
MSc thesis

Borsik Gábor Bence

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/286962508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Inspection the use of static code analysis

to automatically detect security issues

EÖTVÖS LORÁND UNIVERSITY

FACULTY OF INFORMATICS

DEPARTMENT OF PROGRAMMING LANGUAGES AND COMPILERS

Author:

Borsik Gábor Bence

MSc in Computer Science

2. year

Supervisor:

Gera Zoltán

assistant professor

Budapest, 2019

Contents

1 Introduction 6

1.1 Motivation . 6

1.2 Results . 7

2 Basics 9

2.1 Static code analysis . 9

2.1.1 Taint analysis . 10

2.2 Existing implementations . 11

2.2.1 Clang Static Analyzer . 11

2.2.2 Custom Taint Checker . 12

2.2.3 Facebook Infer . 12

3 Outline of the solution 13

3.1 Internal working of the checker . 13

3.2 Internal architecture . 15

3.3 Support of C++ language features . 16

3.4 Support of C++ I/O . 18

4 Implementation 21

4.1 GenericTaintChecker . 21

4.2 Revision of the checker . 23

4.3 Configuration . 24

4.4 C++ support . 27

4.4.1 Language features . 27

4.4.2 Strings . 29

4.4.3 Streams . 30

CONTENTS

5 Summary 32

5.1 Future work . 32

5.1.1 Commit to Clang Static Analyzer 32

5.1.2 Make the checker default . 32

5.1.3 C++ related features . 33

5.1.4 Other miscellaneous features . 34

5.2 Conclusion . 34

References 36

Figures 38

Tables 39

Source codes 40

2

Acknowledgments

I would first like to thank my thesis advisor Zoltán Gera of the Faculty of Informatics

at ELTE for his support in my research project, his patience, motivation and insight to

the field. I would also like to thank Zoltán Porkoláb and Dániel Krupp, my colleagues,

who helped me in the time of this research with they approach to the topic, along with my

colleague Krisóf Umann, for offering their counterarguments and questions during my

work.

My sincere thanks go to Ericsson Hungary, Ltd. for the opportunity for an internship,

and access to their facilities.

3

Abstract

Security is one of the most important non-functional requirement of an application.

Computers surround us everywhere, and our life depends on them in many ways. Most

of these devices contain potential vulnerabilities as a result of poor programming. Taint

analysis is a technique which can catch potential security leaks with static code analysis.

It checks uses of data from external which data may have any value in a specific domain.

However, a lot of function expect values from the subset of the domain then, so they

expects sanitized data. The Clang Static Analyzer has a checker which can perform taint

analysis on C or C++ code. Our goal is to refine the checker’s architecture and increase

its efficiency. In order to achieve this, we need to make the checker configurable. Hence,

the user can set his own taint sources, propagation rules, sanitizers, and sinks. In addition,

we added an aggressive propagation mode to the checker, where all unknown functions

behave as a taint propagator. This greatly increases the checker’s hit rate, while it only

increases the false positives rate by a little. Another key point to remember is that we

added support for some C++ language features and built-in types.

4

Absztrakt

A biztonság az egyik legfontosabb nem funkcionális követelmény egy alkalmazás

számára. Az életünk sok szempontból függ a minket körülvevő számítógépektől. A

legtöbb eszköz potenciális biztonsági réseket tartalmaz a nem megfelelő programozás

miatt. A taint analízis egy olyan technika, ami statikus kódanalízis használatával képes

felismerni potenciális biztonsági hibákat. Az analízis feladata olyan – külső forrásból

származó – adatok ellenőrzése, amelyek bármilyen értéket felvehetnek egy bizonyos

doménből, azonban sok függvény ennek a doménnek csak egy részéből várja az ada-

tokat. A Clang Static Analyzer tartalmaz egy checker-t, amely taint analízist tud végre-

hajtani C vagy C++ kódon. A célunk, hogy javítsuk a checker belső architektúráját és

növeljük annak hatékonyságát. Ennek elérése érdekében konfigurálhatóvá kell tennünk a

checker-t, így a felhasználó be tudja állítani a saját taint forrásait, terjesztőit, tisztítóit és

nyelőit. Ezen kívül hozzáadtunk egy agresszív taint terjesztési lehetőséget, ahol az összes

ismeretlen függvény taint terjesztőként viselkedik. Ez nagymértékben növeli a checker

hatékonyságát, viszont egy kissé nő a hibás találatok aránya is.

5

Chapter 1

Introduction

1.1 Motivation

The CodeChecker is an open source tool which can identify potentially wrong code

constructions at an early stage of the development with static code analysis. It increases

the software development speed, therefore, it makes the software cheaper and produces

better quality code. The CodeChecker is built on the Clang Static Analyzer (Clang SA)

which is one of the most advanced static analyzers. It can detect potential bugs in C and

C++ source code using symbolic execution. The Clang SA evolves with the support of

Apple, Google, Sony, and Ericsson.[1]

My thesis’s purpose is to compare various CERT(Computer Emergency Response

Team) organization’s suggestions with the static analyzer’s ability and to determine which

inspections are algorithmic and automated with high reliability.

The security-related issues could have a much bigger impact than other bugs. Usually,

a bug can cause bad behavior or crash, but for security issues the best case is when the

system crashes. Otherwise, a hacker can steal passwords or other sensitive data, and run

malicious code on our system or on our client’s system. There are many known attacks

for instance XSS, SQL injection, and buffer overflow.[2]

The thesis’s main direction is to check the inadequate uses of user inputs. When the

program reads some data from an untrustworthy source (standard input, file, or socket) it

will be tainted. Those data could be literally anything. A division should not be evaluated

with an unknown integer, because it could be zero which causes undefined behavior in

C++. An array should not index with a tainted value either. In modern systems, the 32

6

1. Introduction

bit signed integer’s maximum value is 2147483647 which is almost always bigger than

an array’s size. There are a number of problems with strings from an external source. Its

size and content are not known. The not sanitized string could cause several problems,

because the user can run his own commands in our system.

1.2 Results

To deal with this issue, I described an internal representation for a checker working

on taint analysis, which contains source, propagator, sanitizer and sink functions in a

configurable way. Moreover, I outlined how to handle C++ language features, for instance,

reference, extraction operator, assignment operator, namespaces, and member functions.

To support input I modeled built-in classes such as std::string, and std::istream.

I implemented this as the part of the Clang Static Analyzer - an open source code

analysis tool built on LLVM - which already has an existing implementation. I refined the

internal architecture, implemented configuration, and added support for C++.

I tested my implementation with CodeChecker - an open source static analysis in-

frastructure built on LLVM/Clang Static Analyzer toolchain - which can help store and

view defects. I performed analysis on several projects and I found four defects with taint

analysis in curl.[3] One of them was a false positive, and three of them was true positive.

Unfortunately, these defects are in the test code, but the results were important despite

this because these defects cannot be found by the original implementation. I summarize

one of the defects:

1 char* ptr;

2 FILE *stream;

3 stream = fopen(filename, "rb"); // stream is marked as tainted

4 char *cmd = NULL;

5 int error = getpart(&cmd, &cmdsize, "reply", "servercmd", stream); //

cmd and cmdsize are marked as tainted

Source code 1.1: Defect’s summary 1

7

1. Introduction

The first tainted symbol is the stream pointer, because fopen is a taint source. Next,

the analyzer parse the getpart function. Its definition is unknown, however, the checker

considers it as a taint propagator, which is one of the new features. Consequently, the

previous version lost the taint here. The checker’s assumption is correct, the function

reads data from the stream and writes it to the cmd buffer.

1 int rtp_size = 0;

2 ptr = cmd; // ptr is tainted

3 if (3 == sscanf(ptr, "rtp: part %d channel %d size %d",

4 &rtp_partno, &rtp_channel, &rtp_size)) {

5 rtp_scratch = malloc(rtp_size + 4 + RTP_DATA_SIZE); // Untrusted data

is used to specify the buffer size

6 }

Source code 1.2: Defect’s summary 2

The sscanf is an unknown function, and it is not in the checker’s built-in propagation

rules list, but it is correct to mark rtp_size as tainted. In conclusion, the allocated amounts

of memory depends on the file’s content without any sanitization.

Nonetheless, it is not perfect, since the aggressive propagation increases the rate of

false positives. Furthermore, C++ support is not complete, but it may offer a good start

for further investigation and development.

8

Chapter 2

Basics

2.1 Static code analysis

Static program analysis is performed without executing the program, but analyzing the

source code. Programmers make mistakes all the time, however, most of them are caught

by the compiler. The longer a bug lies in the code, the more expensive it can be to fix, and

more likely to cause financial or data loss. It is very important to find bugs at the earliest

phase of software development. There are many common coding problems, which can be

identified by a static analyzer tool. On the other hand, it is not as good as a manual review,

but it is much cheaper and faster. It can improve the review procedure very well.

Static analysis cannot find all bugs in the code. It looks for a fixed set of patterns, or

rules. Static analyzers will not fix the problem, they just emit some suspicious pattern.

They are not perfect. Moreover, it is programmers’ responsibility to decide whether it

found a real bug or just a false positive (the tool reports bugs that do not exist). It is aimed

to preserve the balance between false negatives (the program contains bugs that the tool do

not report) and false positives because programmers will stop using the tool if it generates

too many false positives.[4]

There are many security-related checks already implemented in the static analyzer

tools, which are essential for safety critical application. For instance, Clang-Tidy con-

tains several CERT checks, in particular, cert-msc51-cpp that was implemented by me. It

ensures that the user seeds his random generator properly.

9

2. Basics

1 int main(int argc, char *argv[]) {

2 std::mt19937 engine1; // Diagnose, always generate the same sequence

3 std::mt19937 engine2(1); // Diagnose

4 engine1.seed(); // Diagnose

5 engine2.seed(1); // Diagnose

6

7 std::time_t t;

8 engine1.seed(std::time(&t)); // Diagnose, system time might be

controlled by user

9

10 int x = atoi(argv[1]);

11 std::mt19937 engine3(x); // Will not warn

12 }

Source code 2.1: Properly seeded random generators

2.1.1 Taint analysis

External sources (from the user, socket, shared memory, command line) return values

where we cannot assume any limitation of the given values. That value is called tainted

and its origin a tainted source. Certain functions have preconditions for their actual pa-

rameters. Violations of those preconditions can cause undefined behavior or crash.

Functions and operations that have preconditions for their actual parameters are called

sinks. The standard library and the C/C++ language contain many sinks, for instance,

subscript operator or modulo operator. Moreover, there are many functions which expect

a null-terminated string. However, in many cases, the string’s content is important too.

For instance SQL injection, system calls or XSS are the most common cases.

Furthermore, tainted values are propagated through either functions or operations.

Most of the arithmetic operations propagate taintedness. On the other hand, functions

do not always behave as propagators. With this in mind, if the function’s behavior is

unknown, the propagation cannot be modeled precisely.

In order to make the taint analysis usable, there must be a way to remove the taint from

a value. Functions which ensure the value meets the preconditions are called sanitizers.

10

2. Basics

They can sanitize the value in several ways, for instance, change the value, or terminate

the program.[5]

2.2 Existing implementations

2.2.1 Clang Static Analyzer

The Clang Static Analyzer (Clang SA) is built on the LLVM infrastructure and is part

of the Clang C/C++ compiler. The analyzer’s core performs symbolic executions of the

given program. It represents unknown input values as symbolic values and deduces all

expressions in the program. The execution is path sensitive, hence, every possible path

will be explored.[6, 7]

The Clang SA has a checker which is responsible for the taint analysis

(GenericTaintChecker). Currently, it supports only C functions, but it works on C++ code

as well. It has some common predefined taint sources, for instance, scanf, socket, getch,

and fopen. It implements taint propagation in two ways. Firstly taint can be propagated

through an expression. If a value is tainted in the expression, then the whole expression

will become tainted. Secondly, the checker contains many common predefined functions

which propagate taintedness through their parameters and return value. The checker also

contains predetermined sinks:

• Uncontrolled format string: untrusted data is used as a format string (CWE-134)[8]

• Tainted buffer size: untrusted data is used to specify the buffer size (CERT/STR31-

C)[9]

• System call: untrusted data is passed to a system call (CERT/STR02-C)[10]

• Array out of bound: untrusted data is used to index an array

• VLA size checker: has tainted size

• Division by zero: division by a tainted value, possibly zero

Despite this, it has many limitations. The user is unable to configure and add their own

known taint sources or propagators. Furthermore, there are no sanitizer functions, because

11

2. Basics

there is no way to define that. Additionally, today the applications are developed in C++

rather than C. This deficiency significantly reduces its usability.

2.2.2 Custom Taint Checker

CustomTaintChecker is a Clang Static Analyzer plugin, which can be loaded into the

analyzer. The project had been forked from the GenericTaintChecker, unfortunately it

was not committed into the Clang SA. Not only it has all the features that the original

has, but also it is configurable and can handle sanitizer functions. However, it has limited

support for C++, for instance the configuration does not handle namespaces or member

functions. What’s more, it can not work with common C++ I/O functions, for instance,

std::cin.[11, 12]

2.2.3 Facebook Infer

Infer is an open source static analysis tool developed by Facebook. It has an experi-

mental checker named Quandary, which performs static taint analysis. It has a small list

of built-in sources and sinks, and can be used for Java. Sources, sinks, and sanitizers are

configurable by the user. In comparison to the Clang SA based checkers, it does not have

an ability to propagate taints through functions. In addition, the lack of built-in C/C++

sources and sinks makes it difficult to use on existing projects.[13]

12

Chapter 3

Outline of the solution

3.1 Internal working of the checker

In order to implement taint detection successfully, the limitations of the framework

must be known. Clang Static Analyzer works on a compiling unit. Firstly, the analyzer

core creates a call graph, then it starts the analysis at the top of it. Secondly, the checker

is called, when the analyzer hits a function call. If the function’s name matches with the

predefined list, then it will mark the return value or the output parameter(s) as tainted.

The analyzer framework can track back the operations performed on a specific vari-

able. To give an illustration, it can tell us when that variable was created by multiplying

another variable with an integral constant. Therefore, the tainted flag can be tracked down.

In conclusion, when a value is created by simple operations, the taint can be propagated

through them.

1 void foo(int n) {

2 int x;

3 scanf("%d", &x); // x is tainted

4 int y = x + 5; // y consist of a binary operation between x and a

constans

5 int z = y * n; // z consist of a binary operation between y and n

6 // z is tainted, if any of its ascendants are tainted

7 // x can be tracked back from z

13

3. Outline of the solution

8 }

Source code 3.1: Taint propagation with symbols

Although it works only with operators, functions could be called with taint values. If

the function is defined in the same compilation unit, then it will be inlined. Accordingly,

those functions will work as there was not any function call from the taint value’s point

of view.

1 void func(int*);

2

3 void bar(int* x) {

4 scanf("%d", x);

5 }

6

7 void foo(int n) {

8 int x;

9 bar(&x); // x is tainted, because the analyzer know bar’s definition

10 func(&x); // x is untainted, because the analyzer cannot assume

anything about func

11 }

Source code 3.2: Taint propagation with functions

If the function is not defined in the same compilation unit, then the taint propagation

will depend on the built-in functions of the checker. Obviously, only common functions

could be defined there. Otherwise, the function is unknown, so the checker should handle

it as propagator of taintedness, if any of its parameters is tainted. Importantly, this is a

potential source of false positives. On the other hand, it would help to find as many true

positives as possible. Above all, the correct solution is to make this behavior configurable.

In summary, the framework offer the following features:

• It works in one compilation unit

• The checker is called on every function call

14

3. Outline of the solution

• Store the operations which are performed on symbolic values

3.2 Internal architecture

The checker works with function names and classifies them to four groups:

• Sources: mark their return value or output parameter(s) unconditionally tainted

• Propagators: mark their return value or output parameter(s) if at least one of its

input parameters are tainted

• Sanitizers: remove the taint from the specified arguments

• Sinks: emit bug report if the given argument is tainted

1 void foo() {

2 int x;

3 // Reading from user returns tainted value

4 scanf("%d", &x); // x is tainted

5

6 // Unknown function propagate taintedness

7 int z = func(x); // z is tainted

8

9 // Filters remove taintedness

10 myFilter(&x);

11

12 // Sinks emit warning, if it get tainted value

13 mySink(x); // No warning

14 mySink(z); // Warning

15 }

Source code 3.3: The checker’s expected behavior

The checker contains the most common functions in a predefined list to improve its

efficiency. Unfortunately, sanitizer functions cannot be defined, because they always de-

pend on the current environment. Consequently, the configuration of the checker is an

15

3. Outline of the solution

indispensable feature. Without configuration, the chance of a true positive is inversely

proportional with the project size, as well as the number of the used third-party libraries.

For instance, if a third-party library is used to handle I/O, taintedness will never be initi-

ated.

untaintedstart tainted error

source

filter

propagator

sink

∗

Figure 3.1: State transition system for taint analysis[11]

3.3 Support of C++ language features

C++ is one of the most popular programming languages in the world, therefore it is

very important to support its features. This significantly increases the checkers’ complex-

ity due to the references, namespaces, templates, and objects.

Currently, the checker compares the function’s name with a list of names. Use of

namespaces in the function’s name greatly decrease the number of false positives caused

by name collision. For instance, there is a C library function read, which name is com-

monly used.

1 struct Foo {

2 ssize_t read(int, void*, size_t);

3 };

4

5 namespace bar {

6 ssize_t read(int, void*, size_t);

7 }

8

9 void func() {

10 int fd; // Tainted file descriptor

11 constexpr size_t size = 128;

16

3. Outline of the solution

12 char buffer[size];

13

14 Foo foo;

15 foo.read(fd, buffer, size); // No match

16

17 bar::read(fd, buffer, size); // No match

18

19 // Posix read function

20 read(fd, buffer, size); // Match -> buffer will become tainted

21 }

Source code 3.4: Functioning of scopes

The templates and inheritance make this model more complicated. The user has to be

able to configure functions for all instantiations or just specific ones. However, normal

strings and pattern matching does not offer flexibility for it. By contrast, regular expres-

sions are much more appropriate for this use case.

The object-oriented programming paradigm is widely used in C++, therefore, taint

propagation through object should be available. Even if the analyzer knows the struc-

ture of the object, it should bind the taintedness to the whole object instead of its fields.

Usually, the whole implementation is not available for the analyzer. Consequently, the

checker should adapt to the implementation details, which is not a scalable solution. In

conclusion, the optional way is to treat objects like a black box. For objects, the tainted-

ness should originate from assignments, constructors, member functions or free functions.

Assignments always have to propagate taintedness. On the other hand, constructors and

functions should be configurable.

To sum up, there are three essential features for a taint checker:

• Namespaces and member functions for configuration

• Work with templates and inheritance

• Tainted this

17

3. Outline of the solution

3.4 Support of C++ I/O

In order to model taint propagation properly, the taint sources should be defined very

carefully. C++ greatly increases the possible ways to handle I/O, in particular, streams

and stream buffers.

To begin, the most straightforward way to read data from the user is the std::cin (or

std::wcin). This is a global object of class std::istream which controls input. Under the

hood, it is associated with the C input stream stdin. These objects have to be marked as

tainted from the beginning of the program.

Notably, uses of std::cin adduce the problem of C++’s overloaded operators. The most

common way to read formatted data from the standard input is the extraction operator. It

is fundamental to consider extraction operator in the same way as functions, which means

if the object is tainted, the returned value will become tainted. Moreover, it has to work

with all types of objects.

1 void foo() {

2 int x;

3 std::cin >> x; // x is tainted

4

5 char title[256];

6 std::cin.getline(title, 256); // title is tainted

7 }

Source code 3.5: Read from std::cin

Subsequently, one can gather unformatted input from std::basic_istream objects.

Those functions should be handled as propagators. Furthermore, it does not have to de-

pend on the template parameter and it has to work on its derived classes.

Then, the data can be read from files. C++ provide std::basic_ifstream for it.

Fortunately, it is derived from std::basic_istream, so the reading operations are already

solved. Another key thing to remember, all objects of this type has to be tainted after

construction.

18

3. Outline of the solution

1 void foo() {

2 int x;

3 std::ifstream file("example.txt");

4 file >> x; // y is tainted

5 std::string str;

6 file >> str; // str is tainted

7 }

Source code 3.6: Read from std::ifstream

Next, std::basic_istringstream is slightly different. It gets a string and considers it

as a stream. As a result, it behaves as a taint propagator instead of a source. Hence, its

constructor and str method should mark the objects as tainted. The propagation is solved

by the inherited functions.

1 void foo() {

2 int x, y;

3 std::string str1;

4 std::cin >> str1;

5 std::string str2{"123 Sample string."};

6 std::istringstream is{str2};

7 iss >> x; // x is not tainted

8 iss.str(str1); // str1 is tainted, so iss become tainted

9 iss >> y; // y is tainted

10 }

Source code 3.7: Use of std::istringstream

Finally, I/O can happen through iterators. The std::istream_iterator’s constructor ex-

pects a std::basic_istream object. If the parameter is tainted, the iterator should become

tainted. Accordingly, its dereference operator produce a tainted value.

1 void foo() {

2 std::istream_iterator<std::string> iit(std::cin);

19

3. Outline of the solution

3 std::string str = *iit; // str is tainted

4 }

Source code 3.8: Use of std::istream_iterator

All things considered, the checker has to support various C++ I/O features:

• std::cin should be tainted

• Extraction operator should propagate taint

• std::(i)fstream should be tainted

• std::(i)stringstream should propagate taint

• std::istream_iterator should propagate taint

20

Chapter 4

Implementation

4.1 GenericTaintChecker

In Clang SA there is an existing, built-in checker for taint analysis called

GenericTaintChecker. It is responsible to initiate and propagate taintedness and it also

emits a warning in specific cases. Besides, other checkers use taintedness, for instance,

DivideZero, VLASize, and ArrayBoundV2.

1 void foo() {

2 int x;

3 scanf("%d", x);

4

5 int y = 1/x; // Division by a tainted value, possibly zero

6 int buffer[x]; // Declared variable-length array (VLA) has tainted

size

7 int buf[10];

8 buf[x] = 1; // Out of bound memory access (index is tainted)

9 }

Source code 4.1: Suspicious patterns I

The checker is called every time when the analyzer processes a function call. Firstly,

it checks the function against the built-in list of suspicious patterns:

21

4. Implementation

1 void foo() {

2 char s[80];

3 fscanf(stdin, "%s", s);

4 char buf[128];

5 sprintf(buf,s); // Uncontrolled format string

6

7 char addr[128];

8 scanf("%s", addr);

9 system(addr); // Untrusted data is passed to a system call

10

11 size_t ts;

12 scanf("%zd", &ts);

13 int *buf1 = (int*)malloc(ts*sizeof(int)); // Untrusted data is used

to specify the buffer size

14 }

Source code 4.2: Suspicious patterns II

Next, the checker tries to propagate taint through the predefined functions. It contains

many taint propagation rules associated with the function’s names. These rules describe

if one of the specified argument is tainted, and in such cases it will mark other arguments

as tainted. Finally, the checker tries to initiate taint. There are a bunch of functions which

always return a tainted value, in particular, scanf and socket.

1 void foo() {

2 char buffer[100];

3 int sock = socket(AF_INET, SOCK_STREAM, 0); // sock is become tainted

4 read(sock, buffer, 100); // Because sock is tainted, buffer will be

tainted

5 }

Source code 4.3: Propagation

22

4. Implementation

4.2 Revision of the checker

Firstly, I simplified the taint propagation rules and made it more expressive. There

wasn’t a clean way to describe variadic functions, however, a lot of C library I/O functions

are variadic. After that, I could fix propagation rules that were not correct, resulting from

the shortcomings of the implementation. The final representation of taint propagation

rules are the following:

• SrcArgs (source arguments): A list of indexes. If one of the actual parameters are

tainted, the expression is tainted.

• DstArgs (destination arguments): A list of indexes. Those arguments, which will

get the taintedness, if the expression is tainted.

• VarType (variadic type): An enum with three element:

– None: Default value, do nothing.

– Src: The variadic arguments act as taint source. If any of it tainted, the expres-

sion is tainted.

– Dst: The variadic arguments act as taint destination. If the expression is

tainted, the variadic arguments will get taint.

• VarIndex (variadic index): The index of the first variadic argument, if there is any.

I did another simplification on the implementation. The taint initiation used to be a

separated step, in turn, it was possible to do it in the same step as the propagation. As a

result, I consider the source functions as if they propagate from nothing.

My following patches are already merged into the analyzer:

• I revised GenericTaintChecker’s internal representation.[14]

• I fixed taint propagation for source functions.[15]

• I considered source functions as propagate from nothing.[16]

23

4. Implementation

Has SrcArgs?

Any of it tainted? Tainted

Is VarType=Src? Any of it tainted?

Is VarType=Src?

Not tainted

yes no

no

yes

yes

no

yes

no

yes

no

Figure 4.1: Taint propagation

4.3 Configuration

The configuration is a totally new feature of the checker, moreover, there was not any

similar in the Clang SA to this either. I chose yaml as the configuration file format because

it is a human-friendly data serialization language. Furthermore, the LLVM has an API for

parsing yaml files. The checker gets the file’s name as a command line parameter.

The file has four optional fields. Firstly, the checker’s aggressiveness can be chosen.

By default, it is not aggressive, because the Clang SA’s policy is to reduce the number of

false positives as much as possible. When it is set to false the taint propagation consider

24

4. Implementation

all unknown function as they do not propagate taintedness. In aggressive mode when the

analyzer hits such a function it will propagate taint to all possible arguments if any of its

argument is tainted.[17]

Secondly, the propagation rules are entries in a dictionary. Each rule is identified by

the function’s name. The scope, source and destination arguments, the variadic type, and

index can be configured. The scope is a regular expression which is matched against the

function’s full name (with namespaces). If the checker runs on non-aggressive mode,

then the propagation rules will increase the chance to find a true positive. Otherwise,

the propagation rules will decrease the number of false positives. There are cases when

the user uses a third party library to manage I/O for the application. At this time the

configuration is indispensable because the analyzer is unable to find any bug without taint

sources.[18]

As a result of the configuration, sanitizer functions could be introduced thus the user

can define functions which remove the taintedness. With this feature, the false positives

can be removed easily it without any tooling. To implement this I had to revise the tainted-

ness representation. It was represented as an unsigned integer. I added an extremal value to

represent the lack of taintedness. Therefore, if the tainted value is not present or it is zero

the value is not tainted, otherwise it is. As a result, sanitizer functions can be considered

as propagators which set values to not tainted.[19]

Finally, a custom sink can be configured. In security critical application sometimes

there are functions which expect sanitized data. For instance, it can be a third party li-

brary where the implementation is unknown, therefore, the checker will not recognize the

potential security issue. It can greatly complement the built-in patterns.[18]

1 A g g r e s s i v e : f a l s e

2

3 Propagat ions :

4 - Name: mySource

5 DstArgs : [−1 , 0] # Index for return value

6 - Name: myPropaga to r

7 SrcArgs : [0]

25

4. Implementation

8 DstArgs : [1]

9 - Name: myScanf

10 Scope : "myNamespace::"

11 VarType: Dst

12 VarIndex: 1

13

14 F i l t e r s :

15 - Name: m y F i l t e r

16 Scope : "Foo::"

17 Args: [0]

18

19 Sinks :

20 - Name: mySink

21 Scope : "myNamespace::Bar::"

22 Args: [0 , 2]

Source code 4.4: Example configuration

There are some other technical details for the configuration:

• The return value is represented by -1

• The arguments are numbered from 0

• Filters and sinks accept multiple arguments

As a result, users can considerably can reduce the number of false positive and in-

crease the number of true positives. The yaml format offers a clear, human-readable con-

figuration file without being too verbose. In order to model taint propagation properly, the

taint sources should be defined very carefully. C++ greatly increases the possible ways

to handle I/O, in particular, streams and stream buffers, therefore, it is important for the

configuration to support the namespaces.

1 void foo() {

26

4. Implementation

2 int x, y;

3 x = mySource(&y); // x and y is tainted

4

5 int z = myPropagator(x); // z is tainted

6

7 myFilter(y); // y is no longer tainted

8

9 mySource(y, 1, 2); // No warning

10 mySource(z, 1, 2); // Warning

11 }

Source code 4.5: The impact of configuration

I did the following patches related to the configuration:

• I added a yaml parser to GenericTaintChecker.[17]

• I implemented the uses of custom source, propagation and sink functions.[18]

• I implemented the filtering functions.[19]

4.4 C++ support

4.4.1 Language features

The original taint checker was mostly built on C. In this particular case, this means

taint can propagate through arithmetic operations and functions where the parameters are

pointers. Moreover, the structs do not contain any method. Therefore, the analyzer can

trace the taint’s path easily. By contrast, in C++ the classes usually have private members

and the fields can be manipulated through member functions. Consequently, the imple-

mentation is not always known.

Firstly, I added support for references. The users prefer them over pointers, because

they cannot be null, so their support is essential. Without it, the configuration will not

work properly, because parameter pass by reference was simply ignored.

Then, I completed the configuration with a new field called Scope. The Scope is a

prefix for the function’s full name, for instance myNamespace::myClass::. It helps to

27

4. Implementation

refine the checker’s accuracy. The configuration is stored in a map. The function’s name is

the key, the scope and the other data are the value. First, it gets the value via the function’s

name for each map. If it is not present, it continues to another check. Second, if the scope

is present, it will be compared with the start of the function’s full name. Above all, a

function is a match with a configuration entry, if the name is equal and the scope is not

present or matched.

Is Name match?

Has Scope? Is Scope match?

Match

Skip

yes

no

yes

no

yes

no

Figure 4.2: Function name matching

Next, the member functions have to be evaluated properly. The analyzer uses a differ-

ent way for the implicit this and the other parameters. I had to create a new abstraction

layer to handle them in the same way. The implicit parameter is the zeroth and the explicit

parameters start at one if it is a member function.

The Clang SA handle the assignment in a different way for primitive and complex

types. For objects, the assignment is a call for the overloaded operator. Therefore, I had

to add an entry for overloaded operators and create a taint propagation rule for the assign-

ment operator. This rule propagates taint to the first argument and the return value if the

second argument is tainted.

28

4. Implementation

The most common way to read from any stream is with the extraction operator. It is

an overloaded operator such as the assignment operator, so it requires a custom propaga-

tion rule too. It propagates taint to the second argument and the return value if the first

argument is tainted.

1 struct Foo {

2 int getInt() const; // Configured to propagate taint

3 };

4 std::istream& operator>>(std::istream&, Foo&);

5

6 void mySink(int&);

7

8 namespace myNamespace {

9 void mySink(int&); // Configured to sink

10 }

11

12 void bar() {

13 Foo foo;

14 std::cin >> foo; // foo is tainted

15

16 int x = foo.getInt(); // x is tainted

17 mySink(x); // No warning

18 myNamespace::mySink(x); // Warning

19 }

Source code 4.6: Supported C++ language features

4.4.2 Strings

There are several vulnerabilities due to the use of unsanitized strings, for instance,

SQL injection, and XSS. What is more, they can be converted to integral types which can

lead to other security issues. The std::basic_string class is a template and it has many

instantiations. My goal is to support all of them. Strings (and other objects) can get taint

with assignment or extraction operator.

29

4. Implementation

The standard string’s representation is not known, so it behaves like a black box. I hard

coded the commonly used string operations: c_str, data, size, length and the non-member

getline. These functions are enough for common use-cases.

1 void mySink(const char*);

2

3 void foo() {

4 std::string str1, str2;

5 std::cin >> str1; // str1 is tainted

6 std::getline(std::cin, str2); // str2 is tainted

7

8 mySink(str1.c_str()); // Warning

9 int buffer[10];

10 buffer[str2.size()] = 1; // Warning

11 }

Source code 4.7: Strings

4.4.3 Streams

When one would like to read data in C++, usually a stream will be used. If a stream

reads data from an external source, the data will be tainted. There is one exception, the

stringstream, where the taintedness should depend on the actual parameters.

Firstly, I had to mark std::cin (and std::wcin) as tainted. When the analyzer checks if

an actual parameter is tainted, it returns true if the object’s name is cin (or wcin). It also

must be in the standard namespace. The C stdin is recognized in the same way.

Next, the data can be read from files. Unfortunately, I got a problem when I was trying

to mark ifstream objects as tainted. The open function is implemented in the header file, so

I cannot model it. I chose a simple but efficient way to solve it. The checker considers all

of the descendants of std::basic_istream as tainted. Therefore, the std::cin doesn’t have to

be handled separately. It works fine for files too, because a file stream cannot be sanitized

only the content read from it.

30

4. Implementation

Although it works properly most of the cases, but it has its own limitations. When

a stringstream is used for I/O the output’s taintedness depends on the input string.

Accordingly, this solution can cause potential false positives.

1 void myFilter(std::istream&); // Sanitizer functions

2

3 void foo() {

4 std::string str1, str2, str3, str4;

5 std::cin >> str1; // str1 is tainted

6 myFilter(std::cin); // std::istream object cannot be sanitized

7

8 std::ifstream file("example.txt");

9 file >> str2; // str2 is tainted

10 myFilter(file); // std::istream object cannot be sanitized

11 file >> str3; // str3 is tainted

12

13 std::string sample{"123 Sample string."};

14 std::istringstream is{sample};

15 is >> str4; // str4 is tainted (False positive)

16 }

Source code 4.8: Streams

31

Chapter 5

Summary

5.1 Future work

5.1.1 Commit to Clang Static Analyzer

As I started the work on an existing implementation it is obvious that I should commit

my changes to the analyzer. Since the review, the review is a time-consuming process I

have not committed all of my changes yet. The revision of the checker’s internal imple-

mentation is part of the analyzer because that was a non-functional change. I have three

open revisions about the configuration and many other changes in my local trunk.

5.1.2 Make the checker default

The GenericTaintChecker (which accomplishes taint analysis) is currently an exper-

imental checker in the Clang SA, which means it is merely compiled but disabled by

default. Our goal is to produce a reliable checker with a low false positive rate. To achieve

this, I have to finalize its internal architecture, because it is much more difficult to commit

changes into default checkers.

The checker offers a framework for taint analysis and the results are used to emit warn-

ings. The framework is currently used by three other checkers: DivideZero, VLASize,

ArrayBoundV2. The last one in an experimental checker, therefore, it is worth revising to

move it to the default checkers. Moreover, new checkers should be implemented which

rely on taint analysis.

32

5. Summary

5.1.3 C++ related features

The constructors are not supported yet, because the analyzer considers them differ-

ently than functions. They are essential for the taint propagation between objects. The

assignment operator propagates taint, although it does not cover all the cases. Secondly,

unknown objects can be modeled as taint propagators. If the constructor gets a tainted

value, it should mark the whole object as tainted.

1 void foo() {

2 std::string str1, str2;

3 std::cin >> str1; // str1 is tainted

4 str2 = str1; // str2 is tainted

5 std::string str3 = str1; // str3 is not tainted, because it is a copy

constructor call

6

7 const char* cstr = str3.c_str(); // cstr is tainted;

8 std::string str4(cstr); // str4 is not tainted

9 }

Source code 5.1: Constructors

The std::istream objects are always implemented as tainted, which is not always true.

My plan was to find as many defects as possible and then refine the model. Unfortunately,

the C++ language features’ coverage was not enough to find any defect, or I chose inade-

quate projects. Accordingly, it should be fine-tuned.

It is possible to read data through std::istream_iterator, but for the most common

use case of the constructor’s taint propagation should be supported. Besides that, all con-

tainers’ begin, end (and their variant) have to propagate taint, as well as std::begin, and

std::end. Not to mention, the overloaded dereference and arrow operator have to propa-

gate taint.

The configuration can be complemented with function attributes. Then the checker

will be configured without a configuration file. Although it has its own drawback it can

work together with the yaml configuration very well.

33

5. Summary

5.1.4 Other miscellaneous features

The most straightforward source of a tainted value is the main function’s parameters.

The number of command line parameters are not limited, and their content is unknown.

Therefore, they should be marked as taint, if they are presented.

During the tests, I ran my checker under the CodeChecker to analyze the projects with

my checker. It has a bug track visitor, which can find the defect’s origin. It works fine

for the taint checking until the taint is propagated through anything other than a function.

Unfortunately, the analyzer loses the path, if the taint originates from a function with an

unknown definition. It does not increase the analyzer’s performance, however, it greatly

increases the user experience especially in big projects.

1 void foo() {

2 int x, y;

3 std::cin >> x; // real origin of the taint

4

5 propagator(x, y); // analyzer thinks the taint originated from here

6 mySink(y); // y is tainted, warning

7 }

Source code 5.2: Bug track visitor

5.2 Conclusion

In this thesis, I optimized the model of the taint analysis for C/C++ programs, and

implemented it in Clang Static Analyzer. Taint analysis is essential for security-critical

applications because it can find vulnerabilities without executing the code.

After I tested the implementation against several projects and evaluated the defects, I

made some conclusions. The original checker’s notion was false since it made taint prop-

agation with only compile-time known functions. In theory, it will cause very few false

positives, but it works in just few cases, which are rare in large code bases. My greatest

34

5. Summary

result is aggressive propagation, where unknown functions always propagate taint. This

was indispensable to find the defects in curl, which prove this concept’s viability.

The configuration is useful to define taint sources and to reduce the number of false

positives. It can improve the quality of the analysis, however, it requires extra time from

the developers.

The C++ support needs further investigation to achieve high enough coverage. Despite

this, it will be one of the most important parts of the checker, because is C++ more com-

mon than C.

Infer
Clang Static Analyzer
old plugin new

C sources No Yes
C++ sources No Yes

Propagation with operators Yes
Propagation with functions No Yes

Sinks No Yes
Configure sources Yes No Yes

Configure propagators No Yes
Configure sanitizers No Yes

Configure sinks Yes No Yes
Namespaces Yes No Yes

Member functions No Yes

Table 5.1: The comparison of analyzers’ taint analysis

Finally, I compare the Facebook Infer, the CustomTaintChecker (the plugin, which

was forked from Clang SA), the previous Clang SA, and my own version. My imple-

mentation contains every relevant feature of the others, moreover, it has C++ support and

aggressive propagation as extra features.

35

Bibliography

[1] CodeChecker. https://github.com/Ericsson/codechecker.

Accessed: 2019-05-03.

[2] G. McGraw. Software security. IEEE Security & Privacy, 2:80–83, 2004.

[3] curl. https://github.com/curl/curl. Accessed: 2019-05-09.

[4] G. McGraw B. Chess. Static analysis for security. IEEE Security & Privacy, 2:76–

79, 2004.

[5] Taint Analysis. https://wiki.sei.cmu.edu/confluence/display/

c/Taint+Analysis. Accessed: 2019-04-28.

[6] LLVM. https://llvm.org/. Accessed: 2019-05-01.

[7] Clang. https://clang.llvm.org/. Accessed: 2019-05-01.

[8] CWE-134. https://cwe.mitre.org/data/definitions/134.html.

Accessed: 2019-05-09.

[9] CERT/STR31-C. https://wiki.sei.cmu.edu/confluence/

display/c/STR31-C.+Guarantee+that+storage+for+strings+

has+sufficient+space+for+character+data+and+the+null+

terminator. Accessed: 2019-05-09.

[10] CERT/STR02-C. https://wiki.sei.cmu.edu/confluence/

display/c/STR02-C.+Sanitize+data+passed+to+complex+

subsystems. Accessed: 2019-05-09.

[11] F. Bavera M. Arroyo, F. Chiotta. A user configurable clang static analyzer taint

checker. IEEE, 10 2016.

36

BIBLIOGRAPHY

[12] Custom Taint Checker. https://github.com/franchiotta/

taintchecker. Accessed: 2019-04-28.

[13] Facebook Infer. https://fbinfer.com. Accessed: 2019-04-28.

[14] Revise GenericTaintChecker’s internal representation. https://reviews.

llvm.org/D55734. Accessed: 2019-04-28.

[15] Fix taint propagation in GenericTaintChecker. https://reviews.llvm.

org/D58828. Accessed: 2019-04-28.

[16] Prepare generic taint checker for new sources. https://reviews.llvm.org/

D59055. Accessed: 2019-04-28.

[17] Add yaml parser to GenericTaintChecker. https://reviews.llvm.org/

D59555. Accessed: 2019-04-28.

[18] Use the custom propagation rules and sinks in GenericTaintChecker. https://

reviews.llvm.org/D59637. Accessed: 2019-04-28.

[19] Add custom filter functions for GenericTaintChecker. https://reviews.

llvm.org/D59516. Accessed: 2019-04-28.

37

Figures

3.1 State transition system for taint analysis[11] 16

4.1 Taint propagation . 24

4.2 Function name matching . 28

Tables

5.1 The comparison of analyzers’ taint analysis 35

Source codes

1.1 Defect’s summary 1 . 7

1.2 Defect’s summary 2 . 8

2.1 Properly seeded random generators . 9

3.1 Taint propagation with symbols . 13

3.2 Taint propagation with functions . 14

3.3 The checker’s expected behavior . 15

3.4 Functioning of scopes . 16

3.5 Read from std::cin . 18

3.6 Read from std::ifstream . 19

3.7 Use of std::istringstream . 19

3.8 Use of std::istream_iterator . 19

4.1 Suspicious patterns I . 21

4.2 Suspicious patterns II . 22

4.3 Propagation . 22

4.4 Example configuration . 25

4.5 The impact of configuration . 26

4.6 Supported C++ language features . 29

4.7 Strings . 30

4.8 Streams . 31

5.1 Constructors . 33

5.2 Bug track visitor . 34

40

	Introduction
	Motivation
	Results

	Basics
	Static code analysis
	Taint analysis

	Existing implementations
	Clang Static Analyzer
	Custom Taint Checker
	Facebook Infer

	Outline of the solution
	Internal working of the checker
	Internal architecture
	Support of C++ language features
	Support of C++ I/O

	Implementation
	GenericTaintChecker
	Revision of the checker
	Configuration
	C++ support
	Language features
	Strings
	Streams

	Summary
	Future work
	Commit to Clang Static Analyzer
	Make the checker default
	C++ related features
	Other miscellaneous features

	Conclusion

	References
	Figures
	Tables
	Source codes

