and S and D referencing the manifold of
singly and doubly excited determinants with respect to the
Hartree−Fock determinant |HF⟩, respectively. If canonical
molecular orbitals are used, the doubles−doubles block ADD is
diagonal, with the diagonal elements being the orbital energy
differences εaibj = εa − εi + εb − εj. Implementations of the
spin-component-scaled CC2 variants are now available in
many known computer codes, including TURBOMOLE35−37

and MRCC.38−40

2.2. Excited State Gradients. Geometrical first deriva-
tives of the excited state electronic energy at the ground state
equilibrium geometry (also referred to as the Franck−Condon
gradient) can be obtained analytically or numerically. For the
former approach, implementations are available at CC2,7,41 as
well as its spin-component-scaled versions SCS-CC229 and
SOS-CC235,36 in the TURBOMOLE,37 and at CC2,
CCSD42,43 and CCSDT44,45 levels in the CFOUR46 program
packages, while for the CCSD(T)(a)* method of Matthews
and Stanton32 numerical gradients are used here. These latter
calculations tend to be very expensive if the molecule has
many internal degrees of freedom and several excited states
are investigated.
Gradient vectors obtained with different methods can be

compared by evaluating their length and direction by

Table 1. Statistics on Relative Vertical Excitation Energies Compared to CC3-LR, in eV

Valence states Rydberg states

Method Cos Css Mean ΔE σΔE Max. |ΔE| Mean ΔE σΔE Max. |ΔE| Mean Δ(Valence−Rydberg)

1.1 0.0 0.41 0.28 1.06 0.27 0.24 0.89 0.15

1.1 1/3 0.26 0.18 0.62 0.02 0.14 0.49 0.23

1.1 0.5 0.18 0.13 0.51 −0.10 0.14 0.47 0.27

1.2 0.0 0.34 0.24 0.89 0.17 0.19 0.73 0.17

SCS-CC2 1.2 1/3 0.18 0.14 0.53 −0.07 0.14 0.48 0.24

1.2 0.5 0.10 0.09 0.40 −0.19 0.18 0.51 0.29

SOS-CC2 1.3 0.0 0.26 0.20 0.71 0.08 0.16 0.56 0.18

1.3 1/3 0.09 0.11 0.41 −0.16 0.17 0.52 0.26

1.3 0.5 0.02 0.08 0.33 −0.29 0.23 0.61 0.30

CC2a 0.02 0.10 0.40 −0.38 0.26 0.68 0.40

EOM-CCSD(2) 0.26 0.20 0.69 0.13 0.12 0.31 0.13

EOM-CCSD 0.17 0.13 0.42 0.11 0.08 0.33 0.07
aCalculated without resolution of identity approximation.
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numerical measures. As for the latter, the angle of two vectors
a and b is defined as

γ =
∥ ∥·∥ ∥

− ikjjjj y{zzzzab

a b
cos 1

(4)

which together with the gradient norms provides a convenient
measure of similarity.17

2.3. Surface Plots Following Franck−Condon Forces.
Immediately after being excited to the state of interest, the
system is likely to follow a path marked by the Franck−
Condon gradient. Altering the geometry in a stepwise manner
in the direction of these forces with steps proportional to the
gradient thus explores an important region of the PES.17 The
points of the function

= [ − · · ∇̅ ] − [ ]E E n S E ER R( )n
i i i

R0
0

00 (5)

can be obtained for the states of interest, where Ei[R] is the
total electronic energy of state i at geometry R, ∇̅Ei refers to
the mass-weighted gradient of this state, and R0 is the ground
state equilibrium geometry. The step size S was chosen as

−m E a0.6 u h
1/2 1

0
2, as it was proven to be a well-working value in

our previous study.17 The parallelity of these curves can
illustrate the differences between methods, highlighting their
impact on the quality of the PES. The comparison of these
plots for lower level methods can be done by investigating
their “divergence” from a reference curve

̅ = − − −E E E E E( )n
i

n
i

n
i ref i i ref,

0 0
,

(6)

where the second term shifts the curve to 0 for n = 0.
2.4. Test Systems. The accuracy of vertical excitation

energies was evaluated on a subset of the benchmark set used
in ref 16, i.e., low-lying excited states of small- and medium-
sized molecules with an extended π system. It forms a
representative large subset of the benchmark set of Thiel et
al.,18 the elements chosen with the objective that all states
could be reliably calculated with all methods investigated in
this study. As reference, the linear response CC3 values from
ref 16 were used, which had been found very accurate in
earlier works.14−16 Altogether, the excitation energies of 64
valence and 56 Rydberg states were obtained with various
spin-component-scaled CC2 variants: the regular SCS-CC2
(Cos = 1.2, Css = 1/3) and SOS-CC2 (Cos = 1.3, Css = 0), as
well as ones with different choices of Cos (1.1, 1.2, and 1.3)

and Css (0.0, 1/3, and 1/2). The aug-cc-pVDZ basis set of
Dunning et al.47 was employed in all cases.
For the evaluation of gradients and surfaces, the systems

and electronic states of our previous study17 were investigated
with SCS methods. That is, the benchmark set consisted of
low-lying valence excited states of four small- and medium-
sized systems that contain π-bonds and nitrogen heteroatoms:
methanimine (formaldimine), formamide, cytosine, and
guanine. As reference, very accurate CCSDT results were
used, except in the case of guanine, where the CCSD(T)(a)*
values have been used instead. This latter method was found
to be very accurate and consistent in earlier benchmarks,
outperforming even CC3 in many cases.17 In these
calculations, the states under investigation being of pure
valence type, cc-pVDZ basis set of Dunning et al.48 was
employed.
The spin-component-scaled CC2 calculations were per-

formed using the TURBOMOLE37 program system with the
use of resolution of identity (RI) approximation and core
electrons excluded from the correlation treatment. For the
CC2, CCSD, CCSD(T)(a)*, and CCSDT calculations, the
CFOUR46 program package has been used, and the RI
approximation was not invoked. The reference structures were
optimized at the CCSD/cc-pVDZ level.17

3. RESULTS

3.1. Vertical Excitation Energies. Statistics on the error
of the vertical excitation energies are presented in Table 1 for
the different spin-component-scaled CC2 variants as well as
for the regular CC2, CCSD(2), and CCSD methods,
evaluated against the CC3 reference values. (The full set of
results for the excitation energies is available in the Supporting
Information.) The latter two doubles methods, as already
shown in ref 16, have a general tendency to slightly
overestimate the vertical excitation energy of both valence
and Rydberg states. CC2, while being very accurate for
valence type states, underestimates the Rydberg excitation
energies by nearly 0.4 eV. This misbalance, evaluated as the
difference of mean errors for the valence and Rydberg set, is
shown in the last column of Table 1. One can see that the
misbalance is significantly reduced for all spin-component-
scaled variants, down to as low as 0.15 eV for Cos = 1.1 and Css

= 0.0. SOS-CC2 (Cos = 1.3, Css = 0) shows 0.18 eV, while the
Css ≠ 0 variants give considerably higher values up to 0.3 eV.

Table 2. Vertical Excitation Energies, Length, and Angle of Excited State Gradient Vectors of Methanimine

Angles (deg)

Excitation energy (ev) Gradient length (au) SCS-CC2 SOS-CC2 CC2 CCSD CCSDT

State 1 (n−π*)

SCS-CC2 5.73 0.1636 0.00 0.25 0.51 3.11 1.56

SOS-CC2 5.78 0.1641 0.00 0.76 3.07 1.58

CC2 5.65 0.1626 0.00 3.33 1.56

CCSD 5.54 0.1576 0.00 4.37

CCSDT 5.47 0.1692 0.00

State 2 (σ−π*)

SCS-CC2 10.01 0.2543 0.00 0.63 1.37 4.92 6.37

SOS-CC2 10.05 0.2518 0.00 2.00 5.02 6.50

CC2 9.92 0.2606 0.00 4.74 6.12

CCSD 9.79 0.2423 0.00 3.18

CCSDT 9.65 0.2387 0.00
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On the other hand, decreasing Css deteriorates the accuracy
of the vertical excitation energy of valence states, shifting them
up by up to 0.41 eV (Cos = 1.1, Css = 0) from the reference.
The Rydberg states are also up-shifted as Css approaches zero,
certain values (Cos = 1.1, Css = 1/3) giving a mean error as low
as 0.02 eV. With decreasing Cos, a similar tendency is observed
with both valence and Rydberg states shifted upward.
Although no particular choice of Css and Cos clearly stands
out from the evaluated variants, the SOS-CC2 (Cos = 1.3, Css =
0.0) shows a remarkable consistency with a mean error for the
Rydberg states as low as 0.08 eV and 0.26 eV for the valence
states, same as the much more expensive CCSD(2) method.
Even the respective standard deviations are in line with those
of CCSD(2), which are, however, still much larger than those
of CCSD. The same holds for the valence−Rydberg
misbalance of 0.18 eV; nevertheless, this value seems very
acceptable compared to CC2.
3.2. Franck−Condon Gradients. Franck−Condon gra-

dients evaluated according to eq 4 are shown in Tables 2, 3, 4,
and 5. For the two considered valence excited states of the

methanimine (formaldimine) molecule, which are of n − π*

and σ − π* type, respectively, the spin-component-scaled
gradients show little difference to CC2, but have a consistently
more accurate length. For the first, n − π* excited state of
formamide, the CC2 gradient is as much as 5.26 degrees
askew from CCSDT, while the SCS and SOS variants show a
minor improvement with 4.90 and 4.75 degrees. The error of
the vector length is also reduced by 24 and 36%, respectively.
A much larger effect is observed for the other, π − π* state,
where the significant directional inaccuracy of the CC2
gradient (16.00 degrees) is reduced to half (8.07 degrees)
with the regular SCS scheme, but to no less than 15.92
degrees with SOS-CC2. The gradient norms also show
improvement, with the SCS-CC2 one being almost in line
with the CCSD result.
In the case of cytosine, the π−π* states remain generally

well described by all doubles methods. For the first state, SCS-
CC2 gives an excellent gradient direction, while also reducing
the error of the CC2 gradient length by nearly 60%. As for the
latter, the SOS-CC2 result is even better, practically as

Table 3. Vertical Excitation Energies, Length, and Angle of Excited State Gradient Vectors of Formamide

Angles (deg)

Excitation energy (eV) Gradient length (au) SCS-CC2 SOS-CC2 CC2 CCSD CCSDT

State 1 (n−π*)

SCS-CC2 6.05 0.3010 0.00 0.47 0.89 5.44 4.90

SOS-CC2 6.03 0.2986 0.00 1.36 5.27 4.75

CC2 6.00 0.3061 0.00 5.85 5.26

CCSD 5.87 0.2678 0.00 1.13

CCSDT 5.84 0.2850 0.00

State 2 (π−π*)

SCS-CC2 8.05 0.2196 0.00 8.35 22.59 2.10 8.07

SOS-CC2 8.01 0.2265 0.00 30.94 9.54 15.92

CC2 7.71 0.2370 0.00 21.63 16.00

CCSD 7.92 0.1975 0.00 6.87

CCSDT 7.64 0.2066 0.00

Table 4. Vertical Excitation Energies, Length, and Angle of Excited State Gradient Vectors of Cytosine

Angles (deg)

Excitation energy (eV) Gradient length (au) SCS-CC2 SOS-CC2 CC2 CCSD CCSDT

State 1 (π−π*)

SCS-CC2 5.06 0.2354 0.00 2.87 5.75 6.71 3.18

SOS-CC2 5.10 0.2316 0.00 8.61 4.90 5.51

CC2 4.96 0.2467 0.00 11.76 4.44

CCSD 5.11 0.2034 0.00 8.08

CCSDT 4.86 0.2267 0.00

State 2 (π−π*)

SCS-CC2 6.05 0.2203 0.00 2.46 4.55 7.90 8.73

SOS-CC2 6.14 0.2203 0.00 7.00 7.92 10.36

CC2 5.86 0.2171 0.00 9.96 7.24

CCSD 6.10 0.1961 0.00 7.73

CCSDT 5.75 0.2095 0.00

State 3 (n−π*)

SCS-CC2 5.52 0.1706 0.00 10.40 36.49 19.49 5.83

SOS-CC2 5.65 0.1645 0.00 46.03 10.63 14.13

CC2 5.15 0.2489 0.00 54.91 35.46

CCSD 5.53 0.1538 0.00 21.45

CCSDT 5.28 0.1628 0.00
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accurate as CCSD. For the second π−π* state, the spin-
component-scaled gradients do not outperform the CC2 ones,
although the changes remain minor both in the vector length
and its direction. For the third n−π* state, a disastrous
performance of CC2 was found earlier.17 Thankfully, the spin-
component-scaled variants seem to correct this behavior to a
remarkable extent: both the SCS-CC2 and SOS-CC2
gradients are better than even CCSD, the former having a
directional error as little as 5.83°, compared to 35.46° in the
case of CC2. The vector is no more than 4.79% longer than
the CCSDT reference, while the SOS-CC2 one is even better,
with an error as low as 1%.
For guanine, where the CCSD(T)(a)* method was

introduced as a reference in our previous study,17 a similar
tendency can be observed for the three π−π* states as well as
for the first n−π* one: the spin-component-scaled techniques
outperform both CC2 and CCSD in the accuracy of the
gradient length and in the case of SCS-CC2 even in its
direction in all cases. As for the second n−π* state, the
dramatic error of the CC2 gradient is greatly reduced by spin-
component scaling. The SOS-CC2 vector is only 15.70° askew
from the reference, compared to 38.52° for CC2, and even
SCS-CC2 has a 16° smaller error than CC2. The SCS-CC2
gradient vector is no more than 2% shorter than the

CCSD(T)(a)* one, representing a huge improvement over
CC2 which overshoots the vector by more than 28%.

3.3. Surface Plots. The surface plots following Franck−
Condon forces defined by eqs 5 and 6 are presented for the
investigated states on the left and right panels of Figures 1, 2,
3, and 4, respectively. For the two smallest systems, the above-
mentioned improvement of spin-component scaling techni-
ques over CC2 is well shown by these curves as well. With the
exception of the lowest, n−π* state of formaldimine where all
doubles techniques deliver excellent accuracy, the SCS-CC2
and SOS-CC2 results fall between CC2 and CCSD, always
giving a smaller divergence from the reference than CC2. In
the case of formamide, SCS-CC2 outperforms even CCSD in
the accuracy of the surface. In the most critical π−π* state, it
seems safe to say that the tremendous inaccuracy of CC2 is
essentially eliminated by the introduction of spin-component
scaling. The two SCS variants show a similar behavior for all
states; the superiority of SCS-CC2 over SOS-CC2 is only
pronounced in the case of formamide.
For the first excited state of cytosine, the intermediate

nature of the SCS and SOS results between CC2 and CCSD
is again recognizable. The accuracy relative to CCSDT is
excellent, with the divergence never exceeding 0.1 eV along
the entire surface scan. For SOS-CC2, it remains below 0.05

Table 5. Vertical Excitation Energies, Length, and Angle of Excited State Gradient Vectors of Guanine

Angles (deg)

Excitation energy (eV) Gradient length (au) SCS-CC2 SOS-CC2 CC2 CCSD CCSD(T)(a)*

State 1 (π−π*)

SCS-CC2 5.38 0.1947 0.00 1.46 3.85 8.73 4.08

SOS-CC2 5.40 0.1938 0.00 5.23 7.94 3.91

CC2 5.35 0.1982 0.00 11.44 6.39

CCSD 5.44 0.1697 0.00 6.60

CCSD(T)(a)* 5.32 0.1843 0.00

State 2 (π−π*)

SCS-CC2 6.03 0.2062 0.00 2.32 4.34 7.66 3.98

SOS-CC2 6.11 0.2070 0.00 6.57 7.87 5.10

CC2 5.88 0.2077 0.00 9.35 4.94

CCSD 6.11 0.1798 0.00 6.55

CCSD(T)(a)* 5.91 0.1957 0.00

State 3 (π−π*)

SCS-CC2 7.02 0.1771 0.00 2.30 3.96 10.33 5.88

SOS-CC2 7.07 0.1732 0.00 5.92 10.94 7.21

CC2 6.91 0.1843 0.00 11.90 6.57

CCSD 7.10 0.1498 0.00 6.04

CCSD(T)(a)* 6.87 0.1788 0.00

State 4 (n−π*)

SCS-CC2 5.87 0.3024 0.00 1.96 5.11 4.99 1.63

SOS-CC2 5.92 0.2979 0.00 7.02 3.95 2.55

CC2 5.75 0.3173 0.00 9.11 5.21

CCSD 5.80 0.2626 0.00 4.94

CCSD(T)(a)* 5.75 0.2835 0.00

State 5 (n−π*)

SCS-CC2 6.84 0.1782 0.00 7.99 26.37 31.21 22.20

SOS-CC2 6.94 0.1699 0.00 31.33 24.30 15.70

CC2 6.57 0.2339 0.00 47.84 38.52

CCSD 6.87 0.1705 0.00 11.90

CCSD(T)(a)* 6.73 0.1823 0.00
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eV. For the second π−π* state, all doubles methods work very
well, and the spin-component-scaled variants seem to be more
in line with CC2. The complete opposite is, however,
observed for the n−π* state, where SCS-CC2 and SOS-
CC2 are essentially in line with CCSD, while CC2 shows its
catastrophic behavior found earlier17 diverging from the
reference by more than 1 eV.
For the π−π* states of guanine, we see a clear superiority of

SCS methods over CCSD and, with the exception of the
second state, over CC2 as well. The similarity of the SCS and
SOS variants is remarkable, especially in the first few points of
the scan. For the n−π* states, where the results are much

more controversial for approximate methods,17 the picture is
mixed: for the first state, the SCS-CC2 and SOS-CC2 curves
exhibit a bad behavior similar to CC2. Yet their error, as
shown by the divergence plots, is considerably smaller. For the
second state, on the other hand, the SCS methods do not
show the scary discrepancy of CC2, rather a very reasonably
looking surface which is in the case of SCS-CC2 nearly as
accurate as CCSD.

4. DISCUSSION AND CONCLUSIONS

The statistical findings on the accuracy of vertical excitation
energies confirm that the valence−Rydberg misbalance of
CC2 could be reduced by spin-component scaling, the biggest
improvement in this aspect is seen when setting Css to zero.
Since our recent study revealed that this problem of CC2
theory stems from the diagonal formulation of the doubles−
doubles (DD) block of the Jacobian matrix A,16 this finding
means that omitting parallel-spin terms from the other blocks
of A compensates for this flaw of CC2 to a considerable
extent. Although even the simple SOS-CC2 method performs
well in this context, we could not find any variant that would
be significantly better while also having low error for all types
of states. In fact, we could not identify a clear optimum for the
choice of Css and Cos for vertical excitation energies.
The other known discrepancy of CC2, the bad quality of

potential energy surfaces in certain cases also seems to be
largely remedied by spin-component scaling. Although both
SCS-CC2 and SOS-CC2 represent a significant improvement
over unscaled CC2 in the most problematic situations, the

Figure 1. Potential energy curves following the gradient of low-lying
excited states of methanimine relative to the ground state equilibrium
energy (left panels) and their divergence from the respective CCSDT
curve (right panels).

Figure 2. Potential energy curves following the gradient of low-lying
excited states of formamide relative to the ground state equilibrium
energy (left panels) and their divergence from the respective CCSDT
curve (right panels).

Figure 3. Potential energy curves following the gradient of low-lying
excited states of cytosine relative to the ground state equilibrium
energy (left panels) and their divergence from the respective CCSDT
curve (right panels).
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overall results are still not of CCSD quality. Instead, the spin-
component-scaled variants seem to reduce the large errors,
giving results that fall between those of CCSD and CC2. SCS-
CC2 and SOS-CC2 perform very similarly in these tests, so
much that it is not possible the declare either being more
accurate than the other.
Also considering, however, the computational costs, the

SOS-CC2 variant whose implementations offer a scaling with
the fourth power of the system size,35,36 definitely seems a
promising method for future applications. Despite the
simplified formulation, the overall consistency and reliability
are clearly better than that of regular CC2, which we think

should be given a higher priority than the somewhat larger
mean error of valence excitation energies. The latter is still in
line with CCSD(2) and not far from that of CCSD, while the
Rydberg states are described with a remarkably good accuracy.
Our results thus encourage the choice of spin-component-

scaled variants in situations where the standard CC2 or
ADC(2) methods would normally be used. Specifically, the
computationally attractive Css = 0 versions seem powerful
tools for applications on larger systems, studies we hope to see
many more of in the future.
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