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ABSTRACT

We deal with a general preferential attachment graph model
with multiple type edges. The types are chosen randomly, in a
way that depends on the evolution of the graph. In the N-type
case, we define the (generalized) degree of a given vertex as
d ¼ ðd1; d2; . . . ; dNÞ; where dk 2 Z

þ
0 is the number of type k

edges connected to it. We prove the existence of an a.s. asymp-
totic degree distribution for a general family of preferential
attachment random graph models with multi-type edges. More
precisely, we show that the proportion of vertices with (general-
ized) degree d tends to some random variable as the number of
steps goes to infinity. We also provide recurrence equations for
the asymptotic degree distribution. Finally, we generalize the
scale-free property of random graphs to the multi-type case.

ARTICLE HISTORY

Received 3 May 2018
Accepted 24 May 2019

KEYWORDS

Random graphs; preferential
attachment; asymptotic
degree distribution

2010 MATHEMATICS

SUBJECT

CLASSIFICATION

Primary: 05C80

1. Introduction

Various types of random graphs with preferential attachment dynamics

have been examined in the last decade.[4,11,15,16,18] The analysis of these

kind of random graphs is motivated by large real networks, such as the

internet and various biological and social networks, in which vertices of

larger degree have more chance to be connected to new vertices. In many

applications, it is natural to assign some kind of characteristics to the verti-

ces or to the edges of the graph. For example, the strength of a connection

may be represented by edge weights, or vertices can have different fitness,

which has an impact on their degrees.[14,17] It may also happen that the

type of a vertex or an edge is chosen from a finite set of possibilities. This

leads to different phenomena as if we assign weights to the vertices or to

the edges. For example, in a social network, the vertices can be considered

as males or females, and the edges can be considered as family or work

relationships. Another example is the network of financial systems, where

the systemic risk is examined.[2] To understand these kind of financial
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systems it is common to use graphs where the vertices are financial institu-

tions (e.g. banks), and the edges represent different types of financial

instruments traded by the institutions. The risk arising from these instru-

ments (bonds, stocks or options etc.) can be different, which must be taken

into account in the calculation of the systemic risk. A way to do this is to

assign types for the edges to represent the classes of these assets. To model

folded RNA-molecules, David, Hagendorf and Wiese introduced a random

graph in Ref. [12] which grows by a process similar to the preferential

attachment and there are two types of vertices.

There are some multi-type preferential attachment graph models that

have been investigated in which only the vertices have types. Antunovi�c,

Mossel and R�acz introduced a model of competition on growing networks

in Ref. [3]. In their model, when a new vertex is born, it attaches to the

old vertices by preferential attachment, and selects its type based on the

number of its initial neighbors of each type. Their main interest is the

question of coexistence, i.e. the probability that one of the types dies out

asymptotically. Abdullah, Bode and Fountoulakis present a model in Ref.

[1], but they use a different rule for choosing the types. At each step, a

new vertex is born, it polls some of the old vertices and takes the majority

type. A multi-type preferential attachment model was introduced by

Rosengren[24] which has similar dynamics to the model presented in Ref.

[3]. The asymptotic degree distribution is examined by using methods from

the theory of multi-type branching processes.

Notice that the growing networks in the 2-type case can equivalently be

viewed as a directed graph. In this case the types of the edges are orienta-

tions, more precisely, when there is a new vertex then it is attached to the

graph with an edge from the new vertex to the existing ones or from the

existing vertices to the new one, and this corresponds to two different

types. Different directed preferential attachment models were introduced in

Refs. [7,25]. They examine a growing network in which a new vertex and a

new edge is added to the graph in every step. At first, the orientation of

the edge between the new and the existing vertices is decided with fixed

probability. Finally the endpoint of the new edge among the existing verti-

ces is chosen by using a preferential attachment rule. In Ref. [7], it is also

possible that the new edge is added between existing vertices. In Refs.

[7,25], the asymptotic degree distribution is examined. In those models

which are discussed in this article, we first choose the endpoint of the new

vertex and then the type of the new edge is decided with probabilities

depending on the structure of the graph.

In this paper we extend the preferential attachment model by assigning

types to the edges. For trees, this is usually not an essential difference com-

pared to the cases where the vertices have types, but we consider more
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complex networks. We assume that there is a connection between the evo-

lution of the structure of the graph and the types of the edges. In the N-

type case, we define the (generalized) degree of a given vertex as d ¼
ðd1; d2; :::; dNÞ; where dk is the number of type k edges connected to it. By

using martingale techniques, we prove the existence of an almost sure

asymptotic degree distribution. More precisely, we show that for every d,

the proportion of vertices with generalized degree d tends to some random

variable in certain random graph models with multiple type edges as the

number of steps goes to infinity. We also provide recurrence equations for

the asymptotic degree distribution. The results are verified not just for par-

ticular graph models; instead, we follow a model-free approach and formu-

late sufficient conditions for the existence of asymptotic degree

distribution. Then we give two applications: for a multi-type version of the

Barab�asi–Albert random graph, and for a preferential attachment model

with Poisson number of edges. These examples show a new phenomenon:

in the multi-type case it can happen that the asymptotic degree distribution

is not deterministic, which is the case in many well-known models in the

single-type case. We show that the asymptotic degree distribution in the

generalized Barab�asi–Albert random graph and in the model of independ-

ent edges also depends on the asymptotic proportion of edges of type k

which makes it a stochastic distribution.

The scale-free property of random graph models is a well-studied feature

in the single-type case and also very important in different applications.[18]

We generalize the scale-free property to the multi-type case, and calculate

the generalized characteristic exponent in the multi-type Barab�asi–Albert

random graph and in the model of independent edges.

1.1. Outline

In Section 2, we list the notation and the assumptions on the general

model. In Section 3, we formulate the main results, and we introduce two

random graphs, which are special cases of the general model, which are the

generalized Barab�asi–Albert random graph and the model of independent

edges. In Section 4, the proofs of the main theorems are given. Finally, we

generalize the scale-free property of random graphs to the multi-type case

in Section 5.

2. Notation and assumptions

2.1. Notation

Let ðGnÞ
1
n¼0 be a sequence of finite random graphs. The vertex set and the

edge set of Gn are denoted by Vn and En, respectively. In the sequel, N will
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be fixed, this is the number of possible types of edges. For every k 2 ½N� ¼
f1; :::;Ng let E

ðkÞ
n denote the set of edges with type k in Gn. For every n we

have En ¼ [k2½N� E
ðkÞ
n ; and we assume that E

ðkÞ
n � E

ðkÞ
nþ1 for every k 2 ½N�:

Definition 1. For every n the generalized degree of a vertex v 2 Vn in the

nth step is degnðvÞ ¼ ðdegðkÞn ðvÞÞNk¼1; where degðkÞn ðvÞ is the number of edges

of type k connected to v in Gn.

The initial configuration is denoted by G0 ¼ ðV0; E0Þ; where V0 ¼
fu1; u2; :::; usg (s � 1). We allow multiple edges, but loops are forbidden.

We assume that for every k 2 ½N� we have jE
ðkÞ
0 j> 0:

For every n, in the nth step,

1. a new vertex vn is born, thus Vn ¼ V0 [ fv1; v2; . . . ; vng;

2. the new vertex vn attaches with a few edges to some of the old vertices,

so every element of the edge set En n En�1 is connected to vn;

3. every new edge gets a type randomly. For example, we can consider the

following case: for every n, in the nth step, any edge between the new

vertex vn and an existing vertex v 2 Vn�1 will be assigned to type k with

probabilities proportional to deg
ðkÞ
n�1ðvÞ for every k 2 ½N�:

For every d 2 Z
þ
0

� �N
¼ x1; :::;xNð Þ 2 Z

N : xk � 0 for every k 2 N½ �
n o

we define

Xn dð Þ ¼ j v 2 Vn : degn vð Þ ¼ d
� �

j;

this is the number of vertices in Gn with generalized degree d. Finally, for

every n � 1 let F n denote the r-algebra generated by the first n graphs,

and let F 0 be the trivial r-algebra, thus F ¼ ðF nÞ
1
n¼0 is a filtration.

Throughout the paper ek will be the kth unit vector in ðZþ
0 Þ

N:

2.2. Assumptions

Now we list the assumptions we are going to use throughout the paper.

Assumption 1. For every n � 1 we assume that in the nth step, conditionally

with respect to F n�1; the conditional distribution of the number of new edges of

type k connected to an existing vertex v 2 Vn�1 depends only on the generalized

degree of v for every k 2 ½N�: By using this assumption, for every d; c 2 ðZþ
0 Þ

N let

p
ðnÞ
d
ðcÞ denote the conditional probability that, with respect to F n�1; a vertex

with generalized degree d gets exactly ck edges of type k in the nth step.

Assumption 2. For every d 2 ðZþ
0 Þ

N; there exists d> 0 and C> 0 such that

E jXn dð Þ � Xn�1 dð Þj2
�

�F n�1

� �

� Cn1�d

for every n.
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Assumption 3. For every n � 1 and d 2 ðZþ
0 Þ

N we define the sequence

unðdÞ by

p
nð Þ
d

0ð Þ ¼ 1�
un dð Þ

n
:

This is a nonnegative predictable process with respect to the filtration F :
We assume that there exists a positive random variable uðdÞ such that

unðdÞ ! uðdÞ almost surely as n ! 1:
For every d 2 Z

þ
0

� �N
let us have

H dð Þ ¼ i ¼ i1; :::; iNð Þ 2 Z
þ
0

� �N
:
X

N

k¼1

ik � 1

( )

:

Assumption 4. For every d 2 ðZþ
0 Þ

N; where
PN

k¼1 dk � 1; and for every

i 2 HðdÞ there exist nonnegative random variables denoted by rðkÞðd�ekÞ
such that

lim
n!1

np
nð Þ
d�i

ið Þ ¼

r kð Þ
d�ekð Þ if i ¼ ek;

0 if
X

N

k¼1

ik � 2

8

>

>

<

>

>

:

holds almost surely.

Assumption 5. For every d 2 ðZþ
0 Þ

N let qðnÞðdÞ denote the conditional prob-

ability (with respect to F n�1) that the new vertex vn attaches to the existing

vertices with exactly dk edges of type k. We assume that there exists a nonnega-

tive random variable qðdÞ such that qðnÞðdÞ ! qðdÞ almost surely as n ! 1:

3. Main results

3.1. Asymptotic degree distribution in the general model

Now we can formulate our general theorem on the asymptotic degree

distribution.

Theorem 1. If a random sequence of graphs with multi-type edges satisfies

the assumptions above, then for every d 2 ðZþ
0 Þ

N we have

lim
n!1

Xn dð Þ

jVnj
¼ x dð Þ a:s:

The random variables xðdÞ satisfy the following recurrence equation for

every d 2 ðZþ
0 Þ

N :
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x dð Þ ¼
1

u dð Þ þ 1

X

N

k¼1

r kð Þ
d � ekð Þx d � ekð Þ þ q dð Þ

" #

:

Remark. Notice that we have xðdÞ ¼ 0 if for any k 2 ½N� we have dk < 0.

3.2. Generalized Barab�asi–Albert random graph

This is a multi-type version and a generalization (or modification) of the

graph model in Ref. [4], specified in [8] (see also Refs. [18,19,22] for gen-

eral setups). The dynamics of this model is the following: for every n � 1;
in the nth step, the new vertex vn attaches with Mn (not necessarily differ-

ent) edges to some of the old vertices, where Mn is a positive integer valued

random variable, which is independent of F n�1: The endpoints of the Mn

edges are chosen independently. The endpoint of each edge is chosen

among the existing vertices with probabilities proportional to the degrees.

Notice that we do not update degrees until the end of step. The types of

the new edges are chosen independently, and the probability of each type is

its proportion among the edges of the already existing endpoint of the new

edge (not counting the edges added in the actual step).

Now, we list the assumptions on the sequence of random varia-

bles ðMnÞ
1
n¼1:

Assumption (BA1). Mn is a positive integer valued random variable, which

is independent of F n�1 for every n � 1:

Assumption (BA2). We assume that there exists a positive random variable

M such that Mn ! M in distribution, and for every p � 1 we have

EðM
p
nÞ ! EðMpÞ<1 as n ! 1: The expected value of M will be denoted

by m ¼ EðMÞ:
We need the following lemma to understand the asymptotics of the pro-

portion of edges of type k as the number of steps goes to infinity.

Lemma 1. For every k 2 ½N� let us have fðkÞn ¼ jE
ðkÞ
n j

jEnj
, i.e. the proportion of the

number of edges of type k in the generalized Barab�asi–Albert random graph.

For every k 2 ½N� there exists a random variable fðkÞ such that fðkÞn ! fðkÞ

almost surely as n ! 1:

Remark. If we have Mn � 1 for all n � 1; and the initial configuration is a

tree, i.e. the model is an N-type Barab�asi–Albert random tree, then

ðfðkÞ; k 2 ½N�Þ has a Dirichlet distribution with parameters ðjE
ðkÞ
0 j; k 2 ½N�Þ:

In this case the number of edges with different types follows a P�olya

urn process.
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Asymptotic degree distribution in the generalized Barab�asi–Albert ran-

dom graph.

Theorem 2. If the assumptions on the sequence ðMnÞ
1
n¼1 are satisfied, then

in the generalized Barab�asi–Albert model for every d 2 ðZþ
0 Þ

N we have

lim
n!1

Xn dð Þ

jVnj
¼ x dð Þ a:s:

The random variables xðdÞ satisfy the following recurrence equation for

every d 2 ðZþ
0 Þ

N :

x dð Þ ¼
X

N

k¼1

dk�1

Dþ 2
x d�ekð Þ þ

2

Dþ 2
P M ¼ Dð Þ

D!
QN

k¼1 dk!

Y

N

k¼1

f kð Þ
� �dk

;

where fðkÞ is defined in Lemma 1 and D ¼ d
T1 ¼

PN
k¼1 dk:

3.3. Model of independent edges

This model is a modification and a multi-type version of the models in

Refs. [13] and [20], where the new vertex is connected to the old ones

independently, with probability depending on the edges of the actual ver-

tex. Instead of connecting with a single edge with a given probability, we

add a Poisson number of new edges, with the multiplicative parameter ran-

domly chosen.

In this model, we have the following dynamics: for every n � 1; in the

nth step, the new vertex vn attaches to all of the old vertices with some

edges of type k independently. For any existing vertex w 2 Vn�1 let DðkÞ
n ðwÞ

denote the number edges of type k between the vertices vn and w. We

assume that, conditionally with respect to F n�1; for every k 2 ½N� we have

D
kð Þ
n wð Þ�Poi kn

deg kð Þ
n�1 wð Þ

2jEn�1j

 !

;

where kn is a positive random variable. We also assume that for every w, the

random variables ðDðkÞ
n ðwÞÞNk¼1 are conditionally independent with respect

to F n�1:
Let k1; k2; k3; ::: be a sequence of independent random variables. Similarly

to the previous case, we need a few assumptions on their distribution.

Assumption (IE1). For every n � 1 the random variable kn is positive and

independent of F n�1:

Assumption (IE2). We assume that there exists a positive random variable

k such that kn ! k in distribution, and for every p � 1 we have EðkpnÞ !
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EðkpÞ<1 as n ! 1: The expected value and the variance of k will be

denoted by l ¼ EðkÞ and r2 ¼ VarðkÞ; respectively.
For every n � 1 we define Fþ

n�1 ¼ rðF n�1; knÞ: Let Dn be the number of

new edges in the nth step, and let DðkÞ
n denote the number of new edges of

type k in the nth step. For every n � 1 we have DnjF
þ
n�1�PoiðknÞ; further-

more for every k 2 ½N� we have

D
kð Þ
n jFþ

n�1�Poi kn
jE kð Þ

n�1j

jEn�1j

 !

:

Note that ðDðkÞ
n ÞNk¼1 are conditionally independent given Fþ

n�1:
Again, we need the following lemma to understand the asymptotics of

the proportion of edges of type k as the number of steps goes to infinity.

Lemma 2. For every k 2 ½N� let us have f̂
ðkÞ

n ¼ jE
ðkÞ
n j

jEnj
, i.e. the proportion of the

number of edges of type k in the model of independent edges. For every

k 2 ½N� there exists a random variable f̂
ðkÞ

such that f̂
ðkÞ

n ! f̂
ðkÞ

almost

surely as n ! 1:

Asymptotic degree distribution in the model of independent edges.

Theorem 3. If the assumptions on the sequence ðknÞ
1
n¼1 are satisfied, then in

the model of independent edges for every d 2 ðZþ
0 Þ

N we have

lim
n!1

Xn dð Þ

jVnj
¼ x dð Þ a:s:

The random variables xðdÞ satisfy the following recurrence equation for

every d 2 ðZþ
0 Þ

N :

x dð Þ ¼
X

N

k¼1

dk�1

Dþ 2
x d�ekð Þ þ

2

Dþ 2

QN
k¼1 f̂

kð Þ
� �dk

QN
k¼1 dk!

E kDe�kð Þ;

where f̂
ðkÞ

is defined in Lemma 2 and D ¼ d
T1:

Remark. For the calculation of the last term we can use the following. Let

us denote by gk the moment generating function of k, i.e. gkðtÞ ¼ EðetkÞ
(t 2 R). Let us have B ¼ ft 2 R : gkðtÞ<1g; i.e. the set of finiteness of gk;
and let B0 be the interior of B. Suppose that �1 2 B0: It is well known that

in this case gkðtÞ is infinitely differentiable at t ¼�1, furthermore, we have

g Dð Þ
k �1ð Þ ¼ E kDe�kð Þ;

where D ¼ d
T1 and g

ðDÞ
k is the Dth derivative of gk:
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4. Proofs

4.1. The general model

Definition 2. Two sequences ðanÞ
1
n¼1 and ðbnÞ

1
n¼1 are asymptotically equal

(an� bn) if they are positive except finitely many terms, and an=bn ! 1

as n ! 1:

Definition 3. A sequence ðbnÞ
1
n¼1 is regularly varying with exponent j if

bn� cnn
j; where ðcnÞ

1
n¼1 is a slowly varying sequence. A sequence ðcnÞ

1
n¼1

is slowly varying if for every positive s we have c½sn�=cn ! 1 as n ! 1:
We will use the following theorem, see also Ref. [14] for a simi-

lar statement.

Lemma 3 (Lemma 1 in Ref. [5]). Let F ¼ ðF nÞ
1
n¼1 be a filtration, ðnnÞ

1
n¼1 a

nonnegative adapted process with respect to F . Let ðwnÞ
1
n¼1 be a regularly

varying sequence of positive numbers with exponent j>�1. Suppose that for

every n � 1;

E nn�nn�1ð Þ2jF n�1

� �

¼ O n1�dþ2jð Þ (1)

holds with some positive d> 0. Let ðunÞ
1
n¼1; ðvnÞ

1
n¼1 be nonnegative

predictable processes with respect to F such that un< n for all n � 1:

(a) Suppose that

E nnjF n�1ð Þ � 1�
un

n

	 


nn�1 þ vn;

furthermore limn!1 un ¼ u; lim supn!1 vn=wn � v with some

random variables u> 0, v � 0. Then we have

lim sup
n!1

nn

nwn
�

v

uþ jþ 1
a:s:

(b) Suppose that

E nnjF n�1ð Þ � 1�
un

n

	 


nn�1 þ vn;

furthermore limn!1 un ¼ u; lim infn!1 vn=wn � v with some

random variables u> 0, v � 0. Then we have

lim inf
n!1

nn

nwn
�

v

uþ jþ 1
a:s:

We will use this lemma for the sequence wn � 1 and j¼ 0.
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Proof of Theorem 1. We prove the theorem by induction on d
T1: If dT1 is

negative, then the proof is trivial. Let d 2 ðZþ
0 Þ

N be a fixed vector, such

that d
T1 � 0: Notice that, for every n � 1; in the nth step, the value of

XnðdÞ may change due to the following events:

	 an existing vertex with generalized degree d is connected to the new vertex;

	 an existing vertex with generalized degree d�i ¼ ðdk � ikÞ
N
k¼1 is chosen,

and it gets ik new edges of type k;

	 the new vertex attaches to the old vertices with dk edges of type k for

every k 2 ½N�:

For every n � 1; in the nth step, we have

E Xn dð ÞjF n�1

� �

¼ Xn�1 dð Þp
nð Þ
d

0ð Þ þ
X

i2H dð Þ

Xn�1 d � ið Þp
nð Þ
d�i

ið Þ
" #

þ q nð Þ
dð Þ;

(2)

where

H dð Þ ¼ i ¼ i1; :::; iNð Þ 2 Z
þ
0

� �N
:
X

N

k¼1

ik � 1

( )

:

Assumption 2 implies that there exists a positive d and a positive C such

that for every n � 1 we have

E jXn dð Þ � Xn�1 dð Þj2jF n�1

� �

� Cn1�d:

With this d, equation (1) in Lemma 3 is satisfied with nn ¼ XnðdÞ: We

want to rewrite equation (2) in the following form:

E Xn dð ÞjF n�1

� �

¼ Xn�1 dð Þ 1�
un dð Þ

n

 �

þ vn dð Þ;

where the processes ðunðdÞÞ
1
n¼1 and ðvnðdÞÞ

1
n¼1 satisfy the assumptions of

Lemma 3. Recall the definition of unðdÞ from Assumption 3. It is easy to

see that this process is predictable with respect to F : Assumption 3 implies

that there exists a positive random variable uðdÞ such that unðdÞ ! uðdÞ
almost surely as n ! 1: We define H0ðdÞ ¼ HðdÞ n fek; k 2 ½N�g:
We define

vn dð Þ ¼
X

N

k¼1

Xn�1 d�ekð Þp
nð Þ
d�ek

ekð Þ þ
X

i2H0 dð Þ

Xn�1 d � ið Þp
nð Þ
d�i

ið Þ
" #

þ q nð Þ
dð Þ:

It is easy to see that this process is predictable with respect to F : Using
Assumptions 4 and 5 and the induction hypothesis, we conclude that there

exists a nonnegative random variable vðdÞ; such that
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vn dð Þ ! v dð Þ ¼
X

N

k¼1

r kð Þ
d�ekð Þx d�ekð Þ þ q dð Þ a:s:

as n ! 1: Lemma 3 implies that

lim
n!1

Xn dð Þ

n
¼

v dð Þ

u dð Þ þ 1
a:s:

Since jVnj � n; the proof of Theorem 1 is complete. w

4.2. Generalized Barab�asi–Albert random graph

First, for every n � 0 we define Fþ
n ¼ rðF n;Mnþ1Þ: We show that

jEnj �mn; where m ¼ EðMÞ: For every n � 1 we have jEnj ¼
PN

k¼1 jE
ðkÞ
0 j þ

Pn
i¼1Mi: By the assumptions of the model, the sequence ðMnÞ

1
n¼1 satisfies

the following conditions:

lim
n!1

1

n

X

n

i¼1

E Mið Þ ¼ E Mð Þ ¼ m> 0 and
X

1

n¼1

Var Mnð Þ

n2
<1:

Therefore Kolmogorov’s theorem can be applied (Theorem 6.7. in Ref.

[23]) for the sequence ðMnÞ
1
n¼1; thus we have jEnj �mn:

We will use the following lemma, which can be proved by

Bonferroni’s inequality.

Lemma 4. For every n � 1 and x 2 ½0; 1� we have

j 1�xð Þn � 1� nxð Þj �
n
2

	 


x2:

Proof of Lemma 1. First, let us fix k 2 ½N�: For every n � 1 the distribution

of the number of new edges of type k in the nth step conditionally with

respect to Fþ
n�1 is Bin Mn;

jE
ðkÞ
n�1j

jEn�1j

	 


: For every n � 1 we have

E
jE kð Þ

n j

jEnj

�

�

�

�

�

Fþ
n�1

0

@

1

A ¼
jE kð Þ

n�1j

jEn�1j þMn
þ

Mn
jE kð Þ

n�1j

jEn�1j

jEn�1j þMn
¼

jE kð Þ
n�1j 1þ Mn

jEn�1j

� �

jEn�1j þMn
¼

jE kð Þ
n�1j

jEn�1j
:

This is F n�1-measurable, hence this yields

E
jE kð Þ

n j

jEnj

�

�

�

�

F n�1

 !

¼
jE kð Þ

n�1j

jEn�1j
:

We conclude that f kð Þ
n ;F n

� �1

n¼1
is a nonnegative martingale, thus it is conver-

gent almost surely. Let fðkÞ � 0 be its limit. The proof of Lemma 1 is complete. w
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Proof of Theorem 2. We use Theorem 1, so we have to check the assump-

tions of the general model.

Assumption 1. By the dynamics of the model, it is easy to see that

Assumption 1 trivially holds.

Assumption 2. Assumption (BA2) implies that, for every n � 1 and

d 2 ðZþ
0 Þ

N we have

E jXn dð Þ � Xn�1 dð Þj2
�

�F n�1

� �

� E M2
n

� �

! E M2ð Þ<1

as n ! 1: If we choose d¼ 1, then Assumption 2 is satisfied.

Assumption 3. For every n � 1 and d 2 ðZþ
0 Þ

N we have

p
nð Þ
d

0ð Þ ¼ E 1�
d
T1

2jEn�1j

 !Mn
�

�

�

�

�

F n�1

2

4

3

5:

To calculate the expected value above, we will use the following formula:

E 1�
d
T1

2jEn�1j

 !Mn
�

�

�

�

�

F n�1

2

4

3

5 ¼ E 1�Mn
d
T1

2jEn�1j

�

�

�

�

�

F n�1

0

@

1

Aþ gn dð Þ;

where

gn dð Þ ¼ E 1�
d
T1

2jEn�1j

 !Mn

� 1�Mn
d
T1

2jEn�1j

 !�

�

�

�

�

F n�1

2

4

3

5:

Lemma 4 implies that for every n � d
T1 we have

�

�

�

�

�

1�
d
T1

2jEn�1j

 !Mn

� 1�Mn
d
T1

2jEn�1j

 !�

�

�

�

�

�
Mn

2

	 


d
T1

2jEn�1j

 !2

:

By using the above bound, we obtain that

jgn dð Þj � E

�

�

�

�

�

1�
d
T1

2jEn�1j

 !Mn

� 1�Mn
d
T1

2jEn�1j

 !�

�

�

�

�

�

�

�

�

�

F n�1

2

4

3

5

� E
Mn

2

 !

d
T1

2jEn�1j

 !2�
�

�

�

�

F n�1

2

4

3

5 ¼
d
T1

2jEn�1j

 !2

E
Mn

2

 !" #

�
d
T1

2jEn�1j

 !2

E M2
n

� �
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almost surely, by jEn�1j �mn; and Assumption (BA2). The definition of

unðdÞ and gnðdÞ implies that

un dð Þ ¼ n 1� E 1�Mn
d
T1

2jEn�1j

�

�

�

�

�

F n�1

0

@

1

Aþ gn dð Þ

2

4

3

5

0

@

1

A

¼ n
d
T1

2


E Mnð Þ

jEn�1j
�n 
 gn dð Þ:

This is F n�1-measurable, hence ðunðdÞÞ
1
n¼1 is a predictable process with

respect to F : Recall that jEn�1j �mn and n 
 jgnðdÞj ¼ oð1Þ almost surely.

Assumption (BA2) implies that

u dð Þ ¼ lim
n!1

un dð Þ ¼
d
T1

2
a:s:

Assumption 4. First, we fix k 2 ½N�: For every n � 1 and d 2 ðZþ
0 Þ

N;
where d

T1 � 1; the following holds:

p
nð Þ
d�ek

ekð Þ ¼ E Mn
dk�1

2jEn�1j

	 


1�
d
T1�1

2jEn�1j

 !Mn�1�
�

�

�

�

F n�1

2

4

3

5

¼
dk�1

2jEn�1j

	 


E Mn 1�
d
T1�1

2jEn�1j

 !Mn�1�
�

�

�

�

F n�1

2

4

3

5:

(3)

Similarly to the previous case, we obtain that

E Mn 1�
d
T1�1

2jEn�1j

 !Mn�1�
�

�

�

�

F n�1

2

4

3

5 ¼ E Mn 1� Mn � 1ð Þ
d
T1�1

2jEn�1j

 !�

�

�

�

�

F n�1

2

4

3

5þ gn dð Þ;

where

gn dð Þ ¼ E Mn 1�
d
T1�1

2jEn�1j

 !Mn�1

�Mn 1� Mn � 1ð Þ
d
T1�1

2jEn�1j

 !�

�

�

�

�

F n�1

2

4

3

5;

which is not the same sequence as the g’s from the previous section.

Lemma 4 implies that for every n � d
T1 we have

�

�

�

�

�

Mn 1�
d
T1�1

2jEn�1j

 !Mn�1

�Mn 1� Mn � 1ð Þ
d
T1�1

2jEn�1j

 !�

�

�

�

�

� Mn
Mn�1

2

	 


d
T1�1

2jEn�1j

 !2

:
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Combining this with Assumption (BA2), we obtain that

jgn dð Þj � E

�

�

�

�

�

Mn 1�
d
T1�1

2jEn�1j

 !Mn�1

�Mn 1� Mn � 1ð Þ
d
T1�1

2jEn�1j

 !�

�

�

�

�

�

�

�

�

�

F n�1

2

4

3

5

� E Mn
Mn�1

2

	 


d
T1�1

2jEn�1j

 !2�
�

�

�

�

F n�1

2

4

3

5 ¼
d
T1�1

2jEn�1j

 !2

E Mn
Mn�1

2

	 
 �

�
d
T1�1

2jEn�1j

 !2

E M3
n

� �

¼ o
1

n

	 


a:s:

Getting back to equation (3), we conclude that

p
nð Þ
d�ek

ekð Þ ¼
dk�1

2jEn�1j

	 


E Mn 1�
d
T1�1

2jEn�1j

 !Mn�1�
�

�

�

�

F n�1

2

4

3

5

¼
dk�1

2jEn�1j

	 


E Mn 1� Mn � 1ð Þ
d
T1�1

2jEn�1j

 !�

�

�

�

�

F n�1

2

4

3

5þ gn dð Þ

0

@

1

A

¼
dk�1

2jEn�1j

	 


E Mnð Þ � E Mn Mn � 1ð Þ
d
T1�1

2jEn�1j

�

�

�

�

�

F n�1

2

4

3

5þ gn dð Þ

0

@

1

A

�
dk�1

2


1

n
þ o

1

n

	 


a:s:

Therefore, for every k 2 ½N� we have

lim
n!1

np
nð Þ
d�ek

ekð Þ ¼ r kð Þ
d�ekð Þ ¼

dk�1

2
a:s:

Let i 2 H0ðdÞ; i.e. 8k 2 ½N� : 0 � ik � dk and i
T1 � 2: In this case, we

can bound the conditional expectation as follows:

p
nð Þ
d�i

ið Þ

¼ E
Mn!

QN
k¼1 ik!

� �

Mn � i
T1

� �

!

Y

N

k¼1

dk�ik
2jEn�1j

	 
ik
" #

1�
d � ið ÞT1

2jEn�1j

 !Mn�i
T1�
�

�

�

�

F n�1

2

6

4

3

7

5

�
Y

N

k¼1

dk�ik
2jEn�1j

	 
ik

E
Mn!

QN
k¼1 ik!

� �

Mn � i
T1

� �

!

2

4

3

5

�

QN
k¼1 dk�ikð Þik

2jEn�1jð Þi
T1

E Mi
T1
n

� �

:

This yields

lim
n!1

np
nð Þ
d�i

ið Þ ¼ 0 a:s:;

due to Assumption (BA2) and the fact that jEn�1j �mn:
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Assumption 5. By the dynamics of the model, we conclude that for every

n � 1 and d 2 ðZþ
0 Þ

N the following holds:

q nð Þ
dð Þ ¼ E I Mn ¼ d

T1
� � d

T1ð Þ!
QN

k¼1 dk!

Y

N

k¼1

jE kð Þ
n�1j

jEn�1j

 !dk�
�

�

�

�

F n�1

2

4

3

5

¼ P Mn ¼ d
T1

� � d
T1ð Þ!

QN
k¼1 dk!

Y

N

k¼1

jE kð Þ
n�1j

jEn�1j

 !dk

:

Assumption (BA1) implies that PðMn ¼ d
T1Þ ! PðM ¼ d

T1Þ as n ! 1:
It follows from Lemma 1 that

q dð Þ ¼ lim
n!1

q nð Þ
dð Þ ¼ P M ¼ d

T1ð Þ d
T1ð Þ!

QN
k¼1 dk!

Y

N

k¼1

f kð Þ
� �dk

a:s:

This yields

u dð Þ ¼
d
T1

2
;

r kð Þ
d�ekð Þ ¼

dk�1

2
8k 2 N½ �ð Þ

q dð Þ ¼ P M ¼ d
T1ð Þ d

T1ð Þ!
QN

k¼1 dk!

Y

N

k¼1

f kð Þ
� �dk

:

Applying Theorem 1 we get Theorem 2. w

4.3. Model of independent edges

We will use the following lemma.

Lemma 5. For the number of edges, we have the following asymp-

totics: jEnj � ln:

Proof. Let us have D0 ¼ jE0j and k0 ¼ 0: We define

Zn ¼
X

n

i¼0

Di�ki ¼ jEnj�
X

n

i¼1

ki:

We show that ðZn;F nÞ
1
n¼1 is a square integrable martingale, i.e.

ðZn;F nÞ
1
n¼1 is a martingale, and we have EðZ2

nÞ<1 for every n � 1:
For every n � 1 we have

E ZnjF n�1ð Þ ¼ E Zn�1 þ Dn�knjF n�1ð Þ

¼ Zn�1 þ E E DnjF
þ
n�1

� �

� knjF n�1

� �

¼ Zn�1;

since DnjF
þ
n�1�PoiðknÞ:
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Furthermore, we can bound the expectation of the squares as follows:

E Z2
n

� �

¼ E

X

n

i¼1

Di � ki

 !2
2

4

3

5 ¼ E

X

n

i¼1

Di�kið Þ2 þ 2
X

i< j

Di � kið Þ Dj � kj
� �

" #

¼
X

n

i¼1

E Di�kið Þ2
� �

þ 2
X

i< j

E Di � kið Þ Dj � kj
� �� �

¼
X

n

i¼1

E E Di�kið Þ2jFþ
i�1

h i� �

þ 2
X

i< j

E E Di � kið Þ Dj � kj
� �

jFþ
j�1

h i� �

¼
X

n

i¼1

E kið Þ<1;

hence ðZn;F nÞ
1
n¼1 is a square integrable martingale. The increasing process

associated with Z2
n by the Doob decomposition is the following:

An ¼
X

n

i¼1

Var DijF i�1ð Þ ¼
X

n

i¼1

E D
2
i jF i�1

� �

�E
2
DijF i�1ð Þ

¼
X

n

i¼1

E E D
2
i jF

þ
i�1

� ��

�F i�1

h i

�E
2
E DijF

þ
i�1

� ��

�F i�1

h i

¼
X

n

i¼1

E k2i þ ki
� �

�E
2 kið Þ

¼
X

n

i¼1

Var kið Þ þ E kið Þ � n lþ r2
� �

:

By using Ref. [21], Proposition VII-2-4, we conclude that jEnj ¼
ð
Pn

i¼1 kiÞnþ oðn1=2þeÞ almost surely as n ! 1 on the event fAn ! 1g
for all e> 0:
For every n � 1 we have jEnj ¼

PN
k¼1 jE

ðkÞ
0 j þ

Pn
i¼1 Di: By the assump-

tions of the model, the sequence ðkiÞ
n
i¼1 satisfies the following conditions:

lim
n!1

1

n

X

n

i¼1

E kið Þ ¼ E kð Þ ¼ l and
X

1

n¼1

Var knð Þ

n2
<1:

Therefore, Kolmogorov’s theorem can be applied (Theorem 6.7. in Ref.

[23]) for the sequence ðknÞ
1
n¼1: We get that jEnj � ln: w

Proof of Lemma 2. Recall that for a fix k 2 ½N� we have

D
kð Þ
n �Poi kn

jE kð Þ
n j

jEnj

 !

and Dn�D
kð Þ
n �Poi kn 1�

jE kð Þ
n j

jEnj

" # !

;
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furthermore D
ðkÞ
n and Dn�D

ðkÞ
n are conditionally independent given F n�1:

Because of this, it is enough to prove this lemma for N¼ 2, which means

there are only two types.

We are going to show that we have D
ð1Þ
n

�

�Fþ
n�1�Bin Dn;

jE
ð1Þ
n�1j

jEn�1j

	 


: For

every n � 1 we define Fþþ
n�1 ¼ rðFþ

n�1;DnÞ: For all i � j the conditional

distribution can be calculated as follows:

P D
1ð Þ
n ¼ i

�

�Dn ¼ j;Fþ
n�1

� �

¼
P D

1ð Þ
n ¼ i;Dn ¼ j

�

�Fþ
n�1

� �

P D
1ð Þ
n þ D

2ð Þ
n ¼ j

�

�Fþ
n�1

� �

¼
P D

1ð Þ
n ¼ i;D 2ð Þ

n ¼ j� i
�

�Fþ
n�1

� �

P D
1ð Þ
n þ D

2ð Þ
n ¼ j

�

�Fþ
n�1

� � ¼
P D

1ð Þ
n ¼ i

�

�Fþ
n�1

� �


 P D
2ð Þ
n ¼ j� i

�

�Fþ
n�1

� �

P D
1ð Þ
n þ D

2ð Þ
n ¼ j

�

�Fþ
n�1

� �

¼

kn
jE

1ð Þ
n�1

j

jEn�1 j

� �i

i! 
 exp �kn
jE 1ð Þ

n�1j

jEn�1j

	 




kn

jE
2ð Þ
n�1

j

jEn�1 j

� �j�i

j�ið Þ!

 exp �kn

jE 2ð Þ
n�1j

jEn�1j

	 


k
j
n

j!

 exp �knð Þ

¼
j

i

 !

jE 1ð Þ
n�1j

jEn�1j

 !i

1�
jE 1ð Þ

n�1j

jEn�1j

 !j�i

:

For all n � 1; similarly to the proof of Lemma 1, we have

E
jE 1ð Þ

n j

jEnj
jFþþ

n�1

 !

¼
jE 1ð Þ

n�1j

jEn�1j þ Dn
þ

Dn
jE 1ð Þ

n�1j

jEn�1j

jEn�1j þ Dn
¼

jE 1ð Þ
n�1j

jEn�1j
:

Notice that En�1 and E
ð1Þ
n�1 are F n�1-measurable, which implies that

E
jE 1ð Þ

n j

jEnj
jF n�1

 !

¼
jE 1ð Þ

n�1j

jEn�1j
:

We conclude that ðf̂
ð1Þ

n ;F nÞ
1
n¼1 is a nonnegative martingale, thus it is

convergent almost surely. Let f̂
ð1Þ

� 0 be its limit. The proof of Lemma 2

is complete. w

Proof of Theorem 3. We will use Theorem 1, so we have to check the

assumptions of the general model.

Assumption 1. Again, Assumption 1 trivially holds.

Assumption 2. By using DnjF
þ
n�1�PoiðknÞ we obtain that for all

d 2 ðZþ
0 Þ

N we have
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E jXn dð Þ � Xn�1 dð Þj2jF n�1

� �

� E D
2
njF n�1

� �

¼ E E D
2
njF

þ
n�1

� �

jF n�1

� �

¼ E k2n þ knjF n�1

� �

¼ E k2n þ kn
� �

! r2 þ l2 þ l<1

as n ! 1: If we choose d¼ 1, then Assumption 2 is satisfied.

Assumption 3. For every n � 1 and d 2 ðZþ
0 Þ

N we have

p
nð Þ
d

0ð Þ ¼ E exp �kn
d
T1

2jEn�1j

 !�

�

�

�

�

F n�1

2

4

3

5:

We will use Taylor expansion. In order to do this, we write the expect-

ation in the following form:

E exp �kn
d
T1

2jEn�1j

 !�

�

�

�

�

F n�1

2

4

3

5 ¼ E 1� kn
d
T1

2jEn�1j

�

�

�

�

�

F n�1

0

@

1

Aþ gn dð Þ;

where

gn dð Þ ¼ E exp �kn
d
T1

2jEn�1j

 !

� 1� kn
d
T1

2jEn�1j

 !�

�

�

�

�

F n�1

2

4

3

5:

It is well known that for all x � 0 we have je�x�ð1�xÞj � x2

2
; which

implies that
�

�

�

�

�

exp �kn
d
T1

2jEn�1j

 !

� 1� kn
d
T1

2jEn�1j

 !�

�

�

�

�

�
1

2
kn

d
T1

2jEn�1j

 !2

:

By using the above inequality, we obtain that

jgn dð Þj � E

�

�

�

�

�

exp �kn
d
T1

2jEn�1j

 !

� 1� kn
d
T1

2jEn�1j

 !�

�

�

�

�

�

�

�

�

�

F n�1

2

4

3

5

� E
1

2
kn

d
T1

2jEn�1j

 !2�
�

�

�

�

F n�1

2

4

3

5 ¼ E k2n
d
T1ð Þ2

8jEn�1j
2

�

�

�

�

�

F n�1

2

4

3

5

¼ E k2n
� � d

T1ð Þ2

8jEn�1j
2 ¼ o

1

n

	 


a:s:

by Assumption (IE2) and jEn�1j � ln: The definition of unðdÞ and gnðdÞ
implies that

un dð Þ ¼ n
d
T1

2


E knð Þ

jEn�1j
� gn dð Þ

 !

:
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This is F n�1-measurable, hence ðunðdÞÞ
1
n¼1 is a predictable process with

respect to F : Recall that jEn�1j � ln; and n 
 gnðdÞ ¼ oð1Þ almost surely.

Assumption (IE2) implies that

u dð Þ ¼ lim
n!1

un dð Þ ¼
d
T1

2
a:s:

Assumption 4. First, we fix k 2 ½N�: For every n � 1 and d 2 ðZþ
0 Þ

N;
where d

T1 � 1; we have

p
nð Þ
d�ek

ekð Þ ¼ E kn
dk�1

2jEn�1j

 exp �kn

dk�1

2jEn�1j

	 

�

�

�

�

F n�1

" #

¼
dk�1

2jEn�1j
E kn 
 exp �kn

dk�1

2jEn�1j

	 
�

�

�

�

F n�1

" #

:

(4)

Similarly to the previous case, we obtain that

E kn 
 exp �kn
dk�1

2jEn�1j

	 


�

�

�

�

�

F n�1

2

4

3

5 ¼ E kn 1� kn
dk�1

2jEn�1j

	 

�

�

�

�

F n�1

" #

þ gn dð Þ;

where

gn dð Þ ¼ E kn 
 exp �kn
dk�1

2jEn�1j

	 


� kn 1� kn
dk�1

2jEn�1j

	 
�

�

�

�

F n�1

" #

:

Again, by using je�x�ð1�xÞj � x2

2
for all x � 0; we conclude that

�

�

�

�

kn 
 exp �kn
dk�1

2jEn�1j

	 


� kn 1� kn
dk�1

2jEn�1j

	 
�

�

�

�

�
kn

2
kn

dk�1

2jEn�1j

	 
2

:

Combining this with Assumption (IE2), we obtain that

jgn dð Þj � E

�

�

�

�

kn 
 exp �kn
dk�1

2jEn�1j

	 


� kn 1� kn
dk�1

2jEn�1j

	 

�

�

�

�

�

�

�

�

F n�1

" #

� E
kn

2
kn

dk�1

2jEn�1j

	 
2�
�

�

�

F n�1

" #

¼ E k3n
dk�1ð Þ2

8jEn�1j
2

�

�

�

�

F n�1

" #

¼ E k3n
� � dk�1ð Þ2

8jEn�1j
2 ¼ o

1

n

	 


a:s:
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By using this we conclude that

p
nð Þ
d�ek

ekð Þ ¼
dk�1

2jEn�1j
E kn 
 exp �kn

dk�1

2jEn�1j

	 

�

�

�

�

F n�1

" #

¼
dk�1

2jEn�1j
E kn 1� kn

dk�1

2jEn�1j

	 

�

�

�

�

F n�1

" #

þ gn dð Þ

 !

�
dk�1

2


1

n
þ o

1

n

	 


a:s:

Putting this together, we obtain that for every k 2 ½N� we have

lim
n!1

np
nð Þ
d�ek

ekð Þ ¼ r kð Þ
d�ekð Þ ¼

dk�1

2
a:s:

Now let i 2 H0ðdÞ; i.e. 8k 2 ½N� : 0 � ik � dk and i
T1 � 2: For every

n � 1 we have

p
nð Þ
d�i

ið Þ ¼ E

Y

N

k¼1

1

ik!
kn

dk�ik

2jEn�1j

	 
ik

exp �kn
dk�ik

2jEn�1j

	 

�

�

�

�

F n�1

" #

¼

QN
k¼1 dk�ikð Þik

2jEn�1jð Þi
T1QN

k¼1 ik!
E ki

T1
n 
 exp �kn

d � ið ÞT1

2jEn�1j

 !
�

�

�

�

�

F n�1

2

4

3

5

�

QN
k¼1 dk�ikð Þik

2jEn�1jð Þi
T1QN

k¼1 ik!
E ki

T1
n

� �

;

which implies that

lim
n!1

np
nð Þ
d�i

ið Þ ¼ 0 a:s:

Assumption 5. By the dynamics of the model, for every n � 1 and

d 2 ðZþ
0 Þ

N; the following holds:

q nð Þ
dð Þ ¼ E P \

N

k¼1
D

kð Þ
n ¼ dk

n o

�

�

�

�

Fþ
n�1

 !

�

�

�

�

F n�1

" #

¼ E

Y

N

k¼1

P D
kð Þ
n ¼ dkjF

þ
n�1

� �

�

�

�

�

F n�1

" #

¼ E

Y

N

k¼1

1

dk!
kn

jE kð Þ
n�1j

jEn�1j

 !dk

exp �kn
jE kð Þ

n�1j

jEn�1j

 !
�

�

�

�

�

F n�1

2

4

3

5

¼
1

QN
k¼1 dk!

Y

N

k¼1

jE kð Þ
n�1j

jEn�1j

 !dk

E kd
T1

n 
 exp �knð Þ
�

�F n�1

� �

:
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By Lemma 2 and the independence of kn and F n�1; we have

q dð Þ ¼ lim
n!1

q nð Þ
dð Þ ¼ lim

n!1

QN
k¼1 f̂

kð Þ

n�1

� �dk

QN
k¼1 dk!

E kd
T1

n e�kn

� �

¼

QN
k¼1 f̂

kð Þ
� �dk

QN
k¼1 dk!

E kd
T1e�k

� �

a:s:;

since the function td
T1e�t is bounded and continuous and kn ! k in distribution.

We obtain that

u dð Þ ¼
d
T1

2
;

r kð Þ
d�ekð Þ ¼

dk�1

2
8k 2 N½ �ð Þ

q dð Þ ¼

QN
k¼1 f̂

kð Þ
� �dk

QN
k¼1 dk!

E kd
T1e�k

� �

:

Applying Theorem 1 we get Theorem 3. w

5. Scale-free property of random graphs in the multi-type case

A scale-free graph model is a random graph whose degree distribution fol-

lows a power law, i.e. the proportion of vertices with degree d asymptotic-

ally equals to d�c; where c> 0 is a deterministic constant. It is well known

that many large real networks have this property,[18] although there are dis-

cussions about how common they are.[9]

The formal definition of scale-free property of random graphs with no

types is the following.

Definition 4. We assume that the proportion of vertices with degree d con-

verges to a deterministic constant cd a.s. for all d � 0; and the sum of the

sequence ðcdÞ
1
d¼0 equals to 1. In this case the sequence ðcdÞ

1
d¼0 is an asymp-

totic degree distribution. Furthermore, if cdd
c ! C as d ! 1 holds with

some positive C, then the model has the scale-free property, and c is the so-

called characteristic exponent.

We are going to use the following theorem.

Theorem A (Theorem 1 in Ref. [6]). Consider the following recurrence equation:

xn ¼
X

n�1

j¼1

wn;jxn�j þ rn; wn;j ¼ aj þ
bj

n
þ cn;j; n ¼ 1; 2; 3; :::ð Þ;

where wn;j � 0, and an, bn, cn;j, rn satisfy the following conditions.
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(r1) an � 0 for n � 1, and the greatest common divisor of the set fn :

an> 0g is 1;

(r2) rn � 0; and there exists such an n that rn > 0;

(r3) there exists z> 0 such that

1<
X

1

n¼1

anz
n<1;

X

1

n¼1

jbnjz
n<1;

X

1

n¼1

X

1

j¼1

jcn;jjz
j<1;

X

1

n¼1

rnz
n<1:

Suppose that the sequence ðxnÞ
1
n¼1 satisfies the recurrence equation, condi-

tions ðr1Þ-ðr3Þ hold, and ðxnÞ
1
n¼1 has infinitely many positive terms. Then

xnn
�cqn ! C as n ! 1, where C is a positive constant, q is the positive

solution of equation
P1

n¼1 anq
n ¼ 1, and

c ¼

P1
n¼1 bnq

n

P1
n¼1 nanq

n
:

5.1. Scale-free property of the generalized Barab�asi–Albert random graph

In addition to the assumptions in Section 3.2, we also assume that

M1;M2;M3; ::: is a sequence of identically distributed random variables and

there exists z> 1 such that
P1

l¼1
EðMl

1Þ

l
l! zl <1: The last assumption is trivi-

ally fulfilled if supl EðM
l
1Þ<1:

First, let us fix k 2 ½N�: For all l � 0 we define X
ðkÞ
n ðlÞ ¼ jfv 2 Vn :

degðkÞn ðvÞ ¼ lgj; i.e. the number of vertices in Gn with l edges of type k connected

to them. The asymptotic degree distribution of type k edges is ðx
ðkÞ
l Þ1l¼0; where

x
ðkÞ
l is defined as the almost sure limit of the sequence ðX

ðkÞ
n ðlÞ
jVnj

Þ1n¼0 as n ! 1:

Recall that in every step the endpoints of the new edges are chosen independently

of each other and the degrees of the existing vertices are not updated until the

end of the step. By using this, we conclude that for every l � 0 the change in the

value of X
ðkÞ
n ðlÞ only depends on the edges of type k, thus we have

E X kð Þ
n lð ÞjF n�1

h i

¼ X kð Þ
n�1 lð ÞE 1�

l

2jEn�1j

	 
Mn

�

�

�

�

�

F n�1

2

4

3

5

þ
X

l�1

i¼1

X kð Þ
n�1 l�ið Þ 
 E

Mn

i

 !

l�i

2jEn�1j

	 
i

1�
l�i

2jEn�1j

	 
Mn�i
�

�

�

�

�

F n�1

2

4

3

5

þ E
Mn

k

 !

f kð Þ
n�1

� �l

1� f kð Þ
n�1

� �Mn�l
�

�

�

�

�

F n�1

2

4

3

5;

(5)
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where f
ðkÞ
n�1 is the proportion of edges of type k in Gn�1: By using Lemma

3 and the same arguments as in the proof of Theorem 2, we can show

that x
ðkÞ
l exists for all l and we can find the recurrence equations for the

asymptotic degree distribution. The only part which is different to

the previous sections is finding the almost sure limit of the last term

in equation (5) as the number of steps goes to infinity. Since Mn is

independent of F n�1 and f
ðkÞ
n�1 is measurable with respect to F n�1;

we have

E
Mn

l

	 


f kð Þ
n�1

� �l

1� f kð Þ
n�1

� �Mn�l
�

�

�

�

�

F n�1

2

4

3

5 ¼ E
Mn

l

	 


tl 1�tð ÞMn�l

 ��

�

�

�

t¼f kð Þ
n�1

:

(6)

Recall that ðMnÞ
1
n¼1 is a sequence of identically distributed random varia-

bles, thus we define f ðtÞ ¼ E
M1

l

	 


tlð1�tÞM1�l

 �

; where t 2 ½0; 1�: By

using Weierstrass’ M-test, we are going to show that f is continuous. For

all t 2 ½0; 1�; we have

f tð Þ ¼ E
M1

l

	 


tl 1�tð ÞM1�l

 �

¼
X

1

i¼l

i
l

	 


tl 1�tð Þi�l
P M1 ¼ ið Þ

�
X

1

i¼l

i
l

	 


P M1 ¼ ið Þ ¼ E
M1

l

	 
 �

� E Ml
1

� �

<1;

by the Assumption (BA2), thus f is continuous. Since fðkÞn ! fðkÞ almost

surely as n ! 1 and f is continuous, equation (6) implies that

lim
n!1

E
Mn

l

	 


f kð Þ
n�1

� �l

1� f kð Þ
n�1

� �Mn�l
�

�

�

�

F n�1

" #

¼ E
M1

l

	 


f kð Þ
� �l

1� f kð Þ
� �M1�l

" #

a:s:

By using Lemma 3, for every l we have

x kð Þ
l ¼

l�1

lþ 2
x kð Þ
l�1 þ

2

l þ 2
E

M1

l

	 


f kð Þ
� �l

1� f kð Þ
� �M1�l

" #

: (7)

We are going to apply Theorem A. The last equation can be

written as

x kð Þ
l ¼ 1�

3

l
þ

3

l
�

3

lþ 2

	 
 �

x kð Þ
l�1 þ

2

lþ 2
E

M1

l

	 


f kð Þ
� �l

1� f kð Þ
� �M1�l

" #

:
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If we choose

a1 ¼ 1; aj ¼ 0 for j � 2;

b1 ¼ �3; bj ¼ 0 for j � 2;

cl;1 ¼
3

l
�

3

lþ 2
; cl;j ¼ 0 for j � 2;

r kð Þ
l ¼

2

lþ 2
E

M1

l

 !

f kð Þ
� �l

1� f kð Þ
� �M1�l

" #

;

then the assumptions (r1) and (r3) of Theorem A are fulfilled by also using

the fact that there exists z> 1 such that
P1

l¼1
EðMl

1Þ

l
l! zl <1: We know that

there exists l> 0 such that PðM1 ¼ lÞ> 0: By using Lemma 1, we conclude

that fðkÞjM1 ¼ l is positive with positive probability thus r
ðkÞ
l > 0 and the

assumption (r2) is satisfied.

Remark. If in addition to the assumptions in Section 3.2, we also assume

that Mi � M for all i � 1 where M is a positive integer then in this case

the proportion of edges of type k has an absolutely continuous almost sure

limit (see e.g. Theorem 3 in Ref. [10]), thus none of the types die out

asymptotically with probability one.

By using Theorem A, we conclude that for every k 2 ½N� we have

x kð Þ
l l3 ! Ck

as l ! 1 for some positive Ck, thus the characteristic exponent equals to 3.

Finally, for all d � 0 we define ZnðdÞ ¼ jfv 2 Vn :
PN

k¼1 deg
ðkÞ
n ðvÞ ¼ dgj;

i.e. the number of vertices in Gn with d edges connected to them. This way

we get back to the single-type graph models. The asymptotic degree distri-

bution is ðzdÞ
1
d¼0; where zd is defined as the almost sure limit of the

sequence ðZnðdÞ
jVnj

Þ1n¼0 as n ! 1: For every d � 0 we have

E Zn dð ÞjF n�1

� �

¼ Zn�1 dð ÞE 1�
d

2jEn�1j

	 
Mn

�

�

�

�

�

F n�1

2

4

3

5

þ
X

d�1

i¼1

Zn�1 k�ið ÞE
Mn

i

 !

d�i

2jEn�1j

	 
i

1�
d�i

2jEn�1j

	 
Mn�i
�

�

�

�

�

F n�1

2

4

3

5

þ P Mn ¼ djF n�1ð Þ:

By using the same argument as in the previous section, we have

zdd
3 ! C

as d ! 1 for some positive C, thus the characteristic exponent equals to 3.
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This provides a generalization on some of the results of preferential attach-

ment models.[18] As the calculation above shows, this model fits into the

general framework of Ref. [19] or Ref. [22] for single-type preferential

attachment random graphs.

5.2. Scale-free property of the model of independent edges

In the model of independent edges we can use the same arguments. In

addition to the assumptions in Section 3.3, we also assume that k1; k2; k3; :::

is a sequence of identically distributed random variables and there exists

z> 1 such that
P1

l¼1
Eðkl1Þ
l
l! zl <1:

In the model of independent edges for every type k we have r
ðkÞ
l ¼

2
lþ2

Eððk1f̂
ðkÞ
Þl

l!
e�k1f̂

ðkÞ

Þ; where f̂
ðkÞ

is the asymptotic proportion of edges of

type k. Similarly to the previous subsection, by using Lemma 2, we know

that ðf̂
ðkÞ
;F nÞ

1
n¼1 is a martingale and for every k 2 ½N� we have jE

ðkÞ
0 j> 0;

thus f̂
ðkÞ

is positive with positive probability and the last assumption of

Theorem A is fulfilled.

In this special case we can prove the same results as in the previous sub-

section. For every l � 0 we define X̂
ðkÞ

n ðlÞ ¼ jfv 2 Vn : deg
ðkÞ
n ðvÞ ¼ lgj: The

asymptotic degree distribution of type k edges is ðx̂
ðkÞ
l Þ1l¼0; where x̂

ðkÞ
l is

defined as the almost sure limit of the sequence ð
X̂

ðkÞ

n ðlÞ
jVnj

Þ1n¼0 as n ! 1: For

every k 2 ½N� we have

x̂ kð Þ
l ! Ĉk

as l ! 1 for some positive Ĉk; and the characteristic exponent equals to 3.

Again, for every d � 0 we define ẐnðdÞ ¼ jfv 2 Vn :
PN

k¼1 deg
ðkÞ
n ðvÞ ¼ dgj:

The asymptotic degree distribution is ðẑdÞ
1
d¼0; where ẑd is defined as the

almost sure limit of the sequence ðẐnðdÞ
jVnj

Þ1n¼0 as n ! 1: By using the same

argument as in the previous subsection, we have

ẑdd
3 ! Ĉ

as d ! 1 for some positive Ĉ; thus the characteristic exponent equals

to 3.
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