
Balanced Task Sharing Method for
Frequency-Based Multi-Agent Patrolling

Teams

July 2018

Vourchteang SEA

Balanced Task Sharing Method for Frequency-Based
Multi-Agent Patrolling Teams

July 2018

Waseda University

Graduate School of Fundamental Science and Engineering

Department of Computer Science and Communications
Engineering,

Research on Intelligent Software

Vourchteang SEA

Abstract

Ongoing advances on autonomous mobile robots have been evident

in the last couple of decades. The patrolling problem with a team of

cooperative agents, in particular, has received much focus. This has made

multi-agent (multi-robot) patrolling problem receive growing attention

from many researchers over the past few years due to its wide range of

potential applications. In realistic environment, e.g., security patrolling,

each location has different visitation requirement according to the

required security level. The difference in visiting frequency generally

causes imbalanced workload among agents, leading to inefficiency.

Therefore, a patrolling system that can take into account the non-uniform

visiting frequency is needed in real-world applications.

Multi-agent patrolling, however, is not limited to patrolling

real-world environments, yet they can be found in applications on several

domains, such as continuous sweeping, security patrolling, surveillance

systems, network security systems and games. This has motivated many

researchers to focus their studies on multi-agent patrolling problem by

proposing and implementing plenty of methods from simple to

sophisticated ones. Unfortunately, most of the studies do not consider

when each location to be patrolled has different visitation requirement,

and many of them are not able to balance the workload among all

patroller agents.

In this study, we first described the area partitioning method that

reflects the differences in robot specifications and the characteristics of

partitioned areas. Then, by generalizing this method, we proposed a

frequency-based area partitioning method for balanced workload in

multi-agent patrolling team. Our proposed work aims at partitioning a

given area so as to balance agents’ workload by taking into account the

i

different visiting frequencies and then generating route inside each

allocated sub-area. We formulate the problem of frequency-based

multi-agent patrolling and propose its semi-optimal solution method,

whose overall process consists of two steps – graph partitioning and

sub-graph patrolling. Our work improve the traditional k-means

clustering algorithm by formulating a new objective function for graph

partitioning and combining it with simulated annealing, which is one of

the useful tools for operations research, for sub-graph patrolling.

Experimental results illustrated the effectiveness and reasonable

computational efficiency of our approach.

ii

Acknowledgements

It is a great pleasure to mention all the people who have encouraged,

motivated and supported me during my PhD study. I would like to

take this opportunity to thank the following people who stay behind this

achievement.

First and foremost, I would like to express my deepest gratitude to

my supervisor, Prof. Toshiharu Sugawara, for his significant and

continuous support, constructive advices and precious guidance

throughout my degree which enabled me to complete this research work

successfully. He has always been very helpful and cooperative. I am really

grateful for his patience, motivation, kindness and understanding, and

especially for his time spent on discussing and accurately reviewing all the

research work of this thesis. This research would not be successfully

achieved without his guidance and support.

With much respect, I also would like to express my sincere thanks to

my examiners, Prof. Tatsuo Nakajima and Prof. Kazunori Ueda, for their

insightful discussions and invaluable comments and feedback which help

improve the quality of this thesis.

My appreciation also goes to all my laboratory members, especially

Mr. Ayumi Sugiyama, who has always provided invaluable discussions,

comments and support not only for my research activities but also for my

living in Japan. I feel so lucky to have such a good-environment laboratory

as well as nice and generous lab mates.

My sincere thanks also go to all the staff in the department of computer

science and engineering for their kindly assistance and friendly behavior

towards the students.

I also would like to acknowledge the financial support from the

Japanese government for providing me the MEXT Scholarship. Without

iii

their financial support, I would not be able to fulfill my dream in pursuing

my study in Japan.

From the bottom of my heart, I would like to thank my boyfriend

for everything he has done so far, especially for always trying his best for

me. Besides my parents, he is the only person who is always by my side

through ups and downs, whom I can share both my sorrow and happiness,

and who always tries to cheer me up whenever I feel down. Words will

never be enough to say how much his unconditional love and care despite

the distance really mean to me. I am so blessed to have him as the biggest

gift in my life.

Last but not least, I would like to gratefully and deeply thank my

parents for their endless love, warm care and continuous support throughout

my PhD study. They are the strongest motivation for me to overcome all

the difficulties I had faced during these three academic years. I dedicate

this thesis to my parents.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation. 7

1.3 Problem Statement . 9

1.4 Contributions . 10

1.5 Dissertation Outline . 11

2 Preliminaries 13

2.1 Traveling Salesman Problem . 13

2.1.1 Standard Traveling Salesman Problem. 14

2.1.2 Assignment Formulation of TSP . 14

2.1.3 Multiple Traveling Salesman Problem 15

2.1.4 Assignment Formulation of mTSP . 15

2.1.5 Applications of mTSP . 16

2.2 Greedy Algorithm . 17

2.2.1 Definition. 17

2.2.2 Process of Greedy Algorithm . 18

2.3 Simulated Annealing. 19

2.3.1 Advantages of SA. 19

2.3.2 Basic Procedures of SA . 19

2.3.3 Formulation of SA . 20

3 Literature Review 23

3.1 Review of Research Related to This Work . 23

3.1.1 Continuous Cooperative Task . 23

3.1.2 Patrolling Task . 26

3.2 State of the Art of Multi-Agent Patrolling Problem 28

3.2.1 Cyclic Patrolling Model . 28

v

3.2.2 MSP Patrolling Model . 30

3.2.3 Adaptive Solutions . 31

3.2.4 Negotiation Methods . 32

3.2.5 Swarm Intelligence Optimization . 33

3.2.6 Reinforcement Learning . 35

3.2.7 Traveling Salesman Problem . 36

4 Area Partitioning Method for Multi-Agent
Continuous Cooperative Tasks 38

4.1 Introduction . 38

4.2 Model and Problem Description . 41

4.2.1 Models of Agent and Environment . 41

4.2.2 Model of Dirt Accumulation . 42

4.2.3 Performance Measure . 42

4.2.4 Battery Consumption and Charge. 43

4.3 Extended Performance-Based Partitioning Method 44

4.3.1 Area Partitioning . 45

4.3.1.1 Expansion Power . 45

4.3.1.2 Expanding of Responsible Areas 45

4.3.1.3 Expansion Strategy . 47

4.3.1.4 Negotiation for Expanding Responsible Areas 48

4.3.2 Identifying the Location of Obstacles 49

4.3.3 Learning of Dirt Accumulation Probabilities 49

4.4 Experimental Evaluation . 50

4.4.1 Experimental Setting . 50

4.4.2 Experimental Results. 53

4.4.2.1 Algorithms for Exploration in Experiments . 53

4.4.2.2 Performance of Cleaning and Sizes of RAs . . 54

4.4.2.3 Effect of Different Exploration Algorithms . . 57

4.4.2.4 Effect of Hardware Difference 60

4.4.2.5 Balanced RA Allocations with Obstacles. . . . 62

4.4.2.6 Discussion . 68

4.5 Summary . 70

5 Graph-Based Area Partitioning Method for
Multi-Agent Patrolling Tasks 72

5.1 Introduction . 72

5.2 Problem Formulation . 74

5.3 Proposed Method . 77

vi

5.3.1 Graph Partitioning . 77

5.3.2 Sub-graph Patrolling . 82

5.4 Experimental Evaluation . 86

5.5 Summary . 92

6 Conclusion 93

6.1 Conclusion. 93

6.2 Future Work . 95

Bibliography 96

List of Publications 107

vii

List of Figures

1.1 Estimated worldwide annual supply of industrial robots

(extracted from [38]). 2

1.2 Estimated annual supply of industrial robots at year-end by

industries worldwide 2014-2016 (extracted from [40]) 3

1.3 The first industrial robot, Unimate (extracted from [59]) 4

1.4 Industrial robotic arm (extracted from [89]) 6

1.5 Service robots for professional use. Sold units 2015 and 2014

(continued) [39] . 7

1.6 Service robots for personal/domestic use. Units sales

forecast 2016-2019, 2015 and 2014. (extracted from [39]). 8

2.1 The flow chart of SA . 21

4.1 Expansion strategy (the nearest boundary expansion) 47

4.2 Experimental environments . 51

4.3 Amount of remaining dirt, D, using PBP and ePBP in Exp. 1 54

4.4 Sizes of RAs, |V i
t |, in Exp. 1 . 56

4.5 Remaining dirt in |V i
t | in Exp. 1. 57

4.6 Amount of remaining dirt, D, in Exp. 2 . 58

4.7 Sizes of RAs, |V i
t |, in Exp. 2 . 59

4.8 Remaining dirt in |V i
t | in Exp. 2. 60

4.9 Amount of remaining dirt, D, using conventional method

and ePBP in Exp. 3 . 61

4.10 Sizes of RAs, |V i
t |, in Exp. 3 . 62

4.11 Remaining dirt in |V i
t | in Exp. 3. 63

viii

4.12 Experimental environments . 64

4.13 Amount of remaining dirt, D, in Exp. 4 . 65

4.14 Sizes of RAs, |V i
t |, in Exp. 4 . 66

4.15 Remaining dirt in |V i
t | in Exp. 4 . 67

4.16 Shape of RA in Env. 4 . 68

5.1 Clustering by proposed method with n = 400,m = 6 86

5.2 Average cost of route for each agent . 90

5.3 Computation time of proposed method . 91

ix

List of Tables

4.1 Battery configurations . 52

4.2 Parameters used in AET . 52

4.3 Parameters used in the learning of DAPs . 52

4.4 Average values of remaining dirt between 800,000 and

1,000,000 ticks. 55

5.1 Numerical results with n = 400 and m = {4, 6, 8, 10} 87

5.2 Numerical results with n = 600 and m = {4, 6, 8, 10} 88

5.3 Numerical results with n = 1000 and m = {4, 6, 8, 10}. 89

x

List of Algorithms

2.2.1 Pseudocode of standard greedy algorithm. 18

5.3.1 Pseudocode for improved frequency-based k-means

(IF-k-means) . 81

5.3.2 Pseudocode for constructing an initial solution in SA. 82

5.3.3 Pseudocode for route generation using SA . 83

xi

Chapter 1

Introduction

1.1 Background

The evolution of computer technologies, nowadays, has

been dramatically increasing day by day and has been used in many

application domains including the field of robotics and automation. Since

robots can often perform tasks well in a variety of environments, the

demand for robotic applications has been increasing which makes the

popularity of robotic automation growing across a wide range of sectors.

This has led to the massive of software applications in the field of robotics

combining computer and sensor technologies.

Robotics are an extension of machinery that has some forms of

information processing linked to the powerful computers or controllers.

This means that robots can be made generic and programmed to do

different tasks, or respond to changes in the environment to better

complete their tasks.

The advantages of robotics have become more noticeable as

industrial robotics technology has been widespread over 50 years since the

first industrial robot, namely Unimate (as shown in Fig. 1.3), was put

into use in 1961. About 90% of the robots today are installed and

operating in the industrial robotics sector in factories [33]. According to

the report from the Robotics Industry Association (RIA), the number of

industrial robots, approximately 140,000, were in use in the U.S. in 2004.

Furthermore, the International Federation of Robotics (IFR) also reported

1

1. Introduction 2

81
97

120 112 114 113

60

121

166 159
178

221

254

0

50

100

150

200

250

300

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

'0
00

 o
f u

ni
ts

Figure 1.1: Estimated worldwide annual supply of industrial robots
(extracted from [38])

that the annual supply of industrial robots had risen over time between

2003 and 2015 based on the increasing role of robots in improving the

production lines and other business activities, as shown in Fig. 1.1.

However, the economic and financial crisis during 2008-2009 lowered the

amount of robot supplied around the world to about 60 thousand units

before the sales began to sharply increase to 254 thousand units in 2015.

Robots are now also used in laboratories, exploration sites, research and

development facilities, energy plants, hospitals, warehouses and outer

space. Similarly, Fig. 1.2 indicates the estimated supply of industrial

robots in different industries during the period of 2014-2016 where

automotive industry and electronics share major proportion of the total

supply. Some robots can work in places and situations that are difficult

for human, such as nuclear plant search, interplanetary exploration and

disaster relief, while others can fulfill the daily functions such as cleaning

and security patrolling robots.

Robots has been becoming more user friendly, intelligent and most

importantly affordable due to the recent development in the field of

robotics [70]. It is obvious that this advancement is the major reason for

the existence of robots in various industries ranging from industrial

3 1. Introduction

Figure 1.2: Estimated annual supply of industrial robots at year-end
by industries worldwide 2014-2016 (extracted from [40])

(manufacturing industry) to medical field (health care service). Robots

can handle heavy and high-risk tasks which ensures the safe working

environment. Furthermore, they have been intentionally used for

improving the productivity, and saving time and money.

Robots are used in the medical field for complex surgeries as those

surgeries cannot be done by human, i.e., prostate cancer surgery. In

particular, they can precisely reach and fit where human’s hands cannot,
allowing greater accuracy, flexibility and control. Moreover, other benefits

of robotic are less invasive procedures resulting in less post-operative pain

and risk of infection for the patients [70]. In addition, robots are now

being used in the chemical industry and can, for example, deal with

chemical spills in a nuclear plant, which would otherwise pose a major

health concern.

The benefits of using robotics can be categorized into four main

classifications [30, 33]:

• Quality Assurance Improvement. This focuses on quality, accuracy,

or precision. As the nature of human beings, workers are less likely

to enjoy doing tasks repetitively. Therefore, their concentration

levels tend to decline over time. This leads to costly errors in

business and sometimes can cause serious injury to the staff

1. Introduction 4

Figure 1.3: The first industrial robot, Unimate (extracted from [59])

members. Robot automation gets rid of these risks by accurately

and successfully producing products with standardized quality.

Having more products with high standard to be manufactured

allows the enterprises to broaden various business possibilities. For

example, industrial robots appear mostly as the form of a robotic

arm working in the major production line of manufacturing

industries. This kind of robotic arms are identical to the robots

shown in Fig. 1.3 and 1.4, where the first figure shows the first

invented industrial robot, namely Unimate; the latter figure

demonstrates the modern industrial robotic arm. According to the

aforementioned role of robots in maintaining the quality of

products, a robotic arm can easily handle repetitive tasks with great

precision leading to the improvement and consistency of product

quality. This fact is also applicable to a number of production

activities including welding and assembling process.

• Cost Effectiveness. The efficiency and speed improvement of

industrial robots has been the result of the mechanical nature of the

equipment and the computerized control which lead to a higher

productivity than human labor. Robots are able to work non-stop

on a repetitive-cycle tasks unless it is programmed to stop. There

will be no lunchbreaks, holidays, sick leave or shift time assigned to

robotic automation. This eliminates the risk of repetitive strain

5 1. Introduction

injury (RSI)1. This productivity increment at a lower cost is

obviously beneficial for the manufacturers.

• Ability to Work in Hazardous Environments. This is the most

appealing benefit of robotics utilization. Robots have the ability to

perform a number of tasks in a place where it is unsafe (too

dangerous), unstable, too exposed to toxins, or inhospitable for

humans. For instance, the spray painting tasks affect negatively to

people inhaling the paint fume, but not to the robots. This also

includes such daunting tasks as defusing bombs and such dirty tasks

as cleaning sewers. Moreover, robots remain active by continuously

performing tasks without getting any harm even in a situation

where a high level of chemicals exist. Therefore, robotic automation

can be used in every place where human safety is a huge concern.

• Freedom from Human Limitations Like Boredom. The absence of

boredom postulates the greater precision and quality of production.

Furthermore, a robotic arm can perform the task non-stop or with

occasional downtime due to scheduled maintenance. Robots also do

not eat or get sick like human does which is obviously an absolute

advantage of using robotics.

Aside from the advances in the field of robotics and automation, the

multiple robots’ context has gained more popularity comparing to the

single-robot context. In recent years, the use of Multi-Robot Systems

(MRS) has become apparent for several application domains such as

exploration, surveillance, and even search and rescue. The main reason for

using these MRS is that they provide convenient solution in term of cost,

performance, reliability, efficiency, and human exposure reduction [15].

The use of MRS is generally believed by researchers to hold several

advantages over single-robot systems [8, 14, 24]. The most common

motivations for developing multi-robot system solutions in the real-world

applications are that [35, 63]:

1RSI is related to the pain felt in the upper part of the body such as wrist, forearm,
elbow, shoulder, back or neck caused by repetitive movement and overuse of muscles
and tendons. Certain activities that increase the risk of RSI are lifting heavy objects,
doing the same activity over a long period of time without rest, working in an awkward
position, etc. [72].

1. Introduction 6

Figure 1.4: Industrial robotic arm (extracted from [89])

1. A single robot cannot adequately deal with task complexities;

2. The task is inherently distributed composed of sub-systems, which

are physically and geographically separated;

3. Building several resource-limited robots is much easier than having a

single powerful robot;

4. Multiple robots cause enhanced productivity as they can solve

problems and complete some tasks faster using sub-tasks parallelism

or because of the spatial distribution of the individual robot;

5. The initialization of multiple robots increases robustness and

reliability of the whole system through redundancy as multi-robot

teams provide redundancy so that the failure of a single robot does

not completely stop the whole task from being performed.

Motivated by the above significant advantages, multi-robot system

has become an active research field in robotics for many years. This has

made many researchers focus their studies and researches on different

issues using multiple robots such as path planning or graph exploration,

communication, negotiation, area partitioning, cooperation/coordination,

map building, autonomous navigation, self-localization, and obstacle or

collision avoidance.

7 1. Introduction

The generalization of the multi-robot systems is a multi-agent

systems (MAS), which is a computerized system composed of multiple

interacting intelligent agents within a given/unknown environment. MAS

consists of entities (i.e., computer programs, robots, or humans) that are

each specialized for a certain task. They cooperate to achieve the ultimate

goal, yet individually they are also able to do some tasks. MAS tend to

find the best solution for their problems without any intervention. The

systems also tend to prevent propagation of faults, self-recover and be

fault tolerant, mainly due to the redundancy of components.

The study of MAS is generally concerned with the advancement and

analysis of sophisticated artificial intelligence (AI) problem-solving and

control architectures for both single-agent and multi-agent systems.

1.2 Motivation

Although a lot of advancement has been done in the MAS, yet there are

still many challenging issues that are remaining and need to be solved.

These issues include coordination, cooperation control, path planning,

collision avoidance, communication among robots, navigation, area

0

100

200

300

400

500

600

700

800

un
its

2015 2014

Figure 1.5: Service robots for professional use. Sold units 2015 and
2014 (continued) [39]

1. Introduction 8

partitioning, task allocation, etc. Among all these issues, the

cooperation/coordination of multiple agents is an important issue in the

field of robotics.

Continuing advances in computer science and robotics have led to

applications for covering large areas that require coordinated tasks by

multiple control programs including robots. One of the hottest

applications that requires coordination and cooperation between a group

of agents is the cleaning/sweeping robots. If we look inside that, we can

see the cooperation of multiple cleaning robots has now become very

crucial, since effective cooperative cleaning of multiple robots can improve

the working quality and reduce the time for cleaning by sharing tasks. To

be more emphasized, a report from IFR in 2016 about service robots also

indicates a more than double increase in the demand for cleaning robots

in 2015 comparing to last year statistic as shown in Fig. 1.5. Moreover,

this report also claims that the sales of robots for household usage is

predicted to be extremely high between 2016 to 2019 which is

demonstrated in Fig. 1.6. This upsurge may be resulted from the

realization of the benefit of service robots in household’s daily activities.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

Household robots Entertainment and leisure robots

'0
0

0
 o

f
u
n
it
s

2016-2019 2015 2014

Figure 1.6: Service robots for personal/domestic use. Units sales
forecast 2016-2019, 2015 and 2014. (extracted from [39])

9 1. Introduction

In addition, the control for cleaning is also applicable to other sweeping

tasks such as security patrolling and area search.

Besides coordination and cooperation, an area partitioning context

has also been apparent in many research work [2,5,26,41,44,67], and thus

a coordinated area partitioning method for cooperative sweeping robots is

needed for continuous cooperative tasks. Therefore, this has motivated us

to firstly deal with the methods for cooperation/coordination of multiple

agents, which are control programs of robots, using examples of cleaning

tasks by multiple robots.

However, as the study of cleaning robots has some limitations due to

its specific type of application, we have changed it to a more general

context which can be applied to more applications. In this step, we have

focused our study on a multi-agent patrolling problem (MAPP), which is

a more generalized problem of the multi-agent cleaning/sweeping task.

Although the advances on autonomous mobile robots have been evident in

the last few decades, the patrolling problem with a group of agents, in

particular, has received much attention. This is due to the fact that

multi-agent (multi-robot) patrolling is not limited to patrolling real-world

environments, yet they can be found in applications on several domains,

such as continuous sweeping, security patrolling, surveillance systems,

network security systems and games. In other words, patrolling can be

applicable and beneficial in any domain characterized by the need of

systematically visiting a set of given points [73]. These all above are our

motivations for conducting the research experiments in this thesis.

1.3 Problem Statement

Since we mainly focus our study on multi-agent patrolling problem, the

problem in this study is “how to partition a given area based on the

visitation requirement of each location in a balanced manner by multiple

agents in a distributed and autonomous manner by taking into account the

differences in the given areas, hardware specification, exploration

algorithms and so on.”. The visitation requirement here refers to the

number of time a patroller agent is required to visit or patrol a particular

location in a given area/environment, namely frequency of visit or visiting

1. Introduction 10

frequency. In other words, how patroller agents can cluster a given graph

so as to balance the workload of each agent by taking into account the

required visiting frequency to each node. In patrolling problem, the

patrolled area is described as a graph, where a node represents a location

to be patrolled/visited, and an edge represents a path between nodes

along which agents move. As each location in realistic environment, e.g.,

security patrolling, has different visitation requirement according to the

required security level, a patrolling system with non-uniform visiting

frequency is preferable in real-world applications.

More specifically, we intend to address the problems remaining from

the previous studies as follows:

1. Most of previous studies did not consider the patrolling problem with

non-uniform visitation requirement where the required frequencies of

visit to each location are different, but we consider this requirement

in our study. Thus, we do not focus on the exploration algorithms; we

assume such algorithms are given to all agents, and agents partition

the responsible areas so that their workloads are balanced if they

explore on the basis of the given algorithms.

2. The difference in visiting frequency generally causes imbalanced

workload among patroller agents, leading to inefficiency. Thus, an

effective clustering algorithm that can overcome this problem is

needed.

3. Most of prior works could generate the route for patrolling in each

allocated sub-area, yet the route generation inside each sub-area based

on non-uniform visitation requirement was not taken into account.

All the above three problems have not been solved at the same time

by any research. Therefore, the main goal of our study is to overcome these

three aforementioned problems.

1.4 Contributions

Our study makes three contributions for the multi-agent patrolling problem

as follows:

11 1. Introduction

1. The model of a frequency-based patrolling problem for

multi-agent system: it is a model where the required frequency of

visit to each location is not uniform, that is, the frequency of visit

can be high or low based on the realistic environment to be

patrolled. This model is well-suited to the real-world applications,

e.g., security patrolling, where each location has different visitation

requirement or risk status according to the required security level.

2. Frequency-based area partitioning method for balanced

workload: we developed an effective and scalable clustering

algorithm for periodically visiting locations based on their visitation

requirements by formulating a new k-means based approach for

multi-agent patrolling system. The main objective is to balance the

workload among all patroller agents, in which the visitation

requirement for each location is non-uniform.

3. Frequency-based sub-area patrolling method: we generated the

route for each agent to patrol in its allocated region, in which the

cost of visiting all locations is minimized by taking into account the

difference in each location’s visiting frequency.

1.5 Dissertation Outline

The remaining chapters of this dissertation are organized as follows:

• Chapter 2 provides the basic background knowledge of several

approaches needed to better understand this thesis.

• Chapter 3 reviews the related papers or work that are most relevant

to our work and those that are relevant to the multi-agent patrolling

problem.

• Chapter 4 describes the area partitioning method for continuous

cooperative task, using a cleaning task as an example. This chapter

includes the model of agent and environment, the proposed area

partitioning method with learning of dirty areas and obstacles in

environments for cooperative sweeping task, the experimental

setting and results, the discussion, and the summary.

1. Introduction 12

• Chapter 5 presents the area partitioning method for multi-agent

patrolling task in more general framework. This chapter explains

the problem formulation, the proposed frequency-based area

partitioning and sub-area patrolling for balance workload in

multi-agent patrolling system, the experimental evaluation, and the

summary of the proposed work.

• Chapter 6 concludes our study and gives some outlines for future

direction.

Chapter 2

Preliminaries

This chapter provides the background of the approaches relevant

to the main problems of this thesis. First, we present the general

description of the traveling salesman problem which is a classic algorithm

mainly focusing on an optimization problem. Next, a simple heuristic,

namely greedy algorithm, is introduced since it is a straightforward

algorithm for solving the optimization problems. Finally, we review a

simulated annealing algorithm, which is one of the metaheuristic

algorithms used for solving the combinatorial optimization problems, i.e.,

the traveling salesman problem.

2.1 Traveling Salesman Problem

The reason why we introduce the traveling salesman problem (TSP) in

this chapter is that our problem is similar to the multiple traveling

salesman problem (mTSP), which is a generalization of the classical

traveling salesman problem and which will be explained later. The only

difference between our problem and the mTSP is that in mTSP, a number

of cities have to be visited by m salesmen whose goal is to find m tours

with minimum total travel where all the cities must be visited exactly

once, while in our problem, each location in a patrolled area must be

visited based on the required frequency of visit.

13

2. Preliminaries 14

2.1.1 Standard Traveling Salesman Problem

The traveling salesman problem, called TSP as aforementioned, is a

classical integer programming and well-known combinatorial optimization

problem [32]. Simply speaking, there are n cities where the distances

between pairs of cities are known. The main goal is to minimize the total

distance in which a salesman must visit each city exactly once and then

return to the starting city, simply called depot. The distance from city i

to j is represented by dij, such that it is measured by the cost of travel

between the two cities. This travel cost can be given in a unit of length,

time, or currency value.

The TSP can be formulated as a (fully-connected) undirected graph,

G = (V,E), in which this problem is assumed to be symmetric, where

dij = dji. The cities are represented by a set of nodes V = {1, 2, . . . , n},
and E = {(i, j) : i, j ∈ V, i ̸= j} is a set of edges denoting the paths

between cities. Each edge eij ∈ E consists of an associated weight denoted

by the distance between node i and j, dij. Generally, as this is the case of

planar problem where the positions of all nodes are points with coordinates

(x, y), dij is the Euclidean distance from point i to j, represented by dij =√
(xi − xj)2 + (yi − yj)2.

2.1.2 Assignment Formulation of TSP

The formulation of TSP can be classified into two types, where the former

formulation is considered in an open tour in which the salesman does not

return to the starting city; the latter is regarded in a closed tour in the

extent to which the salesman returns to the starting city. In this context,

we are going to mention only the closed tour, whose assignment formulation

is defined as:

Minimize
n∑

i=1

n∑

j=1

dijxij (2.1)

Subject to:
n∑

i=1

xij = 1, ∀ j ∈ N (2.2)

15 2. Preliminaries

n∑

j=1

xij = 1, ∀ i ∈ N (2.3)

xij ∈ {0, 1}, ∀(i, j) ∈ N (2.4)

ui + uj + (n− 1)xij ≤ n− 2, 2 ≤ i, j ≤ n, i ̸= j, (2.5)

∀(i, j) ∈ E,

1 ≤ ui ≤ n− 1,

where ui and uj denotes the visiting rank of city i and j in order respectively,

and u1 = 0. Both ui and uj are non-negative integers. Equations 2.1 to

2.4 define the associated assignment problem, while Eq. 2.5 specifies the

subtour elimination constraint (SEC). The SEC is introduced to ensure

that the tour is feasible, such that no subtours (loops without a depot)

exist during the tour [71]. Despite this simple mathematical formulation,

the TSP is not easy to solve as it is regarded as NP-hard problem.

2.1.3 Multiple Traveling Salesman Problem

A generalized variation of the TSP is the multiple traveling salesman

problem, called mTSP as mentioned above. Simply stated, mTSP consists

of m salesmen and n cities whose goal is to obtain m tours with a

minimized total cost of travel. This problem is the same as the classic

TSP, where every city is visited exactly once. Moreover, the salesmen

must visit at least one city, and all of them return to the starting city. As

the TSP is NP-hard problem, mTSP is also NP-hard.

2.1.4 Assignment Formulation of mTSP

ThemTSP is formulated using integer linear programming formulation [55].

We initially define a decision variable which is a binary variable, denoted

by:

xij =

⎧
⎨

⎩
1 if edge (i, j) is used in the tour

0 otherwise

2. Preliminaries 16

Then, the assignment formulation of the mTSP is similar to that of

the TSP with a few extra constraints, given as:

Minimize
n∑

i=1

n∑

j=1

dijxij (2.6)

Subject to:
n∑

j=2

x1j = m (2.7)

n∑

j=2

xj1 = m (2.8)

n∑

j=1

xij = 1, j = 2, . . . , n (2.9)

n∑

j=1

xij = 1, i = 2, . . . , n (2.10)

subtour elimination constraint (2.11)

xij ∈ {0, 1}, ∀(i, j) ∈ E, (2.12)

where (2.9), (2.10) and (2.12) are the usual assignment constraints, (2.7)

and (2.8) ensure that exactly m salesmen depart from and return back to

node 1 (the depot). Even though constraint (2.8) is implicitly understood

by (2.7), (2.9) and (2.10), it is introduced here for the purpose of complete

ness. Constraint (2.11) is used to prevent the subtours as mentioned in the

above TSP formulation.

2.1.5 Applications of mTSP

Main applications

The mTSP is most applicable to various routing and scheduling problems

as these problems require the involvement of multiple salesmen. According

to [55], several applications that are most popular in the literature are

presented as follows:

• School bus routing problem

17 2. Preliminaries

• Printing press scheduling problem

• Crew scheduling problem

• Interview scheduling problem

• Hot rolling scheduling problem

• Mission planning problem

Connection with other problems

Aside from the aforementioned applications, we can also linkmTSP to other

problems, i.e., mTSP is used to find balanced workload among salesmen in

the study of [62]. Moreover, in the work of [55], the authors employedmTSP

approach to deal with a workload scheduling problem by incorporating

some additional constraints. Likewise, the mTSP-based for an overnight

security service problem is presented by [13, 45], which is related to the

task assignment for security guards to monitor a given location set based

on their capacity and working hours.

2.2 Greedy Algorithm

2.2.1 Definition

A greedy algorithm is typically a simple, easy-to-implement and

problem-solving heuristic for solving an optimization problem. An

optimization problem is a problem in which a given set of inputs are

required to be minimized regarding to some constraints or conditions on

the set of solutions. This problem is assumed to have n inputs as a set of

candidates, C = {c1, c2, . . . , cn}, which are required to obtain a set of

solutions, S, where S ⊆ C. A feasible solution, c ∈ S, is obtained when

any subset of C satisfies the given constraints. Then, a feasible solution

that satisfactorily meets the minimized or maximized condition of a

predefined objective function is called an optimal solution.

The greedy algorithm generally consists of the following components:

1. A set of candidates (or input), C, which is used to generate a solution

that can be a set of nodes or edges in a graph, in this study.

2. Preliminaries 18

2. A set of solutions, S, which is a set of selected candidates from C that

are considered and chosen by the greedy method to reach an optimal

solution.

The decision strategy of the greedy technique makes a choice at any

step without considering the future consequence, and once a choice has been

rejected, it will never be reconsidered. In many cases within a reasonable

period of time, this strategy may produce a local optimal solution that is

often close to the global optimum solution.

Simply stated, this algorithm has several outstanding characteristics

such that it is considered as a straightforward and efficient method in

solving a problem. Although it does not always yield optimal solutions, it

does for many other cases. Moreover, the best choice at the moment will

be chosen which is hopefully expected to achieve the overall global

optimum.

Algorithm 2.2.1: Pseudocode of standard greedy algorithm

Input : A set of candidates, C

Output: A set of solutions, S

1: S ← ∅
2: while (S is not completed) and (C ̸= ∅) do
3: Choose the best currently available element c from C

4: if By adding c to S, the condition is satisfied then

5: Add c to S

6: end

7: end

8: return S

2.2.2 Process of Greedy Algorithm

Considering the shortest path in a graph, basically, there exist a couple of

main steps in computing the greedy approach. The first step involves the

process of sorting all edges in the graph to find the nearest node to the

current one. In the second step, this method will choose the shortest edge

and add it to the solution set. Finally, the second step will be repeated

if the maximum number of edges are not reached. To be more concise,

19 2. Preliminaries

the simple structure of the greedy approach is demonstrated in Algorithm

2.2.1.

2.3 Simulated Annealing

Simulated annealing (SA) is a randomized local search technique that is

used to prevent the process of optimization from getting trapped in a local

minimum. The SA algorithm was originally developed and inspired by

the process of annealing in metal work. The annealing refers to a process

in which a solid is heated and then slowly cooled until its structure is

eventually frozen at a minimal energy state [23].

Although SA algorithm may not produce a perfect solution, it at least

can find a good solution for optimization problem. If our purpose is to deal

with minimization or maximization, SA would be an ideal solution to tackle

this problem. A good example to which SA can be applied is the traveling

salesman problem, where the salesman is required to visit a set of cities

so as to minimize the total cost of its tour. The SA has been successfully

applied and adapted to give an approximate solution for the TSP.

2.3.1 Advantages of SA

There are a number of advantages in using SA. First, it can deal with

highly nonlinear or stochastic problems. Second, it is a flexible

optimization method that has the ability to reach global optimums, which

is highly suitable for large combinatorial optimization problems. Third, it

is quite adaptable as it does not restrictively depend on any property of

the model. Fourth, SA is considered as a robust technique since it can get

rid of trapping in the local minima. Last, this algorithm can generate a

reasonably good solution for many combinatorial problems.

2.3.2 Basic Procedures of SA

It is further of importance to illustrate the basic procedures of the SA

algorithm so as to get intuitive understanding on how this algorithm works,

which consists of the following steps:

2. Preliminaries 20

1. Starts with an initial solution that is randomly generated, and a high

initial temperature. This solution is the current and best solution.

2. Generate a new solution randomly based on the current solution.

3. Compute the relative change in cost which is the difference between

the current and new solution.

4. If the relative change in cost is less than or equal to zero, the new

solution is accepted as the best solution.

5. Otherwise, the new solution is accepted in accordance with the

acceptance probability that is decided on the basis of the relative

change in cost and the current temperature.

6. The temperature is then reduced based on the cooling ratio function.

7. Repeat steps 2 to 6 until the stopping criterion is met. This criterion

can be satisfied when the minimum (final) temperature is reached, or

the number of iterations exceeds the maximum number of iterations.

In addition, Fig. 2.1 simply shows the process of SA algorithm in a

flow chart structure.

2.3.3 Formulation of SA

The basic notations of the main parameters used in SA can be identified

as follows:

• s0: an initial solution

• T0 : an initial temperature

• s: the current solution

• s′: the new solution

• c: a cost function denoting the total cost/distance of a solution

• δ: a relative change in cost between s and s′

• α: a cooling rate

21 2. Preliminaries

𝑠 = 𝑠′

𝑇𝑛𝑒𝑤 = ∝ ∗ 𝑇𝑐𝑢𝑟

𝑠

𝑃 > 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)

𝑃 = exp (−𝛿/𝑇𝑐𝑢𝑟)𝛿 ≤ 0

𝑠 = 𝑠0

𝑇𝑐𝑢𝑟 = 𝑇0

𝑠’
𝑠

𝛿 = 𝑐(𝑠′) − 𝑐(𝑠)

Figure 2.1: The flow chart of SA

• Tcur : the current temperature

• Tnew = α ∗ Tcur: a cooling ratio function, where 0.8 < α < 0.99.

2. Preliminaries 22

• P (δ): an acceptance probability function that determines the

probability of choosing the worse solution, where P (δ) is calculated

by:

P (δ) = e−
δ

Tnew (2.13)

Chapter 3

Literature Review

3.1 Review of Research Related to This

Work

3.1.1 Continuous Cooperative Task

There have been a number of researches applying agents, which are

software programs for autonomously generating robot activities, to

cleaning and patrolling problems using single or multiple robots. For

example, Ahmadi et al. [4] proposed a patrolling method where an agent

is assigned to move around the areas to search for the events that happen

with different probability. Yet, the authors did not study the case of

collaborative movement with multiple agents. Kurabayashi et al. [46]

proposed another patrolling method, called a centralized off-line method.

This method consists of a single server that is able to generate the entire

route for a sweeping task. Then, the route is fragmented into sub-areas

for the agents to patrol so as to obtain the minimal working time of each

agent. Yoneda et al. [88] proposed a distributed method in which agents

autonomously decide their search/exploration strategies in a multi-robot

sweeping problem using reinforcement learning. Sampaio et al. [75]

proposed the gravity-based model in which the locals that were not

visited for a long time have the stronger gravity, and thus, agents tend to

visit such locations for uniform patrolling. Unlike our method, these

23

3. Literature Review 24

methods are based on the assumption that agents traverse a shared area

along different routes or with different exploration algorithms.

Luo et al. [50] proposed a cooperative sweeping strategy of complete

coverage path planning for multiple cleaning robots in a time-varying and

unstructured environment. It used biologically inspired neural networks,

and each cleaning robot treats other robots as moving obstacles. This

approach is capable of autonomously planning collision-free cooperative

path for multi-robot in unstructured environment. However, they did not

discuss how robots divide their responsible cleaning areas for a balanced

performance. Sugiyama et al. [82, 83] proposed the control method for

coordinated cleaning tasks with learning of such information. However,

their method did not segment the area but selected appropriate

path-planning strategies for moving around in the shared environment.

Portugal et al. [67] introduced a multi-level subgraph patrolling

algorithm based on balanced graph partition for efficient multi-robot

patrolling in a known environment. Hert et al. [37] tried to partition the

environment into n equal size parts. Bast et al. [9] also tried to partition

the area into equal size parts but with the additional condition that the

parts do not have any acute angles. Unlike ours, these works use

heuristics for good partitioning rules, such as parts that are equal-size or

without acute angles. Jager et al. [41] partitioned the environment into

polygonal regions. Each agent requests to clean a region, and others

respond to it when they have done it. This will result in an unpredictable

area partitioning because while a robot is requesting a polygon, it does

not consider the whole region that it has to sweep. Thus, this method is

suitable only for single-agent sweeping applications.

We can formalize the patrolling problem from more theoretical

perspective. For example, Chevaleyre et al. [18] formalized the patrolling

problem by considering the case of traveling salesman problem with

multiple agents. The authors then tried to compare the number of cycle

in which agents move and the route division methods to find the minimal

length of routes. Elmaliach et al. [26] proposed an algorithm that finds

the shortest Hamiltonian cycle in grids, which are used to patrol in the

areas and to spread the agents there evenly. These methods also assume

that robots move in the shared areas. Furthermore, most of these studies

25 3. Literature Review

did not consider the case of agents visiting the locations at different

frequencies.

Another approach is to partition the area into subareas so that

agents can divide the labor. Based on their previous work [4], Ahmadi et

al. [5] introduced the extended method by including multiple patrolling

agents in which the responsible region of individual agent is segmented

based on the exchange of boundary information. Furthermore, agents

visiting a boundary region more frequently tend to take charge of the

region. Voronoi-based techniques are also another method that do not

require graph descriptions of the environments, such as [12, 22, 77].

However, these require computational costs that limit their applicability.

Bio-inspired computation models are also used to cover the areas.

Ranjbar-Sahraei et al. [69] introduced the indirect communication using

pheromone-based stigmatic communications to identify the regions that

should be covered. McCaffery [56] proposed the graph partitioning

algorithm using the foraging behaviors. The resulting subgraphs are

allocated to agents so that they cover the whole environment. Elor et

al. [27] introduced a segmentation method based on the integration of the

ant pheromone and balloon models for covering a region. That is, a region

is divided into sub-regions which are then allocated to different agents.

The authors assumed that each sub-region is a balloon, which is the

pressure that indicates the size of the sub-region. Then, the use of

pheromone communication model allows an undirected exchange of the

pressure values. However, the differences in agent performance and the

environmental characteristics are not considered in these methods, thus

the region is likely to be divided into equal-size sub-regions. Furthermore,

the implementation of pheromone communications in decentralized

multiple-robot applications is not trivial. Kato and Sugawara [44]

proposed the method, performance-based partitioning (PBP), for

partitioning a given area so that agents keep the environment evenly clean

by performing the cleaning task in a balanced manner by taking into

account these differences although it is not a bio-inspired approach.

However, unlike our method, it assumes that agents have knowledge

about what areas are easy to be dirty in the environment, but providing

this knowledge in advance is difficult because it depends on many factors.

3. Literature Review 26

Our work is different from the others because we focus on how agents

identify their RA autonomously based on the complexity of the shapes of

obstacles and the characteristics of environment so that they can share the

tasks in a balanced manner.

3.1.2 Patrolling Task

Multi-agent patrolling problems have been investigated and studied by

many researchers, e.g., [6, 11, 17, 19, 36, 49, 51, 52, 54, 74, 80]. Initial

researches [7, 18, 20] presented a theoretical analysis of various strategies

for multi-agent patrolling systems and an overview of the recent advances

in patrolling problems. Portugal et al. [67] proposed a multi-robot

patrolling algorithm based on balanced graph partition, yet this paper did

not consider when the required frequency of visit is not uniform. The

same author, then, addressed a theoretical analysis of how graph partition

and cyclic-based techniques perform in generic graphs [66]. A survey of

multi-agent patrolling strategies can be found in [68], where strategies are

evaluated based on robot perception, communication, coordination and

decision-making capabilities.

Chao et al. [16] presented a heuristic for the team orienteering

problem in which a competitor starts at a specified control point trying to

visit as many other control points as possible within a fixed amount of

time, and returns to a specified control point. The goal of orienteering is

to maximize the total score of each control point, while in our patrolling

problem, the main goal is to minimize the difference in workload amongst

all patroller agents. Sak et al. [73] proposed a centralized solution for

multi-agent patrolling systems by presenting three new metrics to

evaluate the patrolling problem. Popescu et al. [65] addressed the problem

of multi-agent patrolling in wireless sensor networks by defining and

formalizing the problem of vertex covering with bounded simple cycles

(CBSC). This approach consequently considered polynomial-time

algorithms to offer solutions for CBSC. Mao et al. [53] investigated

multi-agent frequency based patrolling in undirected circle graphs where

graph nodes have non-uniform visitation requirements, and agents have

limited communication.

27 3. Literature Review

Elor et al. [27] introduced a novel graph patrolling algorithm, in

which the region is divided into sub-regions that are allocated to each

agent. However, this method partitioned the region into equal-size

sub-regions. As the characteristic of the area is not always uniform,

equal-size sub-areas are inappropriate. Elmaliach et al. [26] presented a

centralized algorithm in a non-uniform grid environment which ensures

optimal uniform frequency, such that every cell is visited with maximal

and uniform frequency. However, grid-based representation has a

limitation in dealing with partial-occluded cells, or covering

close-to-boundary areas in the continuous spaces.

Sugiyama et al. [81] also introduced an effective autonomous task

allocation method that can achieve efficient cooperative work by

enhancing divisional cooperation in multi-agent patrolling tasks. This

paper addressed the continuous cooperative patrolling problem (CCPP), in

which agents move around a given area and visit locations with the

required and different frequencies for given purposes. However, this paper

did not consider area partitioning and was implemented in a

2-dimentional grid space.

The most relevant work to ours is the work of Karimov et al. [43],

which introduced a new hybrid clustering model for k-means clustering,

namely HE-kmeans, to improve the quality of clustering. This proposed

model integrated particle swarm optimization, scatter search and

simulated annealing to find good initial centroids for k-means. Another

relevant work is from Ogston et al. [61], which proposed a decentralized

clustering method by extending the traditional k-means in a grid pattern.

These two approaches could produce a good quality of clustering.

However, they did not consider when the frequencies of visit to each

location are different. As the frequencies of visit in the real-world

environment are not always uniform which makes the clustering

imbalanced, a clustering method that can take into account the

non-uniform frequency of visit and at the same time tries to balance the

workload amongst all patroller agents is preferable for realistic

applications. Our proposed method, thus, aims at dealing with these

requirements

3. Literature Review 28

3.2 State of the Art of Multi-Agent

Patrolling Problem

This section describes some research papers that are not directly related

with this work. The goal of describing these work is to give an overview of

the techniques, paradigms or methods used so far to solve the multi-robot

patrolling problems.

3.2.1 Cyclic Patrolling Model

Elmaliach et al. [26] tackled the problem of generating patrol paths for a

group of mobile robots inside a continuous target area. This target area

is divided into a grid which is associated with a terrain that takes into

account directionality and velocity constrains. Therefore, the terrains and

the terrain grids considered in that work are directionally non-uniform. In

these types of terrains, each point is associated with a cost which depends

on the direction in which robots can travel. As a consequence, robots have

velocity limitations which depend on both the terrain and the traveling

direction.

In that work, a patrolling model called Cyclic is developed to generate

a cyclic patrolling path that visits every point in a given area exactly once.

A path with these characteristics is called a Hamilton cycle [64]. The

cyclic patrolling model uses a spanning tree coverage method to find the

Hamilton cycle required to patrol the terrain. The terrain could have more

than one Hamilton cycle. The cost of all these cycles is the same when the

terrain is uniform. However, the opposite is true when the terrain is non-

uniform. In that case, the cyclic patrolling model must select the minimal

circular path of minimal cost which is called minimal Hamilton cycle. A

minimal Hamilton cycle is a circular path that visits all points exactly once

in the terrain with the lowest cost. The maximal uniform frequency in the

terrain is guaranteed by selecting this minimal Hamilton cycle, i.e., each

point is covered with the same optimal frequency. This nature of cyclic

patrolling model suggests to Elmaliach et al. to propose a criterion based

on frequency optimization to evaluate multi-robot patrolling models. Note

that the patrolling model presented in that work assumes that a topological

29 3. Literature Review

representation of the whole patrolling environment is available. However,

to assume that such representation is known a priori, it is not appropriate

because there are several situations in which such assumption is not true.

Once a cycle is obtained, cyclic patrolling model assigns an initial

position to each robot from which they start to patrol the terrain. This

assignation considers the minimization of the maximal distance traveled

by every robot from its current position to the assigned position. This is

done to allow robots to arrive at their initial positions in the minimal

time. These initial positions are points distributed uniformly along the

Hamilton cycle path. As a result, the distance between every two

consecutive robots is the total weight of the cycle divided by the number

of robots. This consideration yields an equal distance between every two

consecutive robots. Finally, cyclic patrolling model instructs all robots to

patrol along this cycle in equidistant relative positions. Clearly, the

manner in which robots patrol the terrain makes the solution developed

by Elmaliach et al. [26] completely deterministic, and therefore

predictable. The solution is predictable because robots follow the same

cycle over and over again. Indeed, if all robots start to patrol in the same

point, all of them will visit the same point in the same time. Moreover,

the criterion proposed in that work suggests that all the points of the

terrain will be visited at the same period of time. Therefore, this criterion

makes more predictable the behavior of robots and for security purpose, a

predictable solution is not appropriate. This is because an intruder, no

matter how intelligent, can easily deduce how a point of the patrolling

environment, or even worse the whole patrolling environment, is

protected. The intruder can then use this information to plan an attack.

On the other hand, Elmaliach et al. [26] claimed that the cyclic

patrolling model is robust in the sense that the uniform frequency of the

multi-robot patrolling task is achieved as long as one robot continues

working properly. In this sense, if one robot fails, the other robots simply

divide the circular path considering the number of robots minus one.

However, the patrolling model purposed in that work depends on a central

and explicit coordinator scheme. A centralized solution has a couple of

disadvantages, including lack of scalability in protecting the number of

locations and its likelihood to be influenced by a single-point failure

because of its unique control point. Moreover, centralized, predefined and

3. Literature Review 30

fixed schemes are not suitable for security applications in some situations

such as dynamic patrolling environments, huge graphs and patrolling

environments where regions have different priorities. In fact, adding or

removing new nodes requires the generation of new patrol paths.

3.2.2 MSP Patrolling Model

Portugal et al. [67] presented a patrolling model called Multilevel Subgraph

Patrolling, or simply MSP. This patrolling model uses a balanced graph

partitioning method to divide the patrolling environment into regions

with the same dimension according to the number of robots used to

protect the patrolling environment. Nevertheless, no partitioning is

needed when only one robot is used, and a patrolling scheme for the whole

graph is implemented. This method provides partitions from two up to

eight balanced graph regions. Every region is represented by a sub-graph

extracted from the topological representation of the global patrolling

environment. Each of these regions is assigned to a robot that follows a

local patrolling route which depends on the sub-graph topology. The

patrolling model for generating this patrolling route typically searches for

Euler and Hamilton circuits and paths. Euler circuits and paths are paths

that visit all the edges of the graph exactly once. The difference between

Euler circuits and paths is that the former start and end on the same

vertex, while the latter do not. The Hamilton circuits and paths visit all

the graph nodes exactly once, and only the Hamilton circuits begin and

end on the same node. The search for these circuits and paths have the

disadvantage that it is hard to find them. Besides, most of the graph do

not have them.

If the optimal Euler or Hamilton circuits and paths do not exist, the

patrolling model searches for the longest paths and non-hamiltonian

cycles. The longest path starts and ends in vertices with only one

neighbor, also called one-degree vertices or leaf vertices. In this case, the

patrolling model builds a list with all the leaf vertices of the graph. From

this list, the start vertex and the end vertex are selected and the

patrolling model searches for a longer path. This step is performed several

times with different start and end vertices. Finally, the best path found by

the patrolling model is selected, i.e., the longest path. Non-hamiltonian

31 3. Literature Review

cycles are selected only when they have at least half of the vertices of a

graph; if not, the patrolling route remains the longest path. Since the

longest path and the non-hamiltonian cycle do not contain all vertices of

the graph, the procedure includes such vertices to complete the patrolling

route. Then, ultimately inverse path procedure is used to return to the

starting vertex of the route when is required. This path has the same

vertices that the original path but in an opposite direction.

In that work, Portugal and Rocha claimed that tracking the path of

all the robots and predicting better regions to be intruded in the patrolled

environment are even more difficult. Nevertheless, an intruder does not

need to know the paths of all robots to perform an attack. The intruder

can attack the infrastructure only by knowing the path of one robot.

Although robots follow their own patrolling cycle, this cycle is

deterministic and therefore predictable. Additionally, the fault-tolerance

mechanism of that patrolling model depends on a central coordinator

which recalculates the paths without considering the robot that has failed.

However, if the central coordinator fails, the fault-tolerance mechanism

fails too. Note that similar to cyclic patrolling model, the patrolling

model presented in that work assumes the availability of a topological

representation of the entire patrolling area. However, as aforementioned,

this assumption is not always appropriate.

Single cyclic and MSP patrolling models demonstrated the

effectiveness of the patrolling models that implement solutions based on

cycles and partitioning [18, 58]. The suitable performance of those

patrolling models can be explained by their centralized coordinator

scheme [7].

3.2.3 Adaptive Solutions

Sempé et al. [79] proposed a reactive and adaptive patrolling model to

solve the multi-robot patrolling problem. To manage this problem, the

patrolling environment is divided into zones which are called regions. The

whole patrolling environment is represented by a graph in which each

region is a vertex and the edges represent connections between adjacent

regions. In that patrolling model, robots share a virtual patrolling

environment which is used to propagate the visiting value of each region

3. Literature Review 32

among them. This visiting value represents the time that a given region

has not been visited by any robot. The higher the visiting value of a

region, the higher the time that such regions remains unvisited.

Therefore, this patrolling model is based on a descent gradient method in

which the robots are driven by the propagated visiting values to the least

visited regions. Once a region is visited, its visiting value is dropped to

zero. In that work, the authors take into account that robots must gather

information for a given region which takes a time called visit duration.

Another robot constraint that is considered in that work is the energy

management, e.g., robots need to charge their batteries. The patrolling

model presented in that work is evaluated carried out simulated

experiments and real-world experimentation with three pioneer 2DX

robots.

3.2.4 Negotiation Methods

Almeida et al. [7] tackled the patrolling problem with negotiations methods.

To this end, the patrolling environment is represented by a graph. Initially,

each robot receives randomly a set of vertices of this graph to patrol in

the beginning of a simulation. Note that this set could have separate or

close vertices. In this context, robots aim at getting a set of vertices as

close as possible to minimize the time between two visits to the same node

and increase their utility. The utility function of robots only considers the

distance between vertices. To fulfill this requirement, robots offer through

auctions the vertices that cannot be visited within a reasonable amount

of time. Robots that receive such offer are called bidders. The bidders

verify whether they can trade the offered node by bidding a node from

their own set. In the case of several bids, the auctioneer must choose the

best bid and make the deal with the bidder. The best bid represents the

nearest vertex from the other vertices in the set of the auctioneer. By

using this mechanism, Almeida et al. presented six market-based multi-

robot patrolling models. These patrolling models differ in the manner in

which robots perform their auctions. There are three differences in auctions.

Firstly, the auctions are either one or two shots or rounds. Secondly, the

utility function of the auctioneer determines the value of node on auction

33 3. Literature Review

that is, for example, a private value. Finally, the bidder does not know the

bid of others which is called sealed-bid.

Menezes et al. [58] presented other negotiator patrolling models and

compared them with the ones described by Almeida et al. The mechanism

used in both works is the same with five variations introduced by Menezes

et al. First, vertices assigned randomly at the beginning of the simulation

are neighbor vertices instead of global vertices. Second, an algorithm

called insertion sort was used to determine which node should be

auctioned. Third, the behavior of robots can be self-interest or

cooperative. A cooperative robot trade one node by another that

decreases its utility if such exchange increases the utility of the group.

Fourth, robots avoid offering always the same vertices by selecting

randomly a node from their own set of vertices every specific time.

Finally, robots can offer up to two vertices to other robots, i.e., they can

exchange two vertices by other two, two vertices by one, or one-by-one.

The comparison carried out in that work showed that the centralized

patrolling model developed by Chevaleyre [18] performs better than the

negotiation patrolling models in almost all cases of study. However, the

negotiation-based patrolling models have characteristics to highlight such

as distribution, reactivity, adaptability, scalability and stability.

3.2.5 Swarm Intelligence Optimization

Swarm intelligence optimization, generally speaking, is a bio-inspired

paradigm that mimics the mechanisms of the ants. In this paradigm, the

ants have the ability to use the patrolling environment as a shared

memory. This is done by dropping and sensing pheromones which define

information in a temporary way due to the evaporation process and

establish an indirect communication system. The individual behaviors

performed by the ants allow the developing of decentralized patrolling

models.

Glad et al. [29] proposed a patrolling model based on this paradigm to

address the patrolling problem. In that work, the patrolling environment

is not known in advance and is represented with a grid. Each robot has

a local perception of this patrolling environment which is used to mark

and choice an action to move. The number of robots used in that work to

3. Literature Review 34

perform patrolling tasks in the patrolling environment change dynamically.

The patrolling model presented in that work is called Exploration Vertex

Ant Walk (EVAW). EVAW is a pheromone-based patrolling model which

relies on the basics of other two patrolling models, namely, EVAP [21] and

VAW [84].

In EVAP and VAW, robots self-organize and each of them reaches a

stable cycle. This fact is due to the local behavior of robots which is similar

in both patrolling models. This behavior is based on a digital pheromone

model in which pheromones are represented as numbers. The values of

these pheromones decrease over time to simulate the evaporation process of

biological pheromones. To perform this process the patrolling environment

evaporates pheromones with rate ρ. The remaining value of a pheromone

represents the time elapsed since the last visit to the cell related to such

pheromone. Robots can perceive and move only between neighboring cells.

This neighborhood is represented by the four adjacent cells of the actual

position. Moreover, robots perform two actions when they visit a cell of the

grid. First, they move to the next cell according to the negative gradient of

the pheromone by choosing in the surrounding neighborhood the cell with

the minimum value. Thus, the agents necessarily choose the one which has

not been visited for the longest time. Second, they drop a pheromone in

the actual cell. Even though EVAP and VAW are similar, they differ in

two aspects. The first difference relates to the information of the dropped

pheromone. In EVAP, robots drop a pheromone of quantity Qmax, whereas

in VAW the dropped information is the date of the visit. As a result, in

VAW robots must have synchronized time counters and start at the same

time with counter t = 0. The second difference relates to the order in which

the operations move and drop are performed. In EVAP, robots drop the

pheromone and then move, whereas the opposite is true in VAW. With this

subtle difference EVAP favors exploration in the multi-robot case. On the

other hand, VAW time computation is easier to manipulate. EVAW uses

the order of operations of EVAP and the math formulae of VAW.

Wagner et al. [84] presented an enhanced version of VAW. In that

patrolling model, robots use pheromones made up a pair (µ, τ) in which µ

is the number of visits to the cell so far, and τ is the last time that the cell

was visited. In the single agent case, Wagner et al. proved that when a

Hamiltonian cycle is reached, the ant repeats it forever.

35 3. Literature Review

Ahmadi et al. [5] proposed a patrolling model based on negotiations

to solve the task called Continuous Area Sweeping. In a continuous area

sweeping task, a group of robots must repeatedly visit all points in a fixed

area possibly with non-uniform frequency. This task is closely related to

other two tasks called security sweep [42] and sweeping [46]. Clearly,

continuous area sweeping and patrolling are the same tasks. However, the

research articles that tackled the continuous area sweeping task are not

included in the surveys of the literature related to the patrolling tasks.

This could be caused by the use of different words even though the task is

the same. On the other hand, in that work the authors extend a

single-robot patrolling model [4] to the multi-robot case. To this end, the

overall dynamic area is partitioned among robots and each one sweeps its

part of the patrolling environment using the single-robot area sweeping

method. The area is dynamic because it is considered factors such as

addition of new robots, robot malfunctions, change in robot speeds or

changing distribution for event appearances. That work is tested with

simulations and implemented on physical robots.

Finally, Lauri et al. [48] introduced a patrolling model based on ant

colony optimization (ACO). The patrolling model presented in that work

is combined with an evolutionary algorithm technique. This combination

allows that several ant colonies compete to find out the best multi-robot

patrolling strategy dispersed efficiently over a graph. That patrolling model

performs two stages to achieve the previously specified goal. In the first

stage, the evolutionary algorithm is used to find the most distant vertices

of a graph. In the second stage, the ACO patrolling model carries out the

patrolling tasks [47].

3.2.6 Reinforcement Learning

Machine learning techniques such as reinforcement learning can be used to

coordinate the actions of a group of robots when such coordination

depends upon the topology of the environment. This is because

reinforcement learning allows an automatic adaptation of the robots to

the environment.

Santana et al. [76] investigated the creation of adaptive robots that

learn to patrol using reinforcement learning techniques. In that work, the

3. Literature Review 36

patrolling task was defined by adopting an abstract representation of the

terrain as a graph. For the single-robot case, the reinforcement learning

framework is defined over the theory of markov decision processes. In this

theory, robots act according to some policy which represents the probability

of choosing an action from a state. This selection aims at maximizing a

long-term performance criterion which is defined as a sum of a discounted

reward. The local reward used in that work depends only on the idleness of

the node currently visited by the robot. Because of this such reward does

not assume anything about the whole environment. In order to include

the edges of different length into this reward is used a discrete-time finite

semi-markov decision process framework. These frameworks can be solved

through the use of an algorithm called Q-Learning.

The extension of this patrolling model to the multi-robot case is based

on a concept called individuals learners. An individual learner solves a

collective optimization problem by solving local optimization ones. Two

reward models are used to solve these optimization problems in the multi-

robot case. In the first model, called Selfish Utility, robots do not help

to maximize the rewards of the other robots. In the second one, called

Wonderful Life Utility, robots received penalties when they compete for

the idleness of the same node. On the other hand, two communications

schemes were developed to tackle the non-determinism produced by the

multi-robot case. In the first communication scheme, called Black-Box,

robots communicate by placing flags every time that they visit a node.

In the second one, called Gray-Box, robots communicate by flags their

intentions upon actions.

Preliminary results showed that the architecture that uses the Selfish

Utility model and the Gray-Box communication scheme obtained the best

performance. The comparison between that architecture and previous ones

showed that the former performs better than the later in 80% of the cases

of study. Besides these results, the architectures presented in that work are

distributed and adaptable.

3.2.7 Traveling Salesman Problem

Chevaleyre [18] proposed several strategies to solve the multi-robot

patrolling problem by using cycles and closed-paths. In that work, the

37 3. Literature Review

territory to be protected is depicted by an undirected graph. A

closed-path is a path represented by a list of vertices that start and end in

the same node and cover the edges of a graph possibly more than once. A

graph could have more than one closed path. Among these paths, the

smallest one that cover all vertices of the graph is the best solution. The

closed-path with these characteristics is called cycle. A cycle is calculated

as the optimal solution for the well-known traveling salesman problem

(TSP). Thus, for the single-robot case, a cyclic strategy consists in

traveling along the calculated cycle indefinitely.

To extend the single-robot cyclic strategies to the multi-robot case,

the robots are distributed along the smallest closed-path. The distance

between robots is the same for all of them. In the multi-robot case, besides

of the TSP strategies, the author studied strategies based on partitioning.

To this end, the territory is partitioned into several regions, and each robot

is assigned to patrol inside a single region. The experimental results of

that work showed that the cyclic strategies based on TSP perform better

than the partition-based strategies. In the literature, the patrolling model

of Chevaleyre is referred to as Single Cycle. Finally, another contribution

of that work is a theoretical analysis of the patrolling problem [20].

Chapter 4

Area Partitioning Method for

Multi-Agent Continuous

Cooperative Tasks

4.1 Introduction

The development of computer science and technologies, nowadays, has

been dramatically increasing day by day and has been used in many

application domains including the field of robotics and automation. Since

robots can often perform tasks well in a variety of environments, the

demand for robotic applications has been growing. This has led to the

massive of software applications in the field of robotics combining

computer and sensor technologies. Some robots are able to work in places

and situations that are inconvenient and dangerous for humans, such as

nuclear plant search, interplanetary exploration and disaster relief, while

others can perform the daily functions, e.g., cleaning/sweeping and

security surveillance robots. The cleaning and patrolling robots are

examples of the hottest applications. In particular, the cooperation of

multiple cleaning robots has now become very crucial because effective

cooperative cleaning of multiple robots can improve the working quality

and reduce the time for cleaning by sharing tasks. The control for

cleaning is also applicable to other sweeping tasks, such as security

patrolling and area search. This has made many researchers focus their

38

39 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

studies on multiple cleaning robots in different issues, such as path

planning (or graph exploration), area partitioning, map building,

autonomous navigation, self-localization, and obstacle/collision avoidance.

The real-world environments where agents operate are diverse, so it

is almost impossible to design a system by completely anticipating the

environmental characteristics in the design stage. For example, in the

cleaning task, there are a number of locations where dirt may tend to

easily accumulate, and these locations depend on many factors such as the

shape of the environment and the locations of furniture and fixtures.

Similarly, in security applications, the locations near entrances, near

windows and around safes should be kept more secure than other

locations. This means that agents for cleaning or security have to visit

each location with non-uniform frequency in a given area based on the

characteristics of environment. Furthermore, the agents may be

most-advanced or old models and may have been developed by different

makers; this means that they have different hardware/software

capabilities, and thus, exhibit different levels of performance. Therefore,

the agents must cooperatively work by considering these differences so as

to complete the tasks in a more efficient and balanced manner.

Regarding the cleaning and security tasks, two conventional

approaches are used to implement the patrolling activities in both

coordinated and cooperative ways. Agents in the first approach work

together by sharing and cleaning the given area in a coordinated manner.

For instance, either different cleaning algorithms or visitation cycles can

be applied to ensure that the agents are able to cover the entire

area [18, 46, 88]. Another strategy for this approach is for the agents to

move around the area in formation (e.g., [3, 25, 57]). However, in these

approaches, an agent’s strategy affects the other’s, and this interaction

makes cooperation complex. In the second approach, agents partition a

given area into sub-areas, such that each agent is in charge of each

allocated sub-area [4, 27]. However, it is non-trivial to fairly perform a

division in the latter approach; if the characteristics of the area are

non-uniform and the agents have different capabilities, the responsible

sub-area for each agent should not be equal to achieve the balanced

workload.

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 40

Therefore, this work proposes a new approach which allows the

agents to fairly and autonomously allocate their tasks based on their

capabilities and each subarea’s characteristics. If new agents are added,

agents autonomously reconfigure their subareas through coordinated

interaction over time. The main concept is that each agent keeps its

recently-visited location and calculates its expansion power that expresses

the remaining capacity/power when it believes its responsible area has

almost been cleaned or patrolled, which depends upon the degree of task

completion, such as the expected amount of dirt remaining in its subarea

in cleaning tasks and the number of important locations to keep them

secure. Next, it negotiates with the neighboring agents to readjust their

responsible sub-areas so that they can balance the cleanliness of the whole

area. However, it is difficult to identify in advance which agents that have

different hardware/software capabilities perform better in the

environment and what areas are easy to be dirty. Thus, our study aims,

using a cleaning task application, at the proposal of coordination method

for area partitioning without this kind of knowledge.

Kato and Sugawara [44] proposed the method, called

performance-based partitioning (PBP) along this line, but they did not

examine whether the method could reflect the differences between agents’

algorithms into the area partitioning. Furthermore, it assumed that

knowledge about what areas are easy to be dirty and where obstacles are

was given to all agents. However, providing this knowledge in advance is

difficult because the easy-to-dirty areas depend on many factors such as

locations of objects, intake/exhaust vents, doors and windows in the

environments. Furthermore, the locations and shapes of obstacles differ in

individual environments and may change, it is not easy to accurately

specify their information in advance. Thus, we eliminated this assumption

and extended the previous method by adding (1) the learning capability

to agents for identifying easy-to-dirty areas and (2) the function to find

and maintain the locations of obstacles through their operations [78]. We

also show the detailed results with extensive experiments in this chapter.

The work in this chapter is an extended approach based on the

previous studies [44, 87, 88]; thus, the model and problem description are

based on those proposed in these papers.

41 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

4.2 Model and Problem Description

We will describe the models of environment and agents, and then state our

problem addressed in this chapter.

4.2.1 Models of Agent and Environment

An agent here is a control program installed on a portable cleaner robot

capable of autonomously deciding its actions and sending/receiving

messages. We assume that agent has a map (graph) of the area, which

may generally be unknown. This assumption can be made in this study,

thanks to the fact that previous studies [31, 34, 85] have already proposed

a number of algorithms for generating a map, identifying agents’

locations, and avoiding collisions. We also apply this assumption in this

work, for our study mainly focuses on area partition which is

autonomously learned by the agents to obtain a balanced task division.

Let A = {1, . . . , n} be a set of agents. The agents move around the

area which is represented by a connected graph with obstacles,

G = (V +, E,O), where V +, E and O (⊂ V +) denote the sets of nodes,

edges, and obstacles, respectively. A node in O is called the obstacle node.

In general, we assume that a number of obstacles,

{Oi | Oi ⊂ V + for 1 ≤ i ≤ k,Oi and Oj are disjoint, and

Oi is the connected set} exist in the environment and we define

O = O1 ∪ · · · ∪ Ok. The edge that connects nodes vi, vj ∈ V + is denoted

by ei,j. We then define a discrete time with a unit called a tick. An agent

moves between nodes in V = V + \ O and cleans each node it visits.

Without imposing further restrictions on the problem, the length of an

edge in E is assumed to be one which allows an agent to move along an

edge from a node to another and clean the visited node in one tick.

However, it cannot move to any node in O. We assume that V \ O is

connected, i.e., for ∀v, w ∈ V , at least one path from v to w consisting of

only non-obstacle nodes exists.

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 42

4.2.2 Model of Dirt Accumulation

We represent the degree to which dirt is easy to be accumulated per tick

at node v ∈ V . The amount of accumulated dirt at v at time t, Lt(v), is

initially defined as L0(v) = 0 for ∀v ∈ V and is updated by:

Lt(v) ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lt−1(v) + 1 with probability pv
(a piece of dirt is

accumulated at t)
Lt−1(v) otherwise,

(4.1)

where event probability pv (0 ≤ pv ≤ 1) is called the dirt accumulation

probability (DAP) for v. Yet, if node v has been visited by an agent at time

t; then node v is cleaned, so Lt(v) = 0. Note that agent i cannot know the

actual value of Lt(v) except the current position, vit.

Each agent has a responsible area (RA) which it tries to keep clean.

Particularly, the connected subgraph Gi
t = (V i

t , E
i
t) represents the RA of

agent i at t, where V i
t ⊆ V and Ei

t = {ei,j ∈ E | vi, vj ∈ V i
t }. We assume

that vibase ∈ V i
t and V i

t , and V j
t are disjoint for i, j (∈ A and i ̸= j). The

size of each agent’s RA, |V i
t |, can be changed to uniformly keep the area

clean in a cooperative manner.

4.2.3 Performance Measure

The purpose of cleaning tasks is to minimize the amount of pieces of dirt

in the environment without neglecting them. Hence, we use the sum of the

amount of remaining dirt in the entire area at specific time intervals as the

performance measure of the agents’ collective tasks. This is defined as:

Dts,te =

∑
v∈V

∑te
t=ts

Lt(v)

te − ts
, (4.2)

where positive integers ts and te represent the starting and ending times

of the interval, respectively. The smaller performance value Dts,te is, the

better agents can keep the area clean. Thus, agents aim at minimizing this

value.

AlthoughDts,te is an important measure, we also consider the balanced

task allocation for cooperative cleaning in which agents that can handle

43 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

more work take part of the RAs of other agents that are busy and/or that

have less efficient exploration algorithms. Thus, it is of importance to focus

on the sizes of the RAs, V i
t , to investigate whether or not an efficient agent

could do more work in a larger RA, and calculate the amount of remaining

dirt in i’s RA, which is denoted by Di
ts,te . Dts,te and Di

ts,te are often denoted

by D and Di if there is no confusion. Note that balanced task allocation

does not necessarily mean equal size of V i
t .

The proposed probabilistic model of dirt accumulation can also be

modified for other patrolling domains such as surveillance. For example,

the important locations that require high-level security, such as around

safes and entrances/exits correspond to the dirty areas, thus they have

higher probabilities, pv. Furthermore, we can change these probabilities in

accordance with time of day. So, for example, agents can visit the important

locations more frequently during nighttime hours.

4.2.4 Battery Consumption and Charge

Let Bi
max be a positive integer representing the maximal battery capacity

of agent i at time t. Similarly, let bi(t) denote the remaining battery power.

We further assume that a constant amount of power per tick, Bi
drain , is

consumed by agent i when it moves around. Thus, bi(t) is updated using

bi(t+ 1) ← bi(t)− Bi
drain (4.3)

every tick. Therefore, Mi is the maximum running time that agent i can

continue to operate at most ⌊Bi
max/B

i
drain⌋ ticks. Moreover, agent i charges

its battery at its charging base, vibase ∈ V . The required time for a fully

charge which begins at time t, T i
charge(t), is proportional to the battery

consumption, defined as:

T i
charge(t) = ki

charge(B
i
max − bi(t)), (4.4)

where ki
charge(> 0) is the proportionality factor indicating the speed of

charge. The full-battery agents start moving around and performing the

cleaning tasks in their RAs. Before the battery becomes empty, they

always return to their charging bases so as to recharge their batteries.

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 44

This cleaning cycle is followed and repeated to keep clean the allocated

areas.

For every node v ∈ V i
t , agent i calculates the minimal capacity of

battery required to return to i’s charging base vibase , called the potential, in

which P(v)i represents the potential of v for i and is defined as:

P(v)i = d(v, vibase) · Bi
drain , (4.5)

where d(v, vibase) is the length of shortest path within the RA of i. Since

we assume that agents have the knowledge of G in advance, they are able

to identify the shortest path using A* or Dijkstra’s algorithm. We set a

condition in which agent i can safely move to the neighbor node v at time

t if

bi(t) ≥ P(v)i + d(vit, v).B
i
drain , (4.6)

where vit denotes the current node that i is located. This condition implies

that if the next node is safe, agent i will move to that node; otherwise, it

will return to its charging base along the shortest path and recharges.

4.3 Extended Performance-Based

Partitioning Method

We describe the proposed extended performance-based partitioning (ePBP)

method, which fairly partitions the given area by taking into account the

performances of the individual agents and the characteristics of the area.

In our proposed method, we assume that agents have information of V +

and E but do not know (1) the set of the DAP of nodes, {pv|v ∈ V } nor

(2) the set of obstacles, O (initially agents assume that O = ∅). Therefore,
agents with ePBP concurrently learn the DAPs of their RAs to see which

locations in the RAs are easy to become dirty, and the set of obstacles while

they decide and negotiates the responsible area with other agents.

45 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

4.3.1 Area Partitioning

4.3.1.1 Expansion Power

Although agents do not know the values of pv for ∀v ∈ V , if agents estimate

the values of pv for ∀v ∈ V , i can estimate Lt(v) using the expected amount

of accumulated dirt on v, which is calculated by:

E(Lt(v)) = piv · (t− tiv),

where piv is the estimated value of pv by learning of the dirt accumulation in

i, and tiv is the most recent time when i visited and cleaned node v ∈ V i
t ; if

node v is never visited by i, tiv is then regarded as the time by which v was

included in its RA, Gi
t. How i calculates piv is explained in Section 4.3.3.

We also define Lt(V0) =
∑

v∈V0
Lt(v) and E(Lt(V0)) =

∑
v∈V0

E(Lt(v)) for

a set of nodes V0(⊂ V).

When agent i returns to its charging base at a specific time t, its

expansion power for the current RA will be calculated. Intuitively, it

expresses how efficiently i could have covered the current RA during the

latest cleaning cycle. The expected amount of accumulated dirt in each

RA at time t is initially computed using

E(L(Gi
t)) =

∑

v∈V i
t

E(Lt(v)) =
∑

v∈V i
t

piv · (t− tiv). (4.7)

Then, i calculates the expansion power ξ(i, t) of i at time t which is also

known as the inversion of the expected value, denoted by:

ξ(i, t) = E(L(Gi
t))

−1. (4.8)

If E(L(Gi
t)) = 0, ξ(i, t) is set to a sufficiently large number. The

computation of expansion power is reserved until the next calculation.

4.3.1.2 Expanding of Responsible Areas

We consider the cleaning cycle of each agent begins by leaving its base node

with full battery to clean each RA using its own exploration algorithm.

Each agent will decide to expand its RA in case that it realizes the RA

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 46

has been mostly cleaned. Agent i will make the decision based on the

expected amount of accumulated dirt in its RA at a certain future time,

E(Lt0+γ(Gi
t0)), when i leaves from vibase at time t0, where γ (≤ Mi) is a

positive integer. Furthermore, i also stores the number of visited nodes,

Nvis(t), and the amount of vacuumed dirt, Nd(t), at t (> t0) during the

current cleaning cycle, which started from t0. Then, the agent will try to

expand its current RA, V i
t , if the following conditions are satisfied.

Nvis(t) ≥ R1 · |V i
t | (4.9)

Nd(t) ≥ R2 · E(Lt0+γ(G
i
t0)), (4.10)

where 0 ≤ R1, R2 ≤ 1, and 0 ≤ γ ≤ Mi are the parameters used by

agents to determine whether or not they have mostly cleaned the current

RA. The parameter γ is introduced to specify the expected future amount

of dirt in the RA due to the continuous accumulation of dirt while the

agents move around. Of course, agents may compute E(Lt(Gi
t)) every time

and can use it in Condition (4.10) instead of E(Lt0+γ(Gi
t0)). However,

we use E(Lt0+γ(Gi
t0)) in the following experiments to avoid the frequent

calculations of the expected value. These conditions indirectly reflect both

the capabilities of the agent’s hardware and the quality/performance of the

exploration algorithms. Agents with a simple algorithm cannot effectively

move around the area (for example, the agents may visit the same nodes

many times and/or may skip some nodes). Agents that can move more

quickly have a sophisticated exploration algorithm, or have a large-capacity

battery can more easily satisfy two conditions and thus are likely to expand

their RAs.

Note that a larger R1 and R2 make agents more conservative about

expanding their RAs. There is a trade-off between conservativeness and

eagerness: eager agents with a small R1 and R2 try to expand their RAs

even if their RAs are not clean enough while conservative agents will avoid

expanding their RAs even if they are able to do so, and the adjacent agents

have smaller expansion powers. We will discuss this in Section 4.4.2.6.

47 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

4.3.1.3 Expansion Strategy

When Conditions (4.9) and (4.10) are fulfilled, agents realize that they can

perform their tasks in a larger area. Therefore, they will start an area

expansion trial (AET), in which they try to cover other nodes that are not

covered by other agents or are in the RAs of busier agents. In the AET, we

have taken into account two factors. The first factor is the distances from

their bases because visiting only far nodes may reduce the performance of

both agents and the whole system. The second one is the frequent failures

of expansion in a certain direction operated by unbusy agents in which we

attempt to avoid.

When agent i finds that Conditions (4.9) and (4.10) are satisfied at

time t during its cleaning cycle, an AET process begins comprising two

parts, where the first part involves the case that i identifies the nodes to

be included in its RA using the expansion strategy; the latter part involves

the negotiation of i with neighbor agents to determine which agent should

be responsible for the identified nodes with the assumption that part of I i

is in the RAs of the neighbor agents.

The expansion strategy tries to include the boundary nodes closer to

the charging base. Agent i starts with defining its current RA boundary,

which is denoted by B(V i
t) ⊂ V . For instance, Fig. 4.1 represents the

environment G in a grid graph. The set of white color nodes with bold lines

is denoted by V i
t , and the set of the light blue and orange colored nodes is

called the boundary, B(V i
t). i chooses the set of kinc nodes, I iinc(⊂ B(V i

t)),

vbase The closest node from vbase

The orange and yellow nodes are the
elements of I . Although the yellow node
is not in the boundary, it is an adjacent of
the closest node, and is thus included in I .

i

i

i i

Figure 4.1: Expansion strategy (the nearest boundary expansion)

The squares with bold lines denote the current RA. The light blue
and orange squares are boundary of sub-area, while the pink one is
the base node.

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 48

that are not in I iavoid and are considered as the nearest nodes from vibase ,

for positive integer kinc. After that, it will define I i as the nodes in I iinc
and their neighboring (north, south, east, and west) nodes that are not in

both V i
t and in I iavoid . In Fig. 4.1, for instance, the orange and yellow nodes

express I i when kinc = 1 and I iavoid = ∅. If I i = ∅, the AET process ends,

and nodes are not added to i’s RA.

If one of the adjacent agents can afford to clean a larger RA, an

attempt to take nodes from its RA may fail. To get rid of frequent failures

of the AET, i stores the nodes that it failed to take into I iavoid . At the

same time, it does not choose those nodes as elements of I i in the next

kavoid times of AET. Note that I iavoid is initially set to ∅, and kavoid is a

positive integer.

4.3.1.4 Negotiation for Expanding Responsible Areas

The negotiation process begins after agent i identifies I i to determine which

nodes in I i should be included in its RA according to the following steps:

(1) The revision of the RA:

V i
t is set to V i

t−1 ∪ I i.

(2) The sending of request message for area expansion:

i reports I i based on its current expansion power ξ = ξ(i, t).

(3) The acceptance/rejection of area expansion request:

Assume that a request message for area expansion has been sent from

agent i to j at time t. If V j
t ∩ I i = ∅, j does nothing. Otherwise, j

compares j’s expansion power, ξ(j, t), with ξ which yields two possible

conditions:

(3.1) First condition: if ξ(j, t) ≥ ξ, agent j sends a rejection message

with V j
t ∩ I i and ξ(j, t) to i.

(3.2) Second condition: if ξ(j, t) < ξ, agent j sends an acceptance

message with V j
t ∩ I i and ξ(j, t) to i. Then, j revises its RA to

V j
t = V j

t \ I i.

(4) Expansion of responsible area:

In the case that i receives a rejection message from j, the nodes will

49 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

then be excluded from V i
t and stored the information about those

nodes into I iavoid with j’s expansion power. They will not be included

in I i in the next kavoid times of AET. This process will help the agents

avoid frequent failures.

Agent i continues performing its cleaning task in the current RA during

the above message exchanges. AET is supposed to be invoked only once

per cleaning cycle even if i has enough battery to continue so as to avoid

excess expansion. Yet, of course, we can omit this restriction.

4.3.2 Identifying the Location of Obstacles

We assume that agent i can detect obstacles using sensors (e.g.,

touch/sonar/infrared sensor, proximity sensor and camera) and in this

paper, i can detect a node of obstacle by hitting it using touch sensor

which is the simplest way. Agent i starts moving from its charging base

vibase along the path generated by an exploration algorithm. It then

memorizes the nodes that it cannot move which is defined as block node

Oi, whose initial value is the empty set. Then, when i hits a node of an

obstacle during the cleaning process, it adds them into Oi. Furthermore,

if the elements in Oi surround other nodes, these are the part of the

obstacles. Thus, they are added into Oi. This enables i to recognize which

nodes are the parts of obstacle. After their RAs changed or Oi was

revisited, agents recalculated the shortest distance between nodes in the

RAs when they arrive at their charging bases.

4.3.3 Learning of Dirt Accumulation Probabilities

To identify which nodes are easy to become dirty in the RAs, agent i learns

piv for ∀v ∈ V i
t , which are the estimated values of the DAPs of V i

t . First,

when node v is added in V i
tv at time tv, i initializes as piv = 0 and the last

time when i visited v, tiLV (v), is set to tv.

Right after i has vacuumed up dirt at node v at time t, i calculates

the interval, I it(v), between the current and the last time visited v:

I it(v) = t− tiLV (v). (4.11)

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 50

Then, the DAP of v is estimated by Lt(v)/I it(v). However, the reliability

of such an estimated value depends on the length of interval, I it(v). Thus,

we introduce the variable learning rate, α(x), which weighs the obtained

probability according to the length of the interval, and piv is updated as:

piv = (1− α(I it(v)))p
i
v + α(I it(v))

Lt(v)

I it(v)
. (4.12)

Then tiLV (v), is set to t. The learning rate function 0 < α(x) < 1 in Eq.

(4.12) is monotonically increasing and is defined as the linear function with

the upper bound:

α(x) = max(δx,αmax) (4.13)

in the experiments below, where 0 < δ ≪ 1 is the gradient of the

learning rate, and 0 < αmax is the upper bound.

4.4 Experimental Evaluation

4.4.1 Experimental Setting

We evaluated the ePBP method by clarifying its performance and features

in a variety of situations using two environments for the simulation, as

illustrated in Fig. 4.2. G, which is the cleaning area, is a 51 × 51 grid.

Node v is expressed by (x, y), where −25 ≤ x, y ≤ 25. Four agents A =

{a1, a2, a3, a4} move around G starting from their charging bases vibase (i =

1, 2, 3, 4). The set of obstacles, O, is empty if nothing is stated.

The DAPs for all nodes are shown in the figure, where parameters

pl, pm, and ph are described as:

pl = 2 · 10−6, pm = 2 · 10−5, ph = 2 · 10−4. (4.14)

The dirt in the first environment (Env. 1) uniformly accumulates, while

the second environment (Env. 2) consists of areas where dirt more easily

accumulate. These areas in Env. 2 are represented by the square regions,

ph and pm, where the red region is specified by (−20,−20) and (−10,−10),

and the blue region by (5,−5) and (15, 5), so the sizes of these regions are

51 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

-25

-25

25

25

Environment 1 Environment 2

-2255

-2255

2255

2255

Environment 1 Environment 22

Figure 4.2: Experimental environments

121. The numbers with circle represent the charging bases’ locations, e.g.,

the charging base of a1 is at (−25, 0). Furthermore, the subarea whose

DAP is ph in Env. 2 is considered to be an easy-to-dirty subarea. Note that

since the DAP in Env. 1 is pm, so Env. 1 is dirtier than Env. 2.

We assume that all agents have the same batteries, and the specific

battery configurations and their values are shown in Table 4.1. We

defined these values in accordance with the specifications of an actual

robot cleaner1. In addition, we also includes the value of parameters for

selecting and controlling AET and the parameters used in the learning of

DAPs in Table 4.2 and Table 4.3. We then stored, every 3600 ticks (which

is the maximal cleaning cycle) up to 1,000,000 ticks, the sum of the

amount of remaining dirt, D, the expansion powers ξ(ai, t) calculated

when the agents returned to their base, and the sizes of the RAs, |V i
t |.

The experimental results given below are the average values of 100 trials.

These results are compared with those of a conventional partitioning

method [27], whose given area is divided by the agents into equal-size

subareas based on the comparison of the current sizes of their RAs. We

call it the balloon method [27] hereafter.

1In our experiments, one tick is about 4 seconds, the velocity is 0.25 m/s, the
maximum operation time is 1 hour, and each agent’s battery takes 3 hours at maximum
to fully charge.

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 52

Table 4.1: Battery configurations

Parameters Value

Maximal battery capacity: Bi
max 900 ticks

Battery consumption per tick: Bi
drain 1 hour

Time to charge: kicharge 3 hours

Maximum running time: Mi 900 ticks

Time for fully charge: T i
charge(t) 2700 ticks if the battery is empty

Maximum length of a cleaning cycle (for all agents) 3600 ticks

Table 4.2: Parameters used in AET

Parameters Value

R1 0.7

R2 0.7

γ 300 (= Mi/3)

kinc 15

kavoid 17

Table 4.3: Parameters used in the learning of DAPs

Parameters Value

δ 0.0001

αmax 0.5

We conducted four experiments. In the first experiment (Exp. 1), we

compared cleaning performance and examined how the environments were

divided in accordance with the environmental characteristics. The second

experiment (Exp. 2) investigated how the ePBP could reflect the

difference in algorithms of exploration. In the third experiment (Exp. 3),

we introduced the agents with the enhanced battery to know how

hardware differences affected the RA partitioning. Finally, we added a

number of obstacles into the environments to investigate how the ePBP

method decided the RAs by reflecting the obstacles, especially a

intricately-shaped obstacle, in the fourth experiment (Exp. 4).

53 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

4.4.2 Experimental Results

4.4.2.1 Algorithms for Exploration in Experiments

Agents move around the RAs by using certain exploration algorithms and

to verify that the proposed PBP method can determine the RAs by taking

into account the differences in algorithm performance. We assume that the

agents use one of three exploration algorithms described below. Because the

focus in the experiments is on area partitioning for division of labor, these

algorithms are quite simple and non-intelligent; improvement of exploration

algorithm out of scope, but agents can use more effective algorithms in our

framework.

With the random exploration (RE) algorithm, agent i randomly selects

target node v from V i
t and then moves to v along the shortest path from the

current node. After reaching the node, i randomly selects another node,

i.e., it iterates this select-and-move action.

With a simple depth-first search, directed depth-first exploration

(DDFE) algorithm, i chooses the first targeted node, v ∈ V i
t , whose

expected amount of accumulated dirt E(Lt(v)) is the largest when it

leaves vibase , moves to it along the shortest path, and pushes the node on

top of its stack. After that, it randomly selects one of the adjacent nodes

excluding a previously visited one, moves to it, and pushes the node on

top of its stack. This process is iterated as long as i can select an

unvisited node. Then, if i cannot select it, i moves back to the previous

node by popping the top node from its stack and backtracking one step.

It again tries to select another unvisited node. Finally, i will return to it

base node vibase after it returns to the first chosen node. Although [44]

used the (random) depth-first exploration (DFE) algorithm that is also a

depth-first search simpler than DDFE, we did not use it here. DDFE

relies on the learned DAPs , so it is better to see the effect of the DAP

learning on the performance.

The DDFE algorithm is better than the RE one since an agent using

RE may visit the same nodes many times but one using DFE does not visit

the same node in a cleaning cycle except when backtracking. Note that

agents using these algorithms move to only safe nodes, as we mentioned

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 54

in Section 4.2.1. If they find that the next node is not safe, they directly

return to their base nodes via shortest paths.

4.4.2.2 Performance of Cleaning and Sizes of RAs

For the purpose of Exp. 1, we compare the sum of the amount of remaining

dirt, D, in two environments. We assumed that all agents used the DDFE

exploring algorithm. We also examined the PBP method in Exp. 1 to

investigate the differences in performance between the PBP (the DAPs

were given) and the ePBP (the DAPs were learned) methods. The results

are plotted in Fig. 4.3. The average values of D = Dts,te observed between

ts = 800, 000 and te = 1, 000, 000 in Env. 1 and Env. 2 and the improvement

ratios of the ePBP method to the conventional method are also listed in

110

120

130

140

150

160

170

180

0 200000 400000 600000 800000 1000000

Balloon method [9]

PBP

ePBP

Time (tick)

R
em

ai
n

in
g

 d
ir

t
in

 e
n

v
ir

o
n

m
en

t

50

70

90

110

130

150

0 200000 400000 600000 800000 1000000

Balloon method [9]

PBP

ePBP

Time (tick)

R
em

ai
n

in
g

 d
ir

t
in

 e
n

v
ir

o
n

m
en

t

(a) Env. 1

(b) Env. 2

Figure 4.3: Amount of remaining dirt, D, using PBP and ePBP in
Exp. 1

55 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

Table 4.4. For Env. 1, it is reasonable that the area divisions are equal

in size because the DAPs {pv}v∈V are constant. Hence, the differences

between the PBP, ePBP, and conventional methods were small although

ePBP exhibited slightly lower performances (the improvement ratio was

−1.80% in Table 4.4). In Env. 2, the ePBP and PBP methods resulted

in a much smaller D than the conventional method, and the improvement

ratio was 17.40% (Table 4.4), because the area is partitioned based on the

environmental characteristics. We can also observe that the ePBP and PBP

exhibited the almost identical performance in both environments (Fig. 4.3)

although agents with the ePBP were not given the values of DAPs.

We investigated how the RAs expanded and were partitioned

depending on the PBP and ePBP methods over time in Env. 2; the

results are plotted in Fig. 4.4. Note that the results for Env. 1 are omitted

because Env. 1 is uniform, so they partitioned the equal-size RAs.

However, Env. 2 has two easy-to-dirty subareas, so the equal-size

partitioning is inappropriate. First, Fig. 4.4 (a) and (b) indicates that the

sizes of RAs of ai, |V i
t |, were quite indifferent between the PBP and ePBP

methods in Env. 2. With both methods, agents a1 and a4 had their bases

located near the easy-to-dirty subarea; thus the sizes of their RAs are

relatively smaller than those of the others (note that ph is 10 times larger

Table 4.4: Average values of remaining dirt between 800,000 and
1,000,000 ticks.

Conventional ePBP Improvement
Method Method Ratio (%)

Exp. 1 Dts,te in Env. 1 127.9 130.2 -1.80
Dts,te in Env. 2 81.6 67.4 17.40

Exp. 2 Dts,te in Env. 1 171.0 165.7 3.10
Dts,te in Env. 2 106.4 81.1 23.78

Exp. 3 Dts,te in Env. 1 92.8 85.6 7.76
Dts,te in Env. 2 58.2 44.0 24.40

Exp. 4 Dts,te in Env. 1 131.4 134.5 -2.35
Dts,te in Env. 2 85.6 68.3 20.12

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 56

0

100

200

300

400

500

600

700

800

900

0 200000 400000 600000 800000 1000000

Time (tick)

S
iz

e
o
f

R
A

s

a1

a2

a3

a4

0

100

200

300

400

500

600

700

800

900

0 200000 400000 600000 800000 1000000

Time (tick)

S
iz

e
o
f

R
A

s

a1

a2

a3

a4

(a) Size of RAs over time (PBP) in Env 2

(b) Size of RAs over time (ePBP) in Env. 2

Figure 4.4: Sizes of RAs, |V i
t |, in Exp. 1

than pm). The RA of a3 was the largest because the area near its charging

base rarely got dirty.

Figures 4.3 and 4.4 indicate that the convergences were slightly faster

when agents adopted the ePBP method. Because they initially believed

that the environment was uniform and had no easy-to-dirty subareas, they

tried to extend their RAs to proactively clean the wider areas.

Figure 4.5 plotted the amount of remaining dirt, Di, in Env. 2 when

agents adopted the conventional or ePBP method. It shows that the

differences in Di were quite smaller in the ePBP method than those in the

conventional method; this is the result of better partitioning of RAs for

balanced work by taking into account the characteristics of Env. 2. Note

that Fig. 4.5 (b) indicates that the values of Di did not become identical.

57 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

0

10

20

30

40

50

60

70

0 200000 400000 600000 800000 1000000
Time (tick)

a1

a2

a3

a4

R
em

ai
n
in

g
 d

ir
t

in
 R

A
s

0

10

20

30

40

50

60

70

80

0 200000 400000 600000 800000 1000000
Time (tick)

a1

a2

a3

a4

R
em

ai
n
in

g
 d

ir
t

in
 R

A
s

(b) ePBP (Env. 2)

(a) Balloon
 method [9] (Env. 2)

Figure 4.5: Remaining dirt in |V i
t | in Exp. 1

The main reason is that when they charged (maximally, 2700 ticks), the

amount of dirt increased, especially, in the nodes whose DAP were high.

Actually, in Env. 1, Di converged to an identical value in all experiments

below. We will show this fact in Exp. 2 in the next section because its

experimental setting was more diverse than that of Exp. 1.

4.4.2.3 Effect of Different Exploration Algorithms

In Exp. 2, we gave agents two different exploration algorithms, RE and

DDFE, described in Section 4.4.2.1; agents a1 and a2 used RE and a3 and

a4 used DDFE. The subarea near the charging bases for a1 and a4 would be

the dirtiest although RE is less effective than DDFE. In realistic situations,

the agents using a better algorithm should be allocated to the dirtier areas.

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 58

150

160

170

180

190

200

0 100000 200000 300000 400000 500000

Balloon method [9]

ePBP

Time (tick)

R
em

ai
n
in

g
 d

ir
t

in
 e

n
v
ir

o
n
m

en
t

60

80

100

120

140

160

0 100000 200000 300000 400000 500000

Balloon method [9]

ePBP

Time (tick)

R
em

ai
n
in

g
 d

ir
t

in
 e

n
v
ir

o
n
m

en
t

(a) Env. 1

(b) Env. 2

Figure 4.6: Amount of remaining dirt, D, in Exp. 2

We did not do this because we wanted to clarify the effect of the differences

in algorithms and environments on performance and RA partitioning.

Figure 4.6 is the set of graphs showing the amount of remaining dirt,

D, in Envs. 1 and 2 over time. We also listed the average value of D

between 800,000 and 1,000,000 ticks in Table 4.4. These data indicate that

the ePBP method could clean more effectively, especially in Env. 2 like

Exp. 1, than the conventional method.

We also plotted the sizes of RAs of ai with the ePBP method in

Envs. 1 and 2 in Fig. 4.7. In Env. 1, agents with the ePBP method

autonomously divided their RAs in accordance with their exploration

algorithms. In Env. 2, by adding the easy-to-dirty subareas, the tendency

was more notable; for example, a3 and a4 used the DDFE, but a3 had no

dirty subareas near its charging base, so the size of its RA became 1000

nodes approximately. In contrast, a4 had the small RA that was smaller

59 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

0

100

200

300

400

500

600

700

800

0 100000 200000 300000 400000

a1

Time (tick)

a2

a3

a4

S
iz

e
o

f
R

A
s

0

100

200

300

400

500

600

700

800

900

1000

0 100000 200000 300000 400000

a1

Time (tick)

a2

a3 a4

S
iz

e
o

f
R

A
s

(a) Size of RAs (ePBP) in Env. 1

(b) Size of RAs (ePBP) in Env. 2

Figure 4.7: Sizes of RAs, |V i
t |, in Exp. 2

than a2’s RA. The graphs in Fig. 4.8 show the amount of remaining dirt

in RAs, Di (for i = 1, 2, 3, 4), when agents adopted the conventional

method (Fig. 4.8 (a) and (c)) and the ePBP method (Fig. 4.8 (d) and

(d)). We can find that the proposed ePBP method could clean the RAs

more evenly in both environments. Note that in Env. 2 (Fig. 4.8 (d)), the

values of D1 and D4 were relatively larger although agents tried to divide

the RAs for balanced work. This reason is identical to the case in Exp. 1;

the amount of dirt increased in the nodes whose DAP were high when

they charged. Note again that ph is 10 times larger than pm.

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 60

0

10

20

30

40

50

60

70

80

0 100000 200000 300000 400000
Time (tick)

a1 a2

a3 a4

R
em

ai
n

in
g

 d
ir

t
in

 R
A

s

0

10

20

30

40

50

60

70

80

0 100000 200000 300000 400000

Time (tick)

a1 a2

a3 a4

R
em

ai
n

in
g

 d
ir

t
in

 R
A

s
(a) Balloon method [9] (Env.1)

(b) ePBP method (Env. 1)

0

10

20

30

40

50

60

70

80

0 100000 200000 300000 400000

a1 a2

a3 a4

Time (tick)

R
em

ai
n

in
g

 d
ir

t
in

 R
A

s

(c) Balloon method [9] (Env. 2)

Conventional method

0

10

20

30

40

50

60

70

80

90

0 100000 200000 300000 400000
Time (tick)

R
em

ai
n

in
g

 d
ir

t
in

 R
A

s a1 a2

a3 a4

(d) ePBP method (Env. 2)

Figure 4.8: Remaining dirt in |V i
t | in Exp. 2

4.4.2.4 Effect of Hardware Difference

We conducted Exp. 3 to see the effect of hardware difference, more

specifically different capacities of batteries, on the sizes of RAs and on the

performance of cleaning. We assumed that a1 and a2 had the same

battery in the previous experiments, but a3 and a4 had a better (long-life)

battery that is specified as B3
max = B4

max = 1800 (and other battery

specifications k3
charge , k4

charge , B3
drain , and B4

drain are identical to other’s

batteries). Other experimental setting was identical to that of Exp. 1.

Figure 4.9 (a) and (b) shows the amount of dirt remaining in the

environments over time. The average value of D between 800,000 and

1,000,000 ticks is also listed in Table 4.4. They indicate that the ePBP

method could outperform the conventional method due to better allocations

of RAs as shown in Fig. 4.10 (a) and (b), which shows the sizes of RAs

allocated to agents, ai in Envs. 1 and 2. Figure 4.10 (a) indicates that a3

61 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

Time (tick)

R
em

ai
n
in

g
 d

ir
t

in
 e

n
v
ir

o
n
m

en
t

60

70

80

90

100

110

120

0 100000 200000 300000 400000 500000

Balloon method [9]

ePBP

Time (tick)

R
em

ai
n
in

g
 d

ir
t

in
 e

n
v
ir

o
n
m

en
t

R
em

ai
n
in

g
 d

ir
t

in
 e

n
v
ir

o
n
m

en
t

20

30

40

50

60

70

80

90

0 100000 200000 300000 400000 500000

Balloon method [9]

ePBP

(a) Env. 1

(b) Env. 2

Figure 4.9: Amount of remaining dirt, D, using conventional method
and ePBP in Exp. 3

and a4 had larger sizes of RAs than those of a1 and a2 in accordance with

their battery capacity specifications. In Env. 2, Figure 4.10 (b) exhibits

more interesting curves: until 5,000 ticks, the sizes of RAs were similar to

those in Env. 1. After that, because the agents began to include the dirtier

subareas in their RAs and to learn the DAPs, agents changed the sizes of

their RAs by reflecting the environment and the battery capacities shortly.

Thus, the RA of a4, for example, became smaller although it has better

battery, and conversely, the size of a2’s RA became larger. Note again that

ph is 10 times larger than pm.

Figure 4.11 (a) and (b) shows the amount of remaining dirt in RAs in

Env. 2. We omitted the graphs in Env. 1 but found that the ePBP method

could keep clean uniformly in Env. 1 due to the balanced work allocations.

It also made the difference in remaining dirt between RAs smaller in Env. 2

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 62

0

100

200

300

400

500

600

700

800

0 100000 200000 300000 400000

a1

a2

a3

a4

Time (tick)

S
iz

e
o

f
R

A
s

0

200

400

600

800

1000

1200

0 100000 200000 300000 400000

a2a1

a3 a4

Time (tick)

S
iz

e
o

f
R

A
s

(a) Env. 1

(b) Env. 2

Figure 4.10: Sizes of RAs, |V i
t |, in Exp. 3

(Fig. 4.11 (a) and (b)); however, there are still differences between them

because the difference was caused by the increase of dirt in the easy-to-dirty

subarea during battery charge.

4.4.2.5 Balanced RA Allocations with Obstacles

In Exp. 4, we investigated how existence of obstacles and their shapes

affected their sizes of RAs. For this purpose, we put three obstacles into

Envs. 1 and 2 with different shapes, including square, rectangular and E-

shape, as shown in Fig. 4.12. These environments are referred to as Env. 3

and Env. 4, respectively. We add the E-shaped obstacle since it is slightly

complicated and some extra time is required to clean its neighbors. The

square obstacle is specified by (−18,−3) and (−13, 2), while the rectangular

63 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

0

10

20

30

40

50

0 100000 200000 300000 400000
Time (tick)

R
em

ai
n

in
g

 d
ir

t
in

 R
A

s a1 a2

a3

0

10

20

30

40

50

0 100000 200000 300000 400000

a4

a1 a2

a3 a4

R
em

ai
n

in
g

 d
ir

t
in

 R
A

s

(a) Balloon method [9] (Env. 2)

(b) ePBP (Env. 2)

Time (tick)

Figure 4.11: Remaining dirt in |V i
t | in Exp. 3

is specified by (13,−6) and (18, 3). The size and location of the E-shape

obstacle is shown in Fig. 4.12. Note that the rectangular obstacle partly

overlapped the dirtier subarea whose DAP is pm.

When a number of obstacles exist in the environment, we could

observe the slightly different phenomenon. Figure 4.13 presents how

remaining dirt, D, varied overtime (until 1,000,000 ticks) in Envs. 3 and

4. We also listed the improvement ratios of D between 800,000 and

1,000,000 ticks in Table 4.4. Figure 4.13 and Table 4.4 indicate that the

ePBP method left slightly more dirt in Env. 3 than the conventional

method as in Exp. 1, although the ePBP outperformed the conventional

method in Env. 4. Because Env. 3 is uniform except the three obstacles

which hindered for the learning of the DAPs, the ePBP could not learn

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 64

-25

-25

25

25

Environment 3 Environment 4

-2255

-2255

2255

2255

Environment 3 Environment 4

(-7, -19)

(-1, -13)
(6, -11)

Figure 4.12: Experimental environments

the DAP values efficiently. Figure 4.13 also shows that the values of D

almost converged around 5,000 ticks. However, if we look at Fig. 4.13 (a)

and (b) more carefully, the values of D decreased very slowly after that.

Figure 4.14 represents the size of RAs of agent ai in both Envs. 3

and 4 using our proposed method. Note that the sizes of RAs excluded

the nodes occupied by obstacles. Figure 4.14 (a) indicates that agents

autonomously divided the areas on the basis of only the existence and the

shapes of the obstacles since Env. 3 is uniform. For example, a4 had the

E-shaped obstacle that is more complex than others, and it took more ticks

to reach the areas inside the E-shared obstacle. This results in the smaller

a4’s RA than others. The RA of a2 was also smaller because it had the

rectangular obstacle which took slightly longer time to reach the nodes in

the opposite side of the rectangle from the a2’s base, v2base . This situation

is also similar for a1 but the obstacle near v1base was smaller, so the RA of

a1 was relatively larger.

65 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

50

70

90

110

130

150

0 250000 500000 750000 1000000

R
em

ai
n

in
g

 d
ir

t i
n

 e
n

v
ir

o
n

m
en

t

Time (tick)

(b) Env. 4

Balloon method [9]

ePBP

110

120

130

140

150

160

170

180

0 250000 500000 750000 1000000

R
em

ai
n

in
g

 d
ir

t i
n

 e
n

v
ir

o
n

m
en

t

Time (tick)

(a) Env. 3

Balloon method [9]

ePBP

Figure 4.13: Amount of remaining dirt, D, in Exp. 4

On the other hand, because Env. 4 has a number of easy-to-dirty

subareas, the area partition reflected both the obstacles and the

characteristics of the environment. Figure 4.14 (b) indicates that because

a4 had both the E-shape obstacle and the easy-to-dirty subarea near the

charging base, its RA was the smallest (about 400). In addition, the RA

of a3 was the largest (around 860), for there was neither easy-to-dirty

subarea nor obstacles nearby its charging base. Of course, agents with the

conventional method have equal-size RAs, thus the RA including the

complex-shaped obstacle and easy-to-dirty region tended to have more

remaining pieces of dirt.

Figure 4.15 (a) and (b) represents the amount of dirt left in the RAs

in Env. 4 using the conventional and the proposed methods, respectively.

Fig. 4.15 (a) indicates that the differences in the amount of remaining dirt

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 66

0

100

200

300

400

500

600

700

800

900

1000

0 250000 500000 750000 1000000

S
iz

e
o

f
R

A
s

Elapsed time (tick)

(a) ePBP method (Env. 3)

0

100

200

300

400

500

600

700

800

900

1000

0 250000 500000 750000 1000000

S
iz

e
o

f
R

A
s

Elapsed time (tick)

(b) ePBP method (Env. 4)

a1 a2

a3 a4

a1 a2

a3 a4

Figure 4.14: Sizes of RAs, |V i
t |, in Exp. 4

in RAs, Di (i = 1, 2, 3, 4), were large but by using the proposed method,

we can see from Fig. 4.15 (b) that agents could keep the values of Di closer.

This result shows that our proposed method could vacuum dirt in a more

balanced manner.

We can observe two phenomena different from other experiments.

First, if we compare the results of a1 and a4 in Figs. 4.14 (b) and 4.15 (b),

we can see that the size of a4’s RA was smaller but the a1’s RA was

dirtier. This indicates that because a4 had E-shaped obstacle, a1 cleaned

the dirty subarea between v1base and v4base more than a4.

Second, Fig. 4.14 obviously indicates that it took longer time to

converge the sizes of RAs. We can consider two reasons for this (see also

Fig. 4.4). First, agents required more time to reach and thereby learn the

DAPs of the regions in the opposite side of obstacles, especially another

67 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

0

10

20

30

40

50

60

70

80

0 250000 500000 750000 1000000

R
em

ai
n

in
g

 d
ir

t i
n

 R
A

s

Time (tick)

(b) ePBP method (Env. 4)

a1 a2

a3 a4

0

10

20

30

40

50

60

70

80

0 250000 500000 750000 1000000

R
em

ai
n

in
g

 d
ir

t i
n

 R
A

s

Time (tick)

(a) Balloon method [9] (Env. 4)

a1 a2

a3 a4

Figure 4.15: Remaining dirt in |V i
t | in Exp. 4

side of the E-shaped obstacle. In addition, the exploring algorithm used in

this experiment was too simple to clean effectively such a complex region.

Second, the existence of obstacles let the speed of expansion of RAs

slower because agents first try to expand them to the nearest nodes. This

discussion suggests the limitation of the proposed method; i.e., we have to

improve the learning speed, and we will address this issue next time.

How environment is partitioned is shown in Fig. 4.16. Note that we

selected this result of partitioning randomly from 100 experimental trials we

conducted, and we could see that other partitioning looked similar. We can

see in Fig. 4.16 that a4 had the smallest RA because an E-shape obstacle

is next to its charging base, and the dirty area whose probability is ph is

also in its RA. Particularly, this obstacle made the cleaning difficult, and

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 68

Figure 4.16: Shape of RA in Env. 4

a4 needed to spend longer time. Thus, a4 decreased its RA. However, the

RA of a3 was the biggest because there is no obstacle nearby its charging

base nor the dirty areas.

4.4.2.6 Discussion

From the results of our experiments, we can say that the proposed ePBP

method can effectively partition the area in accordance with the

differences in the environment and the performances of the agents in a

cooperative cleaning task. The agents that: (a) use more efficient

algorithms, (2) have high-capacity batteries, and/or (3) are deployed in

regions that are relatively simpler and cleaner can handle larger areas, and

thus, they try to expand their RAs by acquiring nodes from busier agents.

Furthermore, although the ePBP method does not assume the information

of dirty areas, i.e., the values of DAPs , it exhibits the performance

comparable to the PBP [44]. However, a few things need to be considered.

The first thing to consider is the effect of the parameters used.

Parameters R1, R2, and γ, which are used in Conditions (4.9) and (4.10)

specify the situations in which agents start an AET. If these parameters

69 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

are large, agents tend to expand their RAs only after they have

sufficiently cleaned their current RAs. That is, they are conservative

about expanding their RAs even if the adjacent agents lack the

performance needed to clean their areas. If these parameters are small,

the agents tend to start an AET even before their current RAs have been

sufficiently cleaned, so AETs are started more frequently. This can result

in frequent meaningless AETs. Parameter kinc controls the number of

nodes acquired in a single AET, and parameter kavoid controls the number

of fruitless AETs in which agents try to extend their RA towards the

expense of agents with high expansion powers. The trade-off mentioned

here is similar to the explore-or-exploit dilemma that occurs with learning

algorithms. We think that the learning is needed to decide the values of

these parameters: This is left to our future work.

Finally, as shown in Exp. 4, the convergence became slower when the

environment had a number of obstacles. When its shape was complex, like

the E-shaped obstacle, in particular, agents could rarely reach recessed

areas inside the complex obstacle due to a number of reasons, and this

resulted in the inefficient learning. First, the exploring algorithm used in

our experiments was so simple to explore such recessed areas. Second,

more importantly, agents had no information about the DAP and initially

assumed that such recessed areas were not so dirty, so there were no

motives to move there. For example, if the recessed areas were

easy-to-dirty, agents gradually learned it and visited there more often.

However, in our experiment, the recessed areas were not easy to be dirty.

This is also another issue that we should address in the future.

By using area expansion trial (AET), agents can adaptively expand

their RAs. If the room is large, agents can expand their RA rapidly by

adjusting the parameters used in the AET strategy. However, we cannot

decide the maximum size of the cleaning area because it depends on the

specifications and the number of agents. Note that most of the

computational cost in our proposed method occurs in the calculation of

the expansion power, and is O(m), where m is the size of RA.

Our proposed method could partition the area/environment fairly and

effectively by taking into account the characteristics of the environment and

the capability of each agent. However, some additional issues such as map

generation, path planning, identifying agents’ locations, collision/obstacle

4. Area Partition for Multi-Agent Continuous Cooperative Tasks 70

avoidance, compensation for imperfect communication and how to identify

the appropriate number of agents for efficient cleaning exist for the real

applications of cleaning/sweeping domains. In particular, although the

appropriate number of agents depends on the agent’s specifications, it is

important to introduce some mechanism, which contribute both efficiency

in the cleaning and energy saving, to decide the appropriate number of the

cleaning robots. For example, if the room is very dirty, then the number of

agents should be increased. Yet, if some agents are redundant, the number

of agents should be reduced by improving their specifications. This issue

should be solved and is our next future work.

In addition, when an area is connected with a very narrow path (e.g.,

the room with a small door/gate whose width is 1, through which only

one agent can pass), agents cannot partition the whole area in a balanced

manner. This is because the whole space in the room will be covered by

only one agent whose base is close to the door, while another agent cannot;

if the room is very large, the agent that is responsible for it will have to

cover the whole room alone, leading to unbalanced task division between

agents. This is one limitation of our work, yet we will extend our method

to overcome this issue.

Our work is not restricted to only the cleaning application. We can

apply it to other real-world applications such as the security patrolling.

Agents in this problem domain must visit/monitor locations in environment

at different frequencies. For instance, continuous cleaning and security

patrolling agents have to control robots so that they frequently visit regions

that easily accumulate dirt and those at high security levels. Thus, the

cleaning task is just an example for our experiments described in Section

4.4.

4.5 Summary

We have introduced a decentralized area partitioning method for cleaning

and patrolling tasks. This method tries to uniformly keep clean/secure

the given environment by allocating areas of responsibility in accordance

with the characteristics of the environment and the performance of the

exploration algorithms. We first modeled the environment, the agents,

71 4. Area Partition for Multi-Agent Continuous Cooperative Tasks

and the problem addressed here. Then, we explained the proposed

method in which agents try to expand their responsible areas and

negotiate with adjacent agents to decide which agents should clean the

identified boundary nodes while they learn what areas are easy to

accumulate dirt. Experimental results showed that our proposed method

can fairly and effectively divide an area into subareas (responsible areas)

by taking into account the efficiency and capability of each agent and the

environmental characteristics. Finally, unbalanced tasks are resolved, and

the tasks for agents are completely done in a more balanced and efficient

manner.

We mainly focused on the cleanliness of floor whose purpose is to

minimize the amount of remaining dirt left in the whole environment after

each cleaning. We think that energy consumption of the cleaning robot is

important, but it has not been considered yet and must be related with the

appropriate control of the number of agents and their operating time.

We can consider a number of future work to make our method practical

as discussed in Section 4.4.2.6. Although applying our method to a new

room relies on other methods to create the map of environment as discussed

in Section 3.1, we believe that combining our method and a map creation

seems better for actual application. Additionally, we plan to find a way

to appropriately control the parameter values to enable more autonomous

and intelligent activities and to speed up the convergence.

Chapter 5

Graph-Based Area

Partitioning Method for

Multi-Agent Patrolling Tasks

5.1 Introduction

Continuing advancement in the field of autonomous mobile robots has

been apparent within the last few decades. The patrolling problem

with a team of agents particularly has gained much attention. Patrolling

refers to the act of continuously moving around and visiting the relevant

areas or important points of an environment, with some regularity/at

regular intervals, in order to protect, navigate, monitor or supervise it. A

group of agents is usually required to perform this task efficiently as

multi-robot systems are generally believed to hold a number of advantages

over the single-robot ones. The ability of multi-robot system in providing

solutions for real-world applications and dealing with task complexities

has motivated and made many people prefer developing this system to

developing a single-robot system [28].

Multi-agent (multi-robot) patrolling, however, is not limited to

patrolling real-world areas, yet they can be found in applications on

several domains, such as continuous sweeping, security patrolling,

surveillance systems, network security systems and games. In other words,

patrolling can be beneficial in any domain characterized by the need of

72

73 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

systematically visiting a set of predefined points [73]. For example, in

many cases of real police works, there are services with human such as

electronic security services [1]. The benefits of those systems are the

cost-effectiveness against labor costs, and because it is monitored by

sensors, visual overlook and human error are less likely to occur [86].

However, most of current studies assume that the frequency of visit to

each node/location is uniform, yet in the realistic applications, the

frequencies of visit differ; for example, in security patrolling, each location

has different visitation requirement or risk status according to the

required security level.

We divide multi-agent patrolling task into three steps: how to partition

the work into a number of sub-tasks, how to allocate the individual sub-

task to one of the agents and how to select the visiting sequence for each

agent. We call them the partition, allocation and sequencing problems,

respectively. In this work, we assume homogeneous agents that have the

same capability and use the same algorithms. This assumption makes the

allocation problem simple, and thus, we only consider the algorithms for

partitioning and sequencing. The combination of the partition algorithm

and the sequencing algorithm is referred as a strategy.

In this work, we will model the problem of patrolling as a problem of

visiting vertices in a graph with visitation requirement by dividing it into

a number of clusters. The visitation requirement of a location (vertex)

refers to the number of times or how often a patroller agent is required to

visit/patrol it in a certain interval of time. Then, after clustering nodes in

this graph, each agent is responsible for patrolling the allocated cluster,

and its nodes must be visited to meet the visitation requirement, namely

frequency of visit1. In the partitioning step, we applied k-means based

algorithm as a clustering algorithm by modifying its objective function

and the initialization of centroids so as to make it fit to our problem. Our

goal in this step is to cluster a given graph so that the potential workloads

of individual clusters are balanced, which means trying to balance the

workload amongst all agents. Moreover, the sequencing step addressed

how to select the route (sequence of nodes) for each agent in its allocated

1The words visitation requirement and frequency of visit have the same meaning
in this context. For the sake of clarity and specification, we refer to the visitation
requirement as the frequency of visit.

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 74

cluster with a minimized cost. We used the simulated annealing (SA) here

as an algorithm to find the sequences of nodes because our problem is

similar to the multiple traveling salesman problem (mTSP), which is a

generalization of the well-known traveling salesman problem (TSP) as

mentioned in [10], and SA is often used to find the acceptable solutions

due to the fact that SA is considered to be a flexible meta-heuristic

method for solving a variety of combinatorial optimization problems. The

difference between our problem and mTSP is that in mTSP, a number of

cities have to be visited by m-salesman whose objective is to find m tours

with minimum total travel, where all the cities must be visited exactly

once, while in our problem, all the locations in a patrolled area must be

visited to meet the visitation requirement. We believe that our model of

partitioning and sequencing with the frequency of visit to each node is

more fit to realistic environment.

5.2 Problem Formulation

This study aims at proposing solutions for muti-agent patrolling under

visitation requirement constraints, namely multi-agent frequency-based

patrolling problem2, by trying to balance the workload amongst all

patroller agents and then minimizing the cost for patrolling. First, we

formulate our problem in this section.

Let G = (V,E) be a complete graph, where V = {v1, v2, . . . , vn} is

a set of nodes, and E = {(vi, vj) : vi, vj ∈ V, i ̸= j} is a set of edges.

The patrolled area is described as a graph G, where a location vi ∈ V is

represented by its (x, y) coordinates in the 2D plane, and thus, E contains
n×(n−1)

2 edges. In our patrolling problem, a node represents a location to

be patrolled/visited, and an edge represents a path between nodes along

which agents move. Let A = {1, 2, . . . ,m} be a set of agents, and m = |A|
denotes the number of agents patrolling graph G, where m < |V |.

Each edge in G has its associated cost which is a traveling distance.

Because nodes in G are points of R2, the distance between a pair of nodes is

the Euclidean distance between two spatial coordinates vi ∈ V and vj ∈ V

2This refers to any patrolling problem by a group of agents that take into account
the visitation requirement of each individual location in the real-world environment.

75 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

denoted by ∥vi − vj∥ =
√

(xi − xj)2 + (yi − yj)2, where (xi, yi) and (xj, yj)

are the coordinates of nodes vi and vj respectively.

In the general multi-agent patrolling problem, a team of m agents

patrols an area represented by a complete graph, G = (V,E). Thus, there

are n nodes to be patrolled and |E| possible paths for m agents to move.

Definition 5.1. Each node (location) in graph G has its associated

visitation requirement, simply called frequency of visit. Let f(vi) ∈ Z+ be

the frequency of visit to each location in G. Agents have to visit node vi
at least f(vi) times in a given interval of time.

Definition 5.2. A graph C is a subgraph of a graph G if its vertex set

V (C) is a subset of the vertex set V (G), that is V (C) ⊆ V (G), and its edge

set E(C) is a subset of the edge set E(G), that is E(C) ⊆ E(G).

Definition 5.3. Let route s = ⟨v1, v2, . . . , vℓ⟩, ∀vi ∈ V be a sequence of

nodes each agent has to visit each cluster.

Then, the length of route s is defined and denoted by:

ℓen(s) =
ℓ−1∑

i=1

∥vi − vi+1∥ (5.1)

In the patrolling process, an agent tries to find a route with a minimum

length. The route is defined as the selected path in a subgraph C, which is

allocated to an agent to patrol.

Definition 5.4. Multi-agent frequency-based patrolling problem

(MAFPP) is specified by (G, f,A), where G = (V,E) is a graph,

f : V → Z+ is the frequency of visit, and A is the set of m agents. The

goal is to find m (connected) subgraphs, C1, . . . , Cm, of G and the routes

in all subgraphs, such that each agent has to visit/patrol a node in each

subgraph based on the real-world visitation requirement of each location

in a balanced manner and that the length of route in each subgraph is

minimized.

The MAFPP consists of two main steps – graph partitioning and sub-

graph patrolling. Firstly, we partition a patrolled area represented by a

graph G into k disjoint clusters (subgraphs), C = {C1, . . . , Cm}, and then

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 76

allocate cluster Ci to agent i. The main goal is to cluster G based on the

required frequency of visit, where each node is visited at least f(vi) times

by taking into account the condition from Eq. 5.4, in a balanced manner,

such that the expected workload of each cluster is not much different from

one another.

Let WCs be an expected workload of each agent in its allocated cluster,

which is defined by:

WCs =
∑

vi,vj∈Cs

f(vi)∥vi − vj∥
|Cs|− 1

, (5.2)

where |Cs| is the number of nodes in each cluster. Intuitively, the expected

workload here refers to an estimated amount of work a patroller agent has to

do if it generates the shortest (or near-shortest) path, which is the estimated

total cost/length agent i has to patrol in its allocated cluster/region, not the

actual cost. We used this as a metric to evaluate the clustering performance

of our proposed method in Section 5.3. If the value of WCs for all patroller

agents are not much different from one another, we can conclude that the

overall workload amongst all agents is considered to be balanced.

After obtaining clusters from the first step, the next goal is to generate

a route for each agent to patrol in its allocated cluster based on the required

frequency of visit to each node.

For all agents in A, let O(s, vi) be the number of occurrence of node

vi in route s. Thus, the following condition is satisfied.

⎧
⎨

⎩
O(s, vi) > 0, if vi ∈ s

O(s, vi) = 0, otherwise
(5.3)

Then, for ∀vi ∈ Ck, the route sk must satisfy the following condition:

O(sk, vi) ≥ f(vi), (5.4)

where sk is the generated route in Ck for agent k, because clusters

(C1, . . . , Cm) are disjoint.

Let S = {s1, . . . , sm} be a set of routes, and thus m routes must be

generated for all m agents to patrol G. Then, the multi-agent frequency-

based patrolling problem is to find m routes, such that each node is visited

at least f(vi) times and that the length of total routes is the shortest. Thus,

77 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

the objective function, R, is to minimize the sum of all routes, denoted by:

R(s1, . . . , sm) = min
m∑

k=1

ℓen(sk)

subject to:
m∑

k=1

O(sk, vi) ≥ f(vi), ∀vi ∈ V

(5.5)

Because Ck is disjoint and independent, and the shortest route in Ck is

generated independently so that it meets the requirement of frequency of

visit, the cost R(s1, . . . , sm) in Eq. 5.5 is identical to the sum of the cost of

routes, (s1, . . . , sm). Therefore, our goal is to minimize:

R(s1, . . . , sm) =
m∑

k=1

min ℓen(sk)

subject to:
m∑

k=1

O(sk, vi) ≥ f(vi), ∀vi ∈ V

(5.6)

5.3 Proposed Method

Our proposed method is divided into two main steps: graph partitioning

and sub-graph patrolling. As mentioned in Section 5.2, because we

improved the well-known unsupervised traditional k-means clustering

algorithm by taking into account the non-uniform visitation requirement

for each location, we called our proposed method an improved

frequency-based k-means, namely IF-k-means.

5.3.1 Graph Partitioning

Clustering refers to the process of partitioning or grouping a given set of

patterns into disjoint clusters, C = {C1, C2, . . . , Cm}. This step describes

how agent could cluster a given graph, G, by taking into account the

different frequency of visit to each node as well as balancing the workload

of each cluster. We implemented k-means based clustering algorithm by

modifying its objective function and centroids initialization so as to make

it suit our problem. Each data point is interpreted as a node in a

complete graph G, where V = {v1, v2, . . . , vn} is a set of nodes as

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 78

mentioned in Section 5.2. The main goal is to partition V into m disjoint

clusters by taking into account the required frequency of visit to each

node. We denote C = {C1, C2, . . . , Cm} as its set of clusters, and

c = {c1, c2, . . . , cm} as a set of corresponding centroids.

Simply speaking, k-means clustering is an algorithm to classify or to

group the objects based on attributes/features into m number of groups,

where m is a positive integer number. The grouping is done by minimizing

the sum of square of distances between data points and the corresponding

cluster centroids [60].

The traditional k-means clustering algorithm aims at minimizing the

following objective function, which is a squared error function denoted by:

J = min
n∑

i=1

m∑

s=1

∑

vi∈Cs

∥vi − cs∥2

subject to: C1 ∪ . . . ∪ Cm = C

Ci ∩ Cj = ∅, ∀ 1 ≤ i, j ≤ m, i ̸= j,

where cs =
1

|Cs|
∑

vi∈Cs

vi ,

m is the number of clusters, and cs is the corresponding cluster centroid.

We modified the objective function of the above traditional k-means

so as to apply our problem framework with frequency of visit. This method

is called IF-k-means, and its objective function is denoted by:

Q = min
n∑

i=1

m∑

s=1

∑

vi∈Cs

f(vi)∥vi − cs∥2

subject to: C1 ∪ . . . ∪ Cm = C

Ci ∩ Cj = ∅, ∀ 1 ≤ i, j ≤ m, i ̸= j,
(5.7)

where cs =

∑
vi∈Cs

vi · f(vi)∑
vi∈Cs

f(vi)
,

79 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

f(vi) is the frequency of visit to node vi, and ∥vi − cs∥ is the Euclidean

distance between vi and cs.

The aboved objective function, Q, indicates that we are trying to

form clusters which produce the shortest distance (from nodes to the

centroid of each cluster), and at the same time we consider the frequency

of visit f(vi) in Q. Moreover, we incorporate f(vi) in the centroid

calculation, cs, to generate the better centroid placement for a more

balanced workload division since centroid should be ideally located near

nodes with high frequency of visit to minimize the total distance, and a

cluster consisting of more nodes with high frequency of visit tends to be

smaller in size.

The traditional k-means method has been shown to be effective in

producing good clustering results for many practical applications. Although

it is one of the most well-known clustering algorithm and is widely used

in various applications, one of its drawbacks is the highly sensitive to the

selection of the initial centroids, which means the result of clustering highly

depends on the selection of initial centroids. Therefore, proper selection of

initial centroids is necessary for a better clustering.

Thus, instead of placing the initial centroids randomly as in the

traditional k-means, we place them on the nodes with the highest

frequency of visit, f(vi), because a node with higher frequency of visit

should have a shorter distance from its corresponding centroid than the

node with lower frequency of visit to make the cluster balanced. By doing

so, the required time for generating balanced clusters can also be reduced.

Moreover, even if the nodes with high frequency of visit huddle together,

we are still able to apply this idea as the program will then relocate the

position of centroids accordingly based on the modified centroids function,

and the clusters should remain balanced.

The difference between our IF-k-means and the classical k-means is

that we incorporate f(vi) to both objective function and its constraint of

the classical k-means in order to make the cluster balanced. Adding f(vi) to

the objective function of the classical k-means makes the distance between

node vi and centroid cs change causing the different size of clusters based

on the visiting frequency to each node. It is also important to incorporate

f(vi) into the calculation of the centroids to generate the weighted centroids

function for producing a better centroids location for each cluster.

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 80

By implementing our IF-k-means, the clusters having more nodes

with high frequency of visit tend to have smaller size comparing to those

with lower frequency of visit. At each step of the clustering, the centroids

move close to high-frequency nodes after the repeated calculation using

our modified centroids function. Thus, without incorporating f(vi) to

both objective function and its constraint, the inefficient clustering would

happen due to the inefficient centroids placement.

Let Tdiff be the difference in workload among all agents, where we

define Tdiff as follows:

Tdiff =
1

m(m− 1)

m∑

i=1

m∑

j=1

|WCi −WCj |, i ̸= j (5.8)

Then, we define that the workload among all agents is considered to be

balanced if it satisfies the following condition:

Tdiff ≤ M, (5.9)

where M ∈ R+ is not so large positive number.

In this partitioning process of our proposed work, we calculated the

expected workload of each cluster, WCs , by using Eq. 5.2. Then, we

computed the difference in each workload, Tdiff , by implementing the

formula in Eq. 5.8. The process of our proposed IF-k-means algorithm is

described as follows, and the pseudocode of how the algorithm works is

illustrated in Algorithm 5.3.1.

(1) Sort all nodes in a descending order based on their frequencies of visit,

and then add them into an array H.

(2) Randomly select k nodes fromH consecutively, where k is the number

of cluster.

(3) Place k initial centroids on the selected k nodes in G.

(4) Assign each node to the cluster that has the closest centroid, and then

recalculate the centroids.

(5) Repeat step (4) until the centroids no longer move.

81 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

(6) Calculate the expected workload WCs and the difference in workload

Tdiff for each cluster using Eq. 5.2 and Eq. 5.8, respectively.

(6.1) If the value of Tdiff satisfies the condition from Eq. 5.9 where

Tdiff ≤ M , the clusters are accepted.

(6.2) Otherwise, go to step (2) again.

Algorithm 5.3.1: Pseudocode for improved frequency-

based k-means (IF-k-means)

Input : G = (V,E) and f(vi)

k (number of clusters), where k = |A|
Output: C = {C1, C2, . . . , Ck}

1: Sort V in a descending order based on the f(vi) of each node

2: Add them into an array H

3: time = 1

4: Select k nodes from H[k(time− 1) + 1] to H[time ∗ k]
5: Place k initial centroids on selected k nodes in G

6: repeat

7: Assign each node to the cluster having the closest

centroid

8: Recalculate(centroids)

9: until centroids no longer move

10: foreach cluster do

11: Calculate expected workload, WCs using Eq. 5.2

12: Calculate difference in workload, Tdiff using Eq. 5.8

13: if Tdiff satisfies condition from Eq. 5.9 then

14: Accept(clusters)

15: else

16: time = time+ 1

17: Go to step(4)

18: end

19: end

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 82

Algorithm 5.3.2: Pseudocode for constructing an initial

solution in SA

Output: S0 = {vk1 , vk2 , . . . , vkL} based on condition (5.4), such

that ki ̸= ki+1

// function distMatrix return Euclidean distance between two

nodes.

// ki is the index of node vi in cluster Ck.

// O(S0, curNode) is an occurence of new curNode in S0.

1: S0 = ∅
2: Select a current node, curNode, randomly from V

3: Add curNode into S0

4: while (S0 is not filled up) and (V ̸= ∅) do
5: Find the shortest distance from curNode to another node in

V :

shortestDist = min(distMatrix[curNode][j] for j in V)

6: curNode = distMatrix[curNode].index(shortestDist)

7: Add new curNode to S0

8: if (ki ̸= ki+1 is not satisfied) then

9: Regenerate new curNode

10: end

11: if f(vi) ≤ O(S0, curNode) ≤ 2.f(vi) then

12: Remove new curNode from V

13: end

14: end

15: return S0

5.3.2 Sub-graph Patrolling

This step presents how agent selected the best route for patrolling in its

allocated sub-region with the shortest length by taking into account the

required frequency of visit to each location. The goal of this step aims at

finding the shortest route for each patroller agent in its allocated cluster

with a semi-optimal solution. Because our multi-agent frequency-based

patrolling problem is considered to be one of the combinatorial optimization

problems and our main purpose is to partition a given area so as to balance

83 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

the workload amongst all patroller agents, the optimal solution for the cost

of visiting all nodes with their required frequency of visit is difficult due

to the limited computational time, and thus, a semi-optimal solution is

accepted in our work as a reasonable solution.

Algorithm 5.3.3: Pseudocode for route generation using SA

Input : Initial temperature, T0 = 1e+ 10

Final temperature, Tf = 0.0001

Cooling parameter, α = 0.95

Output: Sbest

1: Obtain initial solution S0 = {vk1 , vk2 , . . . , vkL} from Algorithm

5.3.2

2: Set initial temperature: T = T0

3: Cost function C(S) is defined as ℓen(s) in Eq. 5.1, where

C(S) = ℓen(s)

4: Let current solution Scur = S0 whose cost is C(Scur), and the

best solution Sbest = S0 whose cost is C(Sbest)

5: repeat

6: Generate new solution Snew by randomly swapping two nodes

in S0 and get its cost C(Snew)

if ki ̸= ki+1 is not satisfied then

Regenerate Snew and C(Snew)

7: end

8: Compute relative change in cost: δ = C(Snew)− C(Scur)

9: Acceptance probability: P (δ, T) = exp(−δ/T), where T > 0

10: if δ ≤ 0 or P (δ, T) > random[0, 1) then

11: Scur = Snew and C(Scur) = C(Snew)

12: else if C(Snew) ≤ C(Sbest) then

13: Sbest = Snew and C(Sbest) = C(Snew)

14: end

15: Compute new temperature: T = α× T

16: until T < Tf

17: return Sbest, C(Sbest)

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 84

We use a simulated annealing here as a sequencing algorithm to find

the shortest route, si, for patrolling. As our problem is a multi-agent

patrolling problem, m routes will be generated in this step where m = |A|.
However, in the multiple traveling salesman problem, in order to solve it

in an easier and simpler way, a heuristic is formed to transform mTSP to

TSP and then optimize the tour of each individual salesman. Because our

problem is similar to the mTSP as mentioned in Section 5.1, we did the

same by applying SA to each cluster to find the best route for each

patroller agent in order to make the problem simpler.

Although the SA algorithm has been widely used in mTSP, we have

modified and adapted it to our model with non-uniform frequency of visit

to each node. The classical SA algorithm in mTSP generates the best

solution/route such that each node must be visited exactly once, while our

modified SA algorithm constructs the best route for each patroller agent

based on the required frequency of visit, where each node is visited at least

f(vi) times by taking into account the condition from Eq. 5.4. Furthermore,

we have also modified the process of computing an initial solution in the

SA by implementing a greedy approach instead of random approach to find

an initial feasible solution. The computation of an initial feasible solution

with the implementation of greedy strategy is described as follows, and the

pseudocode of this process is shown in Algorithm 5.3.2.

(1) Let S0 be an initial solution in SA, where S0 is initially an empty set.

(2) Randomly select a current node, curNode, from V , and add it into

S0.

(3) Do the following steps if the number of element in S0 is not equal to

the number of node in V , and V has not yet become an empty set.

(3.1) Find the shortest distance from the current node to another node

in V .

(3.2) Then, the new curNode is the one that has the shortest distance

from the old curNode.

(3.3) Add the new curNode into S0.

85 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

(3.4) If the new curNode that has been added into S0 is redundant

with the previous one, regenerate the new curNode by going to

step (3.1) again.

(3.5) If the occurence of curNode in S0 is greater than or equal to its

associated f(vi) and is less than or equal to its associated f(vi)

multiplied by 2, remove the new curNode from V .

The process of how we applied SA to our model with non-uniform

frequency of visit to find the shortest route is described as follows, and its

process in pseudocode is illustrated in Algorithm 5.3.3.

(1) The initial solution S0 = {vk1 , vk2 , . . . , vkL} is obtained from

Algorithm 5.3.2

(2) Set the initial temperature, T = T0, where T0 = 1e+ 10

(3) Set the final temperature, Tf = 0.0001 and the cooling parameter,

α = 0.95

(4) Let Scur = S0 and Sbest = S0 be the current solution and the best

solution, respectively, whose cost can be calculated using Eq. 5.1 and

are represented by C(Scur) and C(Sbest), respectively.

(5) Repeat the following steps until the stopping criterion is met (when

the minimum temperature is reached).

(5.1) Generate the new solution, Snew, by randomly swapping two

nodes in S0 and compute its cost, C(Snew).

(5.2) If the two swapped nodes are redundant, go to step (6) again to

regenerate Snew and recompute C(Snew).

(5.3) Compute the relative change in cost, δ, which is the difference

between the cost of new solution and current solution.

(5.4) If δ is less than or equal to zero, the new solution is accepted as

the best solution. Otherwise, the new solution is accepted based

on the acceptance probability function.

(5.5) Decrease the temperature.

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 86

Figure 5.1: Clustering by proposed method with n = 400,m = 6

5.4 Experimental Evaluation

The proposed algorithms have been implemented in Python 3.5. All

computational results are the averages of 20 trials, and are obtained on a

personal computer with Intel(R) Core(TM) i5-6200U CPU @2.30 GHz

processor and 8GB RAM running on Windows 10 64-bit. To run

experiments, we generated the coordinates of all nodes whose ranges are

x ∈ [0, 250] and y ∈ [0, 250] and their corresponding frequencies of visit

f(vi), which are randomly distributed in the Euclidean space. We have

tested our proposed method with different number of nodes and number

of agents to see how well our algorithms can work when the number of

nodes and agents increase respectively. In this work, we had run our

experiments with 5 different number of nodes, n = |V | is 200, 400, 600,

800 and 1000. We had also tried these with different number of agents,

m = |A| is 4, 6, 8 and 10. Moreover, we set M = 10 in our experiments.

87 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

From the best of our knowledge, if M is too small, the solution may not

exist, and if it is too large, the solution is not acceptable because agents’

works are imbalanced. Therefore, we have to define M according to the

problem setting.

After running 20 experiments, we randomly plot the result of one

experiment as shown in Fig. 5.1. Figure 5.1 presents the result of that plot

Table 5.1: Numerical results with n = 400 and m = {4, 6, 8, 10}

400 nodes

No. of agent Agent Workload Cost of Route Difference
(m) (A) (WCs) (ℓen(si)) (Tdiff)

4 1 14030 14039 5.66
2 14035 14046
3 14039 14048
4 14040 14049

6 1 11635 11640 4.80
2 11630 11638
3 11632 11641
4 11640 11647
5 11634 11642
6 11629 11635

8 1 9330 9341 4.96
2 9333 9342
3 9335 9340
4 9339 9345
5 9340 9351
6 9331 9343
7 9329 9335
8 9336 9344

10 1 7136 7142 5.31
2 7130 7140
3 7135 7139
4 7125 7134
5 7137 7145
6 7136 7147
7 7127 7138
8 7132 7141
9 7139 7146

10 7134 7143

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 88

among 20 plots obtained from graph clustering using our proposed IF-k-

means with n = 400 and m = 6, where the number on each node represents

its required frequency of visit. According to Fig. 5.1, we could see that the

sizes of all clusters are varied in accordance with the values of f(vi) in each

cluster. Some clusters tend to have small size due to the existence of many

values of high visiting frequency in their clusters, while others seem to have

Table 5.2: Numerical results with n = 600 and m = {4, 6, 8, 10}

600 nodes

No. of agent Agent Workload Cost of Route Difference
(m) (A) (WCs) (ℓen(si)) (Tdiff)

4 1 21230 21238 5.66
2 21236 21244
3 21240 21248
4 21232 21239

6 1 18825 18834 5.86
2 18823 18832
3 18827 18838
4 18829 18839
5 18838 18845
6 18826 18835

8 1 16530 16536 5.00
2 16537 16545
3 16531 16539
4 16529 16538
5 16535 16543
6 16540 16552
7 16532 16549
8 16528 16537

10 1 14326 14330 7.02
2 14328 14337
3 14333 14340
4 14336 14342
5 14324 14335
6 14338 14348
7 14323 14332
8 14329 14336
9 14321 14329
10 14334 14345

89 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

bigger size because there are less high frequencies of visit in their clusters

comparing to those with smaller size. This kind of phenomenon happened

because we tried to balance the workload of each cluster. We, thus, say

that our proposed clustering algorithm could effectively partition a given

graph in a balanced manner.

Table 5.3: Numerical results with n = 1000 and m = {4, 6, 8, 10}

1000 nodes

No. of agent Agent Workload Cost of Route Difference
(m) (A) (WCs) (ℓen(si)) (Tdiff)

4 1 33250 33259 6.16
2 33260 33268
3 33262 33270
4 33259 33265

6 1 30824 30834 7.40
2 30835 30840
3 30841 30849
4 30837 30848
5 30840 30851
6 30842 30853

8 1 28530 28537 5.46
2 28538 28542
3 28535 28540
4 28540 28545
5 28545 28551
6 28537 28541
7 28542 28548
8 28536 28543

10 1 26265 26273 8.02
2 26273 26278
3 26268 26276
4 26255 26266
5 26260 26269
6 26256 26264
7 26254 26262
8 26268 26275
9 26264 26273
10 26270 26281

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 90

To evaluate the effectiveness and performance of our proposed work,

the expected workload (WCs), the cost of route (ℓen(si)) in each cluster and

the difference in workload (Tdiff) are listed in Table 5.1 to 5.3. These tables

show the numerical results with the number of agents, m = {4, 6, 8, 10} for

400, 600 and 1000 nodes respectively. All these tables demonstrate that

the difference in workload always satisfied the condition in Eq. 5.9, where

Tdiff ≤ M and M = 10. Thus, if IF-k-means cannot find the route whose

Tdiff is less than 10, no solution is generated.

Furthermore, the results from all the tables also clarified that the

cost of patrolling in each cluster, ℓen(si), has the value which is not much

different from its corresponding expected workload, WCs . This means that

the sequencing algorithm in Section 5.3.2 produced a good result in term of

generating the route for patrolling and minimizing the cost of each route.

Therefore, we conclude that our proposed algorithms not only could balance

the workload amongst all agents, but also could generate the patrolling

route with a reasonable cost.

Figure 5.2: Average cost of route for each agent

91 5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks

Figure 5.3: Computation time of proposed method

In addition, Fig. 5.2 shows the average cost of route for each agent

with different number of agents (m = {4, 6, 8, 10}) and nodes

(n = {400, 600, 1000}). According to Fig. 5.2, there exist the downward

slopping trends of average route cost regardless of the number of nodes.

This implies that the average cost of route declines because the more the

number of agents are, the less the size of each agent’s RA will be.

Besides the effectiveness of performing area partition and sub-area

patrolling, we also considered the computation time as a significant factor

to demonstrate the efficiency of our proposed work. Figure 5.3 indicates

the computation time of our proposed method in second. According to

Fig. 5.3, we could observe that the computation time increased linearly

in accordance with the number of nodes and the number of agents. This

shows that the proposed algorithms could be computed in a short amount

of time, and thus, we conclude that our proposed method is computational

efficiency.

5. Graph-Based Area Partition for Multi-Agent Patrolling Tasks 92

5.5 Summary

A new frequency-based area partitioning method for balanced workload in

multi-agent patrolling systems has been presented. This proposed work

considered the non-uniform visitation requirement for each location, where

its frequency of visit is high or low depending on the level of importance

of that location. Because non-uniform visiting frequencies of all locations

could affect the quality of clustering, the main goal of our work, thus, aims

at balancing the workload of each cluster/agent so as to improve the workers

morale. Besides the balance in workload, we also believe that computational

cost plays a significant role in proving the effectiveness and computational

efficiency of the proposed work. Experimental results demonstrated that

our proposed method could effectively generate clusters of a given area

regarding the non-uniform visitation requirements in a balanced manner

and in a satisfied short amount of time.

A significant benefit of our work is the balanced task division for

multi-agent patrolling task with the consideration of the real-world

environment, where the visitation requirement of each location is not

uniform. In realisic application (i.e., security patrolling), each location to

be patrolled has different visitation requirement or risk status according

to the required security level; thus, our work is well-suited to the

real-world environment. However, we have not considered about the

minimum time interval between the visits to a node that needs frequent

patrolling, for there is a trade-off between trying to minimize the total

cost (length) of route and trying to minimize the time interval between

the visits for the frequent-visit node at the same time in this model,

where the frequency of visit is not uniform. Therefore, we believe that

incorporating the penalty function into our method will be an ideal

solution to prevent the patroller agents from visiting nodes too often or

too seldom; this will be our future work.

Chapter 6

Conclusion

6.1 Conclusion

We have presented decentralized and frequency-based

area partitioning methods for balanced workload in multi-agent

patrolling teams. Initially, we introduced a coordinated area partitioning

method by autonomous agents for continuous cooperative tasks. In this

work, we proposed an area partitioning method for cooperative cleaning

robots in the environments with obstacles and with learning to identify

the easy-to-dirty areas. Our study aims at coordination and cooperation

by multiple agents, and we discuss it using an example of the cleaning

task to be performed by multiple agents with potentially different

performances and capabilities. We then developed a method for

partitioning the target area on the basis of agents’ performances in order

to improve the overall efficiency through their balanced collective efforts.

Agents autonomously decide in a cooperative manner how the area/task

is partitioned by taking into account the characteristics of the

environment and the differences in agents ’ software capability and

hardware performance. During this partitioning process, agents also learn

the locations of obstacles and the probabilities of dirt accumulation that

express which areas that dirt tends to easily accumulate. Experimental

evaluation demonstrated that even if the agents use different algorithms

or have the batteries with different capacities resulting in different

performances, and even if the environment is not uniform such as different

93

6. Conclusion 94

locations of easy-to-dirty areas and obstacles, the proposed method can

adaptively partition the task/area among the agents with the learning of

the probabilities of dirt accumulation. Thus, agents with the proposed

method can keep the area clean evenly and effectively.

Although the aforementioned proposed work could yield better results

in term of balanced task sharing, comparing to the conventional methods

which assumed that the area is divided into equal-size subareas and/or

the environmental characteristics are given in advance, this proposed study

mainly focuses on the continuous cleaning/sweeping task which is somehow

restricted in some other real-world patrolling applications.

Therefore, we have extended our work by introducing a more general

method that can be applied to a number of realistic applications related

to patrolling context. In this work, a frequency-based multi-agent

patrolling model and its area partitioning solution method for balanced

workload has then been proposed to deal with the above restricted scope

problem as well as the real-world requirement of the visiting frequency to

each location. This proposed work considered the non-uniform visitation

requirement for each location, where its frequency of visit is high or low

depending on the level of importance of that location. We formulated the

problem of frequency-based multi-agent patrolling and proposed its

semi-optimal solution method, whose overall process consists of two steps

– graph partitioning and sub-graph patrolling. Because non-uniform

visiting frequencies of all locations could affect the quality of clustering,

the main goal of this work, thus, aims at partitioning a given area so as to

balance agents’ workload by taking into account the different visitation

requirement. Then, another goal is to generate the route for each agent to

patrol inside its allocated sub-area, such that the total cost of route is

minimized. This proposed work is useful and preferable for the realistic

environments, where the target area to be patrolled is not always uniform.

Besides the balance in workload, we also believe that computational

cost plays a significant role in confirming the effectiveness and efficiency of

the proposed work. Experimental results illustrated the effectiveness and

reasonable computational efficiency of our approach. That is, our proposed

method could effectively generate clusters of a given area regarding the non-

uniform visitation requirements in a balanced manner and in a reasonable

short amount of time.

95 6. Conclusion

6.2 Future Work

Regarding our future work, we intend to study the problem of multi-agent

patrolling systems in a more realistic environment. Moreover, we plan to

further extend our work by taking into account the corresponding minimum

time interval between the visits to a node that needs frequent patrolling.

Also, we attempt to incorporate the penalty function into our method in

order to prevent the patroller agents from visiting nodes too often or too

seldom.

We have not considered these problems in our current work, for there is

a trade-off between trying to minimize the total cost of route and trying to

minimize the time interval between the visits for the frequent-visit node at

the same time in this model, where the frequency of visit to each location is

not uniform. Therefore, the above-mentioned issues would be a good future

direction for other researchers to consider and improve their work, which

could lead to an interesting path to explore as a future research area.

Bibliography

[1] “Advantages of machine security service.” https://www.security-

law.com/security-services-act/kikai.html.

[2] Acevedo, J. J., Arrue, B. C., Diaz-Bañez, J. M., Ventura, I., Maza, I.,

and Ollero, A., “One-to-one coordination algorithm for decentralized

area partition in surveillance missions with a team of aerial robots,”

Journal of Intelligent & Robotic Systems, 74(1-2):269–285, 2014.

[3] Agmon, N. and Peleg, D., “Fault-tolerant gathering algorithms for

autonomous mobile robots,” SIAM Journal on Computing, 36(1):56–

82, 2006.

[4] Ahmadi, M. and Stone, P., “Continuous area sweeping: A

task definition and initial approach,” in Proceedings of the 12th

International Conference on Advanced Robotics (ICAR’05), pp. 316–

323. IEEE, 2005.

[5] Ahmadi, M. and Stone, P., “A multi-robot system for continuous

area sweeping tasks,” in Proceedings of the 2006 IEEE International

Conference on Robotics and Automation (ICRA’06), pp. 1724–1729.

IEEE, 2006.

[6] Alam, T., “Decentralized and nondeterministic multi-robot area

patrolling in adversarial environments,” International Journal of

Computer Applications, 156(2), 2016.

[7] Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T.,

Corruble, V., and Chevaleyre, Y., “Recent advances on multi-agent

96

patrolling,” in Brazilian Symposium on Artificial Intelligence, pp. 474–

483. Springer, 2004.

[8] Arai, T., Pagello, E., and Parker, L. E., “Advances in multi-robot

systems,” IEEE Transactions on robotics and automation, 18(5):655–

661, 2002.

[9] Bast, H. and Hert, S., “The area partitioning problem,” pp. 163–171,

2000.

[10] Bektas, T., “The multiple traveling salesman problem: an overview of

formulations and solution procedures,” Omega, 34(3):209–219, 2006.

[11] Beynier, A., “A multiagent planning approach for cooperative

patrolling with non-stationary adversaries,” International Journal on

Artificial Intelligence Tools, 26(05):1760018, 2017.

[12] Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., and

Rus, D., “Voronoi coverage of non-convex environments with a group

of networked robots,” in Proceedings of the 2010 IEEE International

Conference on Robotics and Automation (ICRA’10), pp. 4982–4989.

IEEE, 2010.

[13] Calvo, R. W. and Cordone, R., “A heuristic approach to the overnight

security service problem,” Computers & Operations Research,

30(9):1269–1287, 2003.

[14] Cao, Y. U., Fukunaga, A. S., and Kahng, A., “Cooperative mobile

robotics: Antecedents and directions,” Autonomous robots, 4(1):7–27,

1997.

[15] Cepeda, J. S., Chaimowicz, L., Soto, R., Gordillo, J. L., Alańıs-

Reyes, E. A., and Carrillo-Arce, L. C., “A behavior-based strategy

for single and multi-robot autonomous exploration,” Sensors,

12(9):12772–12797, 2012.

97

[16] Chao, I.-M., Golden, B. L., and Wasil, E. A., “A fast and effective

heuristic for the orienteering problem,” European journal of operational

research, 88(3):475–489, 1996.

[17] Chen, S., Wu, F., Shen, L., Chen, J., and Ramchurn, S. D.,

“Multi-agent patrolling under uncertainty and threats,” PLoS ONE,

10(6):e0130154, 2015.

[18] Chevaleyre, Y., “Theoretical analysis of the multi-agent patrolling

problem,” in Proceedings of the 2004 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology (IAT’04), pp. 302–308.

IEEE, 2004.

[19] Chevaleyre, Y., “The patrolling problem: theoretical and experimental

results,” Combinatorial Optimization and Theoretical Computer

Science, pp. 161–174, 2007.

[20] Chevaleyre, Y., Sempe, F., and Ramalho, G., “A theoretical analysis

of multi-agent patrolling strategies,” in Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS’04), vol. 3, pp. 1524–1525. IEEE Computer Society,

2004.

[21] Chu, H. N., Glad, A., Simonin, O., Sempe, F., Drogoul, A.,

and Charpillet, F., “Swarm approaches for the patrolling problem,

information propagation vs. pheromone evaporation,” in Proceedings

of the 19th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI’07), vol. 1, pp. 442–449. IEEE, 2007.

[22] Cortes, J., Martinez, S., and Bullo, F., “Spatially-distributed coverage

optimization and control with limited-range interactions,” ESAIM:

Control, Optimisation and Calculus of Variations, 11(4):691–719,

2005.

[23] Du, K. L. and Swamy, M. N. S., Search and optimization by

metaheuristics. Springer, 2016.

98

[24] Dudek, G., Jenkin, M. R., Milios, E., and Wilkes, D., “A taxonomy

for multi-agent robotics,” Autonomous Robots, 3(4):375–397, 1996.

[25] Dutta, A., Dasgupta, P., Baca, J., and Nelson, C., “A

bottom-up search algorithm for dynamic reformation of agent

coalitions under coalition size constraints,” in Proceedings of the

2013 IEEE/WIC/ACM International Joint Conferences on Web

Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 02,

pp. 329–336. IEEE Computer Society, 2013.

[26] Elmaliach, Y., Agmon, N., and Kaminka, G. A., “Multi-robot area

patrol under frequency constraints,” Annals of Mathematics and

Artificial Intelligence, 57(3-4):293–320, 2009.

[27] Elor, Y. and Bruckstein, A. M., “Multi-a(ge)nt graph patrolling

and partitioning,” in Proceedings of the 2009 IEEE/WIC/ACM

International Joint Conference on Web Intelligence and Intelligent

Agent Technology (WI-IAT’09), vol. 2, pp. 52–57. IEEE, 2009.

[28] Fazli, P., Davoodi, A., and Mackworth, A. K., “Multi-robot repeated

area coverage,” Autonomous robots, 34(4):251–276, 2013.

[29] Glad, A., Simonin, O., Buffet, O., and Charpillet, F., “Theoretical

study of ant-based algorithms for multi-agent patrolling,” in

Proceedings of the 18th European Conference on Artificial Intelligence

including Prestigious Applications of Intelligent Systems (PAIS 2008)-

ECAI 2008, pp. 626–630. IOS press, 2008.

[30] Granta, “Advantages and disadvantages of robotic automation.”

http://www.granta-automation.co.uk/news/advantages-and-

disadvantages-of-robotic-automation/, 2017.

[31] Hahnel, D., Burgard, W., Fox, D., and Thrun, S., “An efficient fastslam

algorithm for generating maps of large-scale cyclic environments

from raw laser range measurements,” in Proceedings of the 2003

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS’03), vol. 1, pp. 206–211. IEEE, 2003.

99

[32] Hahsler, M. and Hornik, K., “Tsp-infrastructure for the traveling

salesperson problem,” Journal of Statistical Software, 23(2):1–21, 2007.

[33] Harlan, B. and Lamar, S., “Advantages of robotics in engineering.”

https://www.\\brighthubengineering.com/robotics/76606-

advantages-of-robotics-in-engineering/, 2010.

[34] Hennes, D., Claes, D., Meeussen, W., and Tuyls, K., “Multi-robot

collision avoidance with localization uncertainty,” in Proceedings

of the 11th International Conference on Autonomous Agents and

Multiagent Systems-Volume 1, pp. 147–154. International Foundation

for Autonomous Agents and Multiagent Systems, 2012.

[35] Heppner, G., Roennau, A., and Dillman, R., “Enhancing sensor

capabilities of walking robots through cooperative exploration with

aerial robots,” Journal of Automation Mobile Robotics and Intelligent

Systems, 7(2), 2013.

[36] Hernández, E., del Cerro, J., and Barrientos, A., “Game theory models

for multi-robot patrolling of infrastructures,” International Journal of

Advanced Robotic Systems, 10(3):181, 2013.

[37] Hert, S. and Lumelsky, V., “Polygon area decomposition for multiple-

robot workspace division,” International Journal of Computational

Geometry & Applications, 8(04):437–466, 1998.

[38] IFR, “Executive summary world robotics 2016 industrial

robots.” https://ifr.org/img/uploads/Executive_Summary_

WR_Industrial_Robots_20161.pdf, 2016.

[39] IFR, “Executive summary world robotics 2016 service robots.”

https://ifr.org/downloads/press/02_2016/Executive_Summary_

Service_Robots_2016.pdf, 2016.

[40] IFR, “Executive summary world robotics 2017 industrial robots.”

https://ifr.org/downloads/press/Executive_Summary_WR_2017_

Industrial_Robots.pdf, 2017.

100

[41] Jager, M. and Nebel, B., “Dynamic decentralized area partitioning

for cooperating cleaning robots,” in Proceedings of the 2002 IEEE

International Conference on Robotics and Automation (ICRA’02),

vol. 4, pp. 3577–3582. IEEE, 2002.

[42] Kalra, N., Stentz, T., and Ferguson, D., “Hoplites: A market

framework for complex tight coordination in multi-agent teams,” tech.

rep., Carnegie-Mellon Univ Pittsburgh Pa Robotics Inst, 2004.

[43] Karimov, J. and Ozbayoglu, M., “Clustering quality improvement

of k-means using a hybrid evolutionary model,” Procedia Computer

Science, 61:38–45, 2015.

[44] Kato, C. and Sugawara, T., “Decentralized area partitioning for

a cooperative cleaning task,” in Proceedings of the International

Conference on Principles and Practice of Multi-Agent Systems

(PRIMA’13), pp. 470–477. Springer, Berlin, Heidelberg, 2013.

[45] Kim, K. H. and Park, Y.-M., “A crane scheduling method for

port container terminals,” European Journal of operational research,

156(3):752–768, 2004.

[46] Kurabayashi, D., Ota, J., Arai, T., and Yoshida, E., “Cooperative

sweeping by multiple mobile robots,” in Proceedings of the 1996

IEEE International Conference on Robotics and Automation, vol. 2,

pp. 1744–1749. IEEE, 1996.

[47] Lauri, F. and Charpillet, F., “Ant colony optimization applied to

the multi-agent patrolling problem,” in IEEE Swarm Intelligence

Symposium, 2006.

[48] Lauri, F. and Koukam, A., “A two-step evolutionary and aco approach

for solving the multi-agent patrolling problem,” in Proceedings of

the 2008 IEEE Congress on Evolutionary Computation (IEEE World

Congress on Computational Intelligence), pp. 861–868. IEEE, 2008.

101

[49] Lauri, F. and Koukam, A., “Hybrid aco/ea algorithms applied to

the multi-agent patrolling problem,” in 2014 IEEE Congress on

Evolutionary Computation (CEC), pp. 250–257. IEEE, 2014.

[50] Luo, C. and Yang, S. X., “A real-time cooperative sweeping strategy

for multiple cleaning robots,” in Proceedings of the 2002 IEEE

International Symposium on Intelligent Control, pp. 660–665. IEEE,

2002.

[51] Machado, A., Almeida, A., Ramalho, G., Zucker, J.-D., and

Drogoul, A., “Multi-agent movement coordination in patrolling,” in

Proceedings of the 3rd International Conference on Computer and

Game, pp. 155–170, 2002.

[52] Machado, A., Ramalho, G., Zucker, J.-D., and Drogoul, A., “Multi-

agent patrolling: An empirical analysis of alternative architectures,”

in International Workshop on Multi-Agent Systems and Agent-Based

Simulation, pp. 155–170. Springer, 2002.

[53] Mao, T. and Ray, L., “Frequency-based patrolling with heterogeneous

agents and limited communication,” arXiv preprint arXiv:1402.1757,

2014.

[54] Marier, J.-S., Besse, C., and Chaib-Draa, B., “A markov model for

multiagent patrolling in continuous time,” in International Conference

on Neural Information Processing, pp. 648–656. Springer, 2009.

[55] Matai, R., Singh, S., and Mittal, M. L., “Traveling salesman problem:

an overview of applications, formulations, and solution approaches,” in

Traveling Salesman Problem, Theory and Applications. InTech, 2010.

[56] McCaffrey, J. D., “Graph partitioning using a simulated bee colony

algorithm,” in Proceedings of the 2011 IEEE International Conference

on Information Reuse and Integration (IRI’11), pp. 400–405. IEEE,

2011.

102

[57] Mead, R., Weinberg, J. B., and Croxell, J. R., “An implementation

of robot formations using local interactions.,” in Proceedings of the

national conference on artificial intelligence, vol. 22, p. 1989. Menlo

Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,

2007.

[58] Menezes, T., Tedesco, P., and Ramalho, G., “Negotiator agents for

the patrolling task,” in Advances in Artificial Intelligence-IBERAMIA-

SBIA 2006, pp. 48–57. Springer, 2006.

[59] Mikhalchuk, A., “Unimate, robostuff.” http://robostuff.com/http:

/robostuff.com/robots-catalog/robots-by-country/usa/

unimate/, 2009.

[60] Nallusamy, R., Duraiswamy, K., Dhanalaksmi, R., and Parthiban, P.,

“Optimization of non-linear multiple traveling salesman problem

using k-means clustering, shrink wrap algorithm and meta-heuristics,”

International Journal of Nonlinear Science, 9(2):171–177, 2010.

[61] Ogston, E., Overeinder, B., Van Steen, M., and Brazier, F., “A

method for decentralized clustering in large multi-agent systems,”

in Proceedings of the second international joint conference on

Autonomous agents and multiagent systems (AAMAS’03), pp. 789–

796. ACM, 2003.

[62] Okonjo-Adigwe, C., “An effective method of balancing the workload

amongst salesmen,” Omega, 16(2):159–163, 1988.

[63] Parker, L. E., “Multiple mobile robot systems,” in Springer Handbook

of Robotics, pp. 921–941. Springer, 2008.

[64] Pemmaraju, S. and Skiena, S., Computational Discrete Mathematics:

Combinatorics and Graph Theory with Mathematica R⃝. Cambridge

university press, 2003.

[65] Popescu, M.-I., Rivano, H., and Simonin, O., “Multi-robot patrolling in

wireless sensor networks using bounded cycle coverage,” in Proceedings

103

of the 2016 IEEE 28th International Conference on Tools with

Artificial Intelligence (ICTAI’16), pp. 169–176. IEEE, 2016.

[66] Portugal, D., Pippin, C., Rocha, R. P., and Christensen, H., “Finding

optimal routes for multi-robot patrolling in generic graphs,” in

Proceedings of the 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’14), pp. 363–369. IEEE, 2014.

[67] Portugal, D. and Rocha, R., “Msp algorithm: multi-robot patrolling

based on territory allocation using balanced graph partitioning,”

in Proceedings of the 2010 ACM symposium on applied computing

(SAC’10), pp. 1271–1276. ACM, 2010.

[68] Portugal, D. and Rocha, R., “A survey on multi-robot patrolling

algorithms,” in Doctoral Conference on Computing, Electrical and

Industrial Systems, pp. 139–146. Springer, 2011.

[69] Ranjbar-Sahraei, B., Weiss, G., and Nakisaee, A., “A multi-robot

coverage approach based on stigmergic communication,” in German

Conference on Multiagent System Technologies, pp. 126–138. Springer,

2012.

[70] RobotWorx, “Benefits of using robotics.” http://www.robots.com/

articles/viewing/benefits-of-using-robotics, 2017.

[71] Roerty, D. F., M-salesman balanced tours traveling salesman problem

with multiple visits to cities allowed. PhD thesis, Texas Tech

University, 1974.

[72] RSI, “Overview of repetitive strain injury (rsi).” https://www.nhs.uk/

conditions/repetitive-strain-injury-rsi/, 2016.

[73] Sak, T., Wainer, J., and Goldenstein, S. K., “Probabilistic multiagent

patrolling,” in Brazilian Symposium on Artificial Intelligence, pp. 124–

133. Springer, 2008.

[74] Sales, D. O., Feitosa, D., Osório, F. S., and Wolf, D. F., “Multi-agent

autonomous patrolling system using ann and fsm control,” in 2012

104

Second Brazilian Conference on Critical Embedded Systems (CBSEC),

pp. 48–53. IEEE, 2012.

[75] Sampaio, P. A., Ramalho, G., and Tedesco, P., “The gravitational

strategy for the timed patrolling,” in Proceedings of the 2010 22nd

IEEE International Conference on Tools with Artificial Intelligence

(ICTAI’10), vol. 1, pp. 113–120. IEEE, 2010.

[76] Santana, H., Ramalho, G., Corruble, V., and Ratitch, B., “Multi-agent

patrolling with reinforcement learning,” in Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent

Systems-Volume 3, pp. 1122–1129. IEEE Computer Society, 2004.

[77] Schwager, M., Rus, D., and Slotine, J.-J., “Unifying geometric,

probabilistic, and potential field approaches to multi-robot

deployment,” The International Journal of Robotics Research,

30(3):371–383, 2011.

[78] Sea, V. and Sugawara, T., “Area partitioning method with learning

of dirty areas and obstacles in environments for cooperative sweeping

robots,” in Proceedings of the 2015 IIAI 4th International Congress on

Advanced Applied Informatics (IIAI-AAI), pp. 523–529. IEEE, 2015.

[79] Sempé, F. and Drogoul, A., “Adaptive patrol for a group of robots,”

in Proceedings of the 2003 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS’03), vol. 3, pp. 2865–2869.

IEEE, 2003.

[80] Stranders, R., De Cote, E. M., Rogers, A., and Jennings, N. R.,

“Near-optimal continuous patrolling with teams of mobile information

gathering agents,” Artificial intelligence, 195:63–105, 2013.

[81] Sugiyama, A., Sea, V., and Sugawara, T., “Effective task allocation by

enhancing divisional cooperation in multi-agent continuous patrolling

tasks,” in Proceedings of the 2016 IEEE 28th International Conference

on Tools with Artificial Intelligence (ICTAI’16), pp. 33–40. IEEE,

2016.

105

[82] Sugiyama, A. and Sugawara, T., “Autonomous strategy determination

with learning of environments in multi-agent continuous cleaning,” in

Proceedings of the International Conference on Principles and Practice

of Multi-Agent Systems (PRIMA’14), pp. 455–462. Springer, 2014.

[83] Sugiyama, A. and Sugawara, T., “Meta-strategy for cooperative

tasks with learning of environments in multi-agent continuous tasks,”

in Proceedings of the 30th Annual ACM Symposium on Applied

Computing (SAC’15), pp. 494–500. ACM, 2015.

[84] Wagner, I. A., Lindenbaum, M., and Bruckstein, A. M., “Distributed

covering by ant-robots using evaporating traces,” IEEE Transactions

on Robotics and Automation, 15(5):918–933, 1999.

[85] Wolf, D. F. and Sukhatme, G. S., “Mobile robot simultaneous

localization and mapping in dynamic environments,” Autonomous

Robots, 19(1):53–65, 2005.

[86] Yasuyuki, S., Hirofumi, O., Tadashi, M., and Maya, H., “Cooperative

capture by multi-agent using reinforcement learning application for

security patrol systems,” in Proceedings of the 2015 10th Asian Control

Conference (ASCC’15), pp. 1–6. IEEE, 2015.

[87] Yoneda, K., Kato, C., and Sugawara, T., “Autonomous learning

of target decision strategies without communications for

continuous coordinated cleaning tasks,” in Proceedings of the

2013 IEEE/WIC/ACM International Joint Conferences on Web

Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume

02, pp. 216–223. IEEE Computer Society, 2013.

[88] Yoneda, K., Sugiyama, A., Kato, C., and Sugawara, T., “Learning

and relearning of target decision strategies in continuous coordinated

cleaning tasks with shallow coordination1,” in Web Intelligence,

vol. 13, pp. 279–294. IOS Press, 2015.

[89] Zach, “Industrial robotics arm.” http://www.flickr.com/photos/

7204008@N06/410462775, 2007.

106

List of Publications

1. ⃝ Vourchteang Sea, Chihiro Kato, and Toshiharu Sugawara,

“Coordinated Area Partitioning Method by Autonomous Agents for

Continuous Cooperative Tasks,” Journal of Information Processing

(JIP), 25(1):75–87, January 2017.

2. ⃝ Vourchteang Sea, Ayumi Sugiyama, and Toshiharu Sugawara,

“Frequency-Based Multi-agent Patrolling Model and Its Area

Partitioning Solution Method for Balanced Workload,” in the 15th

International Conference on the Integration of Constraint

Programming, Artificial Intelligence, and Operations Research

(CPAIOR2018), pp. 530–545. Springer, Cham, Delft, The

Netherlands, June 26-29, 2018.

3. ⃝ Vourchteang Sea and Toshiharu Sugawara, “Area Partitioning

Method with Learning of Dirty Areas and Obstacles in

Environments for Cooperative Sweeping Robots,” in the 4th IIAI

International Congress on Advanced Applied Informatics

(IIAI-AAI2015), pp. 523–529. IEEE, July 12-16, 2015. (Best

Student Paper Award)

4. Ayumi Sugiyama, Vourchteang Sea, and Toshiharu Sugawara,

“Effective Task Allocation by Enhancing Divisional Cooperation in

Multi-Agent Continuous Patrolling Tasks,” in the 28th IEEE

International Conference on Tools with Artificial Intelligence

(ICTAI2016), pp. 33–40. IEEE, San Jose, USA, Nov. 6-8, 2016.

107

5. Ayumi Sugiyama, Vourchteang Sea, and Toshiharu Sugawara, “An

Effective Autonomous Task Allocation for division of labor in Multi-

Agent Continuous Patrolling Tasks (in Japanese),” in the 15th Joint

Agent Workshop (JAWS2016), Sponsored by JSSST, IEICE, JSAI

and IPSJ, Yamanaka Onsen, Japan, Sep. 15-16, 2016.

6. Ayumi Sugiyama, Vourchteang Sea, and Toshiharu Sugawara,

“Method of Promoting Division of Labor by Using Communication

for Multi-agent Continuous Cleaning (in Japanese),” in the 30th

Annual Conference of the Japanese Society for Artificial

Intelligence, 2016.

108

