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Abstract

In this paper, we present a novel statistical
machine translation method which employs a
BTG-based reordering model during decod-
ing. BTG-based reordering models for pre-
ordering have been widely explored, aiming
to improve the standard phrase-based statisti-
cal machine translation system. Less attention
has been paid to incorporating such a reorder-
ing model into decoding directly. Our reorder-
ing model differs from previous models built
using a syntactic parser or directly from anno-
tated treebanks. Here, we train without using
any syntactic information. The experiment re-
sults on an English–Japanese translation task
show that our BTG-based decoder achieves
comparable or better performance than the
more complex state-of-the-art SMT decoders.

1 Introduction

The phrase-based method (Koehn et al., 2003)
and the syntax-based method (Yamada and Knight,
2001) are two of the representative methods in sta-
tistical machine translation (SMT). On the one hand,
in the phrase-based model, the lexical reordering
model is a crucial component, but it is often be crit-
icized, especially when translating a language pair
with widely divergent syntax like English-Japanese,
as the naı̈ve distance-based lexical reordering model
does not work so well when applied to longer re-
orderings. On the other hand, in syntax-based SMT
method, word reordering is implicitly addressed by
translation rules. The performance is thus directly
subject to the parsing errors of the syntactic parser.

Syntax-based translation models are usually built
from annotated treebanks to extract grammar rules
for reordering (Genzel, 2010). Such reordering
models are thus more difficult to train. Between
these two models, some loose hierarchical structure
models have been proposed: the hierarchical phrase-
based model (Chiang, 2007) and or the Bracketing
Transduction Grammar (BTG) based model (Wu,
1997). Compared with the hierarchical phrase-based
model, the BTG model has many advantages like
its simplicity. Also, its well-formed rules avoid ex-
tracting a large number of rare or useless translation
rules, as is the case of the hierarchical phrase-based
model.

In recent proposals, phrase-based statistical ma-
chine translation has been shown to improve when
BTG-based preordering is applied as a preprocess-
ing (DeNero and Uszkoreit, 2011; Neubig et al.,
2012; Nakagawa, 2015). The idea behind preorder-
ing is to reduce the structural complexity. It is
preferable to apply the reordering operations in ad-
vance rather than during decoding as this benefits the
word alignment step.

In this paper, following (Xiong et al., 2008),
we propose to incorporate the BTG-based reorder-
ing model directly into the decoding step of a
BTG-based SMT system using a simple Structured
Perceptron (Rosenblatt, 1958; Collins and Roark,
2004). The rest of the paper is organized as follows.
Section 2 briefly introduces previous BTG-based re-
ordering methods both for preordering or determin-
ing the reorderings during decoding. Section 3 de-
scribes the principal model used in BTG-based ma-
chine translation. Section 4 gives the details of the
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kyoto station shichijo stationwas renamed as

inverted
straight

京都駅を

was renamed asshichijo station

七条駅 改称に

was renamedas

:

Ja:

En:

Figure 1: Example of translating a source sentence (En-
glish) into Japanese while reordering at the same time us-
ing a BTG tree.

proposed method and the model combination in the
system construction. Section 5 reports the results
of the experiment on an English-to-Japanese trans-
lation task. We conclude in Section 7.

2 Using Linguistic Contexts for
BTG-based Reordering

A common problem in the distortion reordering
models (Tillmann, 2004; Koehn et al., 2005; Gal-
ley and Manning, 2008) used in phrase-based SMT
(PB-SMT) method is that they do not take contexts
into account. Hence, we draw our attention on using
linguistic-context information for reordering.

Bracketing Transduction Grammar (BTG) (Wu,
1997) is a binary and simplified synchronous
context-free grammar with only one non-terminal
symbol. It has three types for the right hand
side of the rules γ: S–straight keeps the order of
child nodes, I–inverted reverses the order, and T–
terminal generates a terminal symbol.

X → γ =





[X1X2] straight
< X1X2 > inverted

f/e terminal
(1)

where X,X1, X2 are non-terminal symbols and f/e
is a source/target phrase pair. BTG provides an easy
and simple mechanism for modeling word permuta-
tion across languages. Figure 1 illustrates this mech-
anism.

There exists some solutions for BTG grammar in-
duction, which typically focus on unsupervised ap-

proaches, like inside-outside algorithm (Pereira and
Schabes, 1992) for probabilistic context-free gram-
mar (PCFG), monolingual bracketing representation
(Klein and Manning, 2002) or bilingual bracketing
grammar induction (Wu, 1995). The common prob-
lem is that these models suffer from a higher com-
putational complexity.

Some supervised versions focus on supervised ap-
proach, ranging from simple flat reordering model
(Wu, 1997), maximum-entropy based model (Zens
and Ney, 2006; Xiong et al., 2008) and Tree
Kernel-based SVM (Zhang and Li, 2009). Other
approaches, use pre-annotated treebanks to train
a monolingual/synchronous parser (Collins and
Roark, 2004; Genzel, 2010). In this case, the rules
are learned directly from the treebank. The major-
ity of works (Zhang and Gildea, 2005; Xiong et al.,
2008) rely on syntactic parsers available in one of a
source or target language.

However, bilingual parallel treebanks are not al-
ways available. As to building a bilingual syn-
chronous parser using the BTG formalism, there
exist rare works without the use of such a con-
stituency/dependency parser, and sometimes bilin-
gual parallel treebanks are not always available.
Zens and Ney (2006) and DeNero and Uszkor-
eit (2011) proposed semi-supervised approaches for
synchronous grammar induction based on source-
side information only when bilingual word align-
ments are given in advance, instead of training the
parser in a supervised way on pre-annotated tree-
banks. This strategy does not require syntactic an-
notations in the training data, making training easier.

Rather than developing a novel BTG-decoder in-
corporated with a BTG-based reordering model, us-
ing reordering models for preordering have been
widely explored to improve the standard phrase-
based statistical machine translation system. Neu-
big et al. (2012) present a bottom-up method for in-
ducing a preorder for SMT by training a discrimi-
native model to minimize the loss function on the
hand-aligned corpus. Their method makes use of
the general framework of large margin online struc-
tured prediction (Crammer et al., 2006). Lerner and
Petrov (2013) present a simple classifier-based pre-
ordering approach using the source-side dependency
tree. Nakagawa (2015) further develop a more ef-
ficient top-down incremental parser for preordering
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via online training using simple structured Percep-
tron algorithm. Differing from the mentioned meth-
ods to pre-reorder the sentence before the phase of
decoding, in this paper; we propose to build a re-
ordering model directly for building a BTG-based
decoder.

3 BTG-based Machine Translation

Given the three types of rules in Equation 1, we
define a BTG derivation D as a sequence of inde-
pendent operations d1, . . . , dK that apply bracket-
ing rules X → γ as each stage when parsing a
source-target sentence pair < f , e >. We write
D = [d1, . . . , dk, . . . , dK ]. We can produce one
single BTG tree accordingly for one given D. The
probability of a synchronous derivation (parse tree)
under the framework of Probabilistic Synchronous
Context Free Grammar (PSCFG) is computed as:

P (D) =
∏

d∈D
P (d : X → γ) (2)

where d : X → γ stands for the derivation with the
grammar rule X → γ. Given an input sentence pair
< f , e > and the word alignment a, the problem of
finding the best derivation D̃ can be defined as:

D̃ = arg max
D

P (D|e, f ,a) (3)

In the real case of machine translation, we do not
know the word alignment a when training set is the
parallel corpus. In order to find the best translation
ẽ from all translation candidates, we assume two la-
tent variables a,D were required as following:

ẽ = arg max
e

P (e|f) (4)

∝ arg max
e

P (e,D,a|f) (5)

∝ arg max
e

P (D|a, f , e)× P (a|f , e)× P (e)(6)

In Equation 6, P (e) is the language model and a,D
are latent variables that should be learnt from the
training data. The generative story of Equation 6
is understood as follows: Once we found the hid-
den word alignment a with an alignment model
P (a|f , e) and the hidden derivation D using BTG-
based reordering model P (D|a, f , e), we can trans-
late the input source sentence f with the target trans-
lation ẽ.

kyoto station was renamed as shichijo station

kyoto station shichijo station as was renamed

f :

f
′:

Figure 2: Example of preordering a source sentence given
the target word order.

3.1 Training Alignment Model
There are two sub-models in Equation 6, one is the
alignment model P (a|f , e) and the other one is the
reordering model P (D|a, f , e). Since state-of-the-
art alignment methods yield high-quality word-to-
word alignments, it is not necessary to design a new
alignment model to obtain the intermediate variable
a. We use the standard method to get word-to-word
alignments.

3.2 Training Reordering Model
Recently, some research also showed that treating
the parse tree as latent variables (Loehlin, 1998)
can benefit the BTG tree inference but for preorder-
ing (see Figure 2). The reordering model is trained
to maximize the conditional likelihood of trees that
license the reorderings implied by observed word
alignments in a given parallel corpus. For exam-
ple, Neubig et al. (2012) proposed a BTG-based re-
ordering model trained from word-aligned parallel
text directly. With assuming that there is an under-
lying derivation D that produced f ′, where f ′ is the
reordered source sentence given the corresponding
target word orders under the constraints of BTGs.

f
preordering with D−−−−−−−−−−→

a
f ′ (7)

To learn such a reordering model, they handled
the derivations D as a latent variable directly from
the source side linguistic contexts. The objective
function in their work can be represented as:

f̃ ′ = arg max
f ′

Score(f ′,D|f) (8)

Since their model is based on reorderings f ′ licensed
by BTG derivations D, notes D → f ′, the objective
function also can be written as:

D̃ = arg max
D→f ′

Score(D|f) (9)
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The learning problem defined here is fairly simple.
With treating the derivation D as the latent vari-
able, they want to find the derivation with maxi-
mal score of Score(D|f). Furthermore, following
(Collins, 2002; Collins and Roark, 2004), they as-
sume that Score(D|f) is the linear combination of
feature functions defined over D and f .

Because it is also possible to apply the score
function Score(D|f) as a reordering model during
the BTG-based decoding, following (Neubig et al.,
2012; Nakagawa, 2015), we propose to build such
a reordering model with latent derivation for decod-
ing instead of preordering. The natural difference
between their works and our work is as follows: In
(Neubig et al., 2012; Nakagawa, 2015), they train
an incremental parser for preordering, following the
order in the target language before decoding, but we
do reordering while decoding. In other words, we
adopt their model but make use of it as an online
reordering heuristic during decoding.

4 Proposed Methods

In our method, we propose to train and use a BTG-
based reordering model in three steps. Firstly, we
train the BTG parser on the source side with shal-
low annotations (only POS-tags and word classes
(Brown et al., 1992)) on word-aligned bilingual data.
Then we select a large mount of features of uni-
grams, bigrams, and trigrams to represent the cur-
rent parser state and we estimate feature weights us-
ing a Structured Perceptron (Nakagawa, 2015). Fi-
nally, the log-linear combination score for the cur-
rent state is computed again during decoding. This
works as an additional heuristic score and helps
the decoder to select the best candidates in sub-
hypothesis combination.

4.1 Reordering
We define a reordering model ΦRM as a model com-
posed of a straight reordering model ΦRMs and an
inverted reordering model ΦRMi. R stands for the
composition of ΦRMs and ΦRMi.

R = {ΦRMs, ΦRMi} (10)

Given a source sentence f , we define the score for
R the weighted sum of the score P(d) of the sub-
derivation d at each parse state defined over D given

kyoto station was renamed as shichijo stationf :

1. f7

1 →
[

f2

1 f7

3

]

2. f2
1 → [f1 f2]

1 2 3 4 5 6 7

4. f5

3 →
[

f4

3 f5
]

3. f7

3 →
〈

f5

3 f7

6

〉

6. f7
6 → [f6 f7]5. f4

3 → 〈f3 f4〉

Derivations:

Figure 3: Example of step-by-step atomic derivations.

a source sentence f .

R(D|f) =
∑

d∈D
P(d : X → γ) (11)

Each atomic derivation d which belongs to D is
weighted with various features in a log-linear form
as (Xiong et al., 2008; Duan et al., 2009):

P(d : X → γ) =
∑

ϕi∈d

πiϕi (12)

where ϕi is the ith feature function and πi is the ith
weight can be trained on the training data.

Suppose that we know the word alignment a. We
want to train a parser which maximizes the num-
ber of times the source sentences in the training
data are successfully parsed under the constraints of
BTGs. Nakagawa (2015) propose an efficient top-
down parser via online training for this problem. He
uses a simple structured perceptron algorithm.

We assume that the parser has an independent
state in each step. We define the parse state as a
triple ⟨X, r, d⟩, where X is an unparsed span. For
example, following the deductive proof system rep-
resentations (Shieber et al., 1995; Goodman, 1999),
[X, p, q] covers fp, . . . , fq. d = ⟨r,X → γ⟩ is the
derivation at the current state with r is the split-
ting position between fr−1 and fr and X → γ is
the applied BTG rule. To extract the features used
to score the model, we assume that each word in a
sentence has three types of features: lexical form,
part-of-speech (POS) tag and word class (Brown et
al., 1992) as (Nakagawa, 2015). We extract the uni-
grams, bigrams, and trigrams at each parse state and
compute the model score defined in Equation 121.

1We use the same set of features described in (Nakagawa,
2015)
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Algorithm 1: Training the Reordering Model

Input : Training data {⟨e, f ,a⟩}L0
Output: Feature weights π forR

1 foreach iteration t do
2 foreach example ⟨e, f ,a⟩ do
3 D̂ = arg max

D
R(D|f);

4 D∗ = arg max
D∧Constraint(D,a,e,f)

R(D|f);

5 if D̂ ̸= D∗ then
6 π ← π +R(D∗, f)−R(D̂, f);
7 end
8 end
9 return π;

10 end

The training algorithm (see Algorithm 1) can be de-
scribed briefly as following: The parser first pro-
duces a system derivation D̂ with the maximum
model score given f . If D̂ is not licensed by BTG
constraints also given (e,a), we consider the parser
entered a failure state and stop it. Another oracle
derivation D∗ was also selected, which satisfied the
constraint of BTGs (notes Constraint(D,a, e, f) =
true). If the system derivation D̂ and the ora-
cle derivation D∗ are not equivalent, we update the
model weights π towards D∗.

Like all structured prediction learning frame-
works, the online Structured Perceptron is costly to
train as training complexity is proportional to infer-
ence, which is frequently non-linear in the length of
example. To train the reordering model, we employ
an in-house parser2 which uses Batch Perceptron. It
is a modified and boosted version of the original top-
down parser (Nakagawa, 2015), which allows us to
train on the whole training set3.

4.2 Decoding

In decoding, we follow (Och and Ney, 2002; Chi-
ang, 2007). That is, we remove the target side and
use a more general linear model composition over

2https://github.com/wang-h/HieraParser
3We skip the sentences which cannot be parsed under the

constraints of BTGs.

derivations:

ẽ = arg max
e

P (e,D|f) (13)

∝ arg max
D→e

∏
i Φi(D)λi (14)

where each Φi is a sub-model score function and λ is
the corresponding weight. For each arbitrary score
function Φi with a derivation D, we decompose it as
a chain of independent derivations d with BTG rules
X → γ:

Φi(D) =
∏

d∈D
Φi(d : X → γ) (15)

Therefore, given an input sentence f = f1, . . . , fn,
notes fn

1 , the task to translate an input source sen-
tence can be solved by finding the derivation with
maximal score in Equation 14, which uniquely de-
termines a target translation ê (em

1 ) with this latent
derivation D.

The decoder needs to generate all derivations for
each segment spanning from fi to fj (0 ≤ i < j ≤
n). Since our goal is to find the best derivation D̂
that covers the whole input sentence [f1, . . . , fn],
we employ a CKY-style decoder to generate the best
derivation D̂ for each source sentence. This yields
the best translation ê (em

1 ) at the same time.

4.2.1 The -LM -RM Decoder
The integration of a standard n-gram-based lan-

guage model into a CKY-style decoder is not easy
as in the standard phrase-based method (Koehn et
al., 2003). Following (Chiang, 2007), we first intro-
duce the -LM -RM model in which the reordering
and language model are removed from the decoding
model:

w(D) =
∏

i/∈{RM,LM}
Φi(D)λi (16)

Using the deductive proof system (Shieber et al.,
1995; Goodman, 1999) to describe our -LM -RM de-
coder, the inference rules are the following:

X → f/e

[X, p, q] : w
(17)

X → ⟨X1, X2⟩ : [X1, p, r] : w1 [X2, r + 1, q] : w2

[X, p, q] : w1w2
(18)

X → [X1, X2] : [X1, p, r] : w1 [X2, r + 1, q] : w2

[X, p, q] : w1w2
(19)
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where X → γ is the derivation rule, [X, p, q] is the
subtree rooted in a non-terminal X (see Section 2),
w is the model score defined in Equation 16. When
all terms on the top line are true, the item on the
bottom line is derived. The final goal for the decoder
is [f , 1, n], where f is the whole source sentence.

During decoding, the -LM -RM decoder flexi-
bly explores the derivation without taking reordering
into account. This strategy is a simple way to build
a CYK-style decoder, but the decoder requires very
large beam size to find the true best translation. In-
corporating the LM and RM model directly into the
translation construction will improve efficiency.

4.2.2 The +LM +RM Decoder
The computational complexity of online strategy

is reduced by using dynamic programming and in-
corporating the language model and the reordering
model into decoding. The similar method has been
described in (Chiang, 2007). The decoder integrated
with the n-gram language model is called: “+LM de-
coder”. In our case, we also need to integrate the re-
ordering model, so we call it “+LM +RM decoder”.
Given the inference rules described in Equations 17–
19, we describe the +LM +RM decoding algorithm
using Equations 20–23.

In our case, the reordering model affects comput-
ing the language model score if the derivation re-
quires to swap the target sub-charts. We can calcu-
late ΦRM (X) by just taking the model score as the
product of two sub-charts ΦRM (X1) and ΦRM (X2)
with current reordering score ΦRM (X → γ). Since
R is a log-linear expression, we compute the re-
ordering score R(X) for a given span X : [X, p, q]
that consists of X1 : [X1, p, r] and X2 : [X2, r+1, q]
with a grammar rule X → γ as:

R(X) = R(X1) +R(X2) + P(X → γ) (24)

When we merge the chart X1 : [X1, p, r] with X2 :
[X2, r + 1, q] using the rule X → γ, we update the
total score for the composition model after applying
each rule dynamically, we call this the +RM strat-
egy. The BTG terminal rule (T : X → f/e) is
used to translate the source phrase f into the tar-
get phrase e while the straight and inverted rules
(S : X → [X1X2] and I : X →< X1X2 >) are
used to concatenate two neighbouring phrases with

a straight or inverted order as following:

ey
x =

{
e1 · e2, X → [X1X2]
e2 · e1, X → ⟨X1X2⟩ (25)

where · stands for concatenation between strings.
After having decided the word order on the target
side, we compute the score in the language model,
noted L(·)4. The language model score PLM (ey

x)
depends on the preceding N − 1 words for any
ey
x(|ey

x| ≥ N, 1 ≤ x < y ≤ m). It is computed
as:

PLM (ey
x) =

∏

x≤z≤y

p(êz+N−1|êz . . . êz+N−2) (26)

The language model score function L(ey
x) depends

on the rule type γ as follows:

L(ey
x) =





PLM (ey+1
x ), |ey

x| = |em
1 |

0, |ey
x| < N

PLM (ey
x+N ), otherwise

(27)

To determine whether we have the case |ey
x| = |em

1 |,
we assume that, if the span of X : [X, p, q] covers
the entire source sentence fn

1 as X : [X, 1, n], then
the target translation ey

x should also cover the entire
target sentence. On the basis of +RM decoder, we
add the +LM component into the decoder and build
a +LM+RM decoder for CYK-style bottom-up de-
coding. cube pruning (Chiang, 2007) was also ap-
plied to speedup the decoder.

4.2.3 Model Combination
HieraTrans is our newly-developed in-house

BTG-based SMT translation platform. It adopts the
constraints of BTG in both phrase translation and
reordering. We combine the models in a log-liner
manner as shown in Equation 14. The feature func-
tions employed by HieraTrans are:

• Phrase-based translation models (TM): direct
and inverse phrase translation probabilities, di-
rect and inverse lexical translation probabili-
ties.

• Language model (LM)
4For the case of start-of-the sentence and end of the sen-

tence, we wrap the target sentence e (em
1 ) as ê = êm+h

1 =
⟨s⟩N−1em

1 ⟨\s⟩.
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X → f/e

[X, p, q] : w[L(e)]λL
(20)

X → ⟨X1, X2⟩ : [expP(X → ⟨X1, X2⟩)]λR [X1, p, r] : w1 [X2, r + 1, q] : w2

[X, p, q] : w1w2[expR(X)]λR [L(e2 + e1)]
λL

(21)

X → [X1, X2] : [expP(X → [X1, X2])]
λR [X1, p, r] : w1 [X2, r + 1, q] : w2

[X, p, q] : w1w2[expR(X)]λR [L(e1 + e2)]
λL

(22)

X1 → f1/e1, X2 → f2/e2 (23)

• Reordering models (RM): straight and inverted
scores combined within the log-linear frame-
work.

• Penalties (PM): word penalty, phrase penalty,
unknown word penalty.

The weights for each feature are tuned and estimated
using the minimum error rate training (MERT) algo-
rithm (Och, 2003).

5 Experiment

5.1 Experimental Setup
To evaluate our system, we conducted translation ex-
periments on the KFTT Corpus (English–Japanese)
and compared our system with baseline phrase-
based (PB) and hierarchical phrase-based (HPB)
SMT implementations in Moses5 (Koehn et al.,
2007). For each language, the training corpus is
around 330,000 sentences. The development set
contains nearly 1,235 sentences and nearly 1,160
sentences used for testing. We use the default train-
ing set for training translation model, and traditional
lexical (Koehn et al., 2005) reordering model or our
proposed BTG-based reordering model, and also tar-
get language model. We use the default tuning set
for tuning the parameters and the default test set for
evaluation.

For word alignment, we train word alignments
in both directions with the default settings, i.e., the
standard bootstrap for IBM model 4 alignment in
GIZA++ (15H53343). We then symmetrize the
word alignments using grow-diag-final-and (+gdfa)
and the standard phrase extraction heuristic (Koehn
et al., 2003) for all systems. In our experiment, the
maximum length of phrases entered into phrase table

5http://www.statmt.org/moses/

is limited to 7, and we input only the top 20 trans-
lation candidates. The language model storage of
target language uses the implementation in KenLM
(Heafield, 2011) which is trained and queried as a
5-gram model. For distortion model in phrase-based
SMT baseline, we set the distortion limit to 6.

Word alignments used for training the reorder-
ing model are the intersection of both asymmet-
rical alignments in each mono-direction output by
GIZA++6 (Och and Ney, 2003). For pos-tagging,
we make use of the Stanford Log-linear POS Tag-
ger7 (Toutanova and Manning, 2000). To produce
word class tags for each source word, we use the
implementation of (Liang, 2005) 8 of Brown’s clus-
tering algorithm (Brown et al., 1992). The size of
the class tags is fixed to 256.

For tuning, the optimal weights for each feature
are estimated using the minimum error rate training
(MERT) algorithm (Och, 2003) and parameter opti-
mization with ZMERT9 (Zaidan, 2009).

5.2 Experiment Results

For evaluation of machine translation quality, stan-
dard automatic evaluation metrics are used, like
BLEU (Papineni et al., 2002) and RIBES (Isozaki
et al., 2010) in all experiments. BLEU is used as
the default standard metric, RIBES takes more word
order into consideration. Table 1 shows the perfor-
mance of MT systems on the KFTT test data, which
are (1) Moses, trained using the phrase-based model
(PB-SMT). (2) Moses, trained using the hierarchi-
cal phrase-based model (HPB-SMT) and last one
(3) HieraTrans, trained using the BTG-based model

6http://www.statmt.org/moses/giza/GIZA++.html
7https://nlp.stanford.edu/software/tagger.shtml
8https://github.com/percyliang/brown-cluster
9http://www.cs.jhu.edu/ ozaidan/zmert/
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BLEU RIBES
Moses (PB-SMT) 20.81 67.50
Moses (HPB-SMT) 21.67 66.58
HieraTrans (BTG-SMT)
(beam=40) 21.15 65.80
(beam=100) 21.24 66.33

Table 1: Results on phrase-based baseline system, hierar-
chical phrase-based system and our BTG-based system.
Bold scores indicate no statistically significant difference
at p < 0.05 from the best system (Koehn, 2004).

(BTG-SMT).

5.3 Analysis

Compared with the PB-SMT, BTG-based SMT uses
weak linguistic annotations on the source side which
provides additional information for reordering. We
found that this strategy does help tree structure con-
struction and finding final translations. However,
our BTG-based method underperformed the HPB-
SMT method. Increasing the beam size will gain
improvement slightly.

There are two explanations for the result: First, fi-
nal machine translation performance is also related
to the used tools, which is sensitive to parse errors,
alignment errors or annotation errors. Inaccurate la-
beling hurts the performance. Second, strict con-
straints of BTGs makes the decoder difficult to find
some discontinuous phrases (translations).

6 Conclusion

In this paper, we proposed a novel BTG-based
translation approach using a BTG-based reordering
model directly trained from the training data. Train-
ing such a reordering model does not require any
syntactic annotations, hence no use of treebanks or
parsers. This approach provides an alternative to
building a BTG-based machine translation system
using syntactic information. We also made several
improvements over (Xiong et al., 2008): First, we
developed a novel BTG-based parser using Batch
Perceptron. It allows training the reordering model
on the whole training set. Second, we made the
reordering model serve as a model which can be
queried during decoding. We compared and vali-
dated our method can achieve the comparable per-

formance with state-of-the-art SMT approaches. For
further improvements, we will work on towards
higher-speed decoder and make the decoder open
available.
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