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Abstract 
Internet of Things (IoT) is a new paradigm of wireless communication technology, where smart 

sensors and machines communicate through a combination of many connectivity technologies 

such as ZigBee, Bluetooth, Radio Frequency Identification (RFID), and licensed cellular bands 

including future 5G radio access techniques. It is expected that tens of billions IoT devices are 

connected to the network by 2025, and more beyond then. An important 5G radio requirement is 

that it should support massive connectivity of large number of devices including many IoT use 

cases. Sparse Code Multiple Access (SCMA) is a newly emerging non-orthogonal multiple access 

technique that allows overloading of shared radio resources with multiple users, hence increasing 

capacity. However, such a massive connectivity comes at the cost of increased signaling overhead 

and latency.  

This research investigated the potential of using Contention-Based SCMA scheme in the newly 

standardized Narrow Band IoT (NB-IoT) technologies that have diverse application as a low power 

wide area (LPWA) communication. Since resource allocation is a major challenge in such devices, 

Finite Memory Sequential Learning (FMSL) is proposed to consider the message diversity and 

enable the devices learn about the status of other devices to improve the usage of limited resources 

and delivery of the messages. The contention based SCMA with FMSL system shows that 

performance in terms probability of successful transmission and the number of IoT devices that 

will correctly learn about the status of the nearby devices increases with memory size F. Hence, 

FMSL improves system performance in terms of delivery of critical messages which are assigned 

certain codes after the learning process converges. 

Keywords— Contention Based Access, SCMA, NB- IoT, Finite Memory Sequential Learning 
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CHAPTER 1 

INTRODUCTION 

1.1.Background 
    The future 5G network is expected to support massive connectivity of IoT devices used for a 

variety of applications such as smart metering, smart city, intelligent transportation, security 

monitoring, smart grid and e-health. The number of such devices is expected to exceed 20 billion 

in the year 2020 and beyond [1], [2]. The large number of devices at different locations necessitates 

new technologies and communication standards for massive machine type communications 

(mMTC) and massive internet of things (MIoT) which in turn need deployment over large area 

with low device cost and low energy consumption, hence needs longer battery life. For MTC, there 

are already established techniques of achieving connectivity over short range including Bluetooth, 

Wi-Fi and Zigbee. But, they cannot meet the demands of large coverage. 

    To meet the requirement of large coverage with low cost and low power consumption device 

technologies, the third-generation partnership project (3GPP), in its release 13, has defined two 

cellular LPWA standards: LTE-M (for machine type communication) and narrowband IoT (for 

generic IoT application requirements) [3], [4]. NB-IoT technology has been considered as one of 

the promising technologies to achieve the larger area coverage requirement of massive IoT 

deployment scenarios such as in smart cities and smart grid applications. Besides, in relation to the 

massive connectivity there is an increase in the incurred signaling overhead, and contention-based 

access schemes were considered as one of the possible means to reduce it [5]-[8].  

1.2. Problem statement 
     The massive deployment of IoT devices poses a challenge in terms of requirements of radio 

resources which are very limited as compared to the existing plethora of devices and applications. 

Specially for the uplink communication of IoT devices with the base station (eNB) there must be 

a suitable multiple access scheme. To respond to that there have been many multiple access 

techniques including the currently emerging non-orthogonal multiple access (NOMA) technique 

called sparse code multiple access (SCMA). SCMA is a complex codebook based multiple access 

technique in which the procedures of mapping the incoming bits of each user to Quadrature 

Amplitude Modulation (QAM) symbol and spreading over the orthogonal frequency division 
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multiple access (OFDM) channels are combined into a single step. This involves direct mapping 

of bits from each user layers to multidimensional complex codewords selected from a set of 

codewords that belong to a given codebook. For each user or SCMA layer there is a dedicated 

codebook that is designed based on the sparsity nature of the codewords. The SCMA signal 

reception is possible by low complexity message passing algorithm (MPA) and its modified 

version which make SCMA based systems useful for meeting the massive connectivity demands 

of the current network. 

     The need for massive connectivity of IoT devices to the eNB comes with a challenge of 

increased signaling overhead and latency for the uplink communication. In the conventional Long-

Term Evolution (LTE) or LTE-A uplink (UL) data communication, the user is expected to make 

scheduling request (SR) via periodically occurring UL dedicated resources to the base station 

which gives a scheduling grant [7], [8]. The periodicity of such dedicated resources is basically 

every 5 or 10ms. If data arrive at the user equipment (UE) just before the scheduling request, it 

needs to wait for 7ms from scheduling request to the UL data transmission. The incurred delay 

could even be longer if the UE needs to transmit in between the SR opportunities or the system 

has been configured with longer SR periodicity. Hence, it is necessary to reduce the delay incurred 

in such a scheduling request and grant procedure. For delay sensitive applications it is too long for 

the machines to wait as they are triggered to transmit very urgent data such as burglar alarm, fire 

alarm, and temperature reading. Besides, the future network is going to support many ultra-reliable 

low latency (URLL) applications. Hence, in this work we studied the potential of using non-

orthogonal multiple access techniques with contention-based access schemes to meet the 

requirements of massive connectivity while meeting the need for reduced latency and signaling 

overheard at the same time. 

1.3. Related works 
    Contention-based (CB) uplink transmission has been used as a technique that enables UEs or 

IoT devices to attempt the data transmission immediately after its arrival or just after an incident 

is sensed by an IoT device sensor. The notion of CB uplink transmission is that the UEs do not 

need to send scheduling request to the base station and wait for scheduling grant [7]-[10]. In CB 

UL transmission the data is sent directly, and the access delay is greatly reduced. In [7], the merits 

of CB access and NOMA based multiple access were combined to introduce contention-based 
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SCMA that will meet the requirements of reduced transmission latency and supporting large 

number of users to enable massive connectivity. In CB SCMA, the users tend to send data using 

the nonorthogonal resources known us contention transmission unit (CTU) which are defined as a 

function of time, frequency, SCMA codebook, and a pilot sequence [7], [11]-[13]. Users try to 

contend for the CTUs in the uplink transmission. 

    In the presence of larger number of UEs, the capacity of the CB SCMA system is going to 

saturate as more users try to simultaneously use the same CTU and finally the effect of collision 

degrades the performance of the system. To handle the effect of collision, the random back-off 

procedure was considered in [7]. The UEs set random back-off time which is selected from a back-

off window and try to retransmit the data on the original predefined CTU. The mapping of UE-to- 

CTU is done by a predefined mapping rule which dictates the CTUs allocated for individual UEs. 

Basically, if the collision is detected, the packets are discarded by the eNB when more than one 

UEs are selecting the same CTU.  

    In [11], feedback-based UE-to-CTU mapping was proposed in which the base station gives the 

feedback information about the previous usage of CTU usage. The scheme is found to improve the 

system performance as compared to the previous works. ACK feedback-based UE-to-CTU 

mapping was used in [13], where the users trying to retransmit after the first CTU collision are 

given special CTU allocation. Here, the selection of CTU after the first collision is based on the 

exclusive allocation of certain CTUs for users in need of retransmission. The resource allocation 

problem for massive IoT devices can be handled in many ways including centralized allocation 

and distributed allocation of the limited resources. This will depend on the scale of the deployment 

and it is difficult to manually handle the large scale IoT network resource management.  

    Besides, to consider the heterogeneity of the messages transmitted, the devices used, services 

given and resources available, there are many researches that consider self-organizing techniques, 

machine learning algorithms and sequential learning for resource-limited IoT devices [14]-[19]. 

Since the IoT devices have constraints in terms computational power, memory, and battery life, 

appropriate learning algorithm should be chosen to optimize the IoT network performance and to 

meet the preset QoS requirements. The works in [16] and [17], focused on the consideration of the 

heterogeneity of messages transmitted by IoT devices. The heterogeneity of messages and the 
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resource allocation was managed by finite memory sequential learning techniques which is needs 

lower computational power as compared to machine learning techniques. 

    In this paper we propose a contention-based SCMA that relies on FMSL to capture the 

heterogeneity of the messages and appropriately allocate CTUs after learning the state of the 

surrounding IoT devices and their CTU usage. 

1.4. Thesis Organization 
The thesis is organized into 7 chapters as outlined below: 

❖ Chapter 1 (introduction) presents the background information, problem statement and 

review of related works. 

❖ Chapter 2 (narrow band IoT) introduces the basics of narrow band IoT, standards, 

physical layer characteristics and it application areas.  

❖ Chapter 3 (basics of contention based SCMA) gives brief explanations for contention-

based access, scheduled access, multiple access based on SCMA, SCMA transmission and 

detection system, and contention based SCMA resource definition.   

❖ Chapter 4 (sequential learning) introduces the need for learning techniques in IoT, 

different learning techniques, finite memory sequential learning and related algorithms. 

❖ Chapter 5 (contention based SCMA for narrow band IoT using finite memory 

sequential learning) gives the descriptions of the system model for this research, the 

related mathematical analysis for the performance of the system in terms of probability of 

successful transmission, number of devices that succeed in learning and probability of 

collision. 

❖ Chapter 6 (results and discussions) gives the discussion of the numerical and simulation 

results obtained in this research. 

❖ Chapter 7 (conclusions and future directions) gives the conclusions and future 

directions of this research. 
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CHAPTER 2 

NARROW BAND IOT 

2.1. Introduction 
    The third-generation partnership project(3GPP), in the release number 13, has introduced the 

narrowband internet of things (NB-IoT) as one of the promising narrow-band radio access 

technologies for providing low-power wide-area network connections for massive IoT devices. 

LPWAN is a newly emerging type of wireless communication network designed to serve long 

range communications, hence wide area coverage, with relaxed requirements in terms of data rate 

and latency for information exchange between the core network and many power-constrained IoT 

devices. In this chapter, we make a brief review and comparison of the leading LPWAN technolo-

gies which include the licensed spectrum (NB-IoT and LTE-M), and the unlicensed spectrum 

proprietary technologies which includes LoRa, and SIGFOX. Although these LPWAN 

technologies are different in several ways, they still have one common feature of utilizing the 

narrow-band transmission technique to achieve the fundamental goals of wide coverage, high 

system capacity or massive connectivity, and long battery life. The fundamental properties of such 

technologies are summarized in tables given in the coming sections. 

2.2. Modes of operation in NB-IoT  

    As per the standard given by 3GPP, NB-IoT applications can be directly deployed within the 

existing GSM or LTE spectrum to cut necessary deployment costs and to facilitate easy way of 

implementing the technology. Particularly, three different modes of operation are designed to 

support the deployment of NB-IoT [19]-[22]: 

➢ In-band operation mode: - In this scenario, NB-IoT is deployed inside the already 

existing LTE carrier, as shown in fig. 2.1. The narrowband operation consists of one radio 

resource block with a bandwidth of 180 kHz which is the minimum used for both uplink 

and downlink communication. In this operation, LTE and NB-IoT share transmit power 

at the base station. 

➢ Guard-band operation mode: - In this mode of operation, the NB-IoT communication 

channel is placed in a freely available guard band of an LTE/LTE-A channel, as shown in 

fig. 2.1. In this operation, the NB-IoT downlink communication protocols and data can 
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share the same power amplifier that is designed for the use of downlink LTE 

communication channel. 

➢ Stand-alone operation mode: - This is a mode of operation in which the NB-IoT 

application is deployed as a standalone. It operates with at least 180 kHz of the old GSM 

spectrum, as we can see from fig. 2.1. This is called GSM reframing which enables 

efficient utilization of radio spectrum.  The NB-IoT system can use all transmit power 

from the base station. Hence, it significantly enhances the network coverage. A NB-IoT 

device must be aware of the mode of deployment operation as in-band, guard-band, or 

stand-alone. When it is first turned on, it searches for a NB-IoT carrier. Like the existing 

LTE systems, the channel raster is 100 kHz in all the above three modes operation. 

   

 

 

       

Figure 2.1: Modes of operation in NB-IoT 

2.3. Why NB-IoT Standards? 
    The release 13 of 3GPP has introduced the Narrow-Band Internet of Things (NB-IoT) and its 

specification [20], [22]. The motivation for standardization of NB-IoT was the need for 

competitive solution for low data rate and wide area coverage of machine-type communication 

(MTC) which has a big demand to connect billions of low-cost devices to the network. The 

objectives of the standard were set as outlined below [20]. 

➢ Improved indoor coverage: - The NB-IoT technology should support the connectivity 

for the devices that are deployed in the challenging indoor positions which could be in 

                    GSM                                      NB-IoT (Standalone-200kHz) 

               NB-IoT (In-band-180kHz)                 NB-IoT(guard-band) 
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apartment basements. The standard aims to allow a minimum data rate of 160 bits per 

second in uplink and in downlink with an extended range of coverage up to 20 dB 

compared to legacy general packet radio system (GPRS) systems. 

➢ Support for massive connectivity of low throughput devices: -There is a need for 

massive connectivity of a number of IoT devices. However, the devices that occasionally 

transmit small packets of data which can be supported by small chunks of radio spectrum 

as discussed in section 2.2. The traffic model in the standard assumes that there are 40 

devices per a household and 20 devices per person. It is possible to support 53,000 devices 

per the 200kHz cell [3]. 

➢ Low delay sensitivity: The NB-IoT technology is planned for applications that have 

relaxed delay sensitivity. This is suitable to develop IoT applications for smart metering, 

smart home and smart city which mostly need to send data at specified intervals 

➢ low device cost: NB-IoT devices are supposed to be very cheap so that they can be 

deployed in large number or even in disposable manner in environments where it is difficult 

to replace their units. 

➢ Low power consumption: It was planned that the battery life of the NB-IoT devices 

should reach up to 10 years. This was based on assumptions of 5 Watt-hours battery was 

used and 120 minutes of interval for uplink reporting. 

➢ Further optimized network architecture: The network architecture can also be enhanced 

in various ways for improved security and relaxed packet delay to serve a small data packet 

transmission. 
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2.3.1. Characteristics of NB-IoT physical layer 
    The NB-IoT system supports the possibility of using one of three deployment modes discussed 

in section 2.2. In the following sub-sections, we will discuss the characteristics of NB-IoT uplink 

and downlink.  

2.3.2. Narrow band-IoT Uplink 

    The NB-IoT system uses UL transmission bandwidth of 180 kHz. The bandwidth is planned to 

enable the use of two sub-carrier spacings, namely 3.75 kHz and 15 kHz. From coverage 

enhancement point of view, the sub-carrier spacing of 3.75- kHz gives higher system capacity than 

the sub-carrier spacing of 15-kHz. But, regarding compatibility with LTE, particularly for the in-

band deployment mode, the sub-carrier spacing of 15-kHz has better performance than sub-carrier 

spacing of 3.75 kHz. The uplink transmissions of the NB-IoT uses both single sub-carrier and 

multiple sub-carrier. Besides, for the multiple sub-carrier transmission, the standard has defined a 

sub-carrier with 15 kHz spacing. However, for single sub-carrier transmission the spacing for sub-

carriers can be set to 3.75 kHz or 15 kHz. The IoT devices are required to support both single sub-

carrier transmission and multiple sub-carrier transmissions to facilitate the selection by base station 

which depends on the scenario under consideration.  

    Single carrier frequency division multiple accesses (SC-FDMA) is adopted for the uplink 

transmission of both single and multiple sub-carrier spacing.  The uplink frame structure of a NB-

IoT system that uses the 15-kHz sub-carrier spacing, in terms of frame size or time slot length, is 

similar to the frame structure for LTE network as can be seen from Fig. 2.2. However, a newly 

standardized narrow-band time slot of duration 2 ms is selected for the sub-carrier spacing of 3.75-

kHz, as shown in Fig. 2.3. There are five narrow-band time slots within one radio frame. Further, 

each time slot is defined to contain seven symbols and a guard interval is inserted or reserved 

between each time slot to reduce the interference between the NB-IoT system symbol and LTE 

system reference signal named sounding reference signal (SRS) [3], [23]. 

    The NB-IoT systems works in such a way that uplink physical channels are changed and re-

configured from time to time. The physical channels are narrow-band physical random-access 

channel (NPRACH) and narrow-band physical uplink shared channel (NPUSCH). However, the 

physical uplink control channel (PUCCH) is not supported. For the uplink transmission with the 

sub-carrier spacing of 3.75kHz, the NB-IoT frame structure introduces a retransmission technique 
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in uplink physical channel. This technique enables an enhancement of the uplink coverage. NB-

IoT devices are equipped with low-cost crystal oscillators to meet the low-cost requirement as 

there is a need to deploy massive IoT terminals. If there a long continuous transmission in the 

uplink, the heat dissipation in the power amplifiers of the devices causes a fluctuation in 

temperature of transmitter. This in turn leads to the deviation in frequency of the crystal oscillator, 

hence, seriously affects uplink transmission of terminal and degrades the performance and data 

transmission efficiency. With the introduction of the uplink transmission interval in the NB-IoT, 

it is possible to make the device discontinue the uplink transmission and switch to downlink 

transmission during that period. The signaling information from in terms of NPSS, NSSS, and 

NRS enables the synchronous tracking and compensation of frequency offset. After the frequency 

offset is compensated the terminal switches back to uplink transmission [2], [3]. 

 

 

 

 

 

   

 

 

 

 

 

 

Figure 2.2: NB-IoT frame structure for 15kHz sub-carrier spacing of uplink and downlink  
 
 

2.3.3. Narrow band-IoT Downlink 

    Like the uplink of NB-IoT system, downlink communication bandwidth of is set to be 180 kHz 

where sub-carrier spacing of 15-kHz used the same as current LTE. The physical resource block 

design is similar to the current LTE system where OFDMA based multi-access is used in the 

downlink.  For the frame structure one radio frame constitutes ten 1ms subframes in time domain. 

#0 #1 #2 #3 #4 #5 #6 #7 #8 #19 #18 … 

1 RF radio frame, Tf = 307200 Ts =10ms 

1 subframe 

1 slot time, Tslot=15360 Ts =0.5ms 



17 
 

In the frequency domain one sub-frame constitutes 12 continuous sub-carriers. To serve the 

requirement of coverage extension, with transmission bandwidth of 180kHz, the physical channels 

of the NB-IoT should be reconfigured for the downlink. The reconfigured physical channels should 

include the synchronization signals which are defined as narrow-band physical downlink shared 

channel (NPDSCH), narrow-band physical broadcast channel (NPBCH), narrow-band physical 

downlink control channel (NPDCCH), narrow-band primary synchronization signal (NPSS) 

narrow-band secondary synchronization Signal (NSSS). Narrow-band reference signal (NRS) 

serves as a reference signal. To improve the downlink coverage extension, a retransmission 

technique is introduced for the downlink physical channel. The technique improves diversity gain 

which in turn enhances demodulation threshold. 

    While the coverage is enhanced by this technique, there is a problem of resource blocking which 

is caused by continuous retransmission in the downlink. This drawback is tackled by allowing the 

downlink retransmission in a periodic manner where some specified periodic intervals are inserted 

the periodic downlink transmission interval is introduced. For example, in-band deployment of 

NB-IoT devices, nearly 1200-1900 ms interval for NPDSCH, and 200-350 ms for NPDCCH 

retransmission is introduced. This avoids the problem of the blocking packets from other terminals 

[3], [20], [23]. 

 

        

 

 

 

 

 

Figure 2.3:NB-IoT frame structure for 3.75kHz sub-carrier spacing in UL  

2.4. Other LPWAN technologies 
    Currently, there are two major LPWAN technologies named SIGFOX and LoRa that are 

available on the market. They are proprietary technologies developed for LPWAN applications to 

be deployed within the unlicensed spectrum. The main benefit of using unlicensed spectrum is the 

#0 #1 #2 #3 #4 

1 RF radio frame, Tf = 307200 Ts =10ms 

1 slot time, Tslot=61440 Ts =2ms 
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fact that it has cost-effectiveness when compared to the applications in the licensed spectrum. In 

the next sections we will briefly describe and make comparisons of few LPWAN technologies. 

2.4.1 LoRa and SIGFOX 
    Even if these technologies have the benefits of cost-effectiveness they have limitations which 

includes the reduced system performance.  The wide-area deployment of both SIGFOX and LoRa 

follows a star topology or cellular architecture. In such architecture, the IoT device is connected 

to a base station which furthers communicates the data to a dedicated network server. LoRa 

operates in two different modes: device-originated call and network-originated transmission mode 

[23]. In the device-originated call scenario, maximum battery saving can be achieved as the device 

only wakes up to transmit data when it is required to do so. On the other hand, in the transmission 

mode which is named network-originated transmission, the network periodically broadcasts 

paging signal and the devices wake up periodically to receive paging signal. This is like the 

conventional LTE network where UE periodically listens for the paging signal. 

    In the second mode of communication, the dedicated network server or a LoRa gateway 

facilitates the paging process by transmitting a beacon signal to enable the IoT device get 

synchronized to the network. Then, the devices look for downlink data transmissions in the 

dedicated predetermined windows. LoRa network has a capability to dynamically change the 

communication bandwidth for each IoT device. This is aimed at maximization of network capacity 

and lifespan of the devices in terms of battery. However, the SIGFOX transmission system relies 

on fixed bandwidth. From table 2.1., we can get the comparison between the two technologies and 

the other two narrow band technologies namely, LTE-M and NB-IoT, standardized for LPWAN 

application. Hence, LoRa has a minimum bandwidth of 125 kHz with a maximum transmission 

coupling loss of about 157dB.  

2.4.2. Ultra-narrowband by SIGFOX 
    In 2009 SIGFOX standardized a new technology named ultra-narrow band (UNB) for 

connecting low-power IoT devices within a wide area wireless network. The technology serves as 

wireless access technology for connecting low-power massive IoT devices   such as electricity 

meters, water meters and washing machines. This enables the centralized monitoring of the devices 

over a communication network. To meet such a massive connectivity demand, the UNB has the 

following key features:   
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➢ The communications channel bandwidths for UNB system are on the order of 100Hz.  

The channels can support coupling loss of minimum160dB.  

➢ The transmissions follow an uplink-triggered client-server model 

➢ Multiple base stations jointly receive the signal from an UNB device. This cooperative 

reception helps to increase the chances for successful receptions of the packets from 

each IoT device.  

Table 2.1. Comparison of LPWAN technologies  

                           

  

TECHOLOGY 

 

 

SIGFOX 

UNB 

 

 

LoRa  

 

 

3GPP 

 

LTE-M  

 

 

NB-IoT  

 

Receiver sensitivity  –147 dBm  –137 dBm  –132 dBm  –137 dBm  

Frequency band  Sub-GHz ISM  Sub-GHz ISM  Licensed  Licensed  

Minimum transmission 

bandwidth  

100 Hz, 600 

Hz  

125 kHz  180 kHz  3.75 kHz  

Fully bi-directional  No  Yes  Yes  Yes  

Modulation  D-BPSK  LoRa 

modulation, 

GFSK  

BPSK, QPSK, 

16QAM, 

64QAM  

𝜋/2 -BPSK, 

 𝜋 /4 -QPSK  

Medium access control 

(MAC)  

Unslotted 

ALOHA  

Unslotted 

ALOHA  

SC-FDMA  SC-FDMA  

Data rate  100 b/s  0.3-38.4 kb/s  Up to 1000 kb/s  Up to 100 kb/s  

Over the air upgrade  No  Yes  Yes  Yes  

Roaming  Yes  Yes  Yes  Yes  

Standard  No  LoRaWAN LTE  

(Release 12)  

LTE 

 (Release 13)  

 

     In the UNB network a centralized scheduling is not required as the network architecture follows 

a client-server transmission model whereas in the traditional cellular network a device must send 

an uplink transmission request. This is initiated when there is a need to transmit data. The merit of 

client-server model is maximization of battery life by removing the periodic wakeup for checking 

paging signal which is a power-consuming procedure. Hence, only the arrival of uplink application 

data at an UNB device wakes up it up. Then, the device randomly selects one of the channels for 

uplink transmission. The channel bandwidth is either 100 Hz or 600 Hz, and a fixed packet size of 

96 bits is allowed for transmission. To achieve reliability of successful transmission, the device 
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repeats the transmission three times. After the uplink transmission, a downlink message is received 

following a time window that is predetermined to be on the order of 10 seconds [23]. In addition 

to the unlicensed LPWAN technologies considered above, the LTE-M is discussed in the following 

section as one of the licensed band technologies that serve narrow band applications. 

2.4.3. LTE -M 
    The 3GPP has provided two narrow band technologies which operate on the licensed band. 

These include NB-IoT and LTE-M. LTE-M was introduced in the Release 12 of 3GPP to support 

the changing network requirements and further improvements of cellular MTC or enhanced MTC 

(eMTC). The motivation behind the introduction of LTE-M is meeting the requirements related to 

massive deployment. The massive deployment comes with the need of reduced cost and power 

consumption, peak rate, hardware complexity, and the ability to operate in the narrow band of 

1.08MHz. However, the LTE-M retains the original LTE design features such as downlink 

transmission by orthogonal frequency-division multiple-access (OFDMA), and uplink 

transmission by single-carrier frequency division multiple-access (SC-FDMA). The same channel 

coding schemes are kept. This includes turbo-coding for data channels and tail-biting convo-

lutional (TBC) coding for control channels. The LTE-M uses bandwidth of 1.08 MHz which is 

equivalent to six LTE resource blocks. This is because of the fixed and non-configurable 

bandwidth of existing LTE system for acquisition channel and the random-access channel. The 

bandwidth is fixed at 1.08MHz. The MTC device uses the same minimum transmission bandwidth 

of 180 kHz as an LTE UE. This bandwidth is equal to one LTE resource block which is the 

minimum scheduling unit for legacy LTE network. It will also support backward compatibility. 

To extend the coverage area of LTE-M for massive deployment of MTC devices, 15 dB coverage 

extension and a corresponding 155 dB maximum coupling loss is achieved.  This enables LTE-M 

network to reach IoT devices located in areas with high channel fading or losses. The 

implementation of temporal repetitions helps to achieve the coverage extension at a cost of reduced 

data rate [2], [23]. 

2.5. Narrow band IoT Application 
    The IoT technology in general and the narrow band IoT, in particular, have many application 

areas or use cases specified by standardization institutions or companies working on the IoT 

business. There are four major categories of IoT/NB-IoT use cases [2],[24]: 
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➢ IoT Public 

➢ IoT industry 

➢ IoT Appliance 

➢ IoT Personal 

The target industries for NB-IoT application can be summarized as shown in the fig. 2.3.   

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2.4: The major target industries for NB-IoT application 

In general, there are more than fifty uses cases covering the following application areas:  

➢ Smart metering for utility companies: electricity, gas and water 

➢ Smart facility management systems  

➢ Private and commercial security such as intruder alarm and fire alarm monitoring 

➢ Personal and home appliances to monitor health related data, and other wearable devices 

➢ Smart city application such as street lamps monitoring or smart dustbins  

➢ Industrial appliances such as welding machines or air compressors 

➢ Tracking of persons(kids), animals, and assets  
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CHAPTER 3 

BASICS OF CB-SCMA 

3.1.Introduction 
    In the current wireless communication network, specially for the IoT application which has a 

huge demand for uplink transmission resources, multiple access techniques must be properly 

selected to support the massive IoT devices. Currently, non-orthogonal multiple access techniques 

are becoming part of an effort to improve the possible number of connections with the limited 

radio resources. Besides, the non-orthogonal resource allocation allows the perfect mitigation of 

interferences with the developed multi-user detection algorithms. In this work, we the sparse code 

multiple access technique combined with contention-based access to allow both massive 

connectivity and reduction of signaling overhead in the uplink communication. Contention based 

access allows the user equipment or IoT devices to directly transmit their data without any uplink 

scheduling request and grant procedure [25]-[29]. The devices try to contend for the predetermined 

apply resources. In the coming sections the basics of CB access, the comparison with scheduled 

access techniques, the basics of SCMA systems, the resource definition for CB-SCMA and the 

narrow band SCMA techniques will be discussed. 

3.2. UL Contention Based Data Transmission 
    In the current and future IoT networks, the deployment of IoT devices for different use cases 

comes with some QoS constraints. Besides, the massive connectivity of IoT devices to the eNB 

brings the need to deal with the signaling information to set up connection and acknowledge the 

successful transmission of information. Hence, the challenge of increased signaling overhead and 

latency for the uplink communication motivates the need to devise contention-based techniques 

that enable the devices to directly transmit their data to the eNB. In the conventional long-term 

evolution (LTE) and LTE-A uplink (UL) data communication, the user is expected to make 

scheduling request (SR) via periodically occurring UL dedicated resources to the base station 

which gives a scheduling grant. There is a predetermined periodicity for such dedicated resources, 

broadcasted by the base station. The dedicated resources basically arrive at the device every 5 or 

10ms. If data arrive at the user equipment (UE) just before the scheduling request, it needs to wait 

for at least 7ms from scheduling request to the UL data transmission. The incurred delay could 
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even be longer if the UE needs to transmit in between the SR opportunities or the system has been 

configured with longer periodicity. Hence, it is necessary to reduce the delay incurred in such a 

scheduling request and grant procedure by employing the appropriate techniques. Contention-

based technique could be suitable for applications that require reduced or stringent latency 

requirements. In the next section, the comparison of contention-based access with scheduled 

access will be presented. 

3.3. CB Access versus Scheduled Access 
    The massive deployment of NB-IoT devices is followed by the necessity to handle the signaling 

overhead and reduce latency in certain devices that report urgent messages such as alarm messages 

for security and environment monitoring, and health status in e-health applications. CB uplink 

access for IoT was considered as a method to reduce latency compared to the scheduled access 

scheme in LTE which is suitable for human-type communications (HTC) [8]. In the LTE uplink 

access, a dedicated UL shared channel, named physical uplink control channel (PUCCH), is used 

by multiple UEs to transmit their respective scheduling request (SR). The procedure could also 

employ a random access (RA) procedure. Scheduling request enables several users to be 

multiplexed together using different cyclic shifts and orthogonal sequences and occupy the 

dedicated UL resource elements on the physical uplink control channel. In LTE SR procedure, a 

maximum of 36 UEs can be multiplexed together for SR in a single physical resource block (PRB) 

on one PUCCH. 

    To support massive IoT device communication in the uplink, there are two possible ways with 

respect to scheduling request and its periodicity. On the one hand, a large PUCCH resource should 

be designed to provide the scheduling request resources for the UL grant request procedure. On 

the other hand, the periodicity of SR should be configured to be very large. However, this 

scheduling procedure could result in a delay of several minutes. This prolonged delay is too long 

for IoT devices that need to be triggered to report some critical data such as burglar alarm, health 

monitoring, fire alarms, and temperature reading. In LTE, there is a 4-step random access 

procedure. This is described in the LTE random access channel definition where the UE first sends 

a random-access preamble. The preamble has with it 1-bit embedded to indicate the required 

message size for communicating signaling information. Next, in the random-access response, the 
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eNB assigns a UE identification number (ID) for each UE and provides an uplink grant for 

transmission within a specified time frame. The last two steps involve further signaling exchanges  

to set up a connection for UL data transmission and to resolve contention if there are more than 

one users mapped to the same UL grant resource. In [8], it was discussed that the latency for such 

a 4-step RACH procedure is at least 15ms without the waiting time in the first step. As a result, 

the system incurred signaling latency and signaling overhead due to the involved handshaking, at 

least 4 steps, to have a small packet data transmitted to the eNB. However, such procedures are 

not effective and efficient for the massive number of IoT devices in that need to carry out UL data 

transmissions. 

     In the fig.3.1 (a), a scheduling request procedure which is simpler than the LTE RACH based 

random access procedure is given. In that procedure the UE sends UL scheduling request which 

also includes the information about the UE (UE ID). The eNB in turn responds by resolving the 

UL contention in case of many UEs contending for the same resource. Then the UL data 

transmission follows. The successful reception of the data at the eNB will be confirmed by an 

ACK/NAK signaling. A simpler UL data procedure is given in the fig.3.1 (b) where UL contention-

based procedure can be used as means to directly send a small amount of data. Hence, contention-

based procedures reduce signaling overhead and latency. 

    The contention-based access basically occurs when a group of UEs try to use the same radio 

resources respectively. In scheduled access, there is no need for the devices to contend over the 

radio resources as the eNB allocates dedicated units for each device transmitting in the UL via a 

UE-specific UL grant. In the current and future IoT network, the need for massive connectivity 

and uplink delay reduction can be supported by the contention-based SCMA system which will be 

discussed in the coming sections. 
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Figure 3.1: Scheduling request versus contention-based UL data transmission procedure 

3.4. Basics of an SCMA system  
    SCMA is a kind of NOMA in which each user is configured with a 𝐸-dimensional complex 

codebook of size M. M is the number of codewords used by the SCMA encoder to map from 

log2 𝑀 bits to a corresponding codeword. The codewords are 𝐸-dimensional sparse vectors with 

𝐻 < 𝐸 non-zero entries. The E-H entries are zero for all codewords. A codeword corresponding 

to a user’s data is selected from the codebook and transmitted on 𝐸 subcarriers which could be 

OFDMA subcarriers, for example. Multiple access is possible by sharing the same time-frequency 

resources among SCMA layers with multiple UEs. The shared resource at a given time slot is an 

SCMA block. There is always a possibility that multiple UEs transmit at the same time and collide 

within a given SCMA block. Let’s consider a time slot in which 𝑈 SCMA layers or UEs transmit 

through different channels. A UE 𝑢(𝑢 = 1,2,… , 𝑈), uses a codeword 𝒙𝒖 to transmit its data. After 

synchronous multiplexing of all signals from UEs transmitting in that time slot, the received signal 

is given by [7] 
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𝐲 = ∑ √Pudiag(U
u=1 𝐡𝐮)𝐱𝐮 + 𝐢                                                       (3.1)  

where 𝐲 is the 𝐸 × 1 vector of received signals at the eNB, 𝐱𝐮 = [𝑥1𝑢, 𝑥2𝑢, … , 𝑥𝐸𝑢]𝑇 is the vector 

of the codewords of UE 𝑢, 𝐡𝐮 = [ℎ1𝑢, ℎ2𝑢, … , ℎ𝐸𝑢]𝑇 is the channel response vector of UE over the 

SCMA resource block under consideration, diag(𝒉𝒖) is a diagonal matrix containing ℎ𝑛𝑢 as its 𝑛-

th diagonal elements, and 𝐢  represents white gaussian noise plus total interference from the 

neighboring devices.  
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Figure 3.2: A Basic SCMA system  
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    The sparsity of SCMA codewords, where the number of non-zero entries overlapping at a given 

subcarrier of 𝐲 is smaller than the number of active UE(𝑈), allows the sub-optimal detection by 

the message passing algorithm (MPA) or its modified form (log-MPA). A basic SCMA system is 

shown in the fig.3.2. given above.To address the issue of massive connectivity, the number of 

SCMA codebooks is scalable as a function of E and H. The scalability can be determined from the 

possible number of arranging the H non-zero entries within a codeword of length E. This is given 

by a combination function which is described by a binominal coefficient to give a maximum of 

𝐽 = (
𝐸
𝐻

) = 𝐶𝐸
𝐻                                                                               (3.2) 

codebooks with a user overloading factor of f: 

   𝑓 =
𝐽

𝐸
                                                                                    (3.3)  

In the figure 3.2. above, we observe that there are H=2 non-zero entries within a codeword of 

length E=4. Hence, (3.2) provides  

𝐽 =
4!

(4 − 2)! 2!
= 6, 

codebooks corresponding to 6 users sharing 4 SCMA resource elements. The overloading factor 

is f=6/4=1.5 or commonly described as 150%. Depending on the SCMA system codebook design 

parameters the overloading factor could be as large as 200%,300% and so on. The overloading 

factor is adjusted by changing the parameters E and H. For achieving massive connectivity, it is 

required to make the overloading factor much greater than 1 or 100%. The possible number of 

codebooks for an SCMA system can be seen from the figure 3.3. which describes the scalability 

of SCMA system as a function of H non-zero entries and codeword length E. The maximum 

number of codebooks could be as large as 70 for E=8 and H=4. 

     In the fig. 3.2. above, we observe elements known as function nodes and variables. To clearly 

describe an SCMA system’s resource sharing among multiple users, a factor graph and a 

corresponding signature matrix can be used. Assuming J=6 codebooks or SCMA layers/users as 

shown in the fig.3.2., the SCMA can be represented by the following factor graph and a 

corresponding signature matrix. It is possible to represent the signature of SCMA codebooks by 
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factor graph G (J, H) with J variable nodes (VNs) and H function nodes (FNs). The variable nodes 

represent data layers that correspond to one or more users whereas the function nodes represent 

time-frequency resources shared by the SCMA data layers [6], [31].  

Fig. 3.4. gives example of an SCMA factor graph that contains 6 variable nodes and 4 function 

nodes. The described SCMA system has a 6x4 codebook or four-point codebook. The 

corresponding signature matrix is also shown in the fig. 3.5. The following factor graph shows 

multiplexing of 6 users’ data over 4 radio resources. 
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Fig. 3.5. The signature matrix of the factor graph of a SCMA with E=4 and H=2  

 

    The six function nodes describe the SCMA layers or users that are transmitting their data using 

only two of the four available function nodes that represent time-frequency resources. The 

signature matrix shows the mapping procedure from the users to the SCMA resource block. The 

six columns of the signature matrix represent the six SCMA layers and the used resources. For 

example, the first column represents the VN1 which transmits its data via FN1 and FN2. Hence, 

VN2 VN1 VN6 VN5 VN4 VN3 

FN1 FN2 FN3 FN4 

Fig.3.4. A factor graph representation of an SCMA with E=4 and H=2 
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the first two entries of the first column are 1 whereas the rest are 0. Likewise, the four rows of the 

signature matrix represent the four SCMA resources and the entries indicate which FNs are 

transmitting in that resource. Hence, the first row has the first three entries set to 1s which indicates 

that VN1, VN2 and VN3 are colliding at the FN1.The sparsity of the SCMA codewords enables 

the SCMA system to have overlapping of users’ data. The signature matrix and a set of mapping 

matrices determined in the SCMA codebook design specify the number of layers colliding at each 

resource node which in turn defines the complexity of the multi-user detection algorithm or the 

MPA. If the design provides sparser codewords, the complexity of the MPA detection will be 

reduced. The near optimal detection of the 6 SCMA layers can be achieved by iteratively applying 

the MPA detector over the corresponding factor graph. Sparsity nature of the codewords also helps 

to limit the complexity of the MPA receiver used in the SCMA system. In the following section, 

contention-based SCMA will be discussed as an enabler technique of achieving both massive 

connectivity and reduced signaling overhead and latency. 

3.5.Contention-based SCMA system  

    A contention-based SCMA approach is achieved by defining a contention region in the existing 

SCMA radio resource block. Fig.3.6. shows the definition of a contention region in the time-

frequency plane. The basic transmission unit is called contention transmission unit (CTU) defined 

as a function of time, frequency, a set of J SCMA codebooks and the assigned pilot sequences L. 

Hence, the given contention region has the capacity to support LXJ UEs at the same time. In this 

research we proposed a contention-based SCMA system that achieves both massive connectivity 

of IoT devices and the reduction of signaling overhead and latency. To achieve the massive 

connectivity of IoT devices, the merits of SCMA system are adopted whereas contention-based 

access will enable the system to have a reduced level of signaling overhead and latency. This is 

because of the absence of the length procedure of setting up connection between the IoT devices 

and the eNB. The IoT devices can contend for the available resources to transmit their data. As it 

is outlined above, the contention region can be overloaded with many IoT devices which use 

unique pilot sequences and codebooks. 
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Fig. 3.6. Definition of contention region and CTU 

  

    Since there are a large number of IoT devices in the network, the avaible CTUs may not still 

be enough. There is a probability of user data collision at the receiver. So, it is necessary to devise 

a means to reduce that collision probability while maintaining the other features of the CB-SCMA 

system. Hence, in this research we proposed the CTU allocation and UE coordination technique 

which is based on   finite memory sequential learning (FMSL) to allow each IoT device in the 

network to learn about the nearby devices status on CTU usage and information about critical 

event near them. The problem of handling massive number of devices and reducing the level of 

signaling overhead and latency can be addressed by the contention based SCMA which takes the 

advantage of SCMA layers overloading and nonorthogonality of the resources. The major 

characteristics of an uplink contention based SCMA system can be summarized as follows [7]: 

➢  Like OFDMA or SC-FDMA radio resource allocation, some of the predefined time-

frequency regions are can be reserved for the contention-based SCMA communication 

applications. 

➢ Contention-based SCMA achieves multiple-access by multiplexing of SCMA layers within 

the predetermined contention regions. Fig.3.6. shows that a given contention region has the 

capacity to support LXJ devices at the same time. An SCMA layer is spread over the entire 

resources of a contention region. 

➢ The SCMA layers represent users or IoT devices in this work. Every SCMA layer has a 

unique SCMA codebook. To further specify the resources to be used by each device, a 

specific contention region, SCMA codebook, and pilot sequence is assigned to each device. 

➢  The number of non-zero entries H defines the sparsity of SCMA codewords. Due to the 

sparsity of the codewords, SCMA systems can rely on a moderate complexity multi-user 

detection algorithm such as message passing algorithm (MPA). MPA algorithms can 
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achieve a near-optimal joint user detection and cross-layer interference cancellation for 

SCMA layers. 

➢ The SCMA system can be overloaded to support a larger number of users than the available 

SCMA resources. This is possible by multiplexing the layers which are more than the 

length of codewords. Due to the sparsity of the codewords, the overloading feature of 

SCMA enables a massive connectivity of the IoT devices with a limited complexity. 

    In the fig.3.7. below, a multi-carrier narrowband SCMA(MC-NB-SCMA) system is shown 

where OFDMA subcarriers are grouped in such a way that the number of subcarriers in each group 

is equal to the number of the FNs or shared resources in the SCMA. It shows a mapping procedure 

from a SCMA layer to SCMA resource for a MC-NB-SCMA system. The system has 6VNs 

overloaded within 4FNs or subcarriers in an OFDMA subcarrier group. The data from an SCMA 

layer are encoded by the SCMA encoder (as shown in fig.3.8. below) and mapped to the time-

frequency resources of the SCMA system. The FNs represent time-frequency resources, which are 

within one symbol duration and include multiple OFDMA subcarriers.  
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Hence, it is possible to define the time-frequency resource within one symbol duration and one 

OFDMA subcarrier as one SCMA resource unit. In MC-NB-SCMA systems shown in the fig.3.7., 

4 SCMA resource units in one symbol duration and 4 OFDMA subcarriers are used to define one 

SCMA resource block and used to send one SCMA codeword. If each SCMA user uses a 

predetermined codebook for SCMA encoding, it will transmit non-zero data symbols on all its 

occupied OFDMA subcarriers [4]. 

3.6. Narrow Band SCMA 
    NB-IoT has been introduced by 3GPP to meet the demands of competitive solution for ultra-

low device cost, low power consumption, deep indoor coverage, low delay sensitivity and 

suitability for massive deployment by low throughput devices [2]. To meet the wide area coverage 

requirements of LPWANs, narrow band pulse shaping techniques have been discussed in [4]. Since 

NB-IoT devices are required to have a minimum hardware complexity, hence low-cost, that is 

dictated by the standard, they cannot rely on inverse fast Fourier transform (IFFT) for mapping 

modulated symbols onto multiple sub-carriers. IFFT is used in OFDM systems which have the 

computational capacity to achieve the required QoS in terms of processing delay limits. In narrow 

band pulse shaping the principle of frequency localized pulse shaping is used to transmit data 

symbols over each subcarrier of the SCMA system.  

    In OFDM, each subcarrier has the same the bandwidth, but in localized pulse shaping different 

bandwidths are allocated for different users. Hence, localized pulse shaping enables bandwidth 

assignment to be according to the channel quality and the number of users in the system. If a user 

has a good channel quality, a user near the BS for example, it can select a broader bandwidth to 

transmit data to the base station BS compared to those who have severe channel quality. Since 

OFDM system is very sensitive to frequency offset which causes inter-carrier interference and 

degrades it performance, the system has a complex and efficient oscillator design to correct the 

frequency offset. However, OFDM is not suitable for low-cost NB-IoT devices which have 

relatively cheap oscillator that often leads to frequency offset. But, narrow band pulse shaping is 

tolerant against the frequency offset, as the subcarriers are localized from each other. 

Fig. 3.8. shows a block diagram of UL NB-SCMA systems. The description of the SCMA system 

is the same as the basic SCMA system depicted in fig.3.2. The channel coded binary information 
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bits are mapped to an E-dimensional SCMA complex codeword. The mapping to complex SCMA 

codewords is done by an SCMA encoder.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. A Narrowband SCMA system 

The NB-SCMA different from the conventional SCMA system by the NB-pulse shaping block 

which follows the SCMA encode block. The NB-pulse shaping is the process of putting the data 

signal into filters to do up-sampling and achieve a frequency localized signal. Then, the signal is 

fed to the digital up converter to convert its baseband frequency to passband frequency. At the 

receiver side, a reverse NB-pulse shaping techniques are used. 
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CHAPTER 4 

SEQUENTIAL LEARNING 

4.1. Introduction 
    The current IoT application scenarios have several challenges such as network resource 

management, massive data processing, seamless coexistence with existing communication 

networks, and accuracy of event detection by IoT devices. To address those challenges and 

enhance effective deployment of massive IoT devices within the existing network, many self-

organizing solutions have been studied. The literature related to such solutions is very wide. Hence, 

we restrict our discussion to only a few learning frameworks which have been used as the most 

promising solutions in many IoT applications or use-cases. Such learning frameworks have been 

used to enable the autonomous operation of IoT devices in many dynamic environments. However, 

to develop learning frameworks for the IoT applications, it is important to consider certain unique 

characteristics of IoT devices like resource constraints, heterogeneity of messages, and stringent 

QoS requirements. Machine learning, sequential learning, and reinforcement learning are the most 

common learning frameworks suitable for IoT applications [14]-[18]. These learning frameworks 

have their own advantages, disadvantages, and constraints in terms of resources used in the 

learning process as summarized in the table 4.1. In this research, since we considered the resource 

constrained and limited memory NB-IoT devices we used sequential learning as a learning 

framework to allocate resources in the massive uplink communications of the IoT devices.  In the 

coming sections we will discuss different learning frameworks, finite memory sequential learning 

and the related algorithms. 

4.2. Different learning Schemes in IoT 
     Due to the massive scale of the IoT devices and their applications to different sectors, self-

organizing frameworks are inevitable solutions as it is difficult to manage the devices manually. 

Sometimes the operation of the devices will be in a situation that allows only a minimal human 

intervention. Besides, the IoT devices could be applied in various environments based on the uses-

cases and applications.  For example, an application for a smart city involves the deployment of   

many different IoT devices, fire-sensors deployed across a large area of a forest, devices spread 

across a large area in a smart agriculture, environmental monitoring sensors such as temperature 
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sensors, and for indoor applications such home automation. The application could involve 

reporting unpredictable events such as burglar alarms, fire alarms, and medical emergency 

information. Those events must be reported with low latency and high reliability as they are critical 

information. The use of learning frameworks enhances performance of the operation in the IoT 

landscape so that the devices will adapt to their changing environments and effectively manage 

limited resources. The learning frameworks enable the devices learn about their surroundings, the 

nearby devices, and their resource allocation patterns. For instance, the IoT devices can learn about 

peak workload in the network and save energy by adjusting their mode as active-mode or sleep-

mode. The learning frameworks can also be employed to facilitate coordination among the IoT 

devices and HTC devices for using the limited radio resources. If there are critical events triggering 

urgent uplink transmissions of information, certain portion of the limited radio resources can be 

allocated based on the adopted learning procedure.   

    Hence, learning frameworks can be used in various IoT application scenarios to optimize power 

usage, extend the battery life, to reduce the UL communication bottleneck due to limited radio 

resources for massive scale of IoT device, to enhance a coexistence of IoT networks with the HTC 

networks, and employ computationally efficient cloud-based hardware to process the bulky data 

from IoT systems [14]. 

4.2.1. Machine Learning 
    Machine learning and various kind of related algorithms were developed to enable computers 

and other information processing machines autonomously learn information from predetermined 

data sets and build appropriate models for making decisions on future actions and inputs. Machine 

Learning (ML) techniques are typically divided into two categories, namely supervised and 

unsupervised learning [18]. Their difference lies in the fact that the supervised learning needs a 

labeled training data set, whereas unsupervised learning, does not need labeled data sets. But, the 

computational complexity of unsupervised learning is larger than supervised learning.  The major 

limitation of using ML in IoT applications is that the performance of ML depends on the use of 

extensive data set. The ML framework may need the information about the location of the devices 

and the measured values. The ML algorithms can effectively process such data sets and enable the 

IoT devices learn their environment. However, the IoT devices are resource-constrained with 

limited computation capacity and memory size. Hence, cannot store and process the massive IoT 
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data set. Besides, supervised learning requires a labeled training data set and needs human    

intervention to give the correct labels. Hence, the use of ML must take such IoT device features 

and limitations into consideration. Yet, with the cloud-based centralized processing techniques, 

ML techniques create a great opportunity for processing and analyzing the massive IoT data. 

4.2.2. Reinforcement Learning  

    Reinforcement learning (RL) is one of the learning frameworks used in a wide range of IoT 

applications. RL is a technique in which several agents learn how to interact with their environment. 

In RL, the learning framework consists of several agents having a specific set of actions, their 

corresponding environment with a predetermined set of states, a given initial observation function, 

a predetermined state transition function, the corresponding and immediate reward function [14]. 

Starting at each period, the agents observe their environment and take actions to maximize their 

immediate or future rewards. After the specified period is over, the agents get their immediate 

rewards. At the same time, there is a change in the state of the environment which is by the state 

transition function. The agents iteratively continue the learning process and finally converge to a 

steady state. RL is a computationally simple scheme but it takes a prolonged duration to converge 

to a steady state.  But, there is no need for remarkable interactions between the devices determined 

over M2M network which is common in SL. Hence, it saves energy to achieve the equilibrium 

points and avoids the need for the agents be synchronized globally and have the same rate of 

learning. Besides, RL algorithms are computationally simple for the low-cost and limited capacity 

IoT devices. 

4.2.3. Sequential Learning 
    Sequential learning (SL) is one of the enabling techniques used for IoT applications as a suitable 

learning framework [15]. In SL, several autonomous agents or IoT devices will sequentially 

communicate with each other to learn an underlying binary state in an environment. The 

underlying binary state represents the status of the IoT device environment where the devices are 

located. For example, it could represent events of interest such as a medical status in an e-health 

application, a fire alarm in a smart home, or other environment-triggered critical events in the IoT 

network.  SL enables the agents to learn the underlying state of the environment by following 

specific sequence. The agents will also observe their environment and the behaviors or 

observations of previous agents in a sequence. Finally, the agents will converge to a consensus on 



37 
 

the true underlying binary state. This is based on repeated hypothesis testing as discussed in [15]. 

The SL framework is chosen to support the NB-IoT devices learn about their environment and 

coordinate with other agents or devices for effective resource allocation. In the coming sections, 

we will discuss SL in detail. 

4.2.4. Cognitive Hierarchy Theory 
    The heterogeneity of the IoT environment requires a learning framework that can efficiently 

capture the heterogeneity in terms device types, levels of available resources and their 

computational capacity. In cognitive hierarchy theory (CHT), different levels of resource 

capabilities and availabilities within the IoT devices are represented by different levels of 

rationality. Based on their levels of rationality, the IoT devices are mapped to different learning 

frameworks that will also depend on the available resources [14]. Hence, with CHT, it is possible 

to integrate different learning techniques at different levels rationality in the IoT landscape. This 

helps to maximize the overall resource usage using a more realistic model for a heterogeneous IoT 

environment. 

4.3. Sequential Learning for IoT 
    In addition to observing their environment, the agents in a SL learning framework will also need 

to know the observation of previous agents and their estimates of the underlying binary state. 

Hence, based on the number of previous estimates or the number of agents required in a given 

sequence, there are two categories of SL namely:  infinite memory SL(IMSL) and finite memory 

SL (FMSL) [16], [17]. In the case of infinite memory SL, the involved agents are required observe 

all the previous agents in their sequence. Thus, IMSL has a memory requirement that grows 

infinitely with the number of agents involved. For FMSL the number of observations is limited to 

a fixed number of previous agents, and hence, the required memory for estimates from previous 

agent is fixed. FMSL approach is suitable for the IoT applications as it can easily converge to the 

correct underlying state by only observing two of the previous agents as proved in [15]. As shown 

in the fig 4.1., a SL framework relies the M2M communication between the agents for exchanging 

their estimate of private signals. Hence, the devices cannot learn if they don’t communicate with 

other devices. 
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4.4. Finite Memory Sequential Learning  
    The major advantage of applying SL for IoT applications is its flexibility with memory 

requirements. In FMSL, the devices can rely only on a fixed number of previous observations, and 

the SL can converge [15]. Hence, the IoT devices determine the size of information used for SL 

based on their available resources. In IMSL, the amount of information required for SL will grow 

indefinitely as learning progresses in the sequence of agents. As a result, the size of the packets 

communicated over the M2M networks grows infinitely. 

Table 4.1. Summary of different Learning frameworks  

Learning 

frameworks 

Advantages Limitations Applications 

Machine 

Learning 

➢ Various techniques are 

available with several 

applications 

➢ Used for processing the 

bulk data collected in IoT 

to reduce resource 

consumption 

➢ Enabler technique for big 

data analytics and 

predictive 

➢ Needs centralized 

implementation 

➢ Needs significant 

amount of 

computational 

capacity 

➢ Needs extensive 

data set for training 

➢ Data 

aggregation 

and 

compression 

➢ Query 

processing 

➢ Big data 

analytics 

➢ IoT security 

Sequential 

Learning 

➢ Enables distributed 

implementation 

➢ Enables flexible memory 

and resource allocation 

➢ No need for extensive 

knowledge of the system 

➢ Ability to effective learn 

unknown parameters 

➢ Dependent on M2M 

for communication 

➢ Only for binary 

state learning 

➢ Needs private 

signal for learning 

 

➢ Event 

detection 

➢ Dynamic 

resource 

management 

under 

uncertainty 

➢ Network 

operation 

adaptation 

 

Reinforcement 

Learning 

 

 

 

 

➢ Enables distributed 

implementation 

➢ Asynchronous operation is 

possible 

➢ Achieves lower 

computational complexity 

➢ Game-theoretic 

equilibrium solutions can 

be achieved 

➢ Incurs overhead for 

reaching steady state 

➢ Needs complete 

information about 

state transition 

➢ Computational 

complexity is higher 

for incomplete data 

➢ Power control 

➢ IoT radio 

resource 

management 

➢ Dynamic 

scheduling for 

energy 

efficiency 

➢ Possibility to 

use drones for 

enhanced 

communication 
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Figure 4.1:  An example of sequential learning in IoT   

    Thus, the IMSL is not suitable for the resource-constrained IoT devices. Therefore, we adopted 

FMSL for the CB-SCMA so that the IoT device can effectively learn about their underlying binary 

state and communicate their private signals. Sequential learning is a decision-making process in 

which certain agents, the IoT devices in this work, sequentially estimate an underlying binary state 

𝜃 = {0,1} from the observation of their own private signal and the estimated values of private 

signals of their predecessors. The private signals are modelled as random variables which are 

independently and identically distributed for different agents.The private signal have some 

probability of inferring true θ. Here, 𝜃 =  1 indicates the occurrence of a critical event such as fire 

alarm and 𝜃 =  0, means there is no alarm message.  In the learning process there is no central 

entity to support the decision process. Hence, the sequential learning is applied to an IoT 

application scenario to capture the message diversity among the devices that will learn about 

occurrence of an abnormality near another device and avoid using the resources allocated for the 

critical messages after reaching a consensus. In this way, enough CTUs are allocated for α critical 

messages while the rest (C-  α  ) CTUs are allocated for periodic messages whose minimum 

periodicity depends on  [17], 

                                                         𝜏𝑚𝑖𝑛 = ⌈
U−α

C−α
⌉                                                                     (4.1) 

Underlying binary state 𝜽 = {𝟎, 𝟏} 

Private Signals 

Observation from previous agents via 

M2M communication 

Some devices cannot observe the 

underlying binary state  
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      The sequential learning in this work is called finite memory sequential learning in which the 

agents depend only on a limited number of private signals from previous agents to estimate the 

undelying binary state.Besides,the IoT devices considered in this work are resource-contrained 

interms of computational capacity, power and memory. Hence,only F,finite memory size , of the 

previous agents will be considered for the learning process. Only few steps are enough to 

effectively estimate the undelying binary state whose convergence is proved in [15]. 

4.5. Sequential Learning Algorithms 
    To avoid duplicate code usage and hence,avoid packet drop of critical messages,the FMSL is 

modeled as given in [17], 

                           {𝑥𝑗−𝐹+4 , … , 𝑥𝑗−1, 𝑇𝑗−1, 𝑄𝑗−1, 𝑖, 𝐶𝑖}                                                                   (4.2) 

where {𝑥𝑗−𝐹+4 , … , 𝑥𝑗−1} represents (F-4) private signals. Minimum of  4-bits memory are required 

to capture all the parameters for the learning process which  will also include the parameters 

𝑇𝑗−1, and 𝑄𝑗−1 used to track the learning process and update the current estimate of true θ.  The 

parameters 𝑖 and 𝐶𝑖 represent the IoT devices with critical messages and the corresponding CTU 

allocated to enable others device learn about CTUs used by other devices. In FMSL, as discussed 

in [16],the devices estimate the maximum likelihood of the true θ based on the previous  private 

signals {𝑥𝑖 }. An IoT device will determine its private belief 𝑏𝑖 based on,  

                             𝑏𝑖 = 𝑎𝑟𝑔max
𝛳

𝑃𝑟(𝑥𝑖−𝐹+4 , … , 𝑥𝑖−1/θ)                                                    (4.3) 

                                      = 𝑎𝑟𝑔max
𝛳

∏ 𝑃𝑟
𝑖
𝑗=𝑖−𝐹+4 (𝑥𝑗 /ϴ),                                                           (4.4) 

                                      = 𝑎𝑟𝑔max
𝛳

∏ 𝑝
1ϴ

𝑥𝑗 𝑝
0ϴ

1−𝑥𝑗 𝑖
𝑗=𝑖−𝐹+4                                                              (4.5) 

The 𝑝1ϴ  and 𝑝0ϴ  represent the conditional probabilities of estimating the true θ  given that the 

event  has happened or not,respectively. Based on likelihood ratio test of (4.5) and assumptions 

that 𝑝10  , the probability of observing a critical alarm while there is no such an alarm ,is negligible 

compared to  𝑝11 ,the probability of observing alarm while a user has a critical message,the private 

belief of an IoT device will 𝑖 be: 
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                        𝑏𝑖 = {
1     𝑖𝑓 (∑ 𝑥𝑗 

𝑖
𝑗=𝑖−𝐹+4 ) ≥ 1

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
}                                                                            (4.6) 

     The private  belief of the IoT devices that don’t readly know 𝑝10  and 𝑝11 will be 1 if any of the 

private signals is 1. The probability of 𝑏𝑖 reflecting true θ  is dependent on the memory size F and 

will be more informative about true θ than the private signals 𝑥𝑖  as can be shown in, 

                                𝑃𝑟(𝑏𝑖 = 1/θ = 1) = 1 − 𝑝01
𝐹−1 = 1 − (1 − 𝑝11)

𝐹−1                                 (4.7) 
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CHAPTER 5 

CB-SCMA FOR NB IOT WITH FMSL 

5.1. System model 
In this work we consider an uplink communication of U narrowband IoT devices with a base 

station located in the center of a given geographical area A. We assume an uplink communication 

of the IoT devices that will rely on CB SCMA wherein the CTUs are allocated based on finite 

memory sequential learning algorithms. We will consider a total of C CTUs in a given contention 

region (as shown in fig.1) which is defined at a given time slot. There are far larger number of 

devices than the number of CTUs. Hence, the preconfigured or designed SCMA codebooks that 

are already known can be used in all subsequent contention regions or time slots. The IoT devices 

that are distributed in the give area are assumed to have heterogeneous message types. There are 

critical messages that require urgent transmission using the available CTUs. Since the critical 

messages are delay sensitive, such as forest-fire alarm and other security alerts, the devices learn 

about the status of their neighboring devices will not use the CTUs allocated for critical messages. 

The periodic messages which are delay tolerant can rely on the remaining CTUs. The 

communication between the devices for sequentially passing the previous private signals of other 

devices for learning process is assumed to be carried out via the control plane signaling channel or 

M2M communication. 
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Fig 5.1. System Model for CB-SCMA with FMSL  

5.2. Analysis of SL model 
    In the FMSL that is used in this work we assume that the learning process is initiated by one of 

the IoT devices that has already learned the true θ. It will initiate the neighboring devices within 

the communication range 𝑟𝑐 . There should be at least one device within range 𝑟𝑐  so that the 

learning process starts. The performance of FMSL depends on the geographical location of the 

points where critical messages are generated. Hence, we define 𝑟𝑑  to represent a distance from a 

critical event within which a device can observe the event with high a probability. But, the devices 

located at a point further than 𝑟𝑑  may not correctly observe the event and their private signal is 

less informative.  The effective observation radius 𝑟𝑑
𝑒𝑓𝑓

  for a critical event is dependent on the 

number of agents involved in the learning which is determined by the size of F-bits of memory. 

Hence, 

                                                       𝑟𝑑
𝑒𝑓𝑓

= 𝑟𝑑 + (𝐹 − 4) 𝑟𝑐                                                                   (5.1) 

This is because there are (𝐹 − 4) bits of previous private signals and the number of private signals 

that are from the devices within the observation range will be zero as the learning progresses 
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(𝐹 − 4)times. So, there is a device with an informative located as far as (𝐹 − 4) 𝑟𝑐  from  𝑟𝑑  .It is 

important to consider the time dependence of 𝑟𝑑
𝑒𝑓𝑓

 as 𝑟𝑡
𝑒𝑓𝑓 = min (𝑟𝑐 𝑡, 𝑟𝑑

𝑒𝑓𝑓) by noting that the 

devices will learn the true θ after 𝑡 of the occurrence of the critical event. Hence, the random 

variable that represents the number of devices that will correctly learn the true θ  and change the 

usage of CTU is [17], 

                                      
𝑈𝜋𝑟𝑡

2

4𝐴
≤ 𝐸[𝑁𝑡] ≤

𝑈𝜋𝑟𝑡
2

𝐴
                                                                         (5.2) 

                                     
𝑈𝜋𝑟𝑡

2

4𝐴.𝐶.𝜏𝑚𝑖𝑛
≤ 𝐸[𝑃𝑡] ≤

𝑈𝜋𝑟𝑡
2

𝐴.𝐶.𝜏𝑚𝑖𝑛
                                                                   (5.3) 

     Since, in (5.2) we consider a rectangular area of A, the upper bound and the lower bound of the 

expected number of devices is expected to occur at the center and edge of the geographical area, 

respectively. The devices A the center of the area, there are more devices in the observation range 

and more devices will quickly learn about the occurrence of a critical event that when the event 

happens at the edge of the area where there may be few devices for the learning to progress. After 

the learning process converges, the devices with periodic messages periodicity of  𝜏𝑚𝑖𝑛 learn to 

change the codes allocated for critical messages. Hence, the probability of successful transmission 

is given by (5.3). 

5.3. Number of  Connections in CB-SCMA 
    Compared to OFDMA, contention-based SCMA supports more number of UEs. This is due to 

the overloading factor which can be chosen to be greater than 1(1.5,3 or more). In CB-SCMA 

transmission scenario there are E orthogonal resources in a certain time-frequency region 

(contention region). Due to sparsity of codewords only H out of E resources are occupied in SCMA. 

However, All E resources are used for OFDMA. 

Hence, the number of UEs that can be supported in uplink SCMA will be: 

                                                     𝑁𝑆𝐶𝑀𝐴 = 𝐶𝐸
𝐻xLx𝑚1                                                   (5.4) 

where  𝑚1 UEs share the same CTU on average 

For OFDMA, the number of UEs in the uplink will be: 

 

                                             𝑁𝑂𝐹𝐷𝑀𝐴 = Ex𝑚2                                                           (5.5) 
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where 𝑚2 UEs share a CTU on average 

Capacity gain of SCMA over OFDMA will be: 

                                                Gain=
𝐶𝐸

𝐻xLx𝑚1

Ex𝑚2
                                                            (5.6) 

For 𝐻 ≥ 2,2 ≤ 𝐻 ≤ E, 𝐿 ≥ 2     and assuming 𝑚1 = 𝑚2   the next figure shows the 

connection gain of CB-SCMA over OFDMA. 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.2. Connection gain of CB-SCMA over OFDMA 

The packet drop rate for a CB-SCMA system can be defined as the probability of its first 

transmission failing.  Fig.5.3 shows that the effect of packet collision is higher when there are more 

users that share same CTU. Hence, Finite memory sequential learning (FMSL) is   proposed for 

the above   systems. 

A packet drop rate is:       

                                       𝑟𝑙𝑜𝑠𝑡=1−(1−𝛼)𝑚−1                                                               (5.7) 

where  𝛼 is probability that each user sends packet at anytime. 
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Fig 5.3. Packet drop rate of CB-SCMA 

5.4.  Analysis of Probability of collision  
In this work, we analyze the collision probability within the CTU, where the number of IoT devices 

assigned within one CTU is not large enough. Hence, the binomial distribution is used here. The 

probability that m UEs send data simultaneously follows the binomial distribution, which can be 

written as 

      𝑃𝑐𝑜𝑛𝑣=
𝐶 ∑ 𝑝𝑛.𝑚.𝑝𝑚∑ 𝑝𝑛−1.𝑚.𝑝(𝑚+1)+𝐶(1−∑ 𝑝𝑛.𝑚.𝑝

𝑛
𝑚=2 ∑ 𝑝𝑛.𝑚.𝑝

𝑛
𝑚=2 𝑚)𝑛−1

𝑚=1
𝑛
𝑚=2

𝐶𝑛𝑝
                                   (5.8) 

In sequential learning for the devices that successful learn about the other devices and avoid 

using their CTU, the collision probability, based on analysis in [7], will be: 

                      𝑃𝑆𝐿 =

((𝑚+1)(1−𝑛𝑎)−𝑛(1−𝑎)(𝑛𝑝)(1−𝑞𝑛−1)+

(𝑛(1−𝑎)−𝑚(1−𝑛𝑎)((𝑛+1)𝑝)(1−𝑞𝑛−1)))

𝑛𝑝
                                                               (5.9) 

  

     𝑎 = ∑ 𝑝𝑛.𝑚.𝑝 = ∑ (
𝑛
𝑝) 𝑝𝑚𝑞𝑛−𝑚𝑛

𝑚=2
𝑛
𝑚=2                                                                              (5.10) 

Where n is the average number of devices assigned to a CTU. 
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

Numerical Results and Analysis 
    In the numerical analysis we considered a contention based SCMA system 𝑈 = 1500 devices 

are deployed in a geographical area with square shape, and side, 𝑆 = 50𝑚. Hence, the area is 𝐴 =

2500𝑚^2. To capture the nature of the user density in the area we assumed the poisson point 

process with parameter 𝜆. Hence the effective number devices will be 𝐴𝜆. The number of CTUs 

available for the devices is chosen based on works in [7], 𝐶 = 28 which belongs to 𝐽 = 7 and 𝐿 =

4 and and 𝐶 = 280 belongs to 𝐽 = 70 and 𝐿 = 4. The observation range 𝑟𝑑    of 10m and  𝑟𝑐  of 

2m for the inter-device communication range to achieve learning is considered. Since, the IoT 

devices are communicating very short messages, the unit for time slot in which a contention 

happens is considered as 1 second. 

 

Fig. 6.1. Lowebound,average and upperbound on the number of devices that will correcly learn 

about the status of their neighbouring devices. 

In the fig.6.1, Lowebound,average and upperbound on the number of devices that will correcly 

learn about the status of their neighbouring devices is shown. The number of devices that correctly 
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learn the true value of the binary state  θ and change their allocated CTUs increases with time as 

more devices are reached as the learning progresses. The rate of increase of the number of devices 

is higher, at the beginning when the learning is initiated, for the upper bound than the lowe bound. 

This is due to the fact that the upper bound captures the effect of learning in the center of the area 

where more devices are likely to have neighbouring devices within their communication range. 

Hence, the learning progresses fast and finally reaches a saturation point where the learning ceases 

due to the Finite memory nature of the system.  

 

 

Fig 6.2. Probability of successful transmission at different values of F 

     The Probability of successful transmission at different values of K has been shown in the fig 

6.2. As a main feature of FMSL, the upper and lower bounds for the probabilities of successful 

transmission indicate the possible region in which the learning is successful as the it progresses to 

the nearby devices with time. The probability of successfully learning about the underlying binary 

state is increasing with time as more devices are reached once the learning process is initiated. The 

memory size can be chosen based on the type of application or the capacity of the devices involved 

in the learning procedure.  
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     Even though the larger values of F have better convergence and achieve higher probability of 

successful transmission and hence, more reliable the are chosen at the cost of increased 

communication overhead due to the M2M communication involved for exchange of the learning 

parameters. 

 

Fig 6.3. Probability collision for the proposed learning scheme and a conventional scheme 

In the fig.6.3 we observed that the learning based scheme proposed for the CB-SCMA has lower 

probability of collision as the traffic frequency increases. This is due to the fact that more devices 

will learn about the resources used by the other devices in the network and hence, a reduction in 

packet collision over a given CTU. 

 

 

 

 

 



50 
 

 

CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

7.1. Conclusions 
     In this research we investigated the potential of using Contention-Based SCMA scheme in the 

newly standardized Narrow Band IoT (NB-IoT) technologies that have diverse application as a 

low power wide area (LPWA) communication. Since resource allocation is a major challenge in 

such devices, Finite Memory Sequential Learning (FMSL) was proposed to consider the message 

diversity and enable the devices learn about the status of other devices to improve the usage of 

limited resources and delivery of the messages. The contention based SCMA with FMSL system 

was studied in terms probability of successful transmission and the number of IoT devices that 

will correctly learn about the status of the nearby devices which depends on with memory size F. 

Finally, we conclude that, the contention based SCMA with FMSL system shows improved 

performance in terms probability of successful transmission and the number of IoT devices that 

will correctly learn about the status of the nearby devices which increases with memory size F. 

Hence, FMSL improves system performance in terms of delivery of critical messages which are 

assigned certain codes after the learning process converges. When the devices are assigned certain 

codes after the learning process converges, the probability of collision decreases as compared to 

conventional systems. 
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7.2. Future Directions 
    In the next part of this work an elaborate study will be carried out to consider the effect of the 

learning process on the delay of the critical messages, the probability of collision when certain 

devices near the edge of the area are not involved in the effective observation area for learning, 

the tradeoff between increasing memory size F and the reduction of system throughput due to the 

M2M communication for learning procedure.  There are still many open issues that can be studied 

in relation to CB-SCMA in NB-IoT scenario. Two major issues are the consideration of the 

heterogenous NB-IoT devices, and the energy management in the devices. For example, energy 

harvesting, conservation and consumption, in NB-IoT systems can be considered. 
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