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Abstract 

The performance of many content analysis 

methods heavily dependent on the features 

they are applied. A fundamental problem 

that makes the content analysis difficult is 

the curse of dimensionality. In this study, 

we propose a novel feature reduction 

method which adopts ensemble approach to 

measure the divergence between the 

training set and test set and use the 

divergence to supervise the feature 

reduction procedure. The proposed method 

uses pairwise measure to get the diversity 

between classifiers and selects the 

complementary classifiers to get the pseudo 

labels on test set. The pseudo labels are used 

to measure the divergence between training 

set and test set. The feature reduction 

algorithm merges the adjacent feature space 

according to the divergence, such reduce the 

feature number. We evaluated the proposed 

method on several standard datasets. 

Experiment results shown the efficiency of 

the proposed feature reduction method. 

1 Introduction 

A large number of electronic textual 

documentations are generated everyday on webs 

and the Internet. For example: e-books, e-

newspapers, e-magazines, and essays in blogs. It is 

difficult for web administrators to manage and 

classify numerous electronic documentations 

manually (Ng et al. 1997; Combarro et al. 2005; 

Gao and Chien, 2012; Robati et al., 2015). It makes 

the content analysis tools more and more important. 

A main problem is the high dimensions of features 

which not only increase the processing time but also 

decrease the performance of analysis tools. 

Automatic feature reduction or selection methods 

are usually used to reduce the number of features 

(Reif and Shafait 2014).  Removing irrelevant or 

redundant features not only improves performance, 

but also reduces the dimensionality of the data 

thereby shortening the training and application time 

of the learning scheme, building better 

generalizable models, and decreasing required 

storage. Furthermore, shorter feature vectors help 

the content analysis tools in better coping with the 

curse of dimensionality. 

There is a vast literature on the feature reduction 

(How and Kiong, 2005; Garcia et al., 2013; 

Choudhary and Saraswat, 2014).  When dealing 

with the features with continuous (real) values, the 

feature reduction can be regarded as discretization 

procedure which aim at finding a representation of 

each feature that contains enough information for 

the learning task at hand, while ignoring minor 

fluctuations that maybe irrelevant for that task 

(Ferreira and Figueiredo, 2012). In practice, 

discretization can be viewed as a feature reduction 

method since it maps data from a huge spectrum of 

numeric values to a greatly reduced subset of 

discrete values (Garcia et al., 2013).  

Actually, the techniques in Garcia et al.(2013) 

can also be adopted to discrete values. The feature 

reduction task can be defined as following: 

Assuming a data set consisting of N examples and 

C target classes, for a feature A in this data set with 
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continuous values which has the range [d0, dm], or a 

set of discrete values (d0, d1, …, dm). The feature 

reduction algorithms aim to put these values into 

several bins or intervals: D = {[d0, d1], [d1, d2], …, 

[dm-1, dm]}. Each feature value is then mapped into 

the bin or interval in which it falls. By tuning the 

number of the bins, the feature space can be reduced. 

Two major categories of feature reduction 

techniques include unsupervised and supervised 

methods. Unsupervised methods (Bay, 2001; Li and 

Wang, 2002; Yang and Webb, 2009) do not 

consider the class label whereas supervised ones do. 

(Wu, 1996; Kerber, 1992; Zighed et al., 1998; Singh 

and Minz, 2007; Jin et al., 2009; Jiang et al., 2010) 

Comprehensive listings of these techniques can be 

found in the works of Garcia et al. (2013). The main 

drawback of all the previous work is the difficulty 

to accurately handle the gap between the training set 

and test set. Once the test set changes, the previous 

trained model cannot catch the property of the new 

test set.  

In this study, we propose a novel feature 

reduction method which adopts ensemble approach 

to evaluate the difference/divergence between 

training set and test set. The divergence is used to 

merge and modify the feature space, such reduce the 

feature number.  The remaining sections of the 

paper are organized as follows. Section 2 presents 

our methods for feature reduction. Section 3 reports 

experimental results on standard datasets. Section 4 

presents concluding remarks and future work. 

2 Method 

2.1 Related work 

As shown by Dougherty el al. (1995), the 

unsupervised methods and supervised methods are 

different in the way they use the instance labels. The 

unsupervised methods do not make use of the 

instance labels. In contrast, supervised methods 

utilize the class labels of instances. The 

representative unsupervised method are Equal 

Width and Equal Frequency. The Equal Width 

method divides the range of observed values for a 

feature into k equal sized bins, where k is a user-

supplied parameter. Equal Frequency method 

divides a continuous variable into k bins where 

(given m instances) each bin contains m/k (possibly 

duplicated) adjacent values. Take a feature which is 

observed to have values bounded by d0 and dm ([d0, 

dm]), the Equal Width method computes the bin 

width: 

δ =
𝑑𝑚 − 𝑑0

𝑘
 

The bin boundaries are constructed at d0+i 𝛿 , 

where i = 1, …, k-1, thus the intervals will be { [d0, 

d0+𝛿], (d0+𝛿, d0+2𝛿], …, (d0+(k-1)𝛿, d0+k𝛿] } 

The method is applied to each feature 

independently. It makes no use of instance class 

information. Since these unsupervised methods do 

not utilize instance labels in setting partition 

boundaries, it is likely that classification 

information will be lost by binning as a result of 

combing values that are strongly associated with 

different classes into the same bin (Kerber, 1992). 

In some cases this could make effective 

classification much more difficult.   

As mentioned above, the supervised methods 

utilize the instances labels to adjust the bin/interval 

borders. The simplest way may be to place interval 

borders between each adjacent pair of examples that 

are not classified into the same class. Suppose the 

pair of adjacent values on feature A are x1 and x2, 

x=(x1+x2)/2 can be taken as an interval border. If the 

feature A is very informative, which means that 

positive and negative examples take different value 

intervals on the attribute, this method is very 

efficient and useful. However, this method tends to 

produce too many intervals on those attributes 

which are not very informative. Such many other 

supervised methods have been proposed. The 

representative method is Bayesian method (Wu, 

1996). 

According to Bayes formula, 

𝑃(𝑐𝑗|𝑥)=   
𝑃(𝑥|𝑐𝑗)𝑃(𝑐𝑗)

∑ 𝑃(𝑥|𝑐𝑘)𝑃(𝑐𝑘)𝑚
𝑘=1

                  (1) 

Where 𝑃(𝑐𝑗|𝑥) is the probability of an example 

belonging to class cj if the example takes value x. 

𝑃(𝑥|𝑐𝑗)  is the probability of the example taking 

value x on the feature if it is classified in the class cj.  

Given 𝑃(𝑐𝑗)  and 𝑃(𝑐𝑗|𝑥) , we can construct a 

probability curve for each class cj: 

 𝐵𝑗(𝑥) = 𝑃(𝑥|𝑐𝑗)𝑃(𝑐𝑗)   (2) 

When the curves for every class have been 

constructed, interval/bin borders are placed on each 

of those points where the leading curves are 

different on its two sides. Between each pair of 

those points including the two open ends, the 

learning curve is the same. 
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2.2 Motivation 

From the description in Section 2.1, we known that 

the supervised methods consider the class attribute 

depends on the interaction between input features 

and class labels. It depends on the stationary 

assumption. Actually, the stationary assumption 

does not always hold in the real applications (Bai et 

al., 2014; Gama et al. 2014). For many learning 

tasks where data is collected over an extended 

period of time, its underlying distribution is likely 

to change. The drift in the underling distribution 

may result in a change in the learning problem. 

If we can get the real labels in the test set, we 

should utilize these labels to supervise the feature 

reduction. But actually, we can’t get the real labels. 

Consider that there is always a pool of classifiers 

such as Random Forest, Gradient Boosting, 

Maximum Entropy and Naïve Bayes. Each 

classifier has its own advantage. The ensemble 

learning (Dietterich, 2000; Wozniak et al., 2014) is 

such a technique focus on the combination of 

classifiers from heterogeneous or homogeneous 

modeling background to give the final decision. It is 

primarily used to improve the classification 

performance of a model, or reduce the likelihood of 

an unfortunate selection of a poor one. Dietterich 

(2000a) summarized the benefits:  

(a) Allowing to filter out hypothesis that, though 

accurate, might be incorrect due to a small training 

set.  

(b) Combining classifiers trained starting from 

different initial conditions could overcome the local 

optima problem.  

(c) The true function may be impossible to be 

modeled by any single hypothesis, but combinations 

of hypotheses may expand the space of 

representable functions. 

In this study, we adopt the ensemble learning 

method to the feature reduction. We employ 

ensemble classifiers to process the test set and get 

classification labels. We call the labels gotten from 

this procedure the pseudo labels since they are not 

the real labels in the test set. The pseudo labels are 

utilized to measure the difference/divergence 

between the training set and test set.  The difference 

is been used to modify the feature space. More 

concretely, for each adjacent interval, the proposed 

method calculates the divergence between the 

labeled examples in training set and the pseudo 

labeled examples in test set and decide whether 

merge these intervals or not. 

2.3 Method 

To simplify, we take the two-class classification as 

example. The task of feature reduction is to put the 

feature values into several bins. The feature number 

will be reduced since the number of bins is generally 

less than the feature value number. 

The typical unsupervised method such as the 

Equal Width method, do not make use of instance 

labels. The feature values are put into several equal 

sized bins. The supervised methods try to utilize the 

distribution of the classes in the training set to 

supervise the feature merge procedure. The equal-

width method has the risk that merges values that 

are strongly associated with different classes into 

the same bin. The representative supervised method 

such as Bayesian avoids this problem by estimating 

the condition probability in the training set.  The 

basic assumption is that the training set and test set 

has the same distribution, but it does not always 

holds. When distribution of training and test set are 

difference, the typical supervised method will fail.  

The ensemble learning approach is adopted in 

this study, we get the pseudo labels of every 

instance in the test set by using other classifiers. 

Then, we use the KL divergence to measure the 

difference between training set and test set. 

D(𝑃𝑡𝑟 ∥ 𝑃𝑡𝑠) = ∑ ∑ 𝑃𝑡𝑟(𝑦|𝑓𝑖)𝑙𝑜𝑔
𝑃𝑡𝑟(𝑦|𝑓𝑖)

𝑃𝑡𝑠(𝑦|𝑓𝑖)𝑖𝑦  

      (3) 

 

Here the fi denote the feature i, the Ptr(y|fi) and 

Pts(y|fi) are the probability of the output label under 

the condition fi in the training set and test set 

respectively, the D(Ptr || Pts) is the divergence 

between the training set and test set in the given 

interval. 
Since the pseudo labels are the crucial to the 

feature reduction, how to select the candidate 

classifiers for getting the pseudo labels is also the 

key point. The intuition is that the mutually 

complementary classifiers which are characterized 

by high diversity and accuracy should be selected to 

get the pseudo labels for each other. Actually, the 

diversity has been recognized as a very important 

characteristic in classifier combination. Empirical 

results have illustrated that there exists positive 

correlation between accuracy of the ensemble and 

diversity among the base cassifiers (Dietterich, 
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2000b; Kuncheva and Whitaker, 2003; Tang et al., 

2006). Further, most of the existing ensemble 

learning algorithms (Brieman, 1996; Liu et al. 2000) 

can be interpreted as building diverse base 

classifiers implicitly. However, the problem of 

measuring classifier diversity and so using it 

effectively for building better classifier ensembles 

is still an open topic. Most researchers discuss the 

concept of diversity in terms of correct/incorrect 

outputs (Brown et al., 2005; Kuncheva and 

Whitaker, 2003; Tang et al., 2006). Kuncheva and 

Whitaker  (2003) divide the diversity measures into 

pairwise diversity measures and non-pairwise 

diversity measures. For pairwise diversity measure, 

the Q statistics, the correlation coefficient, the 

disagreement measure and the double-fault measure 

are most commonly used. The previous 

experimental studies have shown that most diversity 

measures perform similarly (Kuncheva and 

Whitaker, 2003; Tang et al., 2006). In this study, we 

adopt the disagreement measure (Ho, 1998; Skalak, 

1996) to select the classifiers for getting pseudo 

labels. 

The disagreement measure of classifier i and k is 

defined as : 

𝐷𝑖𝑠𝑖,𝑘 =
𝑁01 + 𝑁10

𝑁00 + 𝑁01 + 𝑁10 + 𝑁11
 

      (4) 

 

Where N00, N01, N10 and N11 are derived from the 

below table: 

 Dk correct(1) Dk wrong(0) 

Di correct(1) N11 N10 

Di wrong(0) N01 N00 

 
Table 1: A 2*2 table of the relationship between a pair 

of classifiers 

Support we have gotten the L classifiers which 

have high diversity with the target classifier for 

feature space reduction. The straightforward way is 

to use the classifier with highest diversity to get the 

pseudo labels. However, this method does not 

consider the accuracy of the classifier been selected. 

How about the result if the classifier with the 

highest diversity does not performance well? 

Actually, beside the diversity, the accuracy of the 

classifier and the classification confidence are also 

key factors for the pseudo labels getting. The 

accuracy of classifier can be explicitly expressed by 

the weight of classifier. The classification 

confidence , which was theoretically proved to be a 

key factor on the generalization performance 

(Shawe-Taylor and Cristianini, 1999), has been 

utilized in certain ensemble learning algorithms 

(Freund and Schapire, 1997; Li et al., 2014; Quinlan, 

1996; Schapire and Singer, 1999). 

In this study, we extract the pseudo labels by 

combining the ensemble margin (Schapire et al., 

1998) and classification confidence (Li et al., 2014).  

Let: 

hj (j=1,2, …, L): the selected classifiers with high 

diversity.  

X={(xi, yi), i=1,2, …, n}: the data set 

yi: the class label of the sample xi 

�̅�𝑖𝑗: the classification decision of xi estimated by 

the classifier hj 

cij: the classification confidence of xi estimated by 

the classifier hj 

define the margin as: 

m(𝑥𝑖) = ∑ 𝑤𝑗γ𝑖𝑗𝑐𝑖𝑗
𝐿
𝑗=1   

s.t. 𝑤𝑗 ≥ 0,        ∑ 𝑤𝑗 = 1𝐿
𝑗=1       (5) 

where the wj is the weight of the classifier hj and 

    𝛾𝑖𝑗 = {
1         𝑖𝑓 𝑦𝑖 = �̅�𝑖𝑗

−1     𝑖𝑓 𝑦𝑖 ≠ �̅�𝑖𝑗
 

      (6) 

We can get the optimal W = [𝑤1, … , 𝑤𝐿]𝐿∗1
𝑇 by 

minizing the objective function below: 

W = argmin
𝑊

‖𝑈 − Τ𝑊‖2
2 + 𝜆‖𝑊‖2  (7) 

Where U = [1, … , 1]𝑛∗1
𝑇 ,   Τ = [𝛾𝑖𝑗𝑐𝑖𝑗]𝑛∗𝐿 

‖𝑈 − Τ𝑊‖2
2 = ∑ (1 − 𝑚(𝑥𝑖))2

𝑛

𝑖=1
 

      (8) 

λ is a Lagrange multiplier 

The optimal W is utilized to get the finnal pseudo 

labels by combine the L classifiers with high 

diversity.  

Once we got the pseudo labels, we will use these 

labels to supervise the feature reduction procedure. 

The distribution difference between the training set 

and test set can be measured.  

The proposed feature reduction method searches 

the whole feature space by a fixed step. For each 

adjacent interval, the proposed method calculates 

the divergence between the labeled examples in 

training set and the pseudo labeled examples in test 

set and decides whether merge these intervals or not. 
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The adjacent intervals which have small change in 

the distribution will be merged. By elaborately 

selected moving step and the distribution distance 

threshold, the feature space will finnally partitioned 

into several sub-space which will reduce the 

original feature space.  

The algorithm is shown below: 

BEGIN 

For each classifier i: 

Select the L classifiers with high 

disagreement with the classifier i in the 

classifier pool 

Optimize the weight W of the selected L 

classifiers 

Make an ensemble model form the selected L 

classifiers and the optimal weight W 

Get the pseudo labels in the test set using the 

ensemble model 

For each feature fi: 

 Set the interval merge step: T 

 For each adjacent T: 

Get the Bayesian measure BT using the 

formula (2) 

Get KL Divergence Dp using the 

formula (3) 

IF  BT < θb  and Dp < θd 

 Merge the adjacent intervals 

ELSE 

 Go to next interval T 

END 

 Here, the θb and θd are the threshold for 

Bayesian-measure and KL divergence respectively.  

3 Experimental Results 

The performance of the proposed method is 

evaluated on 20 UCI datasets (Frank and Asuncion, 

2010). The detailed information of these datasets are 

shown in Table 2. 
In the table 2, '#I' denotes the number of instances, 

'#F' denotes the feature number and '#C' denotes the 
classess number. These datasets cover some high-
dimensional sets, some large sets, some small sets 
and some typical/balanced sets. More detailed 
information can be found on the UCI website.  

The classifier pool includes Random Forest, 

Decision Tree, Gradient boosting, Maximum 

Entropy and Naïve Bayes. Every model uses the 

pseudo labels gotten from others to make the feature 

reduction. 

A set of experiments are conducted in the 

multiple classifier system to show the performance 

of the proposed ensemble featrure reduction method. 

The conventional weighted majority voting 

approach is adopted as the fusion method for 

multiply classifier. Some analysis (Kuncheva, 2004; 

Wozniak and Jackowski, 2009) shown that it is an 

effective way for fusion of multiply classifier. The 

algorithm begins by creating a set of experts and 

assigning a weight to each. When a new instance 

arrives, the algorithm passes it to and receives a 

prediction from each expert. The algorithm predicts 

based on a weighted majority vote of the expert 

predictions. 

The data sets considered are partitioned using the 

10-fold cross-validation procedure. The 'Accuracy' 

is used as the performance measures. The  

'Accuracy' is the number of successful hits relative 

to the total number of classification. It has been by 

far the most commonly used metric for assessing the 

performance of classifiers for years (Prati et al., 

2011; Witten et al., 2011). 
 

Dataset #I #F #C 

Abalone 4177 8 28 

Audiology 226 69 23 

Breast Cancer 286 9 2 

Car Evaluation 1728 6 4 

Census 199523 40 2 

Ecoli 336 8 8 

Internet Advertisements 3279 1558 2 

Iris 150 4 3 

Letter Recognition 20000 16 26 

Magic Gamma Telescope 19020 11 2 

Mammographic Mass 961 6 2 

Molecular Biology 3190 61 3 

Musk 476 168 2 

Nursery 12960 8 5 

Ozone Level Detection 2536 73 2 

Page Blocks Classification 5473 10 5 

Pima Indians Diabetes 768 8 2 

Spectf Heart 267 44 2 

Statlog (Vehicle Silhouettes) 946 18 4 

Yeast 1484 8 10 

 

Table 2. The datasets description 
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 The experimental results on very data set are 

shown on Table 3. Here, the proposed ensemble 

method is compared with the typical unsupervised 

method EW (Equal Width) and the typical 

supervised method Bayes (Bayesian). The 

experimental results show that the proposed 

ensemble method outperform the conventional 

method (Equal Width and Bayesian) on almost all 

data set except the 'Iris' data set.  

By analysis of the size of dataset, we found that 

the dataset size will impact the performance. Take 

the 'Iris' as example, there are only 150 instances in 

this dataset which lead to a small feature space (only 

22 unique values for the first feature). There is little 

hint to  make the feature reduction. It is very 

difficult to put them into several bins. 

 

Dataset EW Bayes Ensemble 

Abalone 87.86 88.62 89.58 

Audiolog 59.13 59.6 60.06 

Breast Cancer 90.6 91.65 92.21 

Car Evaluation 84.24 85.12 86.19 

Census 84.04 84.39 86.53 

Ecoli 77.5 78.35 78.89 

Internet 64.09 64.64 65.85 

Iris 95.5 94.25 94.25 

Letter 87.59 88.21 90.26 

Magic 86.72 87.82 90.09 

Mammographic 67.6 68.05 69.01 

Molecular 70.89 71.64 72.83 

Musk 84.42 84.61 85.35 

Nursery 83.59 84.29 86.05 

Ozone 73.02 73.26 74.95 

Page 83.72 84.16 85.63 

Pima 69.07 69.52 70.61 

Spectf Heart 80.57 80.72 81.19 

Statlog 89.05 89.35 90.61 

Yeast 60.99 61.84 62.65 

 
Table 3. The experimental results 

 

Since the feature space reduction is conducted on 

the feature space for each classifier. To further 

investigate the performance of the proposed feature 

reduction method, the compared experiments on 

each single classifier are also conducted to show the 

effect of the proposed method. Here, we take the 

Equal Width as the baseline method and the relative 

difference is taken as the evaluation measure.  

The relative difference is calculated as: 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑒𝑓 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

      (9) 

Here, the Accuracybaseline is the accuracy of EW 

on each dataset. The Accuracyref is the accuracy of 

Bayesian and the proposed ensemble method. 

Figure 1 ~ 6 show the experimental results on 

each individual classifier (Random Forest, Decision 

Tree, Gradient boosting, Maximum Entropy and 

Naïve Bayes). Here, the baseline method is Equal 

Width. The blue line is the relative difference of 

Bayesian method comparing with the baseline. The 

red line is the relative difference of the Ensemble 

method. The x-axis shows the name of the selected 

datasets which are sorted by the size. The smallest 

dataset is 'Iris' which only has 150 instances while 

the largest dataset is the ' Census' dataset which has 

199,523 instances.  

 

 
 

Figure 1. The experimental results on Random Forest 

 

From Figure 1, we see that for Random Forest 

classifiers, the more data, the better performance. 

More than 4% enhancement has been achived on the 

'Census' dataset which has 199,523 instances. In 

most dataset, the proposed ensemble method and 

Bayesian method are better than the unpervised 

method Equal Width. When the dataset is small, the 

performance is not so satisfied. For example, the 

ensemlbe method and Bayesian method worse than 

-2%

0%

2%

4%

6%

Ensemble

Bayesian
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the Equal Width method on the 'Iris' dataset. Also 

we can see that, when the dataset is small, the 

ensemble method can not beat the Bayesian method 

(' Audiolog ': 226 instances). 
 

 
 

Figure 2. The experimental results on Decision Tree 

 

Figure 2 shows the experimental results using 

Decision Tree classifier. We can see that the same 

trend as shown on the Random Forest. The highest 

enhancement is about 5% which is a little high than 

Random Forest. It is also gotten from the 'Census' 

dataset.  
 

 
Figure 3. The experimental results on Gradient Boosting 

 

Figure 3 shows the experimental results using 

Gradient Boosting classifiers. It’s similar with the 

Rodom Forest and Decision Tree. For Gradient 

Boosting classifier, the ensemble method also does 

not performance well on the small datasets.  
 

 
 

Figure 4. The experimental results on Maximum 

Entropy 

 

Figure 4 shows the experimental results using 

Maximum Entropy classifier. The proposed 

ensemble method achived about 8% enhancement 

when the dataset is large ('Census': 199,523 

instances). However, the performance also fluctuant 

when the dataset is small. It become stable when the 

dataset size is larger than 500. This may because the 

ensemble method need more data to measure the 

distribution divergence between training set and test 

set.  
 

 
 

Figure 5. The experimental results on Naïve Bayes 

 

Figure 5 shows the experimental results using 

Naïve Bayes classifier. The enhancement is also 

great (more than 6%). It is more fluctuanct than the 

Maximum Entroyp classifier when the dataset is 

small. 

To further investigate the performance on 

different data size. A set of experiments on ‘Census’ 
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dataset are conducted. The sub-datasets range from 

50 to 190,000 are extracted from the whole dataset. 

The experiments are intend to compare the 

performance of EW, Bayesian and the proposed 

ensemble method. The experimental results are 

shown as the relative difference with the baseline 

method (Equal Width method). 

Figure 6 shows the experimental results. The x-

axis shows the size of each sub-datasets. The y-axis 

shows the relative difference. The expeirments are 

conducted in the multiply classifier scenario, that is 

the finnal predciton is made by the ensemble 

classifier. We can see that the total enhancement is 

not higher than the Maximum Entropy or the Naïve 

Bayes classifier. This is because the fusion 

procedure highly depends on the diversity among 

the classifiers. It can’t get the highest enhancement 

as the single classifier. 

When the data size is small, both the proposed 

ensemble and Bayesian method cannot get good 

performance. For example, when the data size is less 

than 100, the ensemble and Bayesian methods are 

worse than EW. It is because that the Bayesian 

method needs to make statistic on the training set. 

The ensemble  method need more data to calculate 

the distribution difference between training set and 

test set. From the Figure 6, we can see that, even 

there are about 1,000 samples, the ensemble method 

cannot get great enhancement in comparison with 

the Bayesian method. The ensemble method is 

worse than Bayesian method when the data size is 

small than 200. With the bigger dataset, the 

ensemble method performance better, about 4% 

enhancement can be achieved. 

 

 
 
Figure 6. The experimental results on dataset size 

 

4 Conclusions and Future Work 

In this study, we propose a feature reduction method 

which uses ensemble approach to get the pseudo 

labels and utilize the pseudo labels to supervise the 

feature reduction procedure. The experiments 

conducted on different type of datasets compared 

the proposed method with the conventional feature 

reduction methods. The experimental results shown 

the effectiveness and efficiency of the proposed 

method.  

The future work includes the scheme on selecting 

the candidate models for getting the pseudo labels. 

The measurement on distribution difference 

between training set and test set also need to be 

explored. How to improve the performance on small 

datasets is also research topic. 
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