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Abstract

Language modeling is a fundamental research
problem that has wide application for many
NLP tasks. For estimating probabilities of nat-
ural language sentences, most research on lan-
guage modeling use n-gram based approaches
to factor sentence probabilities. However, the
assumption under n-gram models is not robust
enough to cope with the data sparseness prob-
lem, which affects the final performance of
language models.

At the point, Hierarchical Word Sequence (ab-
breviated as HWS) language models can be
viewed as an effective alternative to normal
n-gram method. In this paper, we generalize
HWS models into a framework, where differ-
ent assumptions can be adopted to rearrange
word sequences in a totally unsupervised fash-
ion, which greatly increases the expandability
of HWS models.

For evaluation, we compare our rearranged
word sequences to conventional n-gram word
sequences. Both intrinsic and extrinsic exper-
iments verify that our framework can achieve
better performance, proving that our method
can be considered as a better alternative for n-
gram language models.

1 Introduction

Probabilistic Language Modeling is a fundamental
research direction of Natural Language Processing.
It is widely used in various application such as ma-
chine translation (Brown et al., 1990), spelling cor-
rection (Mays et al., 1990), speech recognition (Ra-

biner and Juang, 1993), word prediction (Bickel et
al., 2005) and so on.

Most research about Probabilistic Language Mod-
eling, such as Katz back-off (Katz, 1987), Kneser-
Ney (Kneser and Ney, 1995), and modified Kneser-
Ney (Chen and Goodman, 1999), only focus on
smoothing methods because they all take the n-gram
approach (Shannon, 1948) as a default setting for
modeling word sequences in a sentence. Yet even
with 30 years worth of newswire text, more than
one third of all trigrams are still unseen (Allison
et al., 2005), which cannot be distinguished ac-
curately even using a high-performance smoothing
method such as modified Kneser-Ney (abbreviated
as MKN).

An alternative solution is to factor the language
model probabilities such that the number of unseen
sequences are reduced. It is necessary to extract
them in another way, instead of only using the in-
formation of left-to-right continuous word order.

In (Guthrie et al., 2006), skip-gram (Huang et
al., 1993)1 is proposed to overcome the data sparse-
ness problem. For each n-gram word sequence,
the skip-gram model enumerates all possible word
combinations to increase valid sequences. This has
truly helped to decrease the unseen sequences, but
we should not neglect the fact that it also brings a
greatly increase of processing time and redundant
contexts.

In (Wu and Matsumoto, 2014), a heuristic ap-
proach is proposed to convert any raw sentence
into a hierarchical word sequence (abbreviated as

1The k-skip-n-grams for a sentence w1, ...wm is defined as
the set {wi1 , wi2 , ...win |Σn

j=1ij − ij−1 < k}.
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HWS) structure, by which much more valid word se-
quences can be modeled while remaining the model
size as small as that of n-gram. In (Wu and Mat-
sumoto, 2015) (Wu et al., 2015), instead of only us-
ing the information of word frequency, the informa-
tion of direction and word association are also used
to construct higher quality HWS structures. How-
ever, they are all specific methods based on certain
heuristic assumptions. For the purpose of further im-
provements, it is also necessary to generalize those
models into one unified structure.

This paper is organized as follows. In Section
2, we review the HWS language model. Then we
present a generalized hierarchical word sequence
structure (GHWSS) in Section 3. In Section 4,
we present two strategies for rearranging word se-
quences under the framework of GHWSS. In Sec-
tions 5 and 6, we show the effectiveness of our
model by both intrinsic experiments and extrinsic
experiments. Finally, we summarize our findings in
Section 7.

2 Review of HWS Language Model

In (Wu and Matsumoto, 2014), the HWS structure
is constructed from training data in an unsupervised
way as follows:

Suppose that we have a frequency-sorted vocab-
ulary list V = {v1, v2, ..., vm}, where C(v1) ≥
C(v2) ≥ ... ≥ C(vm)2.

According to V , given any sentence
S = w1, w2, ..., wn, the most frequently
used word wi ∈ S(1 ≤ i ≤ n) can be se-
lected3 for splitting S into two substrings
SL = w1, ..., wi−1 and SR = wi+1, ..., wn. Sim-
ilarly, for SL and SR, wj ∈ SL(1 ≤ j ≤ i− 1)
and wk ∈ SR(i+ 1 ≤ k ≤ n) can also be se-
lected, by which SL and SR can be splitted
into two smaller substrings separately. Ex-
ecuting this process recursively until all the
substrings become empty strings, then a tree
T = ({wi, wj , wk, ...}, {(wi, wj), (wi, wk), ...})
can be generated, which is defined as an HWS
structure (Figure 1).

In an HWS structure T , assuming that each node
depends on its preceding n-1 parent nodes, then spe-

2C(v) represents the frequency of v in a certain corpus.
3If wi appears multiple times in S, then select the first one.

Figure 1: A comparison of structures between HWS and
n-gram

cial n-grams can be trained. Such kind of n-grams
are defined as HWS-n-grams.

The advantage of HWS models can be considered
as discontinuity. Taking Figure 1 as an example,
since n-gram model is a continuous language model,
in its structure, the second ‘as’ depends on ‘soon’,
while in the HWS structure, the second ‘as’ depends
on the first ‘as’, forming a discontinuous pattern to
generate the word ‘soon’, which is closer to our lin-
guistic intuition. Rather than ‘as soon ...’, taking ‘as
... as’ as a pattern is more reasonable because ‘soon’
is quite easy to be replaced by other words, such
as ‘fast’, ‘high’, ‘much’ and so on. Consequently,
even using 4-gram or 5-gram, sequences consist-
ing of ‘soon’ and its nearby words tend to be low-
frequency because the connection of ‘as...as’ is still
interrupted. On the contrary, the HWS model ex-
tracts sequences in a discontinuous way, even ‘soon’
is replaced by another word, the expression ‘as...as’
won’t be affected. This is how the HWS models re-
lieve the data sparseness problem.

The HWS model is essentially an n-gram lan-
guage model based on a different assumption that
a word depends upon its nearby high-frequency
words instead of its preceding words. Different
from other special n-gram language models, such
as class-based language model (Brown et al., 1992),
factored language model(FLM) (Bilmes and Kirch-
hoff, 2003), HWS language model doesn’t use any
specific linguistic knowledge or any abstracted cate-
gories. Also, differs from dependency tree language
models (Shen et al., 2008) (Chen et al., 2012), HWS
language model constructs a tree structure in an un-
supervised fashion.

In HWS structure, word sequences are adjusted
so that irrelevant words can be filtered out from
contexts and long distance information can be used
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Figure 2: An Example of Generative Hierarchical Word
Sequence Structure

for predicting the next word, which make it more
effective and flexible in relieving the data sparse-
ness problem. On this point, it has something in
common with structured language model (Chelba,
1997), which firstly introduced parsing into lan-
guage modeling. The significant difference is, struc-
tured language model is based on CFG parsing
structures, while HWS model is based on pattern-
oriented structures.

3 Generalized Hierarchical Word
Sequence Structure

Suppose we are given a sentence s = w1, w2, ..., wn

and a permutation function f : s → s
′
, where s

′
=

w
′
1, w

′
2, ..., w

′
n is a permutation of s. For each word

index i(1 ≤ i ≤ n,wi ∈ s), there is a corresponding
reordered index j(1 ≤ j ≤ n,w

′
j ∈ s

′
, w

′
j = wi).

Then we create an n× n matrix A. For each row
j, we fill cell Aj,i with wi. We define the matrix
A as the generalized hierarchical word sequence
structure (abbreviated as GHWSS) of the sentence
s. An example is shown in Figure 2.

In a GHWSS, given any word w ∈ {Aj,i|w′
j =

wi}, the words in its higher rows are X =
{Ak,m|k < j, 1 ≤ m ≤ n,w

′
k = wm}, in which

the nearest two neighbors of w are l̂ = Akl,m̂l
(kl <

j, m̂l = argmin
1≤m<i

(i − m)) and r̂ = Akr,m̂r(kr <

j, m̂r = argmin
i<m≤n

(m− i)) respectively4. Then we as-

sume that w depends on ŵ = l̂ if kl > kr or ŵ = r̂
if kl < kr. For example, in Figure 2, given the word
‘soon’, its higher rows X = {as, as, possible, .}, in
which the nearest neighbors of ‘soon’ are l̂ = as and

4There is no l̂ when i = 1, while no r̂ when i = n.

r̂ = as, since the second ‘as’ is closer to ‘soon’ ver-
tically, we assume ‘soon’ depends the second ‘as’ in
this GHWSS.

Further, for the word A1,i, we define that it de-
pends on symbol ‘〈s〉’. We also use the symbol
‘〈/s〉’ to represent the end of generation.

For each word w = Aj,i, if we assume that it only
depends on its previous few words in its dependency
chain, then we can achieve special n-grams under
the GHWSS. Taking Figure 2 as the example, we
can train 3-grams like {(〈s〉, 〈s〉, .), (〈s〉, ., as), (.,
as, as), (as, as, possible), (as, possible, 〈/s〉), (as, as,
soon), (as, soon, 〈/s〉)}.

In (Wu and Matsumoto, 2015), it is verified that
the performance of HWS model can be further im-
proved by using directional information. Thus, in
this paper, we defaultly use directional information
to model word sequences. Then the above 3-grams
should be {(〈s〉, 〈s〉, .), (〈s〉, .-R, 〈/s〉), (〈s〉, .-L,
as), (.-L, as-L, 〈/s〉), (.-L, as-R, as), (as-R, as-L,
soon), (as-L, soon-L, 〈/s〉), (as-L, soon-R, 〈/s〉),
(as-R, as-R, possible), (as-R, possible-L, 〈/s〉), (as-
R, possible-R, 〈/s〉) and the probability of the whole
sentence ‘as soon as possible .’ can be estimated by
the product of conditional probabilities of all these
word sequences.

4 Two Strategies for constructing GHWSS

Once a permutation function f is implemented, the
GHWSS of any sentence can be constructed. Thus,
the performance of GHWSS is totally determined
by how to implement the function f for rearranging
word sequences.

Since n-gram models assume that a word depends
on its previous n-1 words, the function f of n-gram
methods can be considered as the identity permuta-
tion. For each word wi, we fill cell Ai,i with wi, then
the n-gram method is a special case of GHWSS.

In this section, we propose two kinds of methods
for implementing function f under GHWSS.

4.1 Word Frequency Based Method

Step 1. Calculate word frequencies from training
data and sort all words by their frequency. Assume
we get a frequency-sorted list V = {v1, v2, ..., vm},
where C(vj) > C(vj+1), 1 ≤ j ≤ m− 1. 5

5C(vj) represents the frequency of vj .
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Step 2. According to V , for each sentence
s = w1, w2, ..., wn, we permute it into s

′
=

w
′
1, w

′
2, ..., w

′
n(w

′
k = vx, w

′
k+1 = vy, 1 ≤ k ≤

n− 1, 1 ≤ x ≤ y ≤ m).
Then the GHWSS constructed by the permuta-

tion s′ is equivalent to that of frequency-based HWS
method.

4.2 Word Association Based Method

Step 1. For each sentence s in corpus D, we convert
it into s

′
, in which each word only appear once.

Step 2. For each word wi in the corpus D′ =
{s′

i|1 ≤ i ≤ |D|}, we count its frequency C(wi)
and its cooccurrence with another word C(wi, wj).

Step 3. For each original sentence s ∈ D, we
initiate an empty list X and set the beginning symbol
‘〈s〉’ as the initial context c 6.

Step 4. For each word w ∈ s, we calculate its
word association score with context c. In this paper,
we use T-score7 as the word association measure.

T (c, w) = (C(c, w)− C(c)× C(w)

V
)÷

√
C(c, w)

(1)
Then we add the i-th word ŵ with the maximum

score to list X8 and use it to split s into two sub-
strings sl = w1, ..., wi−1 and sr = wi+1, ..., wn.

Step 5. We set ŵ as the new context c
′
. For each

word in sl, we calculate its word association score
with c

′
and add the word with the maximum score

to list X9 and use it to divide sl into two smaller
substrings. Then we apply the same process to the
substring sr.

Execute Step4 and Step5 recursively until any-
more substrings cannot be divided, then the original
sentence s is permuted as list X , by which GHWSS
of s can be constructed.

5 Intrinsic Evaluation

We use two different corpus: British National Cor-
pus and English Gigaword Corpus.

6Since 〈s〉 appears only once in each sentence, we set
C(〈s〉) as the size of corpus.

7V stands for the total number of words in corpus.
8If ŵ appears multiple times in s, then select the first one.
9If the context word c

′
also appears in sl, then we regard it

as the word with the maximum score and add it to X directly.

British National Corpus (BNC) 10 is a 100 mil-
lion word collection of samples of written and spo-
ken English from a wide range of sources. We use
all the 6,052,202 sentences (100 million words) for
the training data.

English Gigaword Corpus 11 consists of over 1.7
billion words of English newswire from 4 distinct
international sources. We choose the wpb eng part
(162,099 sentences, 20 million words) for the test
data.

As preprocessing of the training data and the test
data, we use the tokenizer of NLTK (Natural Lan-
guage Toolkit) 12 to split raw English sentences into
words. We also converted all words to lowercase.

To ensure the openness of our research, the source
code used in the following experiments is available
on the internet.13

As intrinsic evaluation of language modeling, per-
plexity (Manning and Schütze, 1999) is the most
common metric used for measuring the usefulness
of a language model. However, since we unsuper-
visedly ‘parse’ the test sentence s into a GHWSS
structure before we estimate its probability, its con-
ditional entropy is actually H(s|T (s)), where T (s)
represents the GHWSS assigned to the test sentence
s. Consequently, our method has much lower per-
plexity. It’s not appropriate to directly compare the
perplexity of GHWSS-based models to that of n-
gram models.

Also, perplexity is not necessarily a reliable way
of determining the usefulness of a language model
since a language models with low perplexity may
not work well in a real world application. Thus, for
intrinsic evaluation, we evaluate models only based
on how much they can actually relieve the data
sparseness problem (reduce the unseen sequences).

In (Wu and Matsumoto, 2014), coverage score
are used to perform this kind of evaluation. The
word sequences modeled from training data are de-
fined as TR, while that of test data as TE, then the
coverage score is calculated by Equation (2). Obvi-
ously, the higher coverage score a language model
can achieve, the more it can relieve the data sparse-
ness problem (reduce the unseen sequences).

10http://www.natcorp.ox.ac.uk
11https://catalog.ldc.upenn.edu/LDC2011T07
12http://www.nltk.org
13https://github.com/aisophie/HWS
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Table 1: Performance of Various Word Sequences

Models Coverage Usage F-score
Unique Total Unique Total Unique Total

bi-gram 46.471 83.121 12.015 76.336 19.093 79.584
frequency-based-bi 46.066 89.730 12.019 86.937 19.064 88.312

tscore-based-bi 45.709 89.949 11.872 87.252 18.848 88.580
tri-gram 27.164 51.151 5.626 40.191 9.321 45.013

frequency-based-tri 36.512 72.432 8.546 67.221 13.850 69.729
tscore-based-tri 36.473 72.926 8.501 67.382 13.788 70.045

scorecoverage =
|TR⋂

TE|
|TE| (2)

If all possible word combinations are enumer-
ated as word sequences, then considerable coverage
score can be achieved. However, the processing ef-
ficiency of a model become extremely low. Thus,
usage score (Equation (3)) is also necessary to esti-
mate how much redundancy is contained in a model.

scoreusage =
|TR⋂

TE|
|TR| (3)

A balanced measure between coverage and usage
is calculated by Equation (4).

F -Score =
2×coverage×usage

coverage+ usage
(4)

In this paper, we use the same metric to compare
word sequences modeled under GHWSS framework
with normal n-gram sequences.

The result is shown in Table 1 14. According to
the results, for total word sequences, which actu-
ally affect the final performance of language mod-
els, GHWSS-based methods have obvious advan-
tage over the normal bi-gram model. As for tri-
grams, the GHWSS-based methods can even im-
prove around 25%.

6 Extrinsic Evaluation

For the purpose of examining how our models work
in the real world application, we also performed ex-
trinsic experiments to evaluate our method. In this

14“Unique” means counting each word sequence only once
in spite of the amount of times it really occurs.

paper, we use the reranking of n-best translation can-
didates to examining how language models work in
a statistical machine translation task.

We use the French-English part of TED talk par-
allel corpus for the experiment dataset. The training
data contains 139,761 sentence pairs, while the test
data contains 1,617 sentence pairs. For training lan-
guage models, we set English as the target language.

As for statistical machine translation toolkit, we
use Moses system15 to train the translation model
and output 50-best translation candidates for each
French sentence of the test data. Then we use
139,761 English sentences to train language mod-
els. With these models, 50-best translation candi-
dates are reranked. According to these reranking re-
sults, the performance of machine translation system
is evaluated, which also means, the language models
are evaluated indirectly. In this paper, we use the fol-
lowing measures for evaluating reranking results16.

BLEU (Papineni et al., 2002): BLEU score mea-
sures how many words overlap in a given candidate
translation when compared to a reference transla-
tion, which provides some insight into how good the
fluency of the output from an engine will be.

METEOR (Banerjee and Lavie, 2005): ME-
TEOR score computes a one-to-one alignment be-
tween matching words in a candidate translation and
a reference.

TER (Snover et al., 2006): TER score measures
the number of edits required to change a system out-
put into one of the references, which gives an indi-
cation as to how much post-editing will be required

15http://www.statmt.org/moses/
16We use open source tool multeval

(https://github.com/jhclark/multeval) to perform the evalu-
ation.
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Table 2: Performance on French-English SMT Task Us-
ing Various Word Arranging Assumptions

Models BLEU METEOR TER
tri-gram 31.3 33.5 49.0

frequency-based-tri 31.5 33.6 48.6
tscore-based-tri 31.7 33.6 48.5

on the translated output of an engine.
We use GHWSS word rearranging strategies to

perform experiments and compared them to the nor-
mal n-gram strategy. For estimating the probabil-
ities of translation candidates, we use the modi-
fied Kneser-Ney smoothing (MKN) as the smooth-
ing method of all strategies. As shown in Table 2,
GHWSS based strategies outperform that of n-gram
on each score.

7 Conclusion

In this paper, we proposed a generalized hierarchi-
cal word sequence framework for language model-
ing. Under this framework, we presented two dif-
ferent unsupervised strategies for rearranging word
sequences, where the conventional n-gram strategy
as one special case of this structure.

For evaluation, we compared our rearranged word
sequences to conventional n-gram word sequences
and performed intrinsic and extrinsic experiments.
The intrinsic experiment proved that our methods
can greatly relieve the data sparseness problem,
while the extrinsic experiments proved that SMT
tasks can benefit from our strategies. Both veri-
fied that language modeling can achieve better per-
formance by using our word sequences rearranging
strategies, which also proves that our strategies can
be used as better alternatives for n-gram language
models.

Further, instead of conventional n-gram word se-
quences, our rearranged word sequences can also
be used as the features of various kinds of machine
learning approaches, which is an interesting future
study.
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