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Abstract

The properties of the vacuum in the quantum theory are different from those in the
classical one. In the quantum vacuum, particles repeat generation and annihilation
persistently. Under sufficiently strong electromagnetic fields, the generated charged
particles, such as a pair of electron and positron, can be observed. The refractive
indices of the vacuum change by the external electromagnetic fields and the vacuum
shows the birefringence, which is the phenomenon that the refractive index of the
eigenmode is different from each other. Such phenomena are thought to occur when
the strength of electromagnetic fields is more than or of the same order of that
of the so-called critical field, which is about 4 × 1013G for magnetic fields. The
physics dealing the behavior of electrons and photons in the external such strong
electromagnetic fields is called nonlinear quantum electrodynamics (QED) or strong-
field QED. In this research, the vacuum polarization, which is one of the fundamental
processes particular to nonlinear QED, is mainly treated.

To verify quantum electrodynamics by experiments, the electromagnetic field,
the strength of which is the same order of the critical field, is necessary. In fact,
the validation of the theory has been tried by the high-field laser experiments. The
required strength to the nonlinear QED cannot be obtained in the experiments, so
the phenomena predicted from nonlinear QED, which is caused by the interaction
with the external electromagnetic fields, are not observed until now. However, the
progress in the technology of the high-field laser experiments is fast and it is thought
that physical processes specific in nonlinear QED will occur in the experiments in
the near future.

In this research, I first calculate the vacuum polarization in external monochro-
matic plane-wave electromagnetic fields. I take into account spatial and temporal
variations of the external fields. I develop a perturbation theory to calculate the
induced electromagnetic current that appears in the Maxwell equations, based on
Schwinger’s proper-time method. Then, I combine it with the so-called gradient ex-
pansion to handle the variation of external fields perturbatively. The crossed field,
which is the long wavelength limit of the electromagnetic plane wave, is considered.
The eigenmodes and the refractive indices as the eigenvalues associated with the
eigenmodes are computed numerically for the probe photon propagating in some
particular directions. In so doing, no limitation is imposed on the field strength
and the photon energy unlike previous studies. It is shown that the real part of the
refractive index becomes less than unity for strong fields, the phenomenon that has
been known to occur for high-energy probe photons. I then evaluate numerically
the lowest-order corrections to the crossed-field resulting from the field variations
in space and time. It is demonstrated that the corrections occur mainly in the
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imaginary part of the refractive index.
The nonlinear QED also important in the astronomical objects called magnetars,

where the strong magnetic fields exist. It is known that explosive radiation of
transient phenomena called bursts and flares is observed in the energy range of X-
ray and gamma ray. It is also thought that they are caused by magnetars’ strong
magnetic fields. Other than the transient phenomena, magnetars are observed by
their persistent emission mainly in X-ray. The persistent emission consists of the
thermal component radiated from the star surface and the non-thermal one emitted
from the magnetosphere, which are observed in the soft X-ray and in the energy
range higher than it, respectively. The thermal radiation propagates through the
magnetosphere and are affected by the vacuum polarization therein. In fact, the
vacuum polarization is important for the polarization of photons, so it may be a
clue for the validation of the nonlinear QED when the polarization of the thermal
radiation is observed.

In this research, I systematically calculated the polarization in soft X-rays emit-
ted from magnetized neutron stars, which are expected to be observed by the next-
generation X-ray satellites. Magnetars are one of the targets for these observations,
since thermal radiations are normally observed in the soft X-ray band and they are
thought to be linearly polarized because of different opacities for two polarization
modes of photons in the magnetized atmosphere of neutron star as well as owing
to the dielectric properties of the vacuum in strong magnetic fields. I computed
polarization fractions in addition to the polarization angles, paying an appropriate
attention to the mode conversion, which is possible conversion of photon’s polariza-
tion modes in the atmosphere, and systematically changing magnetic field strengths,
radii of the emission region, temperature, mass and radii of neutron stars. It is found
that the mode conversion may affect both the polarization angle and the polariza-
tion fraction and produce discontinuities in the polarization angle as a function of
photon energy, one of the important observables. I confirm that the mode conversion
cannot be ignored indeed when the magnetic field is relatively weak B ∼ 1013G. My
results indicate that strongly magnetized (B ≳ 1014G) neutron stars are suitable to
detect polarizations but not-so-strongly magnetized (B ∼ 1013G) ones will be the
ones to confirm the mode conversion.
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1
Introduction

1.1 Quantum Vacuum

Our understandings of the physics in the microscopic scale was revolutionized a
lot by the quantum theory. It also changed the picture of the vacuum. Although
the vacuum is the state that there is nothing in the classical theory, particles and
antiparticles exist even in the vacuum in the quantum theory. More precisely, in the
quantum vacuum, creation and annihilation of the particles and antiparticles, which
1is drawn by the vacuum bubble diagram of the Feynman diagram (Figure 1.1),
occur repeatedly. The causes are the uncertainty principle,

Figure 1.1: Vacuum bubble diagram. This diagram shows the creation and annihi-
lation of an electron and a positron.

∆E∆t ≳ ℏ (1.1)

which describes that the processes that break the energy conservation are allowed in
a very short timescale. This timescale is too short for the observation and processes
that the particles are created and annihilated from the vacuum cannot be observed.
Such particles which exist in the short timescale predicted in the quantum theory
is called “virtual” particles.

1



2 CHAPTER 1. INTRODUCTION

The situation changes when electromagnetic fields are added and the properties
of the vacuum differ from the ordinary vacuum without the external fields. When
we consider an electron and positron pair as virtual particles and electric field as the
external field, an electron and a positron are accelerated in the opposite direction.
If these particles are separated by a sufficient distance, these particles are not be
annihilated and then observed. This process is seen as an electron-positron pair
creation (Figure 1.2). This process is studied by Heisenberg and Euler (1936);

Figure 1.2: Electron-positron pair creation. The double solid line means the electron
or positron in the external electromagnetic field.

Schwinger (1951). It is also known that the pair creation is suppressed exponentially
with decreasing electric field strength. It is also noted that the pair creation occurs
by the external strong magnetic fields. This is important in astrophysics, e.g., near
neutron stars.

It is also predicted that the quantum vacuum in the external electromagnetic
fields shows particular phenomena when a photon as a probe enters such a vacuum.
Here let us consider a magnetic field, in which the pair creation does not expose
itself, as an external field. In the classical theory, charged particles experience
the Lorentz force in magnetic fields and rotate around magnetic field lines. This
situation also holds for the quantum theory and orbits of electrons’ motion are
parallel with each other, which is also true for those of positrons’. Therefore, the
arranged motion of virtual particles makes anisotropy in the vacuum and it causes
the birefringence, which is the phenomenon that the refractive index depends on
polarization of photons and the refractive index of one polarization mode is different
from that of the other polarization mode. This is called the vacuum polarization
(Figure 1.3).

Figure 1.3: Vacuum polarization in the external electromagnetic field. This phe-
nomenon causes the vacuum birefringence.
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There have been many theoretical studies of the quantum vacuum in the exter-
nal electromagnetic fields including Heisenberg and Euler (1936) for a long time.
For these processes by the quantum vacuum in the external strong electromagnetic
fields, interactions between the external fields and photons are important and they
must not be treated as perturbations. So, the perturbation theory in quantum
electrodynamics (QED), which is often used to investigate behaviors of photons
and electrons, cannot be applied to physical phenomena considered here. Instead,
nonlinear quantum electrodynamics (nonlinear QED) treats physical processes of
electrons and photons in the external strong electromagnetic fields.

The criterion of the electromagnetic field strength that nonlinear QED becomes
important is called the critical field. It is about 4× 1013G for magnetic field, which
is the field strength at which the electron cyclotron energy equals to the rest mass
energy of an electron. Attempts to validate nonlinear QED have been done in the
terrestrial experiments utilizing the high-intensity laser facilities. The development
of the experimental technology in the high-intensity laser is so fast that the validation
of nonlinear QED is thought to be possible in the near future, though the field
strength of the laser is less then the critical value.

As described above, the strong electromagnetic field such that nonlinear QED
is important is not obtained in the terrestrial experiments so far. However, there
are some celestial objects called neutron stars, in which nonlinear QED has to be
considered. A neutron star is one of the final stages of the evolution of stars.
Although they usually have dipole magnetic fields of ∼ 1012G, they are observed in
various forms and some of them have extremely strong magnetic fields of∼ 1014−15G,
which are called magnetars. Therefore, there are some systems with strong magnetic
fields, in which particular physical processes to nonlinear QED occur, and nonlinear
QED may be verified by the observation of magnetars.

It is also pointed out that there may exist extremely strong electromagnetic
fields in the heavy ion collision, which is a topic in nuclear physics, and in the early
universe. Therefore, understanding nonlinear QED contributes to various subjects
and disciplines as well as magnetars. Thus, the properties of the quantum vacuum
have been theoretically studied in nonlinear QED for a long time, however, nonlinear
QED can be still tackled as new problems by reason of the recent advances in the
experiments and observations.

1.2 Theoretical Basics

In this section, I briefly show the birefringence of the vacuum and explain the behav-
ior of the eigenmodes of the plane electromagnetic wave in the strongly magnetized
plasma. Note that the electromagnetic units are different for these parts. I use the
Heaviside-Lorentz system with the natural unit in the former part (Section 1.2.1)
and the cgs Gauss unit in the latter part (Section 1.2.2).

1.2.1 Proper-time Method and Effective Lagrangian

The effective action for the electromagnetic fields, which contains the quantum cor-
rection of the 1-loop level, is known to contain the electron propagator. The expres-
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sion is

Γ(1) = −i
∫
d4x tr ln (i ̸∂ − e A̸−m) , (1.2)

where Aµ is the external electromagnetic field and m is the electron mass in this
section. The slash ̸ means the contraction with the gamma matrix, e.g., ∂̸ = γµ∂µ
and the term (i ̸∂ − e A̸−m) is the inverse of the propagator. The Lagrangian is

L(1)(x) = −i tr ln (i ̸∂ − e A̸−m) . (1.3)

The Lagrangian is related to the propagator, and the way to derive the propagator
is similar that to calculate the effective Lagrangian. Here, the expression of the
electron propagator in the electromagnetic external fields is derived by the Schwinger
proper-time method (Schwinger, 1951). The propagator is expressed as

G(x, y) =
1

i ̸∂x − e A̸(x)−m
. (1.4)

In the proper-time method, the propagator is written by the operator Ĝ as

G(x, y) = ⟨x|Ĝ|y⟩. (1.5)

Operator Ĝ is shown in the integral of the proper-time s, which is introduced in this
method and the proper-time in this method is not the proper time appearing in the
relativity. The integral form is

Ĝ =
1

γµΠ̂µ −m

= − γµΠ̂µ +m

m2 − (γµΠ̂µ)2

=
(
−γµΠ̂µ −m

)
i

∫ ∞

0

ds exp

[
−i
(
m2 −

(
γµΠ̂µ

)2
− iε

)
s

]
, (1.6)

where Π̂µ = i∂µ − eAµ and ε in the integration is the small positive real value
introduced to converge the integration. The propagator is then expressed as

G(x, y)

= i

∫ ∞

0

dse−im2s−εs
[
⟨x| − γµΠ̂µe

−i(−(γµΠ̂µ)2)s|y⟩ − ⟨x|me−i(−(γµΠ̂µ)2)s|y⟩
]
.

(1.7)

The exponential function U(s) ≡ e−i(−(γµΠ̂µ)2)s can be seen as the evolution operator
of the proper-time s, , and H ≡ −(γµΠ̂µ)

2 is considered as the Hamiltonian. In this
notation, the necessary components to calculate the propagator are

⟨x|e−i(−(γµΠ̂µ)2)s|y⟩ = ⟨x|U(s)|y⟩
= ⟨x(s)|y(0)⟩, (1.8)

⟨x| − γµΠ̂µe
−i(−(γµΠ̂µ)2)s|y⟩ = ⟨x|U(s)U−1(s)(−γµΠ̂µ)U(s)|y⟩

= ⟨x(s)| − γµΠ̂µ(s)|y(0)⟩. (1.9)
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Then, the propagator is written as follows:

G(x, y) = i

∫ ∞

0

e−im2s⟨x(s)|
(
−γµΠ̂µ(s)−m

)
|y(0)⟩. (1.10)

These consist of the transformation amplitude ⟨x(s)|y(0)⟩ and the operator Π̂µ(s).
The transformation amplitude evolves by the differential equation

i∂s⟨x(s)|y(0)⟩ = ⟨x(s)| − (γµΠ̂µ(s))
2|y(0)⟩, (1.11)

and the operators evolves by the Heisenberg equations

dx̂µ(s)

ds
= −i

[
x̂µ(s),−(γνΠ̂

ν(s))2
]

= 2Π̂µ(s), (1.12)

dΠ̂µ(s)

ds
= −i

[
Π̂µ(s),−(γνΠ̂

ν(s))2
]

= 2eFµ
νΠ̂ν(s) + eiHsie

∂Fµ
ν

∂xν
e−iHs + eiHs1

2
eσνλ∂Fνλ

∂xµ
e−iHs, (1.13)

where Equation (1.12) is necessary to express Π̂µ with x̂µ, which satisfies

x̂µ(s)|x(s)⟩ = xµ|x(s)⟩, (1.14)

x̂µ(0)|x(0)⟩ = xµ|x(0)⟩, (1.15)

for the evaluation. Note that Equation (1.13) contains the derivative of the field
written in the proper-time in the second and third terms, which make the eval-
uation possible only in the limited cases such as the constant and homogeneous
electromagnetic field.

The expression of the Lagrangian is

L(1)(x) = i

∫ ∞

0

ds
1

s
e−im2s−εstr⟨x(s)|x(0)⟩. (1.16)

This is evaluated after one gets the transformation amplitude < x(s)|x(0) >. This
Lagrangian is known as the Euler-Heisenberg Lagrangian. The birefringence of the
vacuum can be understood with the lowest order of the correction term:

L(1)(x) ≃ 2α2

45m4

{(
E2 −B2

)2
+ 7 (E ·B)2

}
. (1.17)

The Lagrangian of the electromagnetic field is

L =
1

2

(
E2 −B2

)
+

2α2

45m4

{(
E2 −B2

)2
+ 7 (E ·B)2

}
, (1.18)

in this case. When the external magnetic field, of which the strength is B, exists,
the dielectric tensor and the inverse of the magnetic permeability tensor are

ϵij = δij(1− 2δ) + 7δbibj, (1.19)

µ−1
ij = δij(1− 2δ)− 4δbibj, (1.20)
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where δ is

δ =
α

45π

(
B

BQ

)2

≃ 5× 10−5

(
B

BQ

)2

(1.21)

and bi is the direction of the external field. Note also that the variation of the dielec-
tric and magnetic the inverse of the permeability can be seen as linear perturbation
when one assume that δ is small.

When the plane electromagnetic wave propagates in z-direction, the external
magnetic field is on z − x plane and the angle between the external field and z-axis
is θ, the refractive indices are

Nx = 1 +
7α

90π

(
B

BQ

)2

sin2 θ, (1.22)

Ny = 1 +
2α

45π

(
B

BQ

)2

sin2 θ, (1.23)

for the eigenmodes, which have the polarization parallel to x- and y-directions,
respectively. It is known that the refractive indices are different for each polarization
mode.

1.2.2 Eigenmodes in Strongly Magnetized Plasma

Neutron stars are endowed with strong magnetic field and the birefringence of the
vacuum is expected therein. There may be also the plasma in the atmosphere near
the surface of the star. In such a case, the polarization eigenmodes are affected by
both the dielectric property of the birefringent vacuum and that of the plasma. Here
I explain the polarization eigenmodes with considering the both effects.

Gas plasma generally contains electrons and ions, however, I do not take into
account the collective motion of electrons and ions but the motion of electrons in
the magnetic field here. This assumption is justified when the frequency of the elec-
tromagnetic wave concerned ω is much higher than the electron’s plasma frequency

ωpe =

(
4πnee

2

me

)1/2

, (1.24)

where ne is the number density of electrons and me is the electron mass and the
ion’s cyclotron frequency

ωci =
eB

mic
, (1.25)

where mi is the ion mass. The thermal effect can be also ignored because the
electron’s cyclotron energy

ℏωce =
ℏeB
mec

= 11.6

(
B

1012G

)
keV, (1.26)

where ωce is the electron’s cyclotron frequency, is much higher than the temperature
of the neutron star surface radiating the persistent emission.
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The electric flux density D in the magnetized plasma without the quantum
correction of the vacuum is expressed as

D =

(
1−

ω2
pe

ω2 − ω2
ce

)
E +

ω2
peωce(ωce ·E)

(ω2 − ω2
ce)ω

2
+ i

ω2
pe(ωce ×E)

(ω2 − ω2
ce)ω

, (1.27)

where ωce = −eB/mec. The variation of the dielectric tensor 4πα
(p)
ij for the system

that the magnetic field is along z-axis is

4πα
(p)
ij =

⎛⎝ S iD 0
−iD S 0
0 0 P

⎞⎠
ij

, (1.28)

where

S = − v

1− u
, D = − vu1/2

1− u
, P = −v,

v =
(ωpe

ω

)2
, u =

(ωce

ω

)2
, u1/2 =

ωce

ω
. (1.29)

The magnetic permeability of the plasma is usually same as that of the normal
vacuum.

The eigenmodes of the plane electromagnetic waves and the corresponding re-
fractive indices are evaluated by solving the equation

ε
∂2E

∂t2
= −c2

[
∇× µ−1 (∇×E)

]
, (1.30)

which is derived from the macroscopic Maxwell equations. The dielectric tensor and
the inverse of the magnetic permeability tensor are obtained from Equations (1.19),
(1.20) and (1.28). As the previous section, let us consider the plane electromagnetic
wave propagating in z-direction. The external magnetic field is on z − x plane and
the angle between the magnetic field and z-axis is θ. In this case, there is also the
longitudinal component of the polarization

Ez = −ε−1
zz (εzxEx + εzyEy). (1.31)

The equation of the transverse components is(
ηxx −N2 ηxy
ηyx ηyy −N2ρ

)(
Ex

Ey

)
= 0, (1.32)

where

ηxx = (1− 2δ)−1
(
εxx − εxzε

−1
zz εzx

)
, (1.33)

ηxy = (1− 2δ)−1
(
εxy − εxzε

−1
zz εzy

)
, (1.34)

ηyx = (1− 2δ)−1
(
εyx − εyzε

−1
zz εzx

)
, (1.35)

ηyy = (1− 2δ)−1
(
εyy − εyzε

−1
zz εzy

)
, (1.36)

ρ = 1− 4δa−1 sin2 θ, (1.37)
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which are expressed as

ηxx = (1− 2δ)−1(S sin2 θ + P cos2 θ)−1SP, (1.38)

ηyy = (1− 2δ)−1(S sin2 θ + P cos2 θ)−1
{
SP cos2 θ + (S2 −D2) sin2 θ

}
, (1.39)

ηxy = −ηyx = (1− 2δ)−1(S sin2 θ + P cos2 θ)−1iDP cos θ, (1.40)

in the system concerned. The refractive index N = k0/|k| is obtained when

det

(
ηxx −N2 ηxy
ηyx ηyy −N2ρ

)
= 0. (1.41)

The refractive indices for each polarization are

N2
1,2 =

1

2
(ηxx + ρ−1ηyy)±

1

2

√
(ηxx − ρ−1ηyy)2 + 4ρ−1|ηxy|2

=
{
2(1− 2δ)(S sin2 θ + P cos2 θ)

}−1

×
[
SP + ρ−1(SP cos2 θ + (S2 −D2) sin2 θ)

±
√{

SP − ρ−1(SP cos2 θ + (S2 − P 2) sin2 θ)
}2

+ 4ρ−1D2P 2 cos2 θ

]
.

(1.42)

The polarization vector of the eigennmode can be obtained by the refractive
index. Here, the transverse components, i.e., x and y components, are considered
and the polarization vector is assumed to be

et1,2 = C(iαx1,2 , 1), (1.43)

where C is the normalization factor. x component is expressed as

αx =
N2ρ− ηyy

iηyx

= ρ1/2
(
ρηxx − ηyy
2iηyxρ1/2

)⎡⎣1±{1 + ( 2iηyxρ
1/2

ρηxx − ηyy

)2
}1/2

⎤⎦
= ρ1/2b

[
1± (1 + b−2)1/2

]
, (1.44)

where

b ≡ ρηxx − ηyy
2iηyxρ1/2

(1.45)

is the ellipticity parameter. To the first order of δ and v, one gets

b ≃
(
1 +

3δ(1− u)

uv

)
u1/2 sin2 θ

2 cos θ(1− 2δ sin2 θ)(1 + 5δ − v)

≃
(
1 +

3δ(1− u)

uv

)
u1/2 sin 2θ

2 cos θ(1− v)
. (1.46)
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Here,

b0 =
u1/2 sin 2θ

2 cos θ(1− v)
(1.47)

is the ellipticity parameter in case without taking into account the vacuum polar-
ization. In contrast, when the vacuum polarization is considered, the ellipticity
parameter b can be written as

b = b0(1 + V ), (1.48)

where V b0 is the correction by nonlinear QED. The polarization vector changes by
the balance of δ and v. The most drastically change occurs at

v = 3δ

(
1− 1

u

)
, (1.49)

at which 1+V equals zero. In Figure 1.4, the ellipticity parameter is plotted for the

-3

-2

-1

 0

 1

 2

8×10
21

9×10
21

1×10
22

1.1×10
22

1.2×10
22

0.014 0.016 0.018 0.020

E
lli

p
ti
c
it
y
 P

a
ra

m
e

te
r 

b

Electron Number Density ne [1/cm
3
]

Mass Density for Fully Ionized Hydrogen ρ [g/cm
3
]

Figure 1.4: Ellipticity parameter around the vacuum resonance point. The lower
horizontal axis shows the electron number density of the plasma and the vertical axis
shows the ellipticity parameter of the polarization. The parameters are B = 1012G,
θ = 45◦ and ℏω = 3keV. The vacuum resonance occurs at b = 0, which corresponds
to the electron number density of ne = 1022 1/cm2. The upper horizontal axis shows
the plasma mass density in the case that the plasma consists of the fully ionized
hydrogen.

different plasma density around the vacuum resonance. It is known from this figure
that the ellipticity parameter b increases as the plasma density increases. The eigen-
modes in the magnetized plasma is generally elliptically polarized, however, they
are circularly polarized at the vacuum resonance point. The direction of the major
axis also changes by 90◦ at the vacuum resonance, which is shown in Figure 1.5.
So, the extraordinary mode (E-mode), of which the polarization is perpendicular
to the plane determined by the photon momentum and the magnetic field, in the
plasma-dominant regime corresponds the ordinary mode (O-mode), of which the
polarization is parallel to the plane defined above, in the vacuum-dominant regime
and vice versa.
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Left Handed Polarization
(Counter Clockwise)

Right Handed Polarization
(Clockwise)

Plasma Effect Dominant ( b = 2 )

Extraordinary Mode Ordinary Mode

Vacuum Resonance ( b = 0 )

Vacuum Effect Dominant ( b = -3 )

Ordinary Mode Extraordinary Mode

Figure 1.5: Behaviors of the polarization of the left handed and the right handed
elliptical polarization. The polarization vectors are shown by red allows and the
trajectories are shown by the blue lines. The electromagnetic wave propagates in
the z-direction. The direction of the magnetic field is on z − x plane. The left
panels show the case of the left handed polarization and the right ones exhibit the
right handed polarization. The top, middle and bottom panels are the cases for
b = 2, b = 0 and b = −3. In the case of b = 2, the dielectric effect by the plasma
is dominant. On the other hand, the vacuum effect is dominant in the case of
b = −3. At b = 0, the vacuum resonance occurs and the eigenmodes are the circular
polarization.
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1.3 Application and Validation

1.3.1 Laser Experiments

Laser experiments are tools to obtain the strong electromagnetic fields. The laser
was first realized using ruby in 1960 (Maiman, 1960). Just after being invented, the
second harmonic generation, which is one of the specific phenomena of the nonlin-
ear optics, was confirmed by Franken et al. (1961).1 Further phenomena peculiar
to the nonlinear optics were not seen until the chirped pulse amplification (CPA)
(Strickland and Mourou, 1985) was developed and incorporated in the experiments.
This is a method to obtain the high power laser pulse, in which the optical laser
pulse is stretched and then amplified before the compression of the pulse. As the
laser intensity increased (Tajima and Mourou, 2002; Mourou and Tajima, 2012),
the changes of the electron’s dynamics in the atoms and an electron reaching the
relativistic regime were observed (Di Piazza et al., 2012). The current highest inten-
sity of laser is 2× 1022W/cm2, which is reached by the HERCULES 300 TW laser
(Yanovsky et al., 2008). A variety of the plans of high field laser facilities including
the GEKKO EXA and the Extreme Light Infrastructure are now progressing.

Although the nonlinear QED phenomenon of the vacuum has not been validated
yet, there are many theoretical studies for the test of the quantum properties of
the vacuum. The photon-photon scattering is one of the specific processes in the
quantum regime and it has been researched for a long time in order to be detected
in the terrestrial experiments. The lowest order process is the fourth-order process.

Figure 1.6: Feynman diagram of the lowest order of the photon-photon scattering.

The total cross section of this process is determined by the momenta of the two
photons, which collide with each other, and it is known that the cross section is
very small (Berestetskii et al.). When the third auxiliary laser in addition to the
two colliding lasers is applied, the cross section of the photon-photon scattering
increases (Varfolomeev, 1966), and they also suggested the the experimental setup.

The polarization of the photon in the external laser field has been also considered
as a tool to verify the nonlinearity of the vacuum. The rotation of the plane of
the polarization were considered in the experimental setups (Heinzl et al., 2006; di
Piazza et al., 2006). The probe photon is assumed to be emitted from the X-ray
free electron laser and it passes through the standing wave of the laser fields. The
birefringence of the vacuum causes the rotation of the plane of the polarization.

1In this paper, the evidence of the second harmonic generation, which is a small spot in a
photograph, is not shown. It is said that one of the journal technician erased it (Haroche, 2008).
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The birefringence was also considered in the plasma. Di Piazza et al. (2007) took
into account that the laser propagates through the medium consisting of the cold
collisional electron and proton plasma. They calculated the refractive index for the
laser photons and estimated the difference of the phase of the circularly polarized
laser which had passed through the region with different plasma densities in the
experimental setup they considered.

Other nonlinear phenomena of the vacuum have been also researched. The non-
linear behavior of the laser in the waveguides is studied by Brodin et al. (2001).
In certain setups, a electromagnetic wave mode which has different frequency with
that of the incident laser is induced. Monden and Kodama (2011) investigated the
dependence of the angular aperture of the focused laser on the dielectric proper-
ties of the vacuum. They showed that the emission of the photons induced by the
nonlinearity of the vacuum is strongly enhanced as the angular aperture increases.

The X-ray free electron laser (XFEL) produces coherent and ultrashort X-ray
pulses, which are linearly polarized. Circular polarization in the XFEL was also
realized in the SPring-8 Angstrom Compact Free-Electron Laser (SACLA) by the
X-ray phase retarder made of diamond crystals and measured by fine powders of
CoPt3 and the silicon PIN diodes (Suzuki et al., 2014). The X-ray magnetic circular
dichroism effect is utilized to measure the circular polarization (Maruyama et al.,
1995).

1.3.2 Emission from Neutron Star

The existence of a neutron star was theoretically predicted by Baade and Zwicky
(1934). In contrast, the first evidence of its existence was obtained after more
than 30 years since then. In 1967, the radio pulses with constant time intervals
were discovered (Hewish et al., 1968). The source of the pulses was thought to be
originated from the star rotation because of their precise timing. From the short
period of the pulse, the star was turned out to be a neutron star theoretically because
it is not destroyed by the centrifugal force.

As the observational results of neutron stars were obtained, it was found that
the period, which is the pulse interval, gets longer with time. This is explained by
the rotating vector model, in which the radiation of a neutron star is caused by
rotating magnetic dipole. The rotating vector model fits the energy balance of the
expected dipole radiation and the emission from the Crab nebula well. One of the
main energy source of the emission is the rotation energy. Radio pulsars are thought
to be rotationally powered like the Crab.

The dipole magnetic field strength is estimated from the period P and the deriva-
tive of it Ṗ in this picture as

Bp =

(
3Ic3PṖ

8π2R6

)1/2

≃ 1.0× 1012 G

×
(

I

1045 g cm2

)1/2(
106 cm

R

)3(
P

10 ms

)1/2
(

Ṗ

10−13 s/s

)1/2

, (1.50)
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where I is the inertial moment of the neutron star and R is the star radius, and
neutron stars roughly takes Bp as 1012G. Assuming the dipole magnetic field is
constant, the age of a neutron star can be estimated as

τ =
P

2Ṗ
≃ 1600 yrs

(
P

10 ms

)(
10−13 s/s

Ṗ

)
, (1.51)

which is known as the characteristic age. The spin periods and the period derivatives
of the known pulsars are shown in Figure 1.7, which is called the P-Pdot diagram.
The spin period (P ) is exhibited in the horizontal axis and the period derivative
(Ṗ ) is presented in the vertical axis. The lines of constant dipole magnetic fields
(Equation (1.50)) and those of the characteristic age (Equation (1.51)) are also
shown.
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Figure 1.7: P-Pdot diagram. The data is taken from the ATNF Pulsar
Catalogue (http://www.atnf.csiro.au/research/pulsar/psrcat/) (Manchester
et al., 2005).

The development of observation has increased the number of pulsars. Some
neutron stars are known to have extremely strong magnetic field of ∼ 1014−15G,
which are called magnetars. Magnetars are characterized by the fact that their
X-ray luminosity is higher than the spin-down luminosity and also by their burst
activities. Although the source of the burst activities has not been understood, it
is thought that the energy source is their strong magnetic field. Magnetars’ dipole
magnetic field is usually higher than the quantum critical field BQ = 4.4 × 1013G.
There are also magnetars whose magnetic field is weaker than the critical value. One
of such objects, SGR 0418+5729 shows the absorption line in their spectrum (Tiengo
et al., 2013). Although the dipole magnetic field of this magnetar is 6×1012G, there
is local magnetic field of > 1014G on the surface if the absorption feature comes

http://www.atnf.csiro.au/research/pulsar/psrcat/
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from the proton cyclotron absorption. The existence of the toroidal magnetic field
of ∼ 1016G is hinted in the modulation of the period of 4U 0142+61 (Makishima
et al., 2014). Thus, it is observationally suggested that there are magnetic fields
such as the toroidal component, other than the dipole component in magnetars.

Recently, the magnetar-like behavior by neutron stars which are not classified
as mangetars is observed. The object 1E 161348-5055, which is known as a cen-
tral compact object (CCO) in the supernova remnant (SNR) RCW 103 shows a
magnetar-like outburst (Rea et al., 2016), and that by a high-field radio pulsar PSR
J1119-6127 is also observed (Archibald et al., 2016).

The light curve, the spectrum and the image of the neutron star and its PWN
have given us a lot of information about them. The polarization is another observa-
tional quantity. The polarization properties of neutron stars’ emission are obtained
only in the radio frequency in most cases. The emissions from radio pulsars, which
are discovered by their radio pulses, have strong linear polarizations. The polar-
ization angle swings like an S shape around the pulse, which is interpreted by the
rotating vector model. On the other hand, this situation changes for higher photon
energies. In the optical, although the observation technique is developed, neutron
stars are dim in this energy range. The polarizations of a few neutron stars, e.g.,
the Crab pulsar, are observed.

In contrast, the observation of polarization is difficult in the energy ranges of X-
ray and gamma ray. Historically, the X-ray polarimetry satellite OSO− 8 observed
the Crab pulsar in 2.6 keV and 5.2 keV for the first time. Although the polarization
of the pulsar wind nebula (PWN) around the pulsar is observed (Weisskopf et al.,
1978), the polarization of the pulsar itself was not obtained but for the upper limits
(Silver et al., 1978). The polarization of the Crab pulsar itself was first observed by
INTEGRAL/SPI (Dean et al., 2008). The off-pulse component of the light curve
of the Crab pulsar in from 0.1MeV to 1MeV was measured. An off-pulse component
was also observed by another instrument of INTEGRAL, IBIS (Forot et al., 2008).

The instruments explained above are satellite-borne. The polarization properties
of the Crab pulsar are also observed by the balloon-borne instruments. PoGOLite
Pathfinder and PoGO+ are the balloon-borne instruments and observe the po-
larization of the high energy emission from the Crab pulsar (Chauvin et al., 2016,
2017). PoGO+ measured the two pulse components of the emission of the Crab
pulsar. It first obtained the polarization properties of the component of the sec-
ond pulse counted from the off-pulse component. Recently, AstroSat detected the
phase-resolved polarization properties. The polarization for the Crab pulsar and its
PWN was measured. The polarization properties of the Crab pulsar is summarized
in Table 1.1.

Although the polarization of the high energy emission has been observed for
≳ 20keV except the observation by OSO − 8 until now, the polarimetry of the soft
X-ray will be done in the near future. Multiple projects, IXPE, XIPE and eXTP ,
are planned and the energy range of the observation is ≲ 10keV. IXPE is decided
to be launched.
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Table 1.1: Observed polarization properties of the Crab pulsar and nebula in the
high energy emission. PA and PF are the polarization angle and the polarization
fraction, respectively.

Instrument Energy PA PF Notes

OSO − 8 2.6 keV 156◦.4± 1◦.4 19.2%± 1.0% PWN
5.2 keV 152◦.6± 4◦.0 19.5%± 2.8% PWN

INTEGRAL/SPI 0.1-1.0 MeV 123◦ ± 11◦ 46%± 10% Pulsar, off-pulse

INTEGRAL/IBIS 200-800 keV 120◦.6± 8◦.5 > 72% Pulsar, off-pulse

200-800 keV 100◦ ± 11◦ 47%+19%
−13% Pulsar, phase-averaged

PoGOLite Pathfinder 20-120 keV 149◦.2± 16◦.0 18.4%±+9.8%
−10.6% Pulsar, phase-averaged

PoGO+ 20-160 keV 137◦ ± 15◦ 17.4%±+8.6%
−9.3% Pulsar, off-pulse

20-160 keV 86◦ ± 18◦ 33.5%±+18.6%
−22.3% Pulsar, P2

20-160 keV 131◦.3± 6◦.8 20.9%± 5.0% Pulsar, phase-averaged

AstroSat CZT Imager 100-380 keV 143◦.5± 2◦.8 32.7± 5.8% Pulsar+PWN, total
The references are (Weisskopf et al., 1978) for OSO-8, (Dean et al., 2008) for INTEGRAL/SPI,
(Forot et al., 2008) for INTEGRAL/IBIS, (Chauvin et al., 2016) for PoGOLite Pathfinder,
(Chauvin et al., 2017) for PoGO+ and (Vadawale et al., 2017) for AstroSat CZT Imager. Note
also that AstroSat CZT Imager observed the phase-resolved polarization properties.

The emission of the soft X-ray corresponds to the thermal radiation from magne-
tars. It is thought to be emitted from the magnetars’ surfaces and the polarization
properties of the thermal component contain the information of the physical prop-
erties of the surface. The radiation from the surface may be also influenced by the
vacuum birefringence of their magnetic fields (Heyl and Shaviv, 2002) and it may
cause strongly polarized emission from magnetars. This is peculiar to nonlinear
QED and if the strongly polarized emission is observed by the future polarimetry,
it would be the evidence to the validation of nonlinear QED.

Recently, the polarization of RX J1856.5-3754, which is labeled as an X-ray dim
isolated neutron star (XDINS), was observed in the optical wavelength (Mignani
et al., 2017). The emission of XDINSs consists only of the surface thermal radiation
and the strength of their magnetic fields are ∼ 1013G. The phase-averaged polariza-
tion fraction of RX J1856.5-3754 is 16.43%± 5.26% and the nonlinear QED effect is
necessary to explain this value (Mignani et al., 2017). This is a strong hint to verify
nonlinear QED.

There is another interesting topic in this observation, the surface properties of
XDINSs. There are two possible states on the surface of XDINSs. One is the gas
atmosphere state, which is like other neutron stars. The gas atmosphere on neutron
stars consists of hydrogen plasma, which accretes from the interstellar medium.
When the surface is hot enough to cause the nuclear burning, helium and carbon
are contained in the gas atmosphere (Potekhin, 2014). The other state is the so-
called condensed state. The strong magnetic field and low temperature of XDINSs
stabilize the molecular chain of the elongated atoms and atoms do not become the
gas state. In the former case, the radiation from the gas atmosphere is scattered in
the plasma. The opacity differs for each polarization eigenmode and the opacity of
the one mode is suppressed in the strong magnetic field. Thus, the surface radiation



16 CHAPTER 1. INTRODUCTION

is polarized in this case. In contrast, in the case of the condensed state, the surface
emission directly escape from the condensed surface and it is not scattered by the
plasma. Then, the polarization properties are determined on the surface and the
surface emission is not so strongly polarized in this case.

In the optical observation of RX J1856.5-3754, the polarization fraction can be
explained by the both surface models. So, its surface state could not be determined.
The different surface models give a different feature. González Caniulef et al. (2016)
calculated the polarization in the soft X-ray energy range (0.12 − 0.39keV) for the
gas atmosphere and the condensed surface. They found that the strongly polarized
emission is measured in the case of the gas atmosphere and that weakly polarized
one is observed in the case of the condensed surface. Thus, we will understand which
model is right when the polarization of the energy range of ≲ 0.1keV is observed.

1.4 Main Topics of this Thesis

In this thesis, I first focus on the vacuum polarization, which is an elementary
process in nonlinear QED. I derive the expression of the vacuum polarization in
the external plane wave and estimate the refractive index for the probe photon
quantitatively. I do not assume the plane wave can be seen as the locally constant
electromagnetic field but consider the variation of the external field. The vacuum
polarization is calculated by the induced electromagnetic current, which is derived
from the effective Lagrangian, instead of the calculation of the Feynman diagrams
with the electron propagator in the external field. I compute the refractive index
of the probe photon by solving the equation. Then, I focus on how the vacuum
polarization is manifested in the X-ray polarimetry of neutron stars. I discuss the
influence of the strong magnetic field around neutron stars on their surface radiation.
The strong magnetic field affects the polarization of the surface radiation. I also
take into account the conversion of the polarization mode, which may occur near
the neutron star surface if the dielectric property induced from the plasma of the
gas atmosphere as well as that caused by the vacuum polarization. I compute
systematically the observed polarization of the surface radiation from neutron stars
for various parameters such as the magnetic field of the neutron star.

This thesis is organized as follows: the vacuum polarization in the external plane
wave field is investigated in Chapter 2. The refractive index of the probe photon is
computed with taking into account the variation of the external field. The crossed
field, which can be regarded as the long-wavelength limit of the plane wave, is also
considered as the external field. In chapter 3, the polarization properties of the
surface radiation from neutron stars are systematically computed. The vacuum
polarization is important for the conversion of the polarization mode and for the
evolution of the polarization around the neutron star. I conclude this thesis in
Chapter 4.



2
QED Vacuum Polarization

2.1 Introduction

In the quantum vacuum, virtual particles and anti-particles are produced and anni-
hilated repeatedly in very short times as intuitively represented by bubble Feynman
diagrams. When an external field is applied, even these virtual particles are affected,
leading to modifications of the property of quantum vacuum. One of the interest-
ing consequences is a deviation of the refractive index from unity accompanied by
a birefringence, i.e., distinct refractive indices for different polarization modes of
photon1. It is a purely quantum effect that becomes remarkable when the strength
of the external field approaches or even exceeds the critical value, fc = m2/e with
m and e being the electron mass and the elementary charge in this chapter, respec-
tively, whereas, the deviation of the refractive index from unity is proportional to
the field-strength squared for much weaker fields. Note also that I use the Heaviside-
Lorentz unit with the natural unit (c = ℏ = 1) in this chapter. Photon splitting,
which is another phenomenon in external fields, has been also considered (Affleck
and Kruglyak, 1987).

Such strong electromagnetic fields are not unrealistic these days. In fact, the
astronomical objects called magnetars are a subclass of neutron stars, which are
believed to have dipole magnetic fields of ∼ 1014−15G (Olausen and Kaspi, 2014)2.
Although the origin of such strong magnetic fields is still unknown, they are sup-
posed to have implications for various activities of magnetars such as giant flares
and X-ray emissions (Mereghetti, 2008). In fact, their strong magnetic fields are
thought to affect the polarization properties of surface emissions from neutron stars
by the quantum effect (Heyl and Shaviv, 2002; Taverna et al., 2015). This phe-

1Interestingly, this does not occur for the nonlinear electrodynamics theory by Born and In-
feld (Bialynicki-Birula, 1983).

2The online catalog of magnetars is found at (http://www.physics.mcgill.ca/~pulsar/
magnetar/main.html).
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nomenon may have indeed been detected in a recent optical polarimetric observa-
tion (Mignani et al., 2017). The quantum correction may also play an important role
through the so-called resonant mode conversions (Mészáros and Ventura, 1979; Lai
and Ho, 2003a). On the other hand, the progress in the high-field laser is very fast.
Although the highest intensity realized so far by Hercules laser at CUOS (Yanovsky
et al., 2008) is still sub-critical (2× 1022W/cm2) for the moment, I may justifiably
expect that the laser intensity will reach the critical value in not-so-far a future.
Some theoretical studies on the vacuum polarization are meant for the experimental
setups in the high-field laser (Heinzl et al., 2006; Dinu et al., 2014b,a; Karbstein and
Shaisultanov, 2015; King and Heinzl, 2016).

The study of the vacuum polarization in strong-field QED has a long history.
It was pioneered by Toll (1952). He studied in his dissertation the polarization
of vacuum in stationary and homogeneous magnetic fields in detail and many au-
thors followed with different methods, both analytic and numerical (Baier and Bre-
itenlohner, 1967a; Brezin and Itzykson, 1971; Adler, 1971; Tsai and Erber, 1974,
1975; Kohri and Yamada, 2002; Shore, 2007; Hattori and Itakura, 2013a,b; Ishikawa
et al., 2013; Karbstein, 2013), and obtained the refractive indices. The vacuum
polarization for mixtures of constant electric and magnetic fields was also inves-
tigated (Bialynicka-Birula and Bialynicki-Birula, 1970; Batalin and Shabad, 1971;
Urrutia, 1978; Artimovich, 1990; Dittrich and Gies, 2000; Schubert, 2000). Note
that such fields can be brought to either a purely magnetic or a purely electric field
by an appropriate Lorentz transformation, with so-called crossed fields being an
exception.

In Toll (1952), the polarization in the crossed field was also discussed. The
crossed field may be regarded as a long wavelength limit of electromagnetic waves,
having mutually orthogonal electric and magnetic fields of the same amplitude. Toll
first calculated the imaginary part of the refractive index from the amplitude of pair
creations and then evaluated the real part of refractive index via the Kramers-Kronig
relation. Although there was no limitation to the probe-photon energy, the external-
field strength was restricted to small values (weak-field limit) because he ignored the
modification of the dispersion relation of the probe photon. Baier and Breitenlohner
(1967b) obtained the refractive index for the crossed field in two different ways:
they first employed the polarization tensor that had been inferred in Baier and
Breitenlohner (1967a) from the 1-loop calculation for the external magnetic fields,
and utilized in the second method the expansion of the Euler-Heisenberg Lagrangian
to the lowest order of field strength. Note that both approaches are valid only for
weak fields or low-energy probe photons.

The expression of the polarization tensor to the full order of field strength for
the external crossed field was obtained from the 1-loop calculation with the electron
propagator derived either with Schwinger’s proper-time method (Narozhny̆ı, 1969)
or with Volkov’s solution (Ritus, 1972). In Narozhny̆ı (1969), the general expressions
for the dispersion relations and the refractive indices of the two eigenmodes were
obtained. Note, however, that the refractive indices were evaluated only in the
limit of the weak-field and strong-field3. On the other hand, another expression

3Although these limits are referred to as ”weak-field limit” and “strong-field limit” in the
literature, they may be better called “weak-field or low-energy limit” and “strong-field and high-
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of polarization tensor was obtained and its asymptotic limit was derived in Ritus
(1972) although the refractive index was not considered.

The evaluation of the refractive index based on the polarization tensor of Ritus
(1972) was attempted by Heinzl and Schröder (2006) in two different ways: the first
one is based on the hypothesized expression of the polarization tensor in the so-called
large-order expansion with respect to the probe-photon energy; in the evaluation of
the real part of the refractive index, the external crossed field was taken into account
only to the lowest order of the field strength in each term of the expansion and the
imaginary part was estimated from the hypothesized integral representation; in the
second approach, the polarization tensor was expanded with respect to the prod-
uct of the external-field strength and the probe-photon energy, and the refractive
index was evaluated; the imaginary part was calculated consistently to the leading
order and the anomalous dispersion for high-energy probe photons, which had been
demonstrated by Toll (1952), was confirmed. Note that in these evaluations of the
refractive index in the crossed field, the modification of the dispersion relation for
the probe photon was again ignored as in Toll (1952) and hence the results cannot
be applied to super-critical fields.

It should be now clear that the vacuum polarization and the refractive index
have not been fully evaluated for supra-critical field strengths even in the crossed
field. One of my goals is hence to do just that.

It is understandable, on the other hand, that the evaluation of the refractive
index in the external electromagnetic plane-wave is more involved because of its
non-uniformity. In fact, the refractive index has not been obtained except for some
limiting cases. The polarization tensor and the refractive index in the external
plane-wave were first discussed by Becker and Mitter (1975). They derived the po-
larization tensor in momentum space from the 1-loop calculation with the electron
propagator obtained by Mitter (1975), which is actually Volkov’s propagator repre-
sented in momentum space. Although the formulation is complete, the integrations
were performed only for circularly polarized plane-waves as the background. The
refractive indices were then evaluated at very high energies (≫ m) of the probe
photon.

Băıer et al. (1975) calculated scattering amplitudes of a probe photon again
by the circularly-polarized external plane-wave to the 1-loop order, employing the
electron propagator expressed with the proper-time integral. The general expression
of the dispersion relation was obtained but evaluated only in the weak-field and low-
energy limit. The refractive indices for the eigenmodes of probe photons were also
calculated in this limit alone. Affleck (1988) treated this problem by expanding
the Euler-Heisenberg Lagrangian to the lowest order of the field strength, assuming
that the external field varies slowly in time and space. The refractive index was
evaluated only in the weak-field limit again. Recently, yet another representation of
the polarization tensor in the external plane-wave was obtained from the calculation
of the 1-loop diagram with Volkov’s electron propagator (Meuren et al., 2013). Only
the expression of the polarization tensor was obtained, however, and no attempt was
made to evaluate it in this study.

In their paper, Dinu et al. (2014b) employed the light front field theory, one of the

energy limit”, respectively. See Figure 2.2 for the actual parameter region.
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most mathematically sophisticated formulations, to derive the amplitude of photon-
photon scatterings, from which the refractive index integrated over the photon path
was obtained. They calculated it for a wide range of the probe-photon energy and
field strength. Although they gave the expression for the local refractive index, it
was not evaluated. The eigenmodes of probe photons were not calculated, either.

In this chapter, I also derive the expression of the polarization tensor and the re-
fractive index for the external electromagnetic plane-wave, developing a perturbation
theory for the induced electromagnetic current based on the proper-time method.
It is similar to Adler’s formulation (Adler, 1971) but is more general, based on
the interaction picture, or Furry’s picture, and not restricted to a particular field
configuration. Combining it with the so-called gradient expansion, I calculate the
lowest-order correction from temporal and spatial field variations to the induced
electromagnetic current, and hence to the vacuum polarization tensor also, for the
crossed fields. This is nothing but the WKB approximation and, as such, may be
applicable not only to the electromagnetic wave but also to any slowly-varying back-
ground electromagnetic fields. I then evaluate numerically the refractive indices for
eigenmodes of the Maxwell equations with the modification of the dispersion rela-
tion being fully taken into account. Note that unlike Dinu et al. (2014b) my results
are not integrated over the photon path but local, being obtained at each point in
the plane wave.

The chapter is organized as follows: I first review Schwinger’s proper time
method briefly and then outline the perturbation theory based on the Furry pic-
ture to obtain the induced electromagnetic current to the linear order of the field
strength of the probe photon in Section 2.2. This is not a new stuff. I then apply
it to the plane-wave background in Section 2.3; in so doing, I also appeal to the
so-called gradient expansion of the background electromagnetic wave around the
crossed field. Technical details are given in Sections 2.6 - 2.10. Numerical evalua-
tions are performed both for the crossed fields and for the first-order corrections in
Section 2.4; I summarize the results and conclude this chapter in Section 2.5.

2.2 Perturbation Theory in Proper-Time Method

In this section, I briefly summarize Schwinger’s proper-time method and outline its
perturbation theory, which will be applied to monochromatic plane-waves in the
next section.

2.2.1 Schwinger’s Proper-Time Method

The effective action of electromagnetic fields is represented as

Γ = Γcl + Γq, (2.1)

where Γcl is the classical action and Γq is the quantum correction, which satisfies
the following relation:

δΓq

δAµ

≡ ⟨jµ(x)⟩ = ie tr[γµG(x, x)]. (2.2)
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Then, the vacuum Maxwell equation is modified as

−□Aµ + ∂ν∂µAν − ⟨jµ⟩ = 0. (2.3)

Although there is no electromagnetic current generated by real charged particles in
the vacuum, ⟨jµ⟩ defined in this way is referred to as the induced electromagnetic
current (Dittrich and Gies, 2000). This term can be written with the electron
propagator G(x, y) (Schwinger, 1951) with tr in Equation (2.2) being the trace, or
the diagonal sum on spinor indices; γµ’s are the gamma matrices. In this chapter,
the Greek indices run over 0 through 3 and the Minkowski metric is assumed to be
η = diag(+,−,−,−).

The electron propagator G in the external electromagnetic field is different from
the ordinary one in the vacuum and the modification by the external field, the
strength of which is close to or even exceeds the critical value fc, cannot be treated
perturbatively. The proper-time method is a powerful tool to handle such situations.
The electron propagator satisfies the Dirac equation in the external electromagnetic
field Aµ:

(iγµ∂µ − eγµAµ(x)−m)G(x, y) = δ4(x− y). (2.4)

It is supposed in the proper-time method that there exists an operator Ĝ, the
x-representation of which gives the propagator as ⟨x|Ĝ|y⟩ = G(x, y). Then Equa-
tion (2.4) can be cast into the following equation for the operators:

(γµΠ̂µ −m)Ĝ = 1̂, (2.5)

where 1̂ is the unit operator and Π̂µ = i∂µ − eAµ. Here I used δ4(x − y) = ⟨x|y⟩.
From this equation, the operator Ĝ is formally solved as

Ĝ =
1̂

γµΠ̂µ −m
, (2.6)

which can be cast into the following integral form:

Ĝ = i(−γµΠ̂µ −m)

∫ ∞

0

ds exp
[
−i(m2 − (γµΠ̂µ)

2 − iε)s
]
. (2.7)

In the above expression, the parameter s is called the proper-time and −iε is in-
troduced to make the integration convergent as usual and will be dropped hereafter
for brevity. The electron propagator, being an x-representation of this operator, is
obtained as

G(x, y) = i

∫ ∞

0

dse−im2s
[
⟨x| − γµΠ̂µe

−i(−(γνΠ̂ν)2)s|y⟩ − ⟨x|me−i(−(γµΠ̂µ)2)s|y⟩
]
. (2.8)

Here I had better comment on the boundary condition for the electron propaga-
tor, or the causal Green function, in the electromagnetic wave. This issue may be
addressed most conveniently for finite wave trains in the so-called light front formu-
lation (e.g. Kogut and Soper (1970); Neville and Rohrlich (1971)), in which double
null coordinates are employed. This is because the asymptotic states in the remote
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past and future (in the null-coordinate sense) are unambiguously defined (Neville
and Rohrlich, 1971), which is crucially important particularly when one calculates
S-matrix elements (Dinu et al., 2014b; Neville and Rohrlich, 1971); it is also im-
portant that the translational symmetry is manifest in one of the null coordinates.
Then the causal Green function is obtained in the usual way, i.e., by the appropriate
linear combination of the homogeneous Green functions with positive- and negative-
energies according to the time ordering in the null coordinate (Kogut and Soper,
1970; Neville and Rohrlich, 1971). On the other hand, it is a well-known fact that the
Dirac equation can be solved in a closed form for an arbitrary plane wave (Volkov,
1935; Mitter, 1975). It is then possible to construct the same causal Green function
with these Volkov solutions (Ritus, 1972; Mitter, 1975). According to Ritus (1972),
all that is needed is a well-known −iϵ prescription, i.e., the introduction of an in-
finitesimal negative imaginary mass. It was pointed out by Mitter (1975) then that
this is equivalent to the same prescription in the proper-time method of Schwinger,
that is, the formulation I adopt in this chapter (see Equation (2.7)). In this sense,
the propagator I employ in this chapter is the causal Green function thus obtained
in the limit of the infinite wave train. As will become clear later (see Equation (2.38)
in Section 2.3), since I employ the gradient expansion in the local approximation,
the distinction between the finite or infinite wave train will not be important in my
formulation.

Returning to Equation (2.8) and interpreting the operator e−i(−(γµΠ̂µ)2)s as the
evolution operator in the proper-time, one can reduce the original field-theoretic
problem to the one in quantum mechanics for the Hamiltonian H = −(γµΠ̂µ)

2.
Then the transformation amplitude is given as

⟨x|e−i(−(γµΠ̂µ)2)s|y⟩ = ⟨x|e−iHs|y⟩
= ⟨x(s)|y(0)⟩. (2.9)

Here the state |x(s)⟩ is defined as the eigenstate for the operator x̂ in the Heisenberg
picture:

|x(s)⟩ ≡ eiHs|x⟩. (2.10)

The Hamiltonian H is expressed as

H = −Π̂2 +
1

2
eσµνFµν , (2.11)

where I used the Clifford algebra for the gamma matrices {γµ, γν} = 2ηµν and
the commutation relation [Πµ,Πν ] = −ieF µν to obtain Π̂2 = Π̂µΠ̂

µ and σµν =
i
2
[γµ, γν ]; Aµ and Fµν are the vector potential and the field tensor for the external

electromagnetic field, respectively. The proper-time evolutions of the operators x̂
and Π̂ are given by the Heisenberg equations:

dx̂µ(s)

ds
= 2Π̂µ(s), (2.12)

dΠ̂µ(s)

ds
= 2eF µ

νΠ̂
ν(s) + eiHsie

∂F µ
ν

∂xν
e−iHs + eiHs1

2
eσνλ∂Fνλ

∂xµ
e−iHs. (2.13)
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Then, the induced electromagnetic current ⟨jµ⟩ in Equation (2.2) is represented as
follows (Adler, 1971):

⟨jµ(x)⟩ =
e

2

∫ ∞

0

ds e−im2str
[
⟨x(s)|Π̂µ(s) + Π̂µ(0)|x(0)⟩

−iσµν⟨x(s)|Π̂ν(s)− Π̂ν(0)|x(0)⟩
]
. (2.14)

Note that this is equivalent to the 1-loop approximation with the external field being
fully taken into account.

In order to obtain the refractive index of the vacuum in the presence of an
external electromagnetic field, I have to consider a probe photon in addition to
the background electromagnetic field and apply Equation (2.3) to the amplitude
of the probe photon. In so doing, the induced electromagnetic current ⟨jµ⟩ needs
to be evaluated to the linear order of the amplitude of the probe photon and the
perturbation theory is required at this point (Dittrich and Gies, 2000). The Heisen-
berg equations given above can be solved analytically for some limited cases such as
time-independent homogeneous electric or magnetic fields and single electromagnetic
plane-waves (Schwinger, 1951). I will employ the latter as an unperturbed solution
in the perturbative calculations in Section 2.3. It is stressed that calculating the
effective action for a given plane-wave background and taking its derivative with
respective to the field strength is not sufficient for the evaluation of the refractive
index, since the probe photon in general has a different wavelength and propagates
in a different direction from those of the background electromagnetic wave. I hence
need to take these differences fully into account in the perturbative calculations of
the induced electromagnetic current. This was essentially done by Becker and Mitter
(1975) in a different framework, i.e., performing 1-loop calculations in momentum
space. In this chapter I assume that the background wave has a long wavelength
and calculate the refractive index locally in the sense of the WKB-approximation.
In so doing, I appeal to the gradient expansion of the background plane wave as
explained in Section 2.3.

2.2.2 Outline of Perturbation Theory

I now consider the perturbation theory in the proper-time method. The purpose
is to evaluate the induced electromagnetic current Equation (2.14) up to the linear
order of the amplitude of the probe photon, which is supposed to propagate in an
external electromagnetic field. It is then plugged into Equation (2.3) to derive the
refractive indices. The Heisenberg equations (2.12), (2.13) can be analytically solved
for a single monochromatic electromagnetic plane-wave (Schwinger, 1951). The
calculation of the first order corrections to this solution is the main achievement
in this chapter. As explained in the next section, I employ further the gradient
expansion of the background electromagnetic wave, which in turn enables us to
obtain the refractive indices locally in the WKB sense. In this section, I give the
outline of the generic part of this perturbation theory, which is not limited to the
plane-wave background. I will then proceed to its application to the monochromatic
plane-wave background in the next section.
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In the perturbation theory, the external electromagnetic fields are divided into
two pieces: the background Aµ and the perturbation bµ. The corresponding field
strengths are denoted by Fµν and gµν , respectively. I take the latter into account
only to the first order. Then, the Hamiltonian given in Equation (2.11) can be
written as

H = − (i∂µ − eAµ(x̂)− ebµ(x̂))
2 +

1

2
eσµν (Fµν(x̂) + gµν(x̂))

= H(0) + δH. (2.15)

In this expression, H(0) is the unperturbed Hamiltonian, for which I assume that the
proper-time evolution is known, preferably analytically as in the time-independent
homogeneous electric or magnetic fields and the single plane-wave. δH is the per-
turbation to the Hamiltonian. It is evaluated to the first order of bµ and expressed
with δΠµ = −ebµ as

δH = −Π̂(0)
µ δΠ̂µ − δΠ̂µΠ̂(0)

µ +
1

2
eσµνgµν . (2.16)

In the proper-time method, the amplitudes of operators such as ⟨x(s)|Π̂µ(s)|x(0)⟩
are evaluated very frequently and in the perturbation theory they need to be calcu-
lated with perturbations to both the operators and the states being properly taken
into account. In so doing, I employ the interaction picture, which is also referred
to as the Furry picture (Neville and Rohrlich, 1971) in the current case, rather
than making full use of the properties of particular field configurations as in Adler
(1971). The relation between the operator in the Heisenberg picture ÂH(u) and
that in the interaction picture ÂI(u) is then given by the transformation: ÂH(u) =

U−1(u)ÂI(u)U(u), where the operator U(u) is written as U(u) = eiH
(0)ue−iHu. It

also satisfies the following equation: i ∂
∂u
U(u) = δHI(u)U(u). Here the perturbation

Hamiltonian in the interaction picture δHI is given as δHI(u) ≡ eiH
(0)uδHe−iH(0)u.

The equation of U(u) can be solved iteratively as

U(u) = 1 + (−i)
∫ u

0

du1δHI(u1)

+(−i)2
∫ u

0

du1

∫ u1

0

du2δHI(u1)δHI(u2) + · · ·

+(−i)n
∫ u

0

du1 · · ·
∫ un−1

0

dunδHI(u1) · · · δHI(un)

+ · · · . (2.17)

Note that the right hand side of this equation includes only unperturbed quantities,
since the operators obey the free Heisenberg equations in the interaction picture.

The transformation amplitude ⟨x(s)|x(0)⟩ is also expressed with the unperturbed
operators and states as

⟨x(s)|x(0)⟩ ≃ ⟨x(0)(s)|
[
1− i

∫ s

0

duδHI(u)

]
|x(0)⟩. (2.18)
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In this expression, the index (0) attached to the state indicates its proper-time
evolution by H(0):

|x(0)(s)⟩ = eiH
(0)s|x(0)⟩. (2.19)

Since I assume that the interaction and Heisenberg pictures are coincident with each
other at u = 0, I have

|x(0)(0)⟩ = |x(0)⟩. (2.20)

The operators Π̂(u) and the states |x(u)⟩ at an arbitrary proper-time u are expressed
with the unperturbed counterparts Π̂(0), x̂(0) and |x(0)⟩ via the operator U(u) given
in Equation (2.17) in a similar way.

The amplitudes that appear in Equation (2.14) for ⟨jµ(x)⟩ can be represented as

⟨x(s)|Π̂µ(s)|x(0)⟩ = ⟨x(0)(s)|Π̂µ
I (s)U(s)|x(0)⟩, (2.21)

⟨x(s)|Π̂µ(0)|x(0)⟩ = ⟨x(0)(s)|U(s)Π̂µ
I (0)|x(0)⟩, (2.22)

with the operators and states in the interaction picture. The calculations of these
amplitudes are accomplished by the permutations of operators x̂(s) and x̂(0) with
the employment of their commutation relations so that x̂(s) should sit always to the
left of x̂(0).

2.3 Application to Single Plane-Waves

In this section, I apply the perturbation theory outlined above to the calculation of
the induced electromagnetic current in the monochromatic plane-wave. It is stressed
that the distinction between the electromagnetic wave train having a finite or infinite
length is not important in my calculations, since they employ only local information
of the electromagnetic wave in the background thanks to the gradient expansion. I
first summarize the well-known results for the unperturbed background (Schwinger,
1951). The plane wave is represented as

Fµν = fµνF (Ωξ), (2.23)

with fµν being a constant tensor that sets the typical amplitude of the wave and
F (Ωξ) being an arbitrary function of Ωξ = Ωnµx

µ; Ω is a frequency of the wave and
nµ is a null vector that specifies the direction of wave propagation. The Heisenberg
equations are written in this case as

dx̂µ(s)

ds
= 2Π̂µ(s), (2.24)

dΠ̂µ(s)

ds
= 2eF µ

ν(s)Π̂
ν(s) +

e

2
nµfνλσ

νλdF (Ωξ(s))

dξ(s)
. (2.25)

Note that the phase ξ(s) = nµx̂
µ(s) in these equations is an operator and a function

of the proper time s. The term that contains ∂νF µ
ν vanishes in the equation of Π̂
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because it is written as ∂νFµ
ν = fµ

νnν [dF (Ωξ(s))/dξ(s)] and the following relation
fµ

νnν = 0 holds for the plane-wave.
To solve these equations, one introduces

Cµ = fµ
νΠ̂

ν(s)− ef 2nµA(Ωξ(s)), (2.26)

which one can show is a constant of motion. In this expression, f 2 = fµνf
ν
λ/nµnλ is

the amplitude squared of the plane-wave and A(Ωξ(s)) is defined as a quantity that
satisfies the following relation: F (Ωξ(s)) = dA(Ωξ(s))/dξ(s). Then, the operators
Π̂µ(s) and Π̂µ(0) are obtained as follows:

Π̂µ(s) =
x̂µ(s)− x̂µ(0)

2s

+
s

ξ(s)− ξ(0)

[
2CµeA(Ωξ(s)) + nµe2f 2A2(Ωξ(s)) +

1

2
eσνλfνλn

µF (Ωξ(s))

]
− s

(ξ(s)− ξ(0))2

∫ ξ(s)

ξ(0)

dξ(u)

[
2CµeA(Ωξ(u)) + nµe2f 2A2(Ωξ(u))

+
1

2
eσνλfνλn

µF (Ωξ(u))

]
, (2.27)

Π̂µ(0) =
x̂µ(s)− x̂µ(0)

2s

+
s

ξ(s)− ξ(0)

[
2CµeA(Ωξ(0)) + nµe2f 2A2(Ωξ(0)) +

1

2
eσνλfνλn

µF (Ωξ(0))

]
− s

(ξ(s)− ξ(0))2

∫ ξ(s)

ξ(0)

dξ(u)

[
2CµeA(Ωξ(u)) + nµe2f 2A2(Ωξ(u))

+
1

2
eσνλf

νλnµF (Ωξ(u))

]
. (2.28)

Cµ is also expressed as

Cµ =
fµ

ν(x̂
ν(s)− x̂ν(0))

2s
− 1

ξ(s)− ξ(0)

∫ ξ(s)

ξ(0)

dξ(u)nµf 2eA(Ωξ(u)). (2.29)

The amplitude ⟨x′(s)|x′′(0)⟩ is given, on the other hand, as

⟨x′(s)|x′′(0)⟩

=
1

i(4π)2
exp

[
−
∫ x′

x′′
dxµeA

µ(x)

]

× 1

s2
exp

{
− i

4s
(x′ − x′′)2 +

if 2s

(ξ′ − ξ′′)2

[∫ ξ′

ξ′′
eA(Ωξ)dξ

]2

− is

ξ′ − ξ′′

∫ ξ′

ξ′′
dξ

[
e2f 2A2(Ωξ) +

1

2
eσρλf

ρλF (Ωξ)

]}
. (2.30)
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To derive the induced electromagnetic current ⟨jµ⟩, I use the amplitude ⟨x(s)|x(0)⟩,
which is immediately obtained from the above equation as

⟨x(s)|x(0)⟩

=
1

i(4π)2s2
exp

[
− i

2
eσαβfαβF (Ωξ)s

]
=

1

i(4π)2s2

(
1− ies

2
F (Ωξ)σαβfαβ

)
. (2.31)

I then find from Equations (2.27) through (2.30) that ⟨jµ⟩ in Equation (2.14) is
vanishing as pointed out first by Schwinger in his seminal paper (Schwinger, 1951).
This situation changes, however, if another plane wave is added.

In this chapter, I consider the propagation of a probe photon through the ex-
ternal monochromatic plane-wave with the former being treated as a perturbation
to the latter as usual. I have in mind its application to high-field lasers. Since
the wavelengths of these lasers are close to optical wavelengths, I assume in the
following that the wavelength of the unperturbed monochromatic plane-wave is
much longer than the electron’s Compton wavelength, or Ω0/m ≪ 1 for the wave
frequency Ω0. It may be then sufficient to consider temporal and spatial varia-
tions of the unperturbed plane-wave to the first order of Ω0. This is equivalent to
the so-called gradient expansion of the unperturbed field to the first order, which
can be expressed generically as Fµν ≃ fµν(1 + Ωξ). In fact, the plane-wave field
given as Fµν = f0µν sin(Ω0nαx

α) is Taylor-expanded at a spacetime point xµ0 as

f0µν sin(Ω0nαx
α
0 )(1+cos(Ω0nβx

β
0 )Ω0nγ(x

γ−xγ0)) to the first order. This can be recast
into Fµν ≃ fµν(1 +Ωnαx

α) after shifting coordinates by xα0 and employing the local
amplitude and the gradient of the background field at xα as fµν = f0µν sin(Ω0nαx

α
0 )

and Ω = cos(Ω0nβx
β
0 )Ω0, respectively. Note that the above assumption on Ω0 implies

Ω/m≪ 1.
Gusynin and Shovkovy (1999) developed a covariant formulation to derive the

gradient expansion of the QED effective Lagrangian, employing the world-line for-
malism under the Fock-Schwinger gauge. Although their method is systematic and
elegant indeed, the results obtained in their paper cannot be applied to the problem
of my current interest, since the actual calculations were done only for the following
field configurations: Fµν = Φ(xα)fµν , where Φ(xα) is an arbitrary slowly-varying
function of xα while fµν is a constant tensor; the former gives a field variation in
space and time and the latter specifies a field configuration. Although it appears
quite generic, it does not include the configurations of my concern, i.e., those consist-
ing of two electromagnetic waves propagating in different directions, unfortunately.
Note that if the background and probe plane-waves are both traveling in the same
direction and having the identical polarization, then one may regard the sum of
their amplitudes as Φ and apply the gradient expansion of Gusynin and Shovkovy
(1999) to them; in this case, however, Schwinger (1951) already showed that there
is no quantum correction to the effective Lagrangian.

In my method, the probe photon, which is also treated as a classical electromag-
netic wave, is assumed to be monochromatic locally. Strictly speaking, it has neither
a constant amplitude nor a constant frequency because the external field changes
temporally and spatially. As long as the wavelength of the external field is much
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longer than that of the probe photon, which I assume in the following, the above
assumption that the probe field can be regarded as monochromatic locally may be
justified. I need to elaborate on this issue a bit further, though. As Becker and Mit-
ter (1975) developed, the polarization tensor Πµν(x1, x2) depends not only on the
difference of the two coordinates x1−x2 but also on each of them separately and, as
a result, its Fourier transform has two momenta corresponding to these coordinates.
If the electromagnetic wave in the background is monochromatic, then the Floquet
theorem dictates that the difference between them should be equal to some multiple
of the wave vector of the electromagnetic wave in the background (Zel’Dovich, 1967).
It follows then that eigenmodes of the probe photon are not diagonal in momentum
in general. In fact, they should satisfy the following Maxwell equation:

□x1b
µ(x1, x2)− ∂νx1

∂µx1
bν(x1, x2) =

∫
dx′Πµν(x1, x

′)bν(x
′, x2) (2.32)

Becker and Mitter (1975) Fourier-transformed this equation and attempted to solve
it in momentum space. Although they showed analytically that the momenta of
probe-photon were indeed mixed in the expected way, they ignored the mixing in
actual evaluations of the refractive index, since the effect is of higher order in the
coupling constant.

I take another approach in this chapter. Assuming, as mentioned above, that
the electromagnetic wave in the background varies slowly in time and space and
hence the probe photon can ”see” the local field strength and its gradient alone, I
expand the above equation in the small gradient. In so doing, I employ the Wigner
representations of variables:

Πµν(x1 − x2 : X) =

∫
d4p

(2π)4
Π̃µν(p,X)eip(x1−x2), (2.33)

bµ(x1 − x2 : X) =

∫
d4p

(2π)4
b̃µ(p,X)eip(x1−x2), (2.34)

where X = (x1+x2)/2 is the center-of-mass coordinates and Πµν and bµ are regarded
in these equations as functions of the relative coordinates x1 − x2 and X instead of
x1 and x2. Inserting these expressions into the right hand side of Equation (2.32)
and Fourier-transforming it with respective to the relative coordinates x1 − x2, I
obtain ∫

d4(x1 − x2)

∫
d4x′Πµν(x1, x

′)bν(x
′, x2)e

−ip(x1−x2)

=

∫
d4(x1 − x2)

∫
d4x′Πµν(x1 − x′ : X + (x′ − x2)/2)

×bν(x′ − x2 : X + (x′ −X1)/2)e
−ip(x1−x2)

= Π̃µν(p,X) exp

(
−1

2
∂Πp ∂

b
X

)
exp

(
1

2
∂bp∂

Π
X

)
b̃ν(p,X)

∼ Π̃µν(p,X)b̃ν(p,X), (2.35)

in which ∂Πp is a partial derivative with respective to p acting on Π̃; other ∂’s
should be interpreted in similar ways; the juxtapositions of two ∂’s stand for four-
dimensional contractions; the last expression is the approximation to the lowest
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order with respective to the gradient in X, which is justified by my assumption. In
deriving the third line of the above equations, I employ the following relations:

Πµν(x1 − x′ : X + (x′ − x2)/2) = exp

(
x′ − x2

2
∂ΠX

)
Πµν(x1 − x′ : X), (2.36)

bµ(x′ − x2 : X + (x′ − x1)/2) = exp

(
x′ − x1

2
∂bX

)
bµ(x′ − x2 : X). (2.37)

Fourier-transforming the left hand side of Equation (2.32) also with respective to
the relative coordinates x1 − x2, I obtain finally the ”local” Maxwell equation as
follows:

−p2b̃µ(p,X) + pνpµb̃ν(p,X) = Π̃µν(p,X)b̃ν(p,X). (2.38)

Note that I also ignore the derivative with respect to X in the kinetic part of the
Maxwell equation, which is again valid under the current assumption. I then consider
the dispersion relation for the probe photon in the point-wise fashion, plugging
the polarization tensor obtained locally this way. This is nothing but the WKB
approximation for the propagation of probe photon. Note that the momentum of
the probe photon is hence not the one in the asymptotic states (Dinu et al., 2014b)
but the local one defined at each point in the background electromagnetic wave. It
should be also stressed that the derived refractive index is a local quantity. Although
such a quantity may not be easy to detect in experiments, this is regardless the main
accomplishment in this chapter.

Figure 2.1: Schematic picture of the system considered in this chapter. The external
field consists of a non-uniform electric and magnetic fields denoted by E and B,
respectively, and the probe photon.

I now proceed to the actual calculations. The induced electromagnetic current
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is written as

⟨jµ⟩ = e

2

∫ ∞

0

dse−im2str
[
⟨x(s)|Π̂µ(s)U(s) + U(s)Π̂µ(0)|x(0)⟩

−iσµν⟨x(s)|Π̂ν(s)U(s)− U(s)Π̂ν(0)|x(0)⟩
]
. (2.39)

In this expression, I drop for brevity the superscript (0), which means the unper-
turbed states, and the subscript I , which stands for the operators in the interaction
picture. I use these notations in the following.

The proper-time evolution operator U(s) is given as

U(s) = 1− i

∫ s

0

duδH(u)

= 1− i

∫ s

0

du
{
eΠ̂α(u)bα exp

[
−ikδx̂δ(u)

]
+ebα exp

[
−ikδx̂δ(u)

]
Π̂α(u) +

1

2
eσαβ(u)gαβ exp

[
−ikδx̂δ(u)

]}
(2.40)

for the present case. Note that σαβ(u) is a proper-time-dependent operator in the
interaction picture, which is defined as

σαβ(u) = eiHuσαβe−iHu. (2.41)

The explicit expression of σαβ(u) can be easily obtained to the first order of perturba-
tion for the current Hamiltonian evaluated at u = 0 4 as H = −Π̂2(0)+ 1

2
eσµνFµν(0):

σαβ(u) ≃
[
1 +

i

2
eu(σf) (1 + Ωξ(0))

]
σαβ

[
1− i

2
eu(σf) (1 + Ωξ(0))

]
,(2.42)

where I employ the abbreviation (σf) ≡ σµνfµν . Note that although ξ(0) does
not have a spinor structure and commutes with (σg) ≡ σαβgαβ, ξ(s) may have a
nontrivial spinor structure induced by the proper-time evolution.

The amplitudes of ⟨x(s)|Π̂µ(s)U(s)|x(0)⟩ and ⟨x(s)|U(s)Π̂µ(0)|x(0)⟩ can now be
expressed with the unperturbed operators and states. The calculations are involved,

4The Hamiltonian is proper-time-independent and can be evaluated at any time.
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though, and given in Section 2.6. The final expressions are given as

⟨x(s)|Π̂µ(s)U(s)|x(0)⟩
= ⟨x(s)|Π̂µ(s)|x(0)⟩

−i
∫ s

0

du⟨x(s)|2ebαΠ̂µ(s)Π̂α(u) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

−i
∫ s

0

du⟨x(s)| − ebαk
αΠ̂µ(s) exp

[
−ikδx̂δ(u)

]
|x(0)⟩

+

∫ s

0

du⟨x(s)|Π̂µ(s) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

×
(
−ie

2

)[
(σg) +

ieu

2
{(σf)(σg)− (σg)(σf)}+ e2u2

4
(σf)(σg)(σf)

]
+

∫ s

0

du⟨x(s)|Π̂µ(s) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

×
(
−ie

2

)[
ieu

2
{(σf)(σg)− (σg)(σf)} (Ωξ) + e2u2

2
(σf)(σg)(σf)(Ωξ)

]
,

(2.43)

⟨x(s)|U(s)Π̂µ(0)|x(0)⟩
= ⟨x(s)|Π̂µ(0)|x(0)⟩

−i
∫ s

0

du⟨x(s)|2ebαΠ̂α(u) exp
[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩

−i
∫ s

0

du⟨x(s)| − ebαk
α exp

[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩

+

∫ s

0

du⟨x(s)| exp
[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩

×
(
−ie

2

)[
(σg) +

ieu

2
{(σf)(σg)− (σg)(σf)}+ e2u2

4
(σf)(σg)(σf)

]
+

∫ s

0

du⟨x(s)| exp
[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩

×
(
−ie

2

)[
ieu

2
{(σf)(σg)− (σg)(σf)} (Ωξ) + e2u2

2
(σf)(σg)(σf)(Ωξ)

]
+

∫ s

0

du⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

×
(
−ie

2

)
(−inµ)

[
ieu

2
{(σf)(σg)− (σg)(σf)}Ω +

e2u2

2
(σf)(σg)(σf)Ω

]
.

(2.44)

Then the induced electromagnetic current can be calculated by inserting these
amplitudes in Equation (2.39). The operators Π̂µ(s), Π̂µ(0), Π̂µ(u) and exp[−ikαx̂α(u)]
that appear in these expressions can be written in terms of the operators x̂µ(s) and
x̂µ(0) as given in Equations (2.85), (2.86), (2.88) and (2.95). Since the operators
x̂µ(s) and x̂µ(0) do not commute with each other, I need to permute them with the
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help of the commutation relations for these operators so that all x̂µ(s) should sit to
the left of all x̂µ(0). The details are given in Section 2.7. Note that the commutators
such as [x̂µ(s), x̂ν(0)] are operators and hence I need to calculate commutation re-
lations like [x̂µ(s), [x̂ν(s), x̂λ(0)]]. After these permutations, various amplitudes can
be easily obtained from the following relations:

⟨x(s)|x̂µ(s) = xµ⟨x(s)|, (2.45)

⟨x(s)|ξ(s) = ξ⟨x(s)|, (2.46)

x̂µ(0)|x(0)⟩ = xµ|x(0)⟩, (2.47)

ξ(0)|x(0)⟩ = ξ|x(0)⟩. (2.48)

In deriving Equations (2.42) - (2.44), I consider only the neighborhood of the
coordinate origin, the linear size of which is much shorter than the wavelength of
the background plane-wave but larger than the wavelength of the probe photon. As
mentioned earlier, however, the origin is arbitrary and one can shift the coordinates
so that the point of interest should coincide with the origin. Hence the results are
actually applicable to any point. More discussions on this point will be found in
Section 2.8. Note also that Furry’s theorem dictates that the number of external
fields that appear in the expression of the induced electromagnetic current should
be even, the details of which can be found in Section 2.9.

After all these considerations and calculations, the induced electromagnetic cur-
rent is given to the lowest order of the perturbation and Ω. The details are presented
in Section 2.10. Since the induced electromagnetic current ⟨jµ⟩ is vanishing in the
absence of the probe photon, it is generated by its presence and is should be pro-
portional to it:

⟨jµ(x)⟩ = Πµ
ν(k, x)bν(k, x) exp(−ikαxα). (2.49)

Note that I employ the local approximation here again.

In this expression, the probe photon is given as bν exp(−ikαxα) and the pro-
portionality coefficient Πµ

ν is nothing but the polarization tensor at each point.
Following Ritus (1972), I decompose the polarization tensor so obtained as

Πµ
ν =

∫ ∞

0

ds

∫ s

0

du
[
Π1(fk)µ(fk)

ν +Π2(f̃k)µ(f̃k)
ν +Π3GµG

ν
]
, (2.50)

with three mutually orthogonal vectors

(fk)µ = fµ
νkν , (f̃k)µ = f̃µ

νkν , Gµ =
kαk

α

kβfβ
γf

γ
δk

δ
fµ

νfν
λkλ, (2.51)

where f̃µν = εµνρσfρσ/2 is the dual tensor of fµν . Here εµνρσ is the Levi-Civita
antisymmetric symbol, which satisfies ε0123 = 1. The following abbreviations (kk) =
kµk

µ and (kffk) = kµf
µ
νf

ν
λk

λ are also used (Ritus, 1972). Then the coefficients
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are given as follows:

Π1 =
e2e−im2s

72π2s3(kffk)
exp

[
i

(
u− u2

s

)
(kk)

]
×
(
−1 + exp

[
i(s− u)2u2e2(kffk)

3s

])
(−18i− 9s(kk))

+
e2e−im2s

72π2s3
exp

[
i

(
u− u2

s

)
(kk) +

i(s− u)2u2e2(kffk)

3s

]
×e2

(
−18

s

)
u(s3 − 3s2u+ 4su2 − 2u3)

+
e2e−im2s

72π2s3
exp

[
i

(
u− u2

s

)
(kk) +

i(s− u)2u2e2(kffk)

3s

]
×
[(

2

s2
e2(Ωkn)(s− u)u(6s4 + 22s3u− 79s2u2 + 78su3 − 36u4)

)
+

(
−4i

s2

)
e4(kffk)(Ωkn)(s− u)3u2(3s4 − 7s3u+ 5s2u2 + 4su3 − 6u4)

+ (−2i) e2(Ωkn)(kk)(s− u)2u(3s2 − su− 3u2)

]
, (2.52)

Π2 =
e2e−im2s

72π2s3(kffk)
exp

[
i

(
u− u2

s

)
(kk)

]
×
(
−1 + exp

[
i(s− u)2u2e2(kffk)

3s

])
(−18i− 9s(kk))

+
e2e−im2s

72π2s3
exp

[
i

(
u− u2

s

)
(kk) +

i(s− u)2u2e2(kffk)

3s

]
e2(−18)su(s− u)

+
e2e−im2s

72π2s3
exp

[
i

(
u− u2

s

)
(kk) +

i(s− u)2u2e2(kffk)

3s

]
×
[(

2

s
e2(Ωkn)(s− u)u(6s3 + 4s2u− 7su2 + 6u3)

)
+(−2i) e2(Ωkn)(kk)(s− u)2u(3s2 − su− 3u2)

+ (−4i) e4(kffk)(Ωkn)(s− u)3u2(3s2 − su− 3u2)
]
, (2.53)
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Π3 =
e2e−im2s

72π2s4(kk)
exp

[
i

(
u− u2

s

)
(kk)

]
×
(
−1 + exp

[
i(s− u)2u2e2(kffk)

3s

])
(−6is+ (−3s2 + 16su− 16u2)(kk))

+
e4(kffk)e−im2s

324π2s4(kk)2
exp

[
i

(
u− u2

s

)
(kk) +

i(s− u)2u2e2(kffk)

3s

]
×
[
3i(s3 − 6s2u+ 6su2)− 2u2(s2 − 3su+ 2u2)2e2(kffk)

−12(s− 2u)2(s− u)u(kk)
]

− ie2e−im2s

27(kk)2π2s4
exp

[
i

(
u− u2

s

)
(kk) +

i(s− u)2u2e2(kffk)

3s

]
×(Ωkn)e2(kffk)(s− u)u(s2 − 5su+ 5u2)

− e2e−im2s

972(kk)2π2s5
exp

[
i

(
u− u2

s

)
(kk) +

i(s− u)2u2e2(kffk)

3s

]
×(Ωkn)e2(kffk)(s− u)2u

×
[
2e2(kffk)(3s5 − 19s4u+ 6s3u2 + 87s2u3 − 138su4 + 60u5)

−9(6s3 + 9s2u− 46su2 + 40u3)(kk)
]

− ie2e−im2s

2916(kk)2π2s5
exp

[
i

(
u− u2

s

)
(kk) +

i(s− u)2u2e2(kffk)

3s

]
×(Ωkn)e2(kffk)(s− u)2u(3s2 − su− 3u2)

×
[
4e4(kffk)2u2(s2 − 3su+ 2u2)2 + 24e2(kffk)(kk)(s− 2u)2(s− u)u

+9(3s2 − 16su+ 16u2)(kk)2
]
, (2.54)

where (Ωkn) = Ωkµn
µ is the inner product of the momentum vectors of the external

plane-wave and the probe photon. The refractive indices for physical modes are
related to Π1 and Π2.

The proper-time integration in Equation (2.50) or its pre-decomposition form,
Equation (2.167), has to be done numerically. The original form is not convenient
for this purpose and I rotate the integral path by −π/3 in the complex plane so
that the integral could converge exponentially as s goes to infinity. Note that the
rotation angle is arbitrary as long as it is in the range of (0,−π/3]. The refractive
index is then obtained by solving the Maxwell equation reduced in the following
form:

Aµ
ν(k)bν = 0, (2.55)

with Aµ
ν = −(kk)δµ

ν + kµk
ν +Πµ

ν . The probe photon is hence described as a non-
trivial solution of this homogeneous equation and its dispersion relation is obtained
from the relation detA = 0. Note that not all of them are physical. Unphysical
modes are easily eliminated, however, by calculating the electric and magnetic field
strengths, which are gauge-invariant. It is then found that only two of them asso-
ciated with Π1 and Π2 are physical as expected. Note that the four momenta of
the probe photon thus obtained are no longer null in accordance with the refractive
indices different from unity. The polarization vectors are also obtained simultane-
ously.
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Table 2.1: Eigenmodes of the probe photons with different 4-momenta

probe momentum kµ eigenmode mode name

(k0, k1, 0, 0)
(0, 0, 1, 0)µ x2 mode
(0, 0, 0, 1)µ x3 mode

(k0, 0, k2, 0)
(k2,−k2, k0, 0)µ y1 mode
(0, 0, 0, 1)µ y3 mode

(k0, 0, 0, k3)
(k3,−k3, 0, k0)µ z1 mode
(0, 0, 1, 0)µ z2 mode

(k0,
ki√
3
, ki√

3
, ki√

3
)

(A,B, 1, 0)µ s2 mode 5

(A,B, 0, 1)µ s3 mode
5 A, B are constants written with k0 and ki.

In the next section, I show the results of some numerical evaluations. As repre-
sentative cases, I consider four propagating directions of the probe photon as sum-
marized in Table 2.1. Since the background plane-wave is assumed to have a definite
propagation direction (x-direction) and linear polarization (y-direction), these four
directions are not equivalent. For each propagation direction, there are two physical
eigenmodes, as mentioned above, which are in general different from each other,
having distinctive dispersion relations, i.e., the background is birefringent.

2.4 Results

In this section, I numerically evaluate the refractive index N , which is defined as
N = |k|/k0. Firstly, the crossed fields are considered and then the first order
correction δN in the gradient expansion is calculated for the plane-wave field. The
eigenmodes of the probe photon depend on the propagation direction as already
mentioned. The refractive index is complex in general with the real part representing
the phase velocity of the probe photon divided by the light speed and the imaginary
part indicating the decay, possibly via electron-positron pair creations. Since the
deviation of the refractive index from unity is usually much smaller than unity, only
the deviations are shown in the following: Re[N − 1] and Im[N ].

Note that for all cases considered in this chapter, the refractive indices, both real
and imaginary parts, of the y1 and z2 modes are identical and so are those of the y3
and z1 modes. Although the exact reason for this phenomenon is not known to us
for the moment, the following should be mentioned: the polarization tensor Πµν is
expressed as the sum of three contributions proportional to (fk)µ(fk)ν , (f̃k)µ(f̃k)ν

and GµGν given as Equation (2.50); each pair of the modes that have the identical
refractive index are actually eigenmodes of either (fk)µ(fk)ν or (f̃k)µ(f̃k)ν . I will
show these degenerate modes with the same color in figures hereafter.
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2.4.1 Crossed Fields

As mentioned in Section 2.1, the vacuum polarization in the crossed fields was
already obtained by many authors. The refractive index was also evaluated both
analytically and numerically (Toll, 1952; Baier and Breitenlohner, 1967b; Narozhny̆ı,
1969; Ritus, 1972; Heinzl and Schröder, 2006). The regions in the plane of the field
strength f and the probe-photon energy k0 that have been investigated in these
papers are summarized in Figure 2.2. It is apparent from the figure that there is

Figure 2.2: Regions in the plane of the strength of external crossed fields and the
probe-photon energy that have been already explored. Each region is labeled as
follows: region (1) is the weak-field limit f/fc ≪ 1 (Toll, 1952); region (2) is for
the weak-field or low-energy limit e2kµf

µ
νf

νλkλ/m
6 ≪ 1 (Baier and Breitenlohner,

1967b; Narozhny̆ı, 1969; Ritus, 1972); region (3) corresponds to the strong-field and
high-energy limit 1 ≪ e2kµf

µ
νf

νλkλ/m
6 ≪ (k0/m)6 × α−3 studied in Narozhny̆ı

(1969), where α = e2/4π is the fine-structure constant; region (4) is the region that
satisfies (f/fc) ≲ 1 and (f/fc)×(k0/m) ≲ 1 explored in Heinzl and Schröder (2006).
The orange lines indicate the regions, in which the refractive indices are computed
numerically in this chapter. Note that my method can treat the whole region in this
figure in principle.

still an unexplored region, which is unshaded. And that is the target of this chapter.
The parameter ranges I adopted in this chapter are displayed in orange in the same
figure: I first calculate the refractive index for the external field of the critical value
to validate my formulation by comparing my results with those in the previous
studies; then I vary the strength of the external field.

The polarization tensor Πµ
ν in the crossed field is obtained by simply taking

the limit of Ω → 0 in Equation (2.50). Setting the strength of the external field
to the critical value f/fc = 1, I compute the refractive indices for the range of
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0.01 ≤ k0/m ≤ 10006. Note that the low-energy regime (k0/m ≲ 1) has been
investigated already as shown in Figure 2.2. The real part Re[N − 1] is shown in
Figure 2.3 with colors indicating different modes of the probe photon.
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Figure 2.3: Plot of Re[N−1] as a function of the probe-photon energy in the crossed
field. Here N is a refractive index. I set f/fc = 1. Colors specify different modes.

-2

0

2

4

6

8

10

12

14

0.3 1 10 100 1000

R
e
 [
N

-1
] 

×
 1

0
5

k0 / m

x2

x3

y1,z2

y3,z1

s2

s3

-0.05

-0.04

-0.03

-0.02

-0.01

0

500 600 700 800 900 1000

x2

x3

ax2

ax3

Figure 2.4: Same as Figure 2.3 but for high energies alone on a different vertical scale.
The inset zooms into the high-energy range of 500 ≤ k0/m ≤ 1000 and asymptotic
formulae are also shown as ax2 and ax3 for the x2 and x3 modes, respectively.

It is found that the deviation of the refractive index from unity is of the order
of 10−4. As k0/m gets smaller, the refractive index approaches the values in the

6Shore studied the refractive index of super-critical magnetic fields for a wider range of the
photon energy Shore (2007). The results are similar to mine for the crossed field.
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weak-field or low-energy limit (region (2) in Figure 2.2), which are written as

Nx2 ≃ 1 +
2α

45π

κ2m2

k20
, (2.56)

Nx3 ≃ 1 +
7α

90π

κ2m2

k20
, (2.57)

for the x2 and x3 modes, respectively, where κ2 = e2kµf
µ
νf

νλkλ/m
6 = e2f 2(k0 +

k1)
2/m6 is the product of the probe photon energy and the field strength normalized

by the critical value. Then the typical value of Nx2 − 1 can be estimated as

Nx2 − 1 ≃ 8α

45π

(
f

fc

)2

∼ 4.1× 10−4

(
I

4.6× 1029W/cm2

)
, (2.58)

where I = f 2/4π is the intensity of the plane wave. The results are hence in
agreement with what was already published in Baier and Breitenlohner (1967b);
Narozhny̆ı (1969); Ritus (1972); Heinzl and Schröder (2006). The refractive indices
depend on the propagation direction of the probe photon: the modulus |Re[N−1]| is
larger for the photon propagating in the opposite direction to the background plane-
wave (the x mode) than those going perpendicularly (the y/z modes); the s mode
that propagates obliquely lies normally in between although the modulus is greater
for the s3 mode than for the x2 mode. The photons polarized in the z-direction
have larger moduli in general except the z mode, which propagates in this direction,
has a greater modulus when it is polarized in the x-direction. These trends are also
true for other results obtained below in this chapter.

As k0/m becomes larger than ∼ 10, all the refractive indices for different propa-
gation directions appear to converge to unity, which is consistent with Toll (1952);
Heinzl and Schröder (2006). This is more apparent in Figure 2.4, which zooms into
the region of 3 ≲ k0/m ≤ 1000. It is also seen in the same figure that Re[N − 1] is
negative and the modulus |Re[N−1]| decreases for k0/m ≳ 10. This trend is consis-
tent with the high-energy limits given in Narozhny̆ı (1969) (region (3) in Figure 2.2),
which are written as

Nx2 ≃ 1−
√
3αm2

14π2k20
(3κ)2/3Γ4

(
2

3

)(
1− i

√
3
)
, (2.59)

Nx3 ≃ 1− 3
√
3αm2

28π2k20
(3κ)2/3Γ4

(
2

3

)(
1− i

√
3
)
, (2.60)

for the x2 and x3 modes, respectively. In my formulation, these results are repro-
duced by putting e−im2s to unity and setting (kk) = k20 − k21 equal to zero in Equa-
tions (2.52), (2.53) and (2.54) for the polarization tensor Πµ

ν or Equations (2.225)
and (2.227) for the induced electromagnetic current ⟨jµ⟩. Note, however, that my
numerical results for Re[N − 1] are not yet settled to the asymptotic limits with
deviations of ∼ 10% still remaining at k0/m ∼ 1000. In this figure, the high energy
limits for the x2 and x3 modes are displayed as the lines labeled as ax2 and ax3,
respectively. The imaginary parts, on the other hand, have already reached the
asymptotic limits at k0/m ∼ 1000 (see below).
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Figure 2.5: Same figure as Figure 2.3 but for frd = fc in the energy range of
0.1 ≤ k0/m ≤ 10 for all the modes.

Toll (1952) pointed out that unless the Poynting vectors of the probe photon and
the external field are parallel to each other, an appropriate Lorentz transformation
makes them anti-parallel and, as a result, the refractive index depends only on the
reduced field strength frd

frd = f sin2

(
θ

2

)
(2.61)

as long as the field strength is not much larger than the critical value. Here θ is
the angle between the Poynting vectors of the probe photon and the external field.
I hence redraw Figure 2.3 as Figure 2.5 in the range of 0.1 ≤ k0/m ≤ 10 after
adjusting the external-field strength so that frd = fc for all the modes. As expected,
the x3, s3, y3 and z1 modes become identical, which is also true for the x2, s2,
y1 and z2 modes. The relation also holds for the imaginary part. It is important
that these relations are obtained as a result of separate calculations for different
propagation directions in my formulation, the fact that guarantees the correctness
of my calculations.

The imaginary part of the refractive index Im[N ] is shown in Figure 2.6 for the
same case. It is found that the imaginary part is non-vanishing down to k0 = 0
although it diminishes very rapidly for k0/m ≲ 0.1. It is also seen that Im[N ]
for each photon mode reaches its maximum at k0/m ∼ 1 and it decreases mono-
tonically for higher energies. These behaviors are also consistent with the known
limits (Narozhny̆ı, 1969). In fact, as mentioned above, they are already settled to
the asymptotic values at k0/m ∼ 1000 as shown in the inset of the figure. The imag-
inary parts Im[N ] for different modes follow the general trend mentioned earlier for
|Re[N − 1]| with the x3 mode being the largest and the y1/z2 being the smallest
except around k0/m ∼ 1, where some crossings occur.

The imaginary part of the refractive index in the weak-field or low-energy (re-
gion (2) in Figure 2.2) was considered in Ritus (1972); Heinzl and Schröder (2006).
Although I cannot obtain the analytic expression, I try to compute the imaginary
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Figure 2.6: Same as Figure 2.3 but for the imaginary part of refractive index Im[N ].
The inset shows the behavior in the high-energy regime as in Figure 2.4. The lines
labeled as ax2 and ax3 show the high-energy limit expressed as Equations (2.59)
and (2.60), respectively.
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ax2 and ax3 show the weak-field or low-energy limits expressed as Equations (2.62)
and (2.63), respectively.
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part numerically in this regime. The results are displayed in Figure 2.7 for the x2
and x3 modes in the range of 0.03 ≲ k0/m ≤ 1. The lines labeled as ax2 and ax3
are the results obtained in Ritus (1972), which are expressed as

Im[Nx2] ≃
1

8

√
3

2

αϵ

ν
e−

4
3ϵν , (2.62)

Im[Nx3] ≃
1

4

√
3

2

αϵ

ν
e−

4
3ϵν , (2.63)

where ϵ = f/fc and ν = k0/m. It is found that the imaginary parts Im[N ] are better
approximated in this regime by Equations (2.62) and (2.63) rather than by

Im[Nx2] ≃
4αϵ2

45

4

3ϵν
e−

4
3ϵν , (2.64)

Im[Nx3] ≃
7αϵ2

45

4

3ϵν
e−

4
3ϵν , (2.65)

obtained in Heinzl and Schröder (2006).
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Figure 2.8: Plot of Re[N − 1] as a function of the field strength. I assume k0/m = 1
this time.

Next I show the dependence of the refractive index on the external-field strength,
setting k0/m = 1. This has never been published in the literature before. In
Figure 2.8, Re[N − 1] is shown as a function of f/fc in the range of 0.01 ≤ f/fc ≤
1000. Figure 2.9 zooms in to the range of 0.01 ≤ f/fc ≤ 3, setting the vertical axis
in the logarithmic scale. The quadratic behavior observed for 0.01 ≤ f/fc ≲ 0.5
is in accord with the weak-field or low-energy limits (Narozhny̆ı, 1969), which are
given as ax2 and ax3 for the x2 and x3 modes in the inset of this figure, respectively.
Re[N − 1] is negative at f/fc ≳ 10, which is consistent with the earlier findings.
The modulus |Re[N − 1]| is an increasing function of f at f/fc ≳ 10.

The imaginary part Im[N ] is shown in Figure 2.10. It increases monotonically
with the external-field strength. The slopes are steeper at f/fc ≲ 0.5, which
is consistent with the analytic expression in the weak-field or low-energy limit of
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Figure 2.9: Same as Figure 2.8 but for weak fields. The inset shows the comparison
between my numerical results and asymptotic expressions, Equations (2.56) and
(2.57), labeled as ax2 and ax3 for the x2 and x3 modes, respectively, in the weak-
field or low-energy limits.

Im[N ] (Ritus, 1972; Heinzl and Schröder, 2006). The inset of this figure shows the
comparison of my numerical results with the asymptotic limits, Equations (2.62)
and (2.63), labeled as ax2 and ax3 for the x2 and x3 modes, respectively. They
almost coincide with each other at f/fc ≲ 0.5. Note, on the other hand, that the
behavior of the imaginary part at high field-strengths has not been reported in the
literature.

2.4.2 Plane-Wave

I next consider the “local” refractive index for the plane wave field, which is also
original in this chapter. I evaluate numerically the polarization tensor is given in
Equations (2.50), (2.52) - (2.54) and solve the Maxwell equation, Equation (2.55),
obtained in the gradient expansion. Since my formulation is based on the perturba-
tion theory, it is natural to express the refractive index in the plane wave as N+δN ,
where N is the refractive index for the crossed field and δN is the correction from
the temporal and spatial non-uniformities. As mentioned for the crossed field, the
refractive indices for the y1 and z2 modes are identical to each other. In fact, the
relevant components of the Maxwell equations, Equation (2.55), are the same for
these modes. This is also true for the y3 and z1 modes.

It is found that the correction δN starts indeed with the linear order of Ω/m for
both the real and imaginary part. It is then written as

δN = (CRe + iCIm)× Ω/m+O((Ω/m)2) (2.66)

and the numerical values of the coefficients CRe and CIm are given for k0/m = 1
and f/fc = 1 in Table 2.2. The temporal and spatial variations are found to
mainly affect the imaginary part: |Im[δN ]| > |Re[δN ]| from these results. It is
also seen that Im[δN ] is larger for the photons propagating in the opposite direction
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Figure 2.10: Same figure as Figure 2.8 but for the imaginary part of refractive
index Im[N ]. The inset shows the comparison between my numerical results and
the asymptotic expressions in the weak-field or low-energy limits, Equations (2.62)
and (2.63), labeled as ax2 and ax3 for the x2 and x3 modes, respectively.

Table 2.2: Proportionality coefficients in the correction δN from temporal and spa-
tial non-uniformities 7

mode CRe CIm

x2 −1.30× 10−3 3.16× 10−3

x3 −3.08× 10−3 5.17× 10−3

y1,z2 1.42× 10−4 4.35× 10−4

y3,z1 1.83× 10−4 8.28× 10−4

s2 −3.10× 10−4 1.79× 10−3

s3 −9.69× 10−4 3.11× 10−3

7 k0/m = 1 and f/fc = 1.

to the external plane-wave (x-direction) as in the crossed field limit. The real parts
Re[δN ] are negative for photons other than those propagating perpendicularly to the
external plane-wave. The modulus |Re[N + δN ]| is hence reduced for these modes
by the field variation.

I next present the dependence on k0/m of δN for f/fc = 1, Ω/m = 10−3 in
Figures 2.11 and 2.12. The real part Re[δN ] is exhibited in Figure 2.11. It is seen
that the real part can be both positive and negative: it tends to be negative at
higher values of k0/m although the range depends on the mode; in fact, the values
of the photon energy, above which δN gets positive, are smaller for the photons
propagating oppositely to the external plane-wave. Re[δN ] is much smaller than
Re[N − 1] for the crossed field at 0.1 ≤ k0/m ≤ 1 and decreases very rapidly like
Im[N ] for the crossed field.

The imaginary part Im[δN ] is shown in Figure 2.12 for the probe-photon energies
of 0.03 ≤ k0/m ≤ 1. The inset indicates the comparison for the x2 and x3 modes
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Figure 2.11: Plot of the correction to the real part of the refractive index for the
crossed field from the temporal and spatial variations in the plane-wave field. The
field strength is set to the critical value, i.e., f/fc = 1 and the frequency of the
external wave field is chosen as Ω/m = 10−3.
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Figure 2.12: Same as Figure 2.11 but for Im[δN ]. The inset shows the comparison
for the x2 and x3 modes between the asymptotic limits (Equations (2.67) and (2.68)
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between the numerically computed results of Im[δN ] and the asymptotic values in
the weak-field or low-energy limits. The expressions of Im[δN ] in this regime are
given from Equations (2.52) and (2.53) as

Im[δNx2] ≃
263α

3780π

(
Ωkµn

µ

m2

)
κ2m2

k20
, (2.67)

Im[δNx3] ≃
71α

540π

(
Ωkµn

µ

m2

)
κ2m2

k20
, (2.68)

where Ωkµn
µ/m2 = Ω(k0 + k1)/m

2 is the product of the momentum of the external
plane-wave and that of the probe photon normalized by the electron mass and is a
representative term in the gradient expansion Fµν ∼ fµν(1+Ωξ), being proportional
to Ω with the proportional factor kµn

µ originating from the commutation relation
of ξ that accompanies Ω; κ2 = e2kµf

µ
νf

νλkλ/m
6 = e2f 2(k0 + k1)

2/m6 as previously
defined in Equation (2.56). Equations (2.67) and (2.68) are convenient for the
evaluation of the typical value of Im[δN ]:

Im[δN ] ∼ α

(
Ω

m

)(
k0
m

)(
f

fc

)2

∼ 7× 10−6

(
Ω

0.5keV

)(
k0

510keV

)(
I

4.6× 1029W/cm2

)
, (2.69)

where I is the intensity of the external electromagnetic wave. It is found from
the inset that Im[δN ] is well approximated for Ω/m = 10−3 by the asymptotic
expressions at k0/m ≤ 0.03 for f/fc = 1. There occurs a dent at k0/m ≃ 0.2 and
Im[δN ] rises more rapidly with k0/m at larger energies, where Im[N ] of the crossed
field also becomes substantial. The location of the dent depends on the propagation
direction of the probe photon, with the x (y/z) mode having the smallest (largest)
value of k0/m at the dent, respectively.
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Since the imaginary part of the refractive index declines rapidly below these
energies for the crossed field, it is dominated by the first-order correction Im[δN ]
from the temporal and spatial variations in the plane-wave at these low energies. In
fact, the latter is commonly more than 10 times larger than the former Im[δN ] ≳
10× Im[N ] at k0/m ≲ 0.1. See also Figure 2.13, where I plot Im[N+δN ] and Im[N ]
as a function of k0/m. This is especially the case of the probe photons propagating
transversally to the background plane-wave. In accordance with the trend for the
crossed field, the x (y/z) modes have largest (smallest) moduli |Im[δN ]| and s modes
come in between in general.
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Figure 2.14: Re[δN ] for the external plane-wave field of the frequency of Ω/m =
10−3. The probe-photon energy is chosen as k0/m = 1.

Finally, I look into the dependence of δN on the field strength in the range of
f/fc ≤ 1. The real and imaginary parts of δN are shown in Figures 2.14 and 2.15,
respectively. The probe-photon energy is set to k0/m = 1 and the frequency of
the external field assumed to be Ω/m = 10−3 again, though the results scale with
the latter linearly. It is evident that the results are quite similar to those shown in
Figures 2.11 and 2.12: the real part, Re[δN ], has a hump at f/fc ∼ 0.5 whereas the
imaginary part, Im[δN ], is quadratic in f/fc at weak fields and becomes dominant
over the crossed-field contribution, Im[N ], at f/fc ≲ 0.1; the order in the magnitudes
of Im[δN ] for different modes is the same as that in Figure 2.11; Re[δN ] is negative
at a certain range of f/fc, which depends on the mode, occurring for stronger fields
for the mode propagating transversally to the background plane-field. The reason
for these behaviors is the following: although δN depends not only on the product
of k0/m and (f/fc)

2 but also on kµkµ/m
2, the latter dependence is minuscule in the

regime I consider here. As a result, the dependence of the refractive index on k0/m
can be translated into that of f/fc. In fact, the numerical results for Im[δN ] are
well-approximated by the same asymptotic formulae, Equations (2.67) and (2.68),
in the weak-field regime f/fc ≲ 0.1, which can be seen in the inset of Figure 2.15;
Im[δN ] has a dent at f/fc ∼ 0.2 and changes its behavior at larger field-strengths,
where the crossed-field contribution, Im[N ], becomes large, overwhelming Im[δN ].
See also Figure 2.16, where I plot Im[N + δN ] and Im[N ] as a function of f/fc.
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Figure 2.15: Same figure as Figure 2.14 but for Im[δN ]. The inset shows the compar-
ison for the x2 and x3 modes between the asymptotic limits (Equations (2.67) and
(2.68)) labeled as ax2 and ax3, respectively, and the numerically computed results
for the x2 and x3 modes labeled as x2 and x3, respectively.
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2.5 Summary and Discussion

In this chapter I have developed a perturbation theory adapted to Schwinger’s
proper-time method to calculate the induced electromagnetic current, which should
be plugged into the Maxwell equations to obtain the refractive indices, for the ex-
ternal, linearly polarized plane-waves, considering them as the unperturbed states
and regarding a probe photon as the perturbation to them. Although this is nothing
new and indeed was already employed previously (Adler, 1971), my formulation is
based on the interaction picture, a familiar tool in quantum mechanics and referred
to also as the Furry picture in strong-field QED, rather than utilizing the proper-
ties of particular electromagnetic fields from the beginning. Moreover, assuming
that the wavelength of the external plane-wave is much longer than the Compton
wavelength of electron and employing the gradient expansion, I have evaluated lo-
cally the polarization tensor via the induced electromagnetic current to the lowest
order of the spatial and temporal variations of the external fields, which is the main
achievement in this chapter. It has been shown that the vacuum polarization is
given locally by the field strength and its gradient of the external plane-waves at
each point. I have then considered the dispersion relations for the probe photons
propagating in various directions and derived the local refractive indices.

I have first evaluated them for the crossed fields, which are the long-wavelength
limit of the plane-waves. In so doing, the field strength and the energy of the
probe photon are not limited but are allowed to take any values. Note that even
for the crossed field not all the parameter regime has been investigated and I have
explored those portions unconsidered so far. I have shown that the refractive index
is larger for the photons propagating oppositely to the external field than for those
propagating perpendicularly. I have also confirmed some limiting cases that were
already known in the literature analytically or numerically (Baier and Breitenlohner,
1967b; Narozhny̆ı, 1969; Ritus, 1972; Heinzl and Schröder, 2006), particularly the
behavior in the weak external fields demonstrated in Toll (1952). Note, however,
that the assumption of a fixed classical background field becomes rather questionable
at field strengths near or, in particular, above the critical field strength, since the
back reactions to the background field from pair creations should be then taken into
account. This issue is certainly much beyond the scope of this chapter and in spite
of this conceptual problem I think that the results in such very strong fields are still
useful to understand the scale and qualitative behavior of the corrections from the
field gradient.

I have then proceeded to the evaluation of the refractive index for the plane-wave
to the lowest order of the temporal and spatial variations of the background field.
The local correction δN to the refractive index for the crossed field N has been
numerically evaluated for the first time. I have demonstrated that the modulus
of its imaginary part is larger than that of the real part, i.e., the field variations
mainly affect the imaginary part of the refractive index. Note that the refractive
index I have obtained in this chapter is local, depending on the local field-strength
and its gradient, and is meaningful in the sense of the WKB approximation. This
is in contrast to the refractive index averaged over the photon path in Dinu et al.
(2014b).
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In the optical laser experiments (Ω/m ∼ 10−6), the refractive index may be
approximated very well by that for the crossed field. The correction from the field
variations is typically |δN | ∼ 10−5 × Re[N − 1]. The weak-field limit may be also
justified, since the current maximum laser-intensity ∼ 2.0×1022W/cm2 is still much
lower than the critical value, 4.6× 1029W/cm2. Then the numerical results given in
Figure 2.9 are applicable: Re[N − 1] ∼ 10−4 × (f/fc)

2 for the probe photon with
k0/m = 1, which corresponds to ∼ 10−8 at ∼ 1025W/cm2, the power expected for
future laser facilities such as ELI. Note that how to observe the local refractive index
in the electromagnetic wave is a different issue and the averaged one will be better
suited for experiments (Dinu et al., 2014b).

Unlike for the optical laser, the field variations may not be ignored for X-ray
lasers with Ω/m ≃ 10−2. I find from Figure 2.9 and Table 2.2 that the refractive
index for the crossed field and the first-order correction to it are |N − 1| ∼ 10−4

and |δN | ∼ 10−5, respectively, for the probe photon with k0/m = 1 propagating
oppositely to the external fields with the critical field strength. It may be more
interesting that the imaginary part of the first-order correction, Im[δN ], becomes
larger than that for the crossed field Im[N ] at f/fc ≲ 0.1 for k0/m = 1 or at k0/m ≲
0.1 for f/fc = 1. It should be noted, however, that the suppression is much relaxed
by the presence of the temporal and spatial variations in the background plane-field.
This is because the imaginary part of the refractive index is exponentially suppressed
for the crossed-field while it is suppressed only by powers for the plane-wave.

Very strong electromagnetic fields and their temporal and/or spatial variations
may be also important for some astronomical phenomena. For example, burst ac-
tivities called giant flares and short bursts have been observed in magnetars, i.e.,
strongly magnetized neutron stars (Olausen and Kaspi, 2014). Although the en-
ergy source of these activities is thought to be the magnetic fields of magnetars, the
mechanism of bursts is not understood yet. In the analysis of the properties of the
emissions from these bursts, the results obtained in this chapter may be useful.

As for the burst mechanism, one interesting model related with the strong field
variation was proposed by some authors (Heyl and Hernquist, 1998, 1999, 2005),
in which they considered shock formations in electromagnetic waves propagating in
strong magnetic fields around the magnetar. The shock dissipation may produce a
fireball of electrons and positrons via pair creations. Their discussion is based on
the Rankine-Hugoniot-type jump condition and the Euler-Heisenberg Lagrangian,
which is certainly not able to treat the close vicinity of the shock wave, since the
shock is essentially a discontinuity. Note, however, that my result in this chapter is
not very helpful for this problem, either, since the field variation is very rapid and
has quite short wavelengths and, moreover, finite amplitudes of waves are essential
for shock formation while my method is limited to the linear level. It is hence needed
to extend the formulation to accommodate these nonlinear effects somehow, which
will be a future task.
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2.6 Detailed Derivations

I begin with the following transformation amplitudes: ⟨x(0)(s)|Π̂µ
I (s)U(s)|x(0)⟩,

⟨x(0)(s)|U(s)Π̂µ
I (0)|x(0)⟩. They are written as

⟨x(s)|Π̂µ(s)U(s)|x(0)⟩

= ⟨x(s)|Π̂µ(s)

[
1− i

∫ s

0

du

{
eΠ̂α(u)bα exp

[
−ikδx̂δ(u)

]
+ebα exp

[
−ikδx̂δ(u)

]
Π̂α(u) +

1

2
eσαβ(u)gαβ(u)

}]
|x(0)⟩, (2.70)

⟨x(s)|U(s)Π̂µ(0)|x(0)⟩

= ⟨x(s)|
[
1− i

∫ s

0

du

{
eΠ̂α(u)bα exp

[
−ikδx̂δ(u)

]
+ebα exp

[
−ikδx̂δ(u)

]
Π̂α(u) +

1

2
eσαβ(u)gαβ(u)

}]
Π̂µ(0)|x(0)⟩ (2.71)

with the proper-time evolution operator given in Equation (2.40). In this expression,
gαβ(u) = gαβ exp

[
−ikδx̂δ(u)

]
. I rearrange the first two terms in the integrand as

Π̂µ(s)
(
eΠ̂α(u)bα exp

[
−ikδx̂δ(u)

]
+ ebα exp

[
−ikδx̂δ(u)

]
Π̂α(u)

)
= 2ebαΠ̂

µ(s)Π̂α(u) exp
[
−ikδx̂δ(u)

]
− ebαk

αΠ̂µ(s) exp
[
−ikδx̂δ(u)

]
, (2.72)(

eΠ̂α(u)bα exp
[
−ikδx̂δ(u)

]
+ ebα exp

[
−ikδx̂δ(u)

]
Π̂α(u)

)
Π̂µ(0)

= 2ebαΠ̂
α(u) exp

[
−ikδx̂δ(u)

]
Π̂µ(0)− ebαk

α exp
[
−ikδx̂δ(u)

]
Π̂µ(0), (2.73)

using by the following relation

exp
[
−ikδx̂δ(u)

]
Π̂α(u) =

{
Π̂α(u) +

[
−ikδx̂δ(u), Π̂α(u)

]}
exp

[
−ikδx̂δ(u)

]
= Π̂α(u) exp

[
−ikδx̂δ(u)

]
− kα exp

[
−ikδx̂δ(u)

]
, (2.74)

which is obtained from Equations (2.98) and (2.151). The calculations of the re-
maining terms in the integrand, ⟨x(s)|Π̂µ(s)

(
−i
∫ s

0
du1

2
eσαβ(u)gαβ(u)

)
|x(0)⟩ and

⟨x(s)|
(
−i
∫ s

0
du1

2
eσαβ(u)gαβ(u)

)
Π̂µ(0)|x(0)⟩ proceed as follows:

⟨x(s)|Π̂µ(s)

∫ s

0

du

(
−ie

2

)
σαβ(u)gαβ(u)|x(0)⟩

≃ ⟨x(s)|
∫ s

0

duΠ̂µ(s) exp
[
−ikδx̂δ(u)

]
×
(
−ie

2

)[
(σg) +

ieu

2
{(σf)(σg)− (σg)(σf)}+ e2u2

4
(σf)(σg)(σf)

]
|x(0)⟩

+⟨x(s)|
∫ s

0

duΠ̂µ(s) exp
[
−ikδx̂δ(u)

](
−ie

2

)
×
[
ieu

2
{(σf)(σg)− (σg)(σf)} (Ωξ(0)) + e2u2

2
(σf)(σg)(σf)(Ωξ(0))

]
|x(0)⟩,

(2.75)
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⟨x(s)|
∫ s

0

du

(
−ie

2

)
gαβ(u)σ

αβ(u)Π̂µ(0)|x(0)⟩

≃ ⟨x(s)|
∫ s

0

du

(
−ie

2

)
exp

[
−ikδx̂δ(u)

]
Π̂µ(0)

×
[
(σg) +

ieu

2
{(σf)(σg)− (σg)(σf)}+ e2u2

4
(σf)(σg)(σf)

]
|x(0)⟩

+⟨x(s)|
∫ s

0

du

(
−ie

2

)
exp

[
−ikδx̂δ(u)

]
Π̂µ(0)

×
[
ieu

2
{(σf)(σg)− (σg)(σf)} (Ωξ(0)) + e2u2

2
(σf)(σg)(σf)(Ωξ(0))

]
|x(0)⟩

+⟨x(s)|
∫ s

0

du

(
−ie

2

)
exp

[
−ikδx̂δ(u)

]
(−inµ)

×
[
ieu

2
{(σf)(σg)− (σg)(σf)}Ω +

e2u2

2
(σf)(σg)(σf)Ω

]
|x(0)⟩. (2.76)

On the second lines in the above equations, I employed the expansion of σαβ(u)
given in Equation (2.42). The resultant expressions with Equations (2.72), (2.73)
give Equations (2.43) and (2.44). Note that all operators in these expressions, i.e.,
Π̂µ(s), Π̂µ(0), Π̂µ(u) and x̂µ(u), are defined in the interaction picture.

Remaining are the evaluations of the transformation amplitudes such as

⟨x(s)|Π̂µ(s)|x(0)⟩, (2.77)

⟨x(s)|Π̂µ(0)|x(0)⟩, (2.78)

⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩, (2.79)

⟨x(s)|Π̂α(u) exp
[
−ikδx̂δ(u)

]
|x(0)⟩, (2.80)

⟨x(s)|Π̂µ(s) exp
[
−ikδx̂δ(u)

]
|x(0)⟩, (2.81)

⟨x(s)| exp
[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩, (2.82)

⟨x(s)|Π̂µ(s)Π̂α(u) exp
[
−ikδx̂δ(u)

]
|x(0)⟩, (2.83)

⟨x(s)|Π̂α(u) exp
[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩. (2.84)

Each operator in these amplitudes can be represented with x̂µ(s) and x̂µ(0). For
example, Π̂µ(s) and Π̂µ(0) are derived from Equations (2.27) and (2.28) to the lowest
order of Ω as

Π̂µ(s)

=
x̂µ(s)− x̂µ(0)

2s
+
e

2
fµ

ν(x̂
ν(s)− x̂ν(0))

+Ω
e

2
fµ

ν(x̂
ν(s)− x̂ν(0))

(
2

3
ξ(s) +

1

3
ξ(0)

)
+ nµe2f 2s

(
1

6
ξ(s)− 1

6
ξ(0)

)
+Ωnµe2f 2s

(
1

4
ξ2(s)− 1

6
ξ(s)ξ(0)− 1

12
ξ2(0)

)
+

1

4
Ωesnµ(σf), (2.85)



52 CHAPTER 2. QED VACUUM POLARIZATION

Π̂µ(0)

=
x̂µ(s)− x̂µ(0)

2s
− e

2
fµ

ν(x̂
ν(s)− x̂ν(0))

+Ω
e

2
fµ

ν(x̂
ν(s)− x̂ν(0))

(
−1

3
ξ(s)− 2

3
ξ(0)

)
+ nµe2f 2s

(
1

6
ξ(s)− 1

6
ξ(0)

)
+Ωnµe2f 2s

(
1

12
ξ2(s) +

1

6
ξ(s)ξ(0)− 1

4
ξ2(0)

)
− 1

4
Ωesnµ(σf). (2.86)

Using the fact that the left hand side (and hence the right hand side also) of Equa-
tion (2.86) is independent of s, I obtain the operator x̂µ(u) in terms of x̂µ(s) and
x̂µ(0) as

x̂µ(u)

= x̂µ(0) +
u

s
(x̂µ(s)− x̂µ(0))

+efµ
ν(x̂

ν(s)− x̂ν(0))

×
[
−u+ u2

s
+ Ω

{(
−u
3
+

1

3

u3

s2

)
ξ(s) +

(
−2

3
u+

u2

s
− 1

3

u3

s2

)
ξ(0)

}]
+nµe2f 2

{(
su

3
− u2 +

2

3

u3

s

)
ξ(s) +

(
−su

3
+ u2 − 2

3

u3

s

)
ξ(0)

}
+Ωnµe2f 2

{(
su

6
− 1

3
u2 − 1

3

u3

s
+

1

2

u4

s2

)
ξ2(s)

+

(
su

3
− 4

3
u2 + 2

u3

s
− u4

s2

)
ξ(s)ξ(0) +

(
−su

2
+

5

3
u2 − 5

3

u3

s
+

1

2

u4

s2

)
ξ2(0)

}
+
1

2
Ωeσνλfνλn

µ
(
u2 − su

)
. (2.87)

Replacing s with u in Equation (2.85) and plugging Equation (2.87) into Equa-
tion (2.85), I can express Π̂µ(u) as

Π̂µ(u)

=
x̂µ(s)− x̂µ(0)

2s
+efµ

ν(x̂
ν(s)− x̂ν(0))

×
[
−1

2
+
u

s
+ Ω

{(
1

2

(u
s

)2
− 1

6

)
ξ(s) +

(
−1

2

(u
s

)2
+
u

s
− 1

3

)
ξ(0)

}]
+nµe2f 2s

[{
1

6
− u

s
+
(u
s

)2}
ξ(s) +

{
−1

6
+
u

s
−
(u
s

)2}
ξ(0)

]
+Ωnµe2f 2s

[{
1

12
− 1

3

(u
s

)
− 1

2

(u
s

)2
+
(u
s

)3}
ξ2(s)

+

{
1

6
− 4

3

u

s
+ 3

(u
s

)2
− 2

(u
s

)3}
ξ(s)ξ(0) +

{
−1

4
+

5

3

u

s
− 5

2

(u
s

)2
+
(u
s

)3}
ξ2(0)

]
+Ωeσνλfνλn

µs

(
−1

4
+

1

2

u

s

)
. (2.88)
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It is now easy to evaluate the amplitudes in Equations (2.77) and (2.78), which

appear in the induced electromagnetic current as tr
(
⟨x(s)|Π̂µ(s) + Π̂µ(0)|x(0)⟩

)
and

tr
(
σµν⟨x(s)|Π̂µ(s)− Π̂µ(0)|x(0)⟩

)
. They are given as

tr
(
⟨x(s)|Π̂µ(s) + Π̂µ(0)|x(0)⟩

)
≃ tr (⟨x(s)|0|x(0)⟩) = 0, (2.89)

tr
(
σµν⟨x(s)|Π̂ν(s)− Π̂ν(0)|x(0)⟩

)
≃ tr [σµνnν(σf)]

1

i(4π)2s

e

2
Ω = 0, (2.90)

where I used the following relation

⟨x(s)|x(0)⟩ = 1

i(4π)2s2

(
1− ies

2
(σf)(1 + Ωξ)

)
, (2.91)

which is derived from Equation (2.31). There is hence no contribution to the induced
electromagnetic current from ⟨x(s)|Π̂µ(s)|x(0)⟩ and ⟨x(s)|Π̂µ(0)|x(0)⟩.

The amplitude given in Equation (2.79) is calculated to the linear order of Ω by
using the Zassenhaus formula:

eX+ΩY ≃ eXeΩY e−
1
2
[X,ΩY ]e

1
6
(2[ΩY,[X,ΩY ]]+[X,[X,ΩY ]])

≃ eX(1 + ΩY )(1− 1

2
[X,ΩY ])

(
1 +

1

6
(2[ΩY, [X,ΩY ]] + [X, [X,ΩY ]])

)
≃ eX + eXΩY + eX

(
−1

2
[X,ΩY ]

)
+ eX

1

6
[X, [X,ΩY ]] . (2.92)

In this expression, X stands collectively for the terms that do not include Ω in
the argument of the exponential function in Equation (2.80) whereas ΩY represents
those terms that depend on Ω. The commutation relations in this equation are
evaluated as follows:

[X,ΩY ]

= iΩ(k · n)2e2f 2

(
−4

3
su2 +

10

3
u3 − 2

u4

s

)
ξ(s)

+iΩ(k · n)2e2f 2

(
−2

3
s2u+

10

3
su2 − 14

3
u3 + 2

u4

s

)
ξ(0)

+iΩ(k · n)ekβfβ
ν [x̂

ν(s)− x̂ν(0)]

(
−2

3
su+ 2u2 − 4

3

u3

s

)
, (2.93)

[X, [X,ΩY ]] = iΩ(k · n)3e2f 2

(
4

3
s3u− 16

3
s2u2 + 8su3 − 4u4

)
. (2.94)

Putting these results together, I obtain the explicit expression of the exponential



54 CHAPTER 2. QED VACUUM POLARIZATION

operator suited for the calculation of the amplitude as

e−ikαx̂α(u)

= exp

{
−ikα

[
u

s
x̂α(s) + efα

βx̂
β(s)

(
−u+ u2

s

)
+ nαe2f 2

(
su

3
− u2 +

2

3

u3

s

)
ξ(s)

]}
×
(
1 + Ω

{
iekαf

α
β

[
x̂β(s)− x̂β(0)

] [(u
3
− 1

3

u3

s2

)
ξ(s) +

(
2

3
u− u2

s
+

1

3

u3

s2

)
ξ(0)

]
+i(k · n)e2f 2

[(
−su

6
+

1

3
u2 +

1

3

u3

s
− 1

2

u4

s2

)
ξ2(s)

+

(
−su

3
+

4

3
u2 − 2

u3

s
+
u4

s2

)
ξ(s)ξ(0) +

(
su

2
− 5

3
u2 +

5

3

u3

s
− 1

2

u4

s2

)
ξ2(0)

]
+ie(k · n)kαfα

β

[
x̂β(s)− x̂β(0)

](
−2

3
u2 +

4

3

u3

s
− 2

3

u4

s2

)
+i(k · n)2e2f 2ξ(s)

(
1

3
su2 − 2u3 + 3

u4

s
− 4

3

u5

s2

)
+i(k · n)2e2f 2ξ(0)

(
−su2 + 10

3
u3 − 11

3

u4

s
+

4

3

u5

s2

)
+i(k · n)3e2f 2

(
−2

3
s3u+

14

9
s2u2 − 4

9
su3 − 10

9
u4 +

2

3

u5

s

)
+ie(σf)(k · n)

(
1

2
su− 1

2
u2
)})

× exp

{
−ikµ

[(
1− u

s

)
x̂µ(0) + efµ

ν x̂
ν(0)

(
u− u2

s

)
+nµe2f 2

(
−su

3
+ u2 − 2

3

u3

s

)
ξ(0)

]}
× exp

[
i(k)2

(
u− u2

s

)
+ i(k · n)2e2f 2

(
−1

3
su2 +

2

3
u3 − 1

3

u4

s

)]
. (2.95)

The transformation amplitude is then given as

⟨x(s)| exp [−ikµx̂µ(u)] |x(0)⟩
= ⟨x(s)|x(0)⟩ exp (−ikµxµ)

× exp

[
i(k)2

(
u− u2

s

)
+ i(k · n)2e2f 2

(
−1

3
su2 +

2

3
u3 − 1

3

u4

s

)]
×
{
1 + Ω

[
i(k · n)2e2f 2ξ

(
−2

3
su2 +

4

3
u3 − 2

3

u4

s

)
+i(k · n)3e2f 2

(
−2

3
s3u+

14

9
s2u2 − 4

9
su3 − 10

9
u4 +

2

3

u5

s

)
+ie(σf)(k · n)

(
1

2
su− 1

2
u2
)]}

. (2.96)

I next calculate the amplitudes in Equations (2.80) - (2.82). The operators
Π̂µ(u), Π̂µ(s), Π̂µ(0) are written in terms of x̂µ(s) and x̂µ(0) and the amplitude can
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be calculated after re-arranging the order of operators. I first consider the rear-
rangement of x̂α(0) exp [−ikµx̂µ(u)]. Using the relations

Be−A = e−AB + e−A [A,B] +
1

2
e−A [A, [A,B]] , (2.97)

eAB = BeA + [A,B] eA +
1

2
[A, [A,B]] eA, (2.98)

which are derived from Hadamard’s lemma

eABe−A = B + [A,B] +
1

2
[A, [A,B]] , (2.99)

one can obtain

x̂α(0) exp [−ikµx̂µ(u)]
= exp [−ikµx̂µ(u)]

×
[
x̂α(0)− 2ukα + 2e(fαµkµ)u

2 − 4

3
u3nα(k · n)e2f 2

+Ωe(fαµkµ)

{
2

3

u3

s
ξ(s) +

(
2u2 − 2

3

u3

s

)
ξ(0)

}
+Ωenαkµf

µ
ν (x̂

ν(s)− x̂ν(0))

(
−2

3

u3

s

)
+Ωnα(k · n)e2f 2

{(
2

3
u3 − 2

u4

s

)
ξ(s) +

(
−10

3
u3 + 2

u4

s

)
ξ(0)

}
+Ωe(fαµkµ)(k · n)

(
−4

3
u3
)
+ Ωnα(k · n)2e2f 2(2u4)

]
, (2.100)

which is still inappropriate for the calculation of the amplitudes because some x̂µ(s)
are sitting to the right of exp

[
−ikδx̂δ(u)

]
, which contains x̂µ(0). I hence have to

rearrange further the terms that contain x̂µ(s) to obtain

x̂α(0) exp [−ikµx̂µ(u)]

= exp [−ikµx̂µ(u)]
[
x̂α(0) + Ωe(fαµkµ)

(
2u2 − 2

3

u3

s

)
ξ(0)

+Ωenαkµf
µ
ν x̂

ν(0)
2

3

u3

s
+Ωnα(k · n)e2f 2

(
−10

3
u3 + 2

u4

s

)
ξ(0)

]
+

[
Ωe(fαµkµ)

2

3

u3

s
ξ(s) + Ωenαkµf

µ
ν x̂

ν(s)

(
−2

3

u3

s

)
+Ωnα(k · n)e2f 2

(
2

3
u3 − 2

u4

s

)
ξ(s)

]
exp [−ikµx̂µ(u)]

+ exp [−ikµx̂µ(u)]
[
−2ukα + 2e(fαµkµ)u

2 − 4

3
u3nα(k · n)e2f 2

+Ωe(fαµkµ)(k · n)
(
4

3

u4

s
− 8

3
u3
)
+ Ωnα(k · n)2e2f 2

(
−8

3

u5

s
+

14

3
u4
)]
.

(2.101)
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This is the expression suitable for the calculation of the transformation amplitudes.

The re-arrangement of exp [−ikµx̂µ(u)] x̂α(s) goes similarly: after the rearrange-
ments it becomes as follows:

exp [−ikµx̂µ(u)] x̂α(s)

=

[
x̂α(s) + Ωe(fαµkµ)

(
−4

3
s2 + 2su− 2

3

u3

s

)
ξ(s)

+Ωenαkµf
µ
ν x̂

ν(s)

(
−2

3
s2 + 2su− 2u2 +

2

3

u3

s

)
+Ωnα(k · n)e2f 2

(
−4

3
s3 + 2s2u+ 2su2 − 14

3
u3 + 2

u4

s

)
ξ(s)

]
exp [−ikµx̂µ(u)]

+ exp [−ikµx̂µ(u)]
[
Ωe(fαµkµ)

(
−2

3
s2 + 2su− 2u2 +

2

3

u3

s

)
ξ(0)

+Ωenαkµf
µ
ν x̂

ν(0)

(
2

3
s2 − 2su+ 2u2 − 2

3

u3

s

)
+Ωnα(k · n)e2f 2

(
−4

3
s3 + 6s2u− 10su2 +

22

3
u3 − 2

u4

s

)
ξ(0)

]
+exp [−ikµx̂µ(u)]
×
[
2(u− s)kα + 2efαµkµ(−s2 + 2su− u2)

+nα(k · n)e2f 2

(
−4

3
s3 + 4s2u− 4su2 +

4

3
u3
)

+Ωe(k · n)(fαµkµ)

(
4

3
s3 − 8

3
s2u+

8

3
u3 − 4

3

u4

s

)
+Ωnα(k · n)2e2f 2

(
2s4 − 16

3
s3u+

4

3
s2u2 + 8su3 − 26

3
u4 +

8

3

u5

s

)]
. (2.102)

The amplitudes of these operators are then written as follows:

⟨x(s)|x̂µ(0) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
xµ + Ωefµνkνξ2u

2 + Ωnµ(k · n)e2f 2ξ

(
−8

3
u3
)

− 2ukα + 2efµνkνu
2

−4

3
u3nµ(k · n)e2f 2 + Ωefµνkν(k · n)

(
4

3

u4

s
− 8

3
u3
)

+Ωnµ(k · n)2e2f 2

(
−8

3

u5

s
+

14

3
u4
)]

, (2.103)
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⟨x(s)| exp
[
−ikδx̂δ(u)

]
x̂µ(s)|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
xµ + Ωefµνkνξ(−2s2 + 4su− 2u2)

+Ωnµ(k · n)e2f 2

(
−8

3
s3 + 8s2u− 8su2 +

8

3
u3
)
ξ

+2(u− s)kµ + 2efµνkν(−s2 + 2su− u2)

+nµ(k · n)e2f 2

(
−4

3
s3 + 4s2u− 4su2 +

4

3
u3
)

+Ωe(k · n)fµνkν

(
4

3
s3 − 8

3
s2u+

8

3
u3 − 4

3

u4

s

)
+Ωnµ(k · n)2e2f 2

×
(
2s4 − 16

3
s3u+

4

3
s2u2 + 8su3 − 26

3
u4 +

8

3

u5

s

)]
, (2.104)

The following relations, which are obtained in the similar way, are also needed to
evaluate Equations (2.80) - (2.82).

fβ
αx̂

α(0) exp [−ikµx̂µ(u)]

= exp [−ikµx̂µ(u)]
[
fβ

αx̂
α(0) + Ωnβ(k · n)ef 2

(
2u2 − 2

3

u3

s

)
ξ(0)

]
+Ωnβ(k · n)ef 2

(
2

3

u3

s

)
ξ(s) exp [−ikµx̂µ(u)]

+ exp [−ikµx̂µ(u)]

×
[
−2ufβ

αk
α + 2nβ(k · n)ef 2u2 + Ωnβ(k · n)2ef 2

(
4

3

u4

s
− 8

3
u3
)]

, (2.105)

ξ(0) exp [−ikµx̂µ(u)] = exp [−ikµx̂µ(u)] [ξ(0)− 2u(k · n)] , (2.106)

exp [−ikµx̂µ(u)] fβ
αx̂

α(s)

=

[
fβ

αx̂
α(s) + Ωnβ(k · n)ef 2

(
−4

3
s2 + 2su− 2

3

u3

s

)
ξ(s)

]
exp [−ikµx̂µ(u)]

+ exp [−ikµx̂µ(u)] Ωnβ(k · n)ef 2

(
−2

3
s2 + 2su− 2u2 +

2

3

u3

s

)
ξ(0)

+ exp [−ikµx̂µ(u)]
[
2(u− s)fβ

αk
α + 2nβ(k · n)ef 2(−s2 + 2su− u2)

+Ωnβ(k · n)2ef 2

(
4

3
s3 − 8

3
s2u+

8

3
u3 − 4

3

u4

s

)]
, (2.107)

exp [−ikµx̂µ(u)] ξ(s) = [ξ(s) + 2(u− s)(k · n)] exp [−ikµx̂µ(u)] . (2.108)
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They yield immediately the followings:

⟨x(s)|fµ
ν x̂

ν(0) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

[
fµ

νx
ν + Ωnµ(k · n)ef 2ξ2u2

−2ufµ
νk

ν + 2nµ(k · n)ef 2u2 +Ωnµ(k · n)2ef 2

(
4

3

u4

s
− 8

3
u3
)]

, (2.109)

⟨x(s)|ξ(0) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩ [ξ − 2u(k · n)] , (2.110)

⟨x(s)| exp
[
−ikδx̂δ(u)

]
fµ

ν x̂
ν(s)|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

[
fµ

νx
ν + Ωnµ(k · n)ef 2ξ(−2s2 + 4su− 2u2)

+2(u− s)fµ
νk

ν + 2nµ(k · n)ef 2(−s2 + 2su− u2)

+Ωnµ(k · n)2ef 2

(
4

3
s3 − 8

3
s2u+

8

3
u3 − 4

3

u4

s

)]
, (2.111)

⟨x(s)| exp
[
−ikδx̂δ(u)

]
ξ(s)|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩ [ξ + 2(u− s)(k · n)] . (2.112)

Finally, the quadratic terms in x, e.g., ⟨x(s)|fµ
ν x̂

ν(0)ξ(0) exp
[
−ikδx̂δ(u)

]
|x(0)⟩,

can be calculated as

⟨x(s)|fµ
ν x̂

ν(0)ξ(0) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

= ⟨x(s)|fµ
ν x̂

ν(0) exp
[
−ikδx̂δ(u)

]
[ξ(0)− 2u(k · n)]|x(0)⟩

= (ξ − 2u(k · n))⟨x(s)|fµ
ν x̂

ν(0) exp
[
−ikδx̂δ(u)

]
|x(0)⟩. (2.113)

All results combined, Π̂µ(u) exp
[
−ikδx̂δ(u)

]
is cast into

Π̂µ(u) exp
[
−ikδx̂δ(u)

]
=
(
rearranged terms of Π̂µ(u) exp

[
−ikδx̂δ(u)

])
+exp

[
−ikδx̂δ(u)

]
×
[
efµαkα

(
−u+ u2

s

)
+ (−Ω)(k · n)efµαkα

(
−4

3
u2 +

8

3

u3

s
− 4

3

u4

s2

)
+
u

s
kµ

+nµ(k · n)e2f 2

(
1

3
su− u2 +

2

3

u3

s

)
+(−Ω)nµ(k · n)2e2f 2

(
su2 − 4u3 + 5

u4

s
− 2

u5

s2

)]
(The expression continues to the next page.)
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(The expression is continued.)

+ exp
[
−ikδx̂δ(u)

] [
(−Ω)efµαkαξ(0)

(
2

3
u− u2

s
+

2

3

u3

s2

)
+(−Ω)nµ(k · n)e2f 2ξ(0)

(
−su+ 5u2 − 22

3

u3

s
+

10

3

u4

s2

)
+(−Ω)(k · n)efµ

αx̂
α(0)

(
2

3
u− 2

u2

s
+
u3

s2

)
+ (−Ω)nµekαf

α
βx̂

β(0)
1

3

u3

s2

]
+

[
ξ(s)(−Ω)efµαkα

(
1

3
u− 2

3

u3

s2

)
+ (−Ω)(k · n)efµ

αx̂
α(s)

(
−2

3
u+ 2

u2

s
− u3

s2

)
+(−Ω)nµekαf

α
βx̂

β(s)

(
−1

3

u3

s2

)
+ξ(s)(−Ω)nµ(k · n)e2f 2

(
1

3
su− 3u2 + 6

u3

s
− 10

3

u4

s2

)]
exp

[
−ikδx̂δ(u)

]
, (2.114)

where the first term on the right hand side means that all x̂µ(s)’s in the operator
Π̂µ(u) have already been moved to the left of exp[−ikδx̂δ(u)] and all x̂µ(0)’s to the
right so that its amplitude could be expressed as the product of those of Π̂µ(u) and
exp[−ikδx̂δ(u)]. The corresponding amplitude is then given as

⟨x(s)|Π̂α(u) exp [−ikµx̂µ(u)] |x(0)⟩

= ⟨x(s)| exp [−ikµx̂µ(u)] |x(0)⟩
[
u

s
kα + efαβkβ

(
u2

s
− u

)
+nα(k · n)e2f 2

(
1

3
su− u2 +

2

3

u3

s

)
+ Ωefαβkβξ

(
u2

s
− u

)
+Ωnα(k · n)e2f 2ξ

(
2

3
su− 2u2 +

4

3

u3

s

)
+ Ωefαβkβ(k · n)

(
4

3
u2 − 8

3

u3

s
+

4

3

u4

s2

)
+Ωnα(k · n)2e2f 2

(
−su2 + 4u3 − 5

u4

s
+ 2

u5

s2

)
+Ωe(σf)nα

(
−1

4
s+

1

2
u

)]
,

(2.115)

since ⟨x(s)|Π̂µ(u)|x(0)⟩ = ⟨x(s)|x(0)⟩Ωe(σf)nµ (−s/4 + u/2). Similar expressions
are obtained for Π̂µ(s) exp

[
−ikδx̂δ(u)

]
and exp

[
−ikδx̂δ(u)

]
Π̂µ(0), which are shown,

respectively, as follows:

Π̂µ(s) exp
[
−ikδx̂δ(u)

]
=
(
rearranged terms of Π̂µ(s) exp

[
−ikδx̂δ(u)

])
+exp

[
−ikδx̂δ(u)

] [
efµαkα

(
u− u2

s

)
+ (−Ω)(k · n)efµαkα

(
2

3
u2 − 4

3

u3

s
+

2

3

u4

s2

)
+
u

s
kµ + nµ(k · n)e2f 2

(
1

3
su− u2 +

2

3

u3

s

)
+(−Ω)(k · n)2nµe2f 2

(
1

3
su2 − 2u3 + 3

u4

s
− 4

3

u5

s2

)]
(The expression continues to the next page.)
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(The expression is continued.)

+ exp
[
−ikδx̂δ(u)

] [
(−Ω)efµαkαξ(0)

(
−1

3
u+

u2

s
− 1

3

u3

s2

)
+(−Ω)nµ(k · n)e2f 2ξ(0)

(
−1

3
su+

4

3
u2 − 2

u3

s
+
u4

s2

)
+(−Ω)(k · n)efµ

αx̂
α(0)

(
−1

3
u

)
+ (−Ω)nµekαf

α
βx̂

β(0)

(
1

3

u3

s2

)]
+

[
(−Ω)nµ(k · n)e2f 2ξ(s)

(
−1

3
su+

2

3
u2 +

2

3

u3

s
− u4

s2

)
+(−Ω)efµαkαξ(s)

(
−2

3
u+

1

3

u3

s2

)
+ (−Ω)(k · n)efµ

αx̂
α(s)

(
1

3
u

)
+(−Ω)nµekαf

α
βx̂

β(s)

(
−1

3

u3

s2

)]
exp

[
−ikδx̂δ(u)

]
, (2.116)

exp
[
−ikδx̂δ(u)

]
Π̂µ(0)

=
(
rearranged terms of Π̂µ(0) exp

[
−ikδx̂δ(u)

])
+exp

[
−ikδx̂δ(u)

] [
efµαkα

(
u− u2

s

)
+ (−Ω)(k · n)efµαkα

(
2

3
u2 − 4

3

u3

s
+

2

3

u4

s2

)
+kµ

(u
s
− 1
)
+ nµ(k · n)e2f 2

(
1

3
su− u2 +

2

3

u3

s

)
+(−Ω)nµ(k · n)2e2f 2

(
su2 − 10

3
u3 +

11

3

u4

s
− 4

3

u5

s2

)]
+exp

[
−ikδx̂δ(u)

] [
(−Ω)nµ(k · n)e2f 2ξ(0)

(
−su+ 10

3
u2 − 10

3

u3

s
+
u4

s2

)
+(−Ω)efµαkαξ(0)

(
−1

3
s− 1

3
u+

u2

s
− 1

3

u3

s2

)
+(−Ω)(k · n)efµ

αx̂
α(0)

(
1

3
s− 1

3
u

)
+(−Ω)nµekαf

α
βx̂

β(0)

(
−1

3
s+ u− u2

s
+

1

3

u3

s2

)]
+

[
(−Ω)efµαkαξ(s)

(
1

3
s− 2

3
u+

1

3

u3

s2

)
+ (−Ω)(k · n)efµ

αx̂
α(s)

(
−1

3
s+

1

3
u

)
+(−Ω)nµ(k · n)e2f 2ξ(s)

(
1

3
su− 4

3
u2 + 2

u3

s
− u4

s2

)
+(−Ω)nµekαf

α
βx̂

β(s)

(
1

3
s− u+

u2

s
− 1

3

u3

s2

)]
exp

[
−ikδx̂δ(u)

]
, (2.117)
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and their amplitudes are then obtained as

⟨x(s)|Π̂µ(s) exp [−ikαx̂α(u)] |x(0)⟩
= ⟨x(s)| exp [−ikαx̂α(u)] |x(0)⟩

×
[
Ωefµνkνξ

(
u− u2

s

)
+ Ωnµ(k · n)e2f 2ξ

(
2

3
su− 2u2 +

4

3

u3

s

)
+

(
u− u2

s

)
efµνkν +

(
1

3
su− u2 +

2

3

u3

s

)
nµ(k · n)e2f 2 +

u

s
kµ

+

(
−2

3
u2 +

4

3

u3

s
− 2

3

u4

s2

)
Ωefµνkν(k · n)

+

(
−1

3
su2 + 2u3 − 3

u4

s
+

4

3

u5

s2

)
Ωnµ(k · n)2e2f 2 +

1

4
Ωesnµ(σf)

]
,

(2.118)

⟨x(s)| exp [−ikαx̂α(u)] Π̂µ(0)|x(0)⟩
= ⟨x(s)| exp [−ikαx̂α(u)] |x(0)⟩

×
[
Ωefµνkνξ

(
u− u2

s

)
+ Ωnµ(k · n)e2f 2ξ

(
2

3
su− 2u2 +

4

3

u3

s

)
+
(u
s
− 1
)
kµ

+

(
u− u2

s

)
efµνkν +

(
1

3
su− u2 +

2

3

u3

s

)
nµ(k · n)e2f 2

+Ω

(
−2

3
u2 +

4

3

u3

s
− 2

3

u4

s2

)
efµνkν(k · n)

+Ω

(
−su2 + 10

3
u3 − 11

3

u4

s
+

4

3

u5

s2

)
nµ(k · n)2e2f 2 +

(
−1

4

)
Ωesnµ(σf)

]
.

(2.119)

Finally, Equations (2.83) and (2.84) are calculated. I rewrite them in terms
of ⟨x(s)| exp

[
−ikδx̂δ(u)

]
|x(0)⟩ and ⟨x(s)|Π̂α(u) exp

[
−ikδx̂δ(u)

]
|x(0)⟩, which have

been already evaluated. In so doing, the products of the operators such as x̂µ(0)Π̂α(u)
× exp

[
−ikδx̂δ(u)

]
in Π̂µ(s)Π̂α(u) exp

[
−ikδx̂δ(u)

]
and Π̂α(u) exp

[
−ikδx̂δ(u)

]
x̂µ(s)

in Π̂α(u) exp
[
−ikδx̂δ(u)

]
Π̂µ(0) have to be rearranged. To accomplish it, I need the

following commutation relations for Π̂µ(u), which are obtained from the results given
in Section 2.7:[

x̂µ(0), Π̂α(u)
]

= −iηµα + 2uiefµα − 2u2inµnαe2f 2 + Ωiefµαξ(s)

(
u2

s

)
+Ωiefµαξ(0)

(
2u− u2

s

)
+ Ωinµnαe2f 2ξ(s)

(
u2 − 4

u3

s

)
+Ωinµnαe2f 2ξ(0)

(
−5u2 + 4

u3

s

)
+ Ωienµfα

β

(
x̂β(s)− x̂β(0)

)(
−u

2

s

)
,

(2.120)
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efµ

ν x̂
ν(0), Π̂α(u)

]
= −iefµα + 2uinµnαe2f 2 + Ωinµnαe2f 2

[
u2

s
ξ(s) +

(
2u− u2

s

)
ξ(0)

]
,

(2.121)[
ξ(0), Π̂α(u)

]
= −inα, (2.122)[

Π̂α(u), x̂µ(s)
]
= iηαµ + (−2s+ 2u)iefαµ + (2s2 − 4su+ 2u2)inαnµe2f 2

+Ωiefαµξ(s)

(
u2

s
− s

)
+ Ωiefαµξ(0)

(
−u

2

s
+ 2u− s

)
+Ωinαnµe2f 2ξ(s)

(
s2 + 2su− 7u2 + 4

u3

s

)
+Ωinαnµe2f 2ξ(0)

(
3s2 − 10su+ 11u2 − 4

u3

s

)
+Ωienµfα

β

(
x̂β(s)− x̂β(0)

)(u2
s

− 2u+ s

)
, (2.123)[

Π̂α(u), efµ
ν x̂

ν(s)
]
= −iefαµ + (2s− 2u)inαnµe2f 2

+Ωinαnµe2f 2ξ(s)

(
−u

2

s
+ s

)
+ Ωinαnµe2f 2ξ(0)

(
u2

s
− 2u+ s

)
, (2.124)[

Π̂α(u), ξ(s)
]
= inα. (2.125)

The employment of these relations produces the following results:

x̂µ(0)Π̂α(u) exp
[
−ikβx̂β(u)

]
=

[
Ωiefµαξ(s)

u2

s
+ Ωinµnαe2f 2ξ(s)

(
u2 − 4

u3

s

)
+ Ωienµfα

βx̂
β(s)

(
−u

2

s

)]
× exp

[
−ikδx̂δ(u)

]
+

[
Ωe(fµνkν)

(
2

3

u3

s

)
ξ(s) + Ωenµkρf

ρ
σx̂

σ(s)

(
−2

3

u3

s

)
+Ωnµ(k · n)e2f 2

(
2

3
u3 − 2

u4

s

)
ξ(s)

]
Π̂α(u) exp

[
−ikδx̂δ(u)

]
+Π̂α(u) exp

[
−ikβx̂β(u)

] [
x̂µ(0) + Ωefµνkν

(
2u2 − 2

3

u3

s

)
ξ(0)

+Ωenµkαf
α
βx̂

β(0)

(
2

3

u3

s

)
+ Ωnµ(k · n)e2f 2

(
−10

3
u3 + 2

u4

s

)
ξ(0)

]
+exp

[
−ikδx̂δ(u)

] [
Ωiefµα

(
2u− u2

s

)
ξ(0)

+Ωinµnαe2f 2

(
−5u2 + 4

u3

s

)
ξ(0) + Ω

u2

s
ienµfα

βx̂
β(0)

]
(The expression continues to the next page.)
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(The expression is continued.)

+Π̂α(u) exp
[
−ikδx̂δ(u)

] [
−2ukµ + 2efµνkνu

2 − 4

3
u3nµ(k · n)e2f 2

+Ωefµνkν(k · n)
(
4

3

u4

s
− 8

3
u3
)
+ Ωnµ(k · n)2e2f 2

(
−8

3

u5

s
+

14

3
u4
)]

+

[
−iηµα + 2uiefµα − 2u2inµnαe2f 2 + iΩenαfµνkν

(
2

3

u3

s

)
+iΩenµfαβkβ

(
−4

3

u3

s

)
+ iΩe(k · n)fµα

(
−4u2 + 2

u3

s

)
+iΩnµnα(k · n)e2f 2

(
28

3
u3 − 20

3

u4

s

)]
exp

[
−ikδx̂δ(u)

]
, (2.126)

Π̂α(u) exp
[
−ikδx̂δ(u)

]
x̂µ(s)

=

[
x̂µ(s) + Ωefµνkν

(
−4

3
s2 + 2su− 2

3

u3

s

)
ξ(s)

+Ωenµ

(
−2

3
s2 + 2su− 2u2 +

2

3

u3

s

)
kρf

ρ
σx̂

σ(s)

+Ωnµ(k · n)e2f 2

(
−4

3
s3 + 2s2u+ 2su2 − 14

3
u3 + 2

u4

s

)
ξ(s)

]
×Π̂α(u) exp

[
−ikδx̂δ(u)

]
+

[
Ωiefαµξ(s)

(
u2

s
− s

)
+ Ωinαnµe2f 2ξ(s)

(
s2 + 2su− 7u2 + 4

u3

s

)
+Ωienµfα

βx̂
β(s)

(
u2

s
− 2u+ s

)]
exp

[
−ikδx̂δ(u)

]
+Π̂α(u) exp

[
−ikδx̂δ(u)

] [
Ωefµνkν

(
−2

3
s2 + 2su− 2u2 +

2

3

u3

s

)
ξ(0)

+Ωenµkρf
ρ
σx̂

σ(0)

(
2

3
s2 − 2su+ 2u2 − 2

3

u3

s

)
+Ωnµ(k · n)e2f 2

(
−4

3
s3 + 6s2u− 10su2 +

22

3
u3 − 2

u4

s

)
ξ(0)

]
+exp

[
−ikδx̂δ(u)

] [
Ωiefαµξ(0)

(
−u

2

s
+ 2u− s

)
+Ωinαnµe2f 2ξ(0)

(
3s2 − 10su+ 11u2 − 4

u3

s

)
+Ωienµfα

βx̂
β(0)

(
−u

2

s
+ 2u− s

)]
(The expression continues to the next page.)
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(The expression is continued.)

+Π̂α(u) exp
[
−ikδx̂δ(u)

]
×
[
2(u− s)kµ + 2efµνkν(−s2 + 2su− u2)

+nµ(k · n)e2f 2

(
−4

3
s3 + 4s2u− 4su2 +

4

3
u3
)

+Ωe(k · n)fµνkν

(
4

3
s3 − 8

3
s2u+

8

3
u3 − 4

3

u4

s

)
+Ωnµ(k · n)2e2f 2

(
2s4 − 16

3
s3u+

4

3
s2u2 + 8su3 − 26

3
u4 +

8

3

u5

s

)]
+exp

[
−ikδx̂δ(u)

]
×
[
iηαµ + (2u− 2s)iefαµ + (2s2 − 4su+ 2u2)inαnµe2f 2

+Ωienαfµνkν

(
−4

3
s2 + 2su− 2

3

u3

s

)
+Ωienµfαβkβ

(
2

3
s2 − 2u2 +

4

3

u3

s

)
+ Ωie(k · n)fαµ

(
2
u3

s
− 4u2 + 2su

)
+Ωinµnα(k · n)e2f 2

(
−8

3
s3 +

4

3
s2u+ 12su2 − 52

3
u3 +

20

3

u4

s

)]
, (2.127)

fµ
ν x̂

ν(0)Π̂α(u) exp
[
−ikδx̂δ(u)

]
= iΩnµnαef 2ξ(s) exp

[
−ikδx̂δ(u)

] u2
s

+Ωnµ(k · n)ef 2ξ(s)Π̂α(u) exp
[
−ikδx̂δ(u)

] 2
3

u3

s

+Π̂α(u) exp
[
−ikδx̂δ(u)

] [
fµ

ν x̂
ν(0) + ξ(0)Ωnµ(k · n)ef 2

(
2u2 − 2

3

u3

s

)]
+exp

[
−ikδx̂δ(u)

]
ξ(0)iΩnµnαef 2

(
2u− u2

s

)
+exp

[
−ikδx̂δ(u)

] [
−ifµα + 2uinµnαef 2 + iΩnµnα(k · n)ef 2

(
−4u2 +

8

3

u3

s

)]
+Π̂α(u) exp

[
−ikδx̂δ(u)

]
×
[
−2ufµ

νk
ν + 2u2nµ(k · n)ef 2 + Ωnµ(k · n)2ef 2

(
4

3

u4

s
− 8

3
u3
)]

, (2.128)

Π̂α(u) exp
[
−ikδx̂δ(u)

]
fµ

ν x̂
ν(s)

=

[
fµ

ν x̂
ν(s) + Ωnµ(k · n)ef 2

(
−4

3
s2 + 2su− 2

3

u3

s

)
ξ(s)

]
Π̂α(u) exp

[
−ikδx̂δ(u)

]
(The expression continues to the next page.)
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(The expression is continued.)

+iΩnµnαef 2

(
s− u2

s

)
ξ(s) exp

[
−ikδx̂δ(u)

]
+exp

[
−ikδx̂δ(u)

]
iΩnµnαef 2

(
u2

s
− 2u+ s

)
ξ(0)

+Π̂α(u) exp
[
−ikδx̂δ(u)

]
Ωnµ(k · n)ef 2

(
−2

3
s2 + 2su− 2u2 +

2

3

u3

s

)
ξ(0)

+Π̂α(u) exp
[
−ikδx̂δ(u)

] [
2(u− s)fµνkν + 2nµ(k · n)ef 2(−s2 + 2su− u2)

+Ωnµ(k · n)2ef 2

(
4

3
s3 − 8

3
s2u+

8

3
u3 − 4

3

u4

s

)]
+exp

[
−ikδx̂δ(u)

]
×
[
ifµα + inµnαef 2(2s− 2u) + iΩnµnα(k · n)ef 2

(
−4

3
s2 + 4u2 − 8

3

u3

s

)]
,

(2.129)

ξ(0)Π̂α(u) exp
[
−ikδx̂δ(u)

]
= Π̂α(u) exp

[
−ikδx̂δ(u)

]
ξ(0) + exp

[
−ikδx̂δ(u)

]
(−inα)

+Π̂α(u) exp
[
−ikδx̂δ(u)

]
(−2u(k · n)), (2.130)

Π̂α(u) exp
[
−ikδx̂δ(u)

]
ξ(s)

= ξ(s)Π̂α(u) exp
[
−ikδx̂δ(u)

]
+ Π̂α(u) exp

[
−ikδx̂δ(u)

]
2(u− s)(k · n)

+ exp
[
−ikδx̂δ(u)

]
inα. (2.131)

The amplitudes of these operators are also obtained as follows:

⟨x(s)|x̂µ(0)Π̂α(u) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
−iηµα + 2uiefµα − 2u2inµnαe2f 2 + iΩenαfµνkν

2

3

u3

s
+ iΩenµfαβkβ

(
−4

3

u3

s

)
+iΩe(k · n)fµα

(
−4u2 + 2

u3

s

)
+ iΩnµnα(k · n)e2f 2

(
28

3
u3 − 20

3

u4

s

)
+iΩnµnαe2f 2ξ(−4u2) + iΩefµαξ2u

]
+⟨x(s)|Π̂α(u) exp

[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
xµ − 2ukµ + 2efµνkνu

2 − 4

3
u3nµ(k · n)e2f 2 + Ωefµνkν(k · n)

(
4

3

u4

s
− 8

3
u3
)

+Ωnµ(k · n)2e2f 2

(
−8

3

u5

s
+

14

3
u4
)
+ Ωefµνkν(2u

2)ξ

+Ωnµ(k · n)e2f 2

(
−8

3
u3
)
ξ

]
, (2.132)
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⟨x(s)|Π̂α(u) exp
[
−ikδx̂δ(u)

]
x̂µ(s)|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
iΩefαµξ(2u− 2s) + iΩnαnµe2f 2ξ(4s2 − 8su+ 4u2) + iηαµ + (2u− 2s)iefαµ

+(2s2 − 4su+ 2u2)inαnµe2f 2 + iΩenαfµνkν

(
−4

3
s2 + 2su− 2

3

u3

s

)
+iΩenµfαβkβ

(
2

3
s2 − 2u2 +

4

3

u3

s

)
+ iΩe(k · n)fαµ

(
2
u3

s
− 4u2 + 2su

)
+iΩnµnα(k · n)e2f 2

(
−8

3
s3 +

4

3
s2u+ 12su2 − 52

3
u3 +

20

3

u4

s

)]
+⟨x(s)|Π̂α(u) exp

[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
xµ + Ωefµνkνξ(−2s2 + 4su− 2u2)

+Ωnµ(k · n)e2f 2ξ

(
−8

3
s3 + 8s2u− 8su2 +

8

3
u3
)

+2(u− s)kµ + 2efµνkν(−s2 + 2su− u2)

+nµ(k · n)e2f 2

(
−4

3
s3 + 4s2u− 4su2 +

4

3
u3
)

+Ωe(k · n)fµνkν

(
4

3
s3 − 8

3
s2u+

8

3
u3 − 4

3

u4

s

)
+Ωnµ(k · n)2e2f 2

(
2s4 − 16

3
s3u+

4

3
s2u2 + 8su3 − 26

3
u4 +

8

3

u5

s

)]
, (2.133)

⟨x(s)|fµ
ν x̂

ν(0)Π̂α(u) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

= ⟨x(s)|Π̂α(u) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

[
fµ

νx
ν + Ωnµ(k · n)ef 22u2ξ

−2ufµ
νk

ν + 2u2nµ(k · n)ef 2 + Ωnµ(k · n)2ef 2

(
4

3

u4

s
− 8

3
u3
)]

+⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

[
iΩnµnαef 2ξ2u− ifµα

+2uinµnαef 2 + iΩnµnα(k · n)ef 2

(
−4u2 +

8

3

u3

s

)]
, (2.134)

⟨x(s)|Π̂α(u) exp
[
−ikδx̂δ(u)

]
fµ

ν x̂
ν(s)|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

[
iΩnµnαef 2(2s− 2u)ξ + ifµα

+inµnαef 2(2s− 2u) + iΩnµnα(k · n)ef 2

(
−4

3
s2 + 4u2 − 8

3

u3

s

)]
+⟨x(s)|Π̂α(u) exp

[
−ikδx̂δ(u)

]
|x(0)⟩

[
fµ

νx
ν + Ωnµ(k · n)ef 2(−2s2 + 4su− 2u2)ξ

+2(u− s)fµνkν + 2nµ(k · n)ef 2(−s2 + 2su− u2)

+Ωnµ(k · n)2ef 2

(
4

3
s3 − 8

3
s2u+

8

3
u3 − 4

3

u4

s

)]
, (2.135)
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⟨x(s)|ξ(0)Π̂α(u) exp
[
−ikδx̂δ(u)

]
|x(0)⟩

= ⟨x(s)|Π̂α(u) exp
[
−ikδx̂δ(u)

]
|x(0)⟩ [ξ − 2u(k · n)]

+⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩(−inα), (2.136)

⟨x(s)|Π̂α(u) exp
[
−ikδx̂δ(u)

]
ξ(s)|x(0)⟩

= ⟨x(s)|Π̂α(u) exp
[
−ikδx̂δ(u)

]
|x(0)⟩ [ξ + 2(u− s)(k · n)]

+⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩inα. (2.137)

I am now ready to write down the amplitudes of the addition ⟨x(s)|Π̂µ(s)Π̂α(u)
× exp

[
−ikδx̂δ(u)

]
+Π̂α(u) exp

[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩ and the subtraction ⟨x(s)|Π̂µ(s)

×Π̂α(u) exp
[
−ikδx̂δ(u)

]
− Π̂α(u) exp

[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩, which appear in the

induced electromagnetic current. The results are as follows:

⟨x(s)|Π̂µ(s)Π̂α(u) exp
[
−ikδx̂δ(u)

]
+ Π̂α(u) exp

[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
iefµα

(
1− 2

u

s

)
+ kµkα

(
−u
s
+ 2

u2

s2

)
+ ekµfαβkβ

(
u− 3

u2

s
+ 2

u3

s2

)
+efµνkνk

α

(
2
u2

s
− 2

u3

s2

)
+ e2fµνkνf

αβkβ

(
−2u2 + 4

u3

s
− 2

u4

s2

)
+kµnα(k · n)e2f 2

(
−1

3
su+

5

3
u2 − 8

3

u3

s
+

4

3

u4

s2

)
+fµνkνn

α(k · n)e3f 2

(
2

3
su2 − 8

3
u3 +

10

3

u4

s
− 4

3

u5

s2

)
+nµkα(k · n)e2f 2

(
2

3
u2 − 2

u3

s
+

4

3

u4

s2

)
+nµfαβkβ(k · n)e3f 2

(
−2

3
su2 +

8

3
u3 − 10

3

u4

s
+

4

3

u5

s2

)
+inµnαe2f 2

(
1

3
s− 2u+ 2

u2

s

)
+nµnα(k · n)2e4f 4

(
2

9
s2u2 − 4

3
su3 +

26

9
u4 − 8

3

u5

s
+

8

9

u6

s2

)
+ iηµα

1

s

]
+ iΩ⟨x(s)| exp

[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
efµα(k · n)

(
1

3
s− 5

3
u+ 4

u2

s
− 2

u3

s2

)
+ efµαξ

(
1− 2

u

s

)
+ie(k · n)kµfαβkβ

(
4

3
u2 − 16

3

u3

s
+

20

3

u4

s2
− 8

3

u5

s3

)
+ieξkµfαβkβ

(
−u+ 3

u2

s
− 2

u3

s2

)
(The expression continues to the next page.)



68 CHAPTER 2. QED VACUUM POLARIZATION

(The expression is continued.)

+ie(k · n)fµνkνk
α

(
4

3

u3

s
− 8

3

u4

s2
+

4

3

u5

s2

)
+ ieξfµνkνk

α

(
−2

u2

s
+ 2

u3

s2

)
+ie2(k · n)fµνkνf

αβkβ

(
−4u3 + 12

u4

s
− 12

u5

s2
+ 4

u6

s3

)
+ie2ξfµνkνf

αβkβ

(
4u2 − 8

u3

s
+ 4

u4

s2

)
+ikµnα(k · n)2e2f 2

(
−su2 + 6u3 − 13

u4

s
+ 12

u5

s2
− 4

u6

s3

)
+ikµnαξ(k · n)e2f 2

(
2

3
su− 10

3
u2 +

16

3

u3

s
− 8

3

u4

s2

)
+iekµnα(σf)

(
−1

4
s+ u− u2

s

)
+ efµνkνn

α

(
−1

3
s+

1

3
u− 2

3

u3

s2

)
+ifµνkνn

α(k · n)2e3f 2

(
22

9
su3 − 110

9
u4 + 22

u5

s
− 154

9

u6

s2
+

44

9

u7

s3

)
+ifµνkνn

αξ(k · n)e3f 2

(
−2su2 + 8u3 − 10

u4

s
+ 4

u5

s2

)
+ie2fµνkνn

α(σf)

(
1

2
su− 3

2
u2 +

u3

s

)
+inµkα(k · n)2e2f 2

(
4

3
u3 − 16

3

u4

s
+

20

3

u5

s2
− 8

3

u6

s3

)
+inµkαξ(k · n)e2f 2

(
−4

3
u2 + 4

u3

s
− 8

3

u4

s2

)
+enµfαβkβ

(
1

3
s− u2

s
+

4

3

u3

s2

)
+inµfαβkβ(k · n)2e3f 2

(
−20

9
su3 +

100

9
u4 − 20

u5

s
+

140

9

u6

s2
− 40

9

u7

s3

)
+inµfαβkβξ(k · n)e3f 2

(
2su2 − 8u3 + 10

u4

s
− 4

u5

s2

)
+nµnα(k · n)e2f 2

(
−4

3
su+ 8u2 − 40

3

u3

s
+

20

3

u4

s2

)
+inµnα(k · n)3e4f 4

(
10

9
s2u3 − 70

9
su4 +

190

9
u5 − 250

9

u6

s
+

160

9

u7

s2
− 40

9

u8

s3

)
+nµnαξe2f 2

(
2

3
s− 4u+ 4

u2

s

)
+inµnαξ(k · n)2e4f 4

(
−8

9
s2u2 +

16

3
su3 − 104

9
u4 +

32

3

u5

s
− 32

9

u6

s2

)
+inµnα(k · n)(σf)e3f 2

(
1

6
s2u− 5

6
su2 +

4

3
u3 − 2

3

u4

s

)]
, (2.138)
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⟨x(s)|Π̂µ(s)Π̂α(u) exp
[
−ikδx̂δ(u)

]
− Π̂α(u) exp

[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩

= ⟨x(s)| exp
[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
kµkα

u

s
+ ekµfαβkβ

(
−u+ u2

s

)
+ kµnα(k · n)e2f 2

(
1

3
su− u2 +

2

3

u3

s

)]
+ iΩ⟨x(s)| exp

[
−ikδx̂δ(u)

]
|x(0)⟩

×
[
efµα(k · n)

(
−1

3
s+ u

)
+ iekµfαβkβ(k · n)

(
−4

3
u2 +

8

3

u3

s
− 4

3

u4

s2

)
+ieξkµfαβkβ

(
u− u2

s

)
+ ikµnα(k · n)2e2f 2

(
su2 − 4u3 + 5

u4

s
− 2

u5

s2

)
+ikµnαξ(k · n)e2f 2

(
−2

3
su+ 2u2 − 4

3

u3

s

)
+ ikµnαe(σf)

(
1

4
s− 1

2
u

)
+efµνkνn

α

(
1

3
s− u

)
+ inµkα(k · n)2e2f 2

(
−2

3
u3 +

4

3

u4

s
− 2

3

u5

s2

)
+inµkαe(σf)

(
−1

2
u

)
+ enµfαβkβ

(
−1

3
s+

u2

s

)
+inµfαβkβ(k · n)2e3f 2

(
2

3
su3 − 2u4 + 2

u5

s
− 2

3

u6

s2

)
+inµfαβkβe

2(σf)

(
1

2
su− 1

2
u2
)
+ nµnα(k · n)e2f 2

(
2

3
su− 2u2 +

4

3

u3

s

)
+inµnα(k · n)3e4f 4

(
−2

9
s2u3 +

10

9
su4 − 2u5 +

14

9

u6

s
− 4

9

u7

s2

)
+inµnαe3f 2(σf)(k · n)

(
−1

6
s2u+

1

2
su2 − 1

3
u3
)]

. (2.139)

2.7 Permutations of Operators

I give some technical details relevant for permutations of operators in this section.
The basic commutation relations are those among x̂µ(s), x̂µ(u) and x̂µ(0). It is
written as

[x̂µ(0), x̂α(s)]

= −2isηµα + 2ies2fµα − 4

3
inµnαe2f 2s3 + iΩes2fµα

(
4

3
ξ(s) +

2

3
ξ(0)

)
−2

3
iΩes2nαfµ

ν [x̂
ν(s)− x̂ν(0)] + iΩnµnαe2f 2s3

(
−4

3
ξ(s)− 4

3
ξ(0)

)
(2.140)

for x̂µ(s) and x̂α(0). Its derivation is as follows. The canonical commutation relation
is written as [

x̂µ(0), Π̂ν(0)
]
=
[
x̂µ(s), Π̂ν(s)

]
= −iηµν (2.141)
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and the expression of x̂µ(0) in terms of Π̂µ(s) is obtained from Equation (2.85) as

x̂µ(0)

= −2sΠ̂µ(s) + x̂µ(s) + 2es2fµ
νΠ̂

ν(s) + nµe2f 2s2
(
−2

3
ξ(s) +

2

3
ξ(0)

)
+Ωes2fµ

νΠ̂
ν(s)

(
4

3
ξ(s) +

2

3
ξ(0)

)
+ Ωnµe2f 2s2

(
−5

6
ξ2(s) +

1

3
ξ(s)ξ(0) +

1

2
ξ2(0)

)
+
1

2
Ωes2nµ(σf). (2.142)

Let us first consider the commutation relation [ξ(0), x̂α(s)]. From Equation (2.142),
I obtain

ξ(0) = −2snµΠ̂
µ(s) + ξ(s). (2.143)

I then easily derive the following relation:

[ξ(0), x̂α(s)] =
[
−2snµΠ̂

µ(s), x̂α(s)
]

= −2snµiη
µα

= −2isnα. (2.144)

Combining Equations (2.141)-(2.144), I obtain Equation (2.140) easily.
The following commutation relations, which are frequently used, also follow im-

mediately:

[x̂α(0), fµ
ν x̂

ν(s)]

= 2isfαµ − 2inαnµef 2s2 + iΩnαnµef 2s2
(
−4

3
ξ(s)− 2

3
ξ(0)

)
, (2.145)

[x̂α(s), fµ
ν x̂

ν(0)]

= −2isfαµ − 2inαnµef 2s2 + iΩnαnµef 2s2
(
−2

3
ξ(s)− 4

3
ξ(0)

)
, (2.146)

[
fα

βx̂
β(s), fµ

ν x̂
ν(0)

]
= −2inαnµf 2s, (2.147)

[ξ(s), ξ(0)] = 0, (2.148)

[x̂µ(0), ξ(s)] = −2isnµ, (2.149)

[ξ(0), x̂µ(s)] = −2isnµ, (2.150)[
x̂µ(s), Π̂ν(s)

]
=
[
x̂µ(0), Π̂ν(0)

]
=
[
x̂µ(u), Π̂ν(u)

]
= −iηµν . (2.151)

The commutation relations between x̂α(u) and x̂β(0) or x̂β(s) are derived by
Equations (2.87) and (2.140) as[

x̂α(u), x̂β(0)
]

= 2iuηαβ + 2ieu2fαβ +
4

3
inαnβe2f 2u3 + iΩefαβ

[
2

3

u3

s
ξ(s) +

(
2u2 − 2

3

u3

s

)
ξ(0)

]
+iΩenβfα

ν [x̂
ν(s)− x̂ν(0)]

(
2

3

u3

s

)
+iΩnαnβe2f 2

[(
−2

3
u3 + 2

u4

s

)
ξ(s) +

(
10

3
u3 − 2

u4

s

)
ξ(0)

]
, (2.152)
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[
x̂α(s), x̂β(u)

]
= 2i(s− u)ηαβ + 2ie(s2 − 2su+ u2)fαβ + inαnβe2f 2

(
4

3
s3 − 4s2u+ 4su2 − 4

3
u3
)

+iΩefαβ

[(
4

3
s2 − 2su+

2

3

u3

s

)
ξ(s) +

(
2

3
s2 − 2su+ 2u2 − 2

3

u3

s

)
ξ(0)

]
+iΩenαfβ

ν [x̂
ν(s)− x̂ν(0)]

(
2

3
s2 − 2su+ 2u2 − 2

3

u3

s

)
+iΩnαnβe2f 2

[(
4

3
s3 − 2s2u− 2su2 +

14

3
u3 − 2

u4

s

)
ξ(s)

+

(
4

3
s3 − 6s2u+ 10su2 − 22

3
u3 + 2

u4

s

)
ξ(0)

]
. (2.153)

2.8 x-dependence of Transformation Amplitudes

Here I discuss the x-dependence of the results. Note that the calculations of the
amplitudes in Equations (2.77) - (2.84) are calculated of xµ in the neighborhood of
each point under the assumption that the wavelength of the external wave field is
much longer than the Compton wavelength of the electron. Then x appears explicitly
only in the form of ξ = nµx

µ and it turns out in addition that ξ occurs only as a
combination of f(0)(1 + Ωξ). For example, the amplitude in Equation (2.79) is
written as

⟨x(s)| exp [−ikµx̂µ(u)] |x(0)⟩

≃ ⟨x(s)|x(0)⟩ × exp (−ikµxµ) exp
[
i(k)2

(
u− u2

s

)]
× exp

[
i(k · n)2e2f 2(0)(1 + Ωξ)2

(
−1

3
su2 +

2

3
u3 − 1

3

u4

s

)]
×
{
1 + Ω

[
i(k · n)3e2f 2(0)

(
−2

3
s3u+

14

9
s2u2 − 4

9
su3 − 10

9
u4 +

2

3

u5

s

)
+ie(σf(0))(k · n)

(
1

2
su− 1

2
u2
)]}

(2.154)
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and that in Equation (2.80) is given as

⟨x(s)|Π̂α(u) exp [−ikµx̂µ(u)] |x(0)⟩
≃ ⟨x(s)| exp [−ikµx̂µ(u)] |x(0)⟩

×
[
u

s
kα + efαβ(0)kβ(1 + Ωξ)

(
u2

s
− u

)
+nα(k · n)e2f 2(0)(1 + Ωξ)2

(
1

3
su− u2 +

2

3

u3

s

)
+Ωefαβ(0)kβ(k · n)

(
4

3
u2 − 8

3

u3

s
+

4

3

u4

s2

)
+Ωnα(k · n)2e2f 2(0)

(
−su2 + 4u3 − 5

u4

s
+ 2

u5

s2

)
+Ωe(σf(0))nα

(
−1

4
s+

1

2
u

)]
. (2.155)

Note that the terms proportional to Ω in these equations are of higher order and that
f(0) in these terms can be replaced with f(0)(1 +Ωξ). Considering f(0)(1 +Ωξ) ≈
f(x) in the same approximation, I may conclude that all the explicit x-dependence
can be included in the amplitude of the external field and hence that the current
term depends on the field strength f and its gradient Ω at each point. I can then
assume that xµ = 0 at any points and the terms that contain ξ disappear in my
results.

2.9 Furry’s Theorem in Proper-Time Method

It is well known as Furry’s theorem in QED that all loop diagrams with an odd
number of vertices vanish. The same reasoning applies to my theory and I find
that the terms in the induced electromagnetic current that include odd numbers of
the external electromagnetic fields should be dropped in my case. To understand
this, I consider the charge conjugation of the electron propagator with the external
electromagnetic fields.

x

x

1

x

2

x

n

y

� � �

Figure 2.17: Electron propagator with external electromagnetic fields is shown.

The propagator with n external fields Sn,A is represented as

Sn,A(y − x) = S(y − x1)[−eγµAµ(x1)]S(x1 − x2) · · · [−eγµAµ(xn)]S(xn − x),(2.156)

where S(y − x) is the electron free propagator. Because the charge conjugation of
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the free propagator is

Sc(y − x) = CS(y − x)C†

= CST (x− y)C−1, (2.157)

where C is the matrix, which is C = iγ2γ0 for the Dirac representation and the
charge conjugation of the electromagnetic field Aµ is

Ac
µ = CAµC† = −Aµ, (2.158)

the charge conjugation of Sn,A(y − x) is

Sc
n,A(y − x) = CSn,A(y − x)C†

= CS(y − x1)C†C[−eγµAµ(x1)]C† · · · C†CS(xn − x)C†

= CST (x1 − y)C−1 {−eγµ[−Aµ(x1)]}C · · ·CST (x− xn)C†C−1

= CST (x1 − y)(−e)(−γµT )[−Aµ(x1)] · · ·ST (x− xn)C
−1

= C {S(x− xn)[−eγµAµ(x1)] · · ·S(x1 − y)}T C−1

= CST
A(x− y)C−1. (2.159)

Another expression of charge conjugation is

Sc
n,A(y − x) = CSn,A(y − x)C†

= CS(y − x1)C†C(−eγµAµ(x1)) · · · C†CS(xn − x)C†

= S(y − x1)(−eγµ)(−Aµ(x1)) · · ·S(xn − x)

= Sn,−A(y − x) (2.160)

because of the property of the electron propagator that it does not change by the
charge conjugation CSC† = S. From Equation (2.160), I conclude that the sign of the
propagator changes when the propagator contains odd numbers of electromagnetic
fields

Sc
odd,A(y − x) = −Sodd,A(y − x) (2.161)

and that the sign of the propagator does not change when the propagator contains
even numbers of electromagnetic fields

Sc
even,A(y − x) = Seven,A(y − x). (2.162)

As shown in Equation (2.2), the induced electromagnetic current is represented
by the propagator

jµ(x) =
∂L[A, a](x)

∂aµ
= ietr [γµG(x, x)] . (2.163)

There are two ways to obtain the charge conjugation of the propagator. One is to
extract the matrix C

jcµA (x) = ietr [γµGc
A(x, x)] = ietr

[
γµCGT

A(x, x)C
−1
]

= ietr
[
−γµTGT

A(x, x)
]
= −ietr

[
γµTGT

A(x, x)
]

= −ietr [γµGA(x, x)] = −jµA(x). (2.164)
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The other is to change the sign of the electromagnetic field

jcµA (x) = ietr [γµGc
A(x, x)] = ietr [γµG−A(x, x)]

= jµ−A(x). (2.165)

Comparing these two expression, I obtain

−jµA(x) = jµ−A(x). (2.166)

Thus, the induced electromagnetic current should contain only those terms with odd
numbers of external electromagnetic fields. Since it is represented as ⟨jµ⟩ = Πµ

νbν
with the probe photon bν and the polarization tensor Πµ

ν , the number of the external
fields in Πµ

ν should be even.

2.10 Expression of the Induced Electromagnetic

Current

The induced electromagnetic current ⟨jµ⟩ as given in Equation (2.39) is given as
follows:

⟨jµ⟩ ≃ e

2

∫ ∞

0

ds

∫ s

0

du e−im2s

[
Aµ +Bµ + Cµ +Dµ + Eµ + F µ +Gµ +Hµ

]
,

(2.167)

in which the terms Aµ, Bµ, · · · , Hµ are expressed as follows:

Aµ = tr

[
iebαk

α⟨x(s)|Π̂µ(s) exp
[
−ikδx̂δ(u)

]
+exp

[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩

]
, (2.168)

Bµ = tr

[(
−ie

2

)
⟨x(s)|Π̂µ(s) exp

[
−ikδx̂δ(u)

]
+exp

[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩(σg)

]
, (2.169)

Cµ = tr

[
(−2ie)bα⟨x(s)|Π̂µ(s)Π̂α(u) exp

[
−ikδx̂δ(u)

]
+Π̂α(u) exp

[
−ikδx̂δ(u)

]
Π̂µ(0)|x(0)⟩

]
,(2.170)

Dµ = tr

[
(−2ebα)σ

µν⟨x(s)|Π̂ν(s)Π̂
α(u) exp

[
−ikδx̂δ(u)

]
−Π̂α(u) exp

[
−ikδx̂δ(u)

]
Π̂ν(0)|x(0)⟩

]
,(2.171)

(2.172)
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Eµ = tr

[(
−e
2

)
σµν⟨x(s)|Π̂ν(s) exp

[
−ikδx̂δ(u)

]
− exp

[
−ikδx̂δ(u)

]
Π̂ν(0)|x(0)⟩

{
(σg) +

e2u2

4
(σf)(σg)(σf)

}]
,(2.173)

F µ = tr

[(
−ie

2u

4

)
σµν⟨x(s)|Π̂ν(s) exp

[
−ikδx̂δ(u)

]
− exp

[
−ikδx̂δ(u)

]
Π̂ν(0)|x(0)⟩ {(σf)(σg)− (σg)(σf)}

]
, (2.174)

Gµ = tr

[(
Ωe2u

4

)
σµνnν⟨x(s)| exp

[
−ikδx̂δ(u)

]
|x(0)⟩

× {(σf)(σg)− (σg)(σf)}
]
, (2.175)

Hµ = tr

[(
−iΩe

3u2

4

)
σµνnν⟨x(s)| exp

[
−ikδx̂δ(u)

]
|x(0)⟩

×(σf)(σg)(σf)

]
. (2.176)

They are further decomposed: e.g., Aµ is written as the sum of Aµ
i as Aµ =

∑5
i=1A

µ
i .

The same notation is used for Bµ, Cµ, · · · , F µ. All these components are explicitly
written as follows:

Aµ
1 = K(u)ie(b · k)kµ

(
2
u

s
− 1
)
− c.t., (2.177)

Aµ
2 = K(u)ie3f 2(b · k)(k · n)nµ

(
2

3
su− 2u2 +

4

3

u3

s

)
, (2.178)

Aµ
3 = K(u)iΩe3f 2(b · k)(k · n)2nµ

(
−4

3
su2 +

16

3
u3 − 20

3

u4

s
+

8

3

u5

s2

)
, (2.179)

Aµ
4 = K(u)Ωe3f 2(b · k)(k · n)3kµ

×
(
−2

3
s3u+

26

9
s2u2 − 32

9
su3 − 2

9
u4 +

26

9

u5

s
− 4

3

u6

s2

)
, (2.180)

Aµ
5 = K(u)Ωe5f 4(b · k)(k · n)4nµ

×
(
4

9
s4u2 − 64

27
s3u3 +

116

27
s2u4 − 20

9
su5 − 56

27
u6 +

76

27

u7

s
− 8

9

u8

s2

)
, (2.181)

Bµ
1 = tr [(σf)(σg)]L(u)e3fµνkν

(
−su

2
+
u2

2

)
, (2.182)

Bµ
2 = tr [(σf)(σg)]L(u)iΩe5f 2(k · n)3fµνkν

×
(
1

3
s4u2 − 10

9
s3u3 + s2u4 +

1

3
su5 − 8

9
u6 +

1

3

u7

s

)
, (2.183)

Bµ
3 = tr [(σf)(σg)]L(u)Ωe3(k · n)fµνkν

(
1

2
su2 − u3 +

1

2

u4

s

)
, (2.184)

Bµ
4 = tr [(σf)(σg)]L(u)Ωe3(k · n)fµνkν

(
1

3
su2 − 2

3
u3 +

1

3

u4

s

)
, (2.185)
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Cµ
1 = K(u)ie(b · k)kµ

(
2
u

s
− 4

u2

s2

)
− c.t., (2.186)

Cµ
2 = K(u)ie3(bfk)fµνkν

(
4u2 − 8

u3

s
+ 4

u4

s2

)
, (2.187)

Cµ
3 = K(u)ie3f 2(b · n)(k · n)kµ

(
2

3
su− 10

3
u2 +

16

3

u3

s
− 8

3

u4

s2

)
, (2.188)

Cµ
4 = K(u)ie3f 2(b · k)(k · n)nµ

(
−4

3
u2 + 4

u3

s
− 8

3

u4

s2

)
, (2.189)

Cµ
5 = K(u)e3f 2(b · n)nµ

(
2

3
s− 4u+ 4

u2

s

)
, (2.190)

Cµ
6 = K(u)ie5f 4(b · n)(k · n)2nµ

×
(
−4

9
s2u2 +

8

3
su3 − 52

9
u4 +

16

3

u5

s
− 16

9

u6

s2

)
, (2.191)

Cµ
7 = K(u)ebµ

2

s
− c.t., (2.192)

Cµ
8 = K(u)Ωe3f 2(b · k)(k · n)3kµ

×
(
4

3
s2u2 − 52

9
su3 +

64

9
u4 +

4

9

u5

s
− 52

9

u6

s2
+

8

3

u7

s3

)
, (2.193)

Cµ
9 = K(u)Ωe5f 2(bfk)(k · n)3fµνkν

×
(
8

3
s3u3 − 104

9
s2u4 +

152

9
su5 − 16

3
u6 − 88

9

u7

s
+

88

9

u8

s2
− 8

3

u9

s3

)
, (2.194)

Cµ
10 = K(u)Ωe5f 4(b · n)(k · n)4kµ

(
4

9
s4u2 − 88

27
s3u3 +

244

27
s2u4

−292

27
su5 +

64

27
u6 +

188

27

u7

s
− 176

27

u8

s2
+

16

9

u9

s3

)
, (2.195)

Cµ
11 = K(u)Ωe5f 4(b · k)(k · n)4nµ

(
−8

9
s3u3 +

128

27
s2u4 − 232

27
su5

+
40

9
u6 +

112

27

u7

s
− 152

27

u8

s2
+

16

9

u9

s3

)
, (2.196)

Cµ
12 = K(u)iΩe5f 4(b · n)(k · n)3nµ

×
(
−4

9
s4u+

100

27
s3u2 − 248

27
s2u3 +

196

27
su4 +

28

9
u5 − 64

9

u6

s
+

8

3

u7

s2

)
,

(2.197)

Cµ
13 = K(u)Ωe7f 6(b · n)(k · n)5nµ

(
− 8

27
s5u3 +

200

81
s4u4 − 664

81
s3u5

+
1072

81
s2u6 − 712

81
su7 − 248

81
u8 +

728

81

u9

s
− 448

81

u10

s2
+

32

27

u11

s3

)
,

(2.198)

Cµ
14 = K(u)iΩe3f 2(k · n)3bµ

×
(
−4

3
s2u+

28

9
su2 − 8

9
u3 − 20

9

u4

s
+

4

3

u5

s2

)
, (2.199)

(2.200)
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Cµ
15 = K(u)iΩe3(bfk)(k · n)fµνkν

×
(
−8u3 + 24

u4

s
− 24

u5

s2
+ 8

u6

s3

)
, (2.201)

Cµ
16 = K(u)iΩe3f 2(b · n)(k · n)2kµ

×
(
−2su2 + 12u3 − 26

u4

s
+ 24

u5

s2
− 8

u6

s3

)
, (2.202)

Cµ
17 = K(u)iΩe3f 2(b · k)(k · n)2nµ

×
(
8

3
u3 − 32

3

u4

s
+

40

3

u5

s2
− 16

3

u6

s3

)
, (2.203)

Cµ
18 = K(u)Ωe3f 2(b · n)(k · n)nµ

×
(
−8

3
su+ 16u2 − 80

3

u3

s
+

40

3

u4

s2

)
, (2.204)

Cµ
19 = K(u)iΩe5f 4(b · n)(k · n)3nµ

×
(
20

9
s2u3 − 140

9
su4 +

380

9
u5 − 500

9

u6

s
+

320

9

u7

s2
− 80

9

u8

s3

)
, (2.205)

Dµ
1 = tr [σµν(σf)]L(u)ie3(bfk)kν(−su+ u2), (2.206)

Dµ
2 = tr [σµν(σf)]L(u)Ωe5f 2(bfk)(k · n)3kν

×
(
−2

3
s4u2 +

20

9
s3u3 − 2s2u4 − 2

3
su5 +

16

9
u6 − 2

3

u7

s

)
, (2.207)

Dµ
3 = tr [σµν(σf)]L(u)Ωe3(k · n)fναbα

(
1

3
s2 − su

)
, (2.208)

Dµ
4 = tr [σµν(σf)]L(u)iΩe3(bfk)(k · n)kν

(
4

3
su2 − 8

3
u3 +

4

3

u4

s

)
, (2.209)

Dµ
5 = tr [σµν(σf)]L(u)Ωe3(b · n)fνλkλ

(
−1

3
s2 + su

)
, (2.210)

Dµ
6 = tr [σµν(σf)]L(u)Ωe3(bfk)nν

(
1

3
s2 − u2

)
, (2.211)

Dµ
7 = tr [σµν(σf)]L(u)iΩe5f 2(bfk)(k · n)2nν

×
(
−2

3
s2u3 + 2su4 − 2u5 +

2

3

u6

s

)
, (2.212)

Dµ
8 = tr [σµν(σf)]L(u)iΩe3(bfk)(k · n)kν

(
su2 − 2u3 +

u4

s

)
, (2.213)

Dµ
9 = tr [σµν(σf)]L(u)Ωe3(bfk)nν(su− u2), (2.214)

Eµ
1 = tr

[
σµν

(
(σg) +

e2u2

4
(σf)(σg)(σf)

)]
L(u)

(
−e
2
kν

)
− c.t., (2.215)

Eµ
2 = tr

[
σµν

(
(σg) +

e2u2

4
(σf)(σg)(σf)

)]
×L(u)Ωe3f 2(k · n)2nν

(
−1

3
su2 +

2

3
u3 − 1

3

u4

s

)
, (2.216)

Eµ
3 = tr

[
σµν

(
(σg) +

e2u2

4
(σf)(σg)(σf)

)]
L(u)iΩe3f 2(k · n)3kν

×
(
1

3
s3u− 7

9
s2u2 +

2

9
su3 +

5

9
u4 − 1

3

u5

s

)
, (2.217)
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F µ
1 = tr[σµν(σf)(σg)(σf)]L(u)e3kν

su

8
, (2.218)

F µ
2 = tr[σµν(σf)(σg)(σf)]L(u)iΩe5f 2(k · n)3nν

×
(
− 1

12
s4u2 +

7

36
s3u3 − 1

18
s2u4 − 5

36
su5 +

1

12
u6
)
, (2.219)

F µ
3 = tr[σµν(σf)(σg)(σf)]

×L(u)Ωe5f 2(k · n)2kν
(

1

12
s2u3 − 1

6
su4 +

1

12
u5
)
, (2.220)

F µ
4 = tr[σµν(σf)(σg)(σf)]L(u)Ωe3(k · n)kν

(
−1

8
su2 +

1

8
u3
)
, (2.221)

F µ
5 = tr[σµν(σf)(σg)(σf)]L(u)iΩe3nν

su

8
, (2.222)

Gµ = F µ
5 , (2.223)

Hµ = tr[σµν(σf)(σg)(σf)]L(u)

(
−iΩe3nν

u2

4

)
, (2.224)

where I employ the following abbreviations: k · n = kµn
µ and bfk = bαf

αβkβ. In
the above equations, K(u) and L(u) are defined as

K(u) =
1

4iπ2s2
exp(−ikx)

× exp

{
i(k)2

(
u− u2

s

)
+ i(k · n)2e2f 2

(
−1

3
su2 +

2

3
u3 − 1

3

u4

s

)}
, (2.225)

L(u) = K(u)/4, (2.226)

where exp(−ikx) = exp(−ikµxµ). The counter terms that originate from renor-
malization are denoted by c.t. in some equations. For the crossed-field, i.e., the
long wavelength limit (Ω → 0) of the external plane-wave, the above expression is
reduced to

⟨jµ⟩|Ω=0 ≃
e

2

∫ ∞

0

ds

∫ s

0

du e−im2s

[ 2∑
i=1

Aµ
i +Bµ

1 +
7∑

i=1

Cµ
i +Dµ

1 + Eµ
1 + F µ

1

]
.

(2.227)



3
Polarization of Neutron Stars Emission

3.1 Introduction

X-ray polarimetry will be realized in the near future. In fact, the Imaging X-ray
Polarimetry Explorer (IXPE) was recently selected as the next Small Explorer astro-
physics mission of NASA recently and is planned to be launched in 2020 (Weisskopf
et al., 2013). There are other satellite-borne X-ray polarimetry projects, such as the
X-ray Imaging Polarimetry Explorer (XIPE) (Soffitta et al., 2016) and the enhanced
X-ray Timing and Polarimetry (eXTP) (Zhang et al., 2016), which, if approved, will
advance X-ray astronomy substantially.

Neutron stars are among the targets in some proposed observations in the soft
X-ray band, ∼ a few keV. Thermal radiation has been detected from isolated neu-
tron stars such as X-ray dim isolated neutron stars (XDINSs) and magnetars. The
polarization of this thermal radiation, if observed, will provide us with an impor-
tant clue to the physical properties of neutron stars near the surface, as well as the
possible configurations of their magnetic fields.

Another aim of the polarimetry is the validation of strong-field quantum electro-
dynamics (QED), a quantum theory for electrons and photons in the supra-critical
electromagnetic fields with strengths ≳ 4.4 × 1013G in the case of magnetic fields.
The strong-field QED has been studied theoretically for a long time (Heisenberg and
Euler, 1936; Schwinger, 1951; Dittrich and Gies, 2000): it predicts, for instance, that
the vacuum becomes birefringent and a single photon may split into two photons
in the presence of strong electromagnetic fields, both of which are absent in the
ordinary vacuum and are of purely quantum origin. Although high-intensity laser is
supposed to be a promising probe into QED in the strong-field regime (Heinzl et al.,
2006; Zavattini et al., 2006, 2007; King and Heinzl, 2016), the currently attainable
field strength is still much smaller than the critical one (Yanovsky et al., 2008), and
the strong-field QED effects are yet to be observed in laser experiments. In contrast,
some neutron stars are believed to possess very strong magnetic fields, which are
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comparable to or stronger than the critical field (Mereghetti, 2008) and may hence
be the only realistic possibility to study the strong-field QED for the moment. Re-
cently, a hint of the vacuum polarization effect is obtained in the optical observation
of polarizations in the thermal emissions from an XDINS (Mignani et al., 2017).

Photons emitted thermally from the surface of a magnetized neutron star prop-
agate through its magnetosphere. They may be polarized in the atmosphere, and
their polarization state will be further modified in the magnetosphere. It is well
known that there are generally two elliptical polarization modes for photons prop-
agating in magnetized plasmas (Mészáros, 1992). One is called the ordinary mode
(O-mode), in which the major axis of the ellipse for the electric field of the photon
is parallel to the k-B plane, with k and B being the wave vector and the external
magnetic field, respectively. The other mode is referred to as the extraordinary mode
(E-mode), in which the ellipse is perpendicular to the k-B plane. These situations
are not changed if one takes into account the vacuum polarization. Note, however,
that the helicities of these modes are changed as the plasma density varies. In fact,
when the plasma is dominant, the O-mode is left-handed, whereas it becomes right-
handed if the vacuum polarization is more important (Mészáros and Ventura, 1979;
Lai and Ho, 2003b). Incidentally, the two modes are linearly polarized in the limit
of the vanishing plasma density.

For ionized hydrogen atmospheres, which may cover the neutron star surface in
a gas state, the opacity is different between the two modes (Lodenquai et al., 1974).
In fact, it is lower for the E-mode than for the O-mode, because the scattering
with electrons is suppressed for the former owing to gyration motions of electrons
around magnetic field lines. The E-mode photons are hence emitted from deeper
and hotter regions in the atmosphere than the O-mode photons and are dominant
when they get out of the atmosphere. Then, the polarization vector of the surface
emission is expected to be perpendicular to the k-B plane. Such polarizations may
be significantly reduced when integrated over the neutron star surface, however, since
the magnetic field is not uniform on the surface and, as a result, the polarizations
originated from different parts will cancel each other (Pavlov and Zavlin, 2000).

Note, in contrast, that the polarization changes adiabatically thereafter during
the passage through the magnetosphere of the neutron star (Heyl and Shaviv, 2002).
Although such evolutions of the polarization along the photon trajectories were com-
puted and the light curves were obtained by Heyl et al. (2003), configurations of the
neutron star considered in their paper were limited. Taverna et al. (2015) conducted
more systematic study on the evolution of the polarization in the magnetosphere but
with simplifications: they considered QED effects only for photons propagating in
vacuo, assuming that all photons are emitted in one of the linearly polarized states.
If propagation in a sufficiently dense medium is also considered, conversions of the
polarization modes, which are one of the important effects caused by QED, become
important. Lai and Ho (2003a) and van Adelsberg and Lai (2006) took into account
both the mode conversion and the radiative transfer in the atmosphere to find the
polarization properties. Unfortunately, they considered emissions from a small hot
spot alone, which may not be applicable to some neutron stars.

Although it is not considered in this study, the resonant cyclotron scattering
occurs in the magnetosphere if the density of charged particles is not low there, and
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its effect on the polarization was discussed (Nobili et al., 2008; Fernández and Davis,
2011; Taverna et al., 2014). While I pay attention only to the persistent emission
from neutron stars in this article, transient phenomena such as the bursts and flares
of magnetars were investigated actively these days (Yang and Zhang, 2015; van
Putten et al., 2016; Taverna and Turolla, 2017).

Once such polarization features are observed, possibly by the planned satellite-
borne detectors, then I may be able to obtain new insights not only into the config-
uration of the magnetic fields of a neutron star and the thermodynamic state at the
neutron star surface but also into the strong-field QED. In fact, Taverna et al. (2015)
calculated the fraction and position angle of polarization for various configurations
of a rotating magnetized neutron star, accounting for the vacuum polarization in
the magnetosphere as well as geometrical effects. González Caniulef et al. (2016)
applied the same method with realistic surface emission models to XDINSs and com-
pared the results with observations (Mignani et al., 2017). They detected a possible
imprint of the vacuum polarization in strong magnetic fields.

They considered two possibilities for the thermodynamic state of the neutron
star surface, i.e., the normal gaseous state and the condensed state. It has been
argued that the latter may occur via a phase transition at T ≲ 0.1keV for neutron
stars endowed with relatively strong magnetic fields, Bp ≳ 1013G such as XDINSs
(Turolla et al., 2004; Potekhin et al., 2012). The polarization properties of the
thermal radiation from the bare surface in the condensed state are different from
those from the gas atmosphere, and González Caniulef et al. (2016) and Mignani
et al. (2017) claimed that they will be distinguished in polarimetric observations of
the soft X-rays.

Although the dielectric effect of the vacuum polarization and resonant features in
the radiative opacities at the vacuum resonance were considered in these papers, the
mode conversion at the vacuum resonance was neglected. It may be irrelevant for
photons with energies less than 1keV, which are dominant in the thermal emissions
from XDINSs, but it cannot be neglected for photons with higher energies of ∼ a
few keV, which may be radiated as a thermal component in magnetars.

The aim of this chapter is to study the polarizations of thermal radiation from
isolated rotating magnetized neutron stars more systematically, taking the mode
conversion at the vacuum resonance properly into account properly in the formula-
tion of Taverna et al. (2015); I explore a large number of configurations systemati-
cally. Inhomogeneities on the neutron star surface, i.e., the possible existence of a
hot spot, are also investigated.

The chapter is organized as follows. I describe my method in Section 3.2. In
Section 3.3 I first make some comparisons with the previous study (Taverna et al.,
2015) to validate my method and then show the main results, with a particular em-
phasis on the vacuum resonance and the hot-spot effects. Some discussions are also
given in this section. I summarize this chapter in Section 3.4. Some supplementary
discussions are given in Section 3.5. Note that the electromagnetic unit system is
the cgs Gauss in this chapter.
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3.2 Methods and Models

3.2.1 Theoretical Overview

I first summarize some theoretical basics on the behaviors of photons in strongly
magnetized plasmas and vacuum and the polarization properties of thermal radiation
in X-ray bands from magnetized rotating neutron stars. In the magnetosphere,
it suffices to consider the vacuum polarization alone, whereas the contributions
from magnetized plasmas also need to be taken into account in the neutron star
atmosphere, in which photospheres are located in the case of my current interest.

X-ray photons have two elliptically polarized normal modes in the magnetized
plasma, i.e., O-mode and E-mode. This is also true of the magnetized vacuum.
As mentioned already, the O-mode has the electric field that traces the ellipse,
the major axis of which is parallel to the k-B plane, whereas for the E-mode, it
is perpendicular to the plane. What is interesting is that the O-mode (E-mode)
photons in the plasma-dominant regime have the same helicity as the E-mode (O-
mode) photons in the vacuum-dominant regime. As a result of this property, when
a photon propagates from the inner atmosphere of neutron star, where the plasma
effect is dominant, through the outer part to the magnetosphere, where the vacuum
polarization is dominant, the so-called mode conversion may occur from the O-mode
photon to the E-mode and vice versa (Mészáros and Ventura, 1979).

This is also referred to as the vacuum resonance, since the conversion takes
place at the resonance point, at which the plasma and vacuum polarizations become
comparable to each other. This resonant mode conversion proceeds adiabatically if
the following condition is satisfied:

E ≫ Ead = 1.49(f tan θB|1− ui|)2/3
(
5cm

Hρ

)1/3

keV, (3.1)

where f is a factor of the order of unity and will be explained below separately;
E is the photon energy; θB is the angle between k and B; ui = (Eci/E)

2, with
Eci = ℏeB/mpc being the cyclotron energy of the proton; and Hρ is the density scale
height, i.e., Hρ ≃ 2kT/(mpg cos θ) = 19.1 T1/(g14 cos θ)cm, for the ionized hydrogen
atmosphere with a temperature kT = 1keVT1, a surface gravity g = 1014 cm s−2 g14,
and the angle θ between k and the surface normal (Lai and Ho, 2002; Ho and Lai,
2003; Lai and Ho, 2003a,b).

The factor f in Equation (3.1) is expressed as f = [3δ/(q +m)]1/2, where δ =
(α/45π)b2, with α = 1/137 being the fine structure constant and b = B/BQ being the
field strength normalized with the critical field strength, given as BQ = m2

ec
3/eℏ =

4.4 × 1013G. Parameters q and m are defined in the following formulae (Heyl and
Hernquist, 1997b,a):

q =

∫ ∞

0

dη
e2e−η

48bπ2η2 sinh2(bη)

{
6bη + (−3 + 2b2η2) sinh(2bη)

}
, (3.2)

m =

∫ ∞

0

dη
e2e−η

32bπ2η2 sinh2(bη)

×
{
−4bη + (1 + 8b2η2)

cosh(bη)

sinh(bη)
− cosh(3bη)

sinh(bη)

}
, (3.3)
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Figure 3.1: Comparison of the approximate expressions for f . The solid black line
is the exact result, whereas the blue dotted line and the red dashed line show the
results in the weak (Equations (3.4) and (3.5)) and strong limits (Equations (3.6)
and (3.7)) limits, respectively.

the derivation of which is given in Section 3.5, but they can be well approximated
as

q ≃ 7δ, (3.4)

m ≃ −4δ, (3.5)

for B ≪ BQ and as

q ≃ − α

2π

[
−2

3
b+ 1.272− 1

b
(0.307 + ln b)− 0.7

b2

]
, (3.6)

m ≃ − α

2π

[
2

3
+

1

b
(0.145− ln b)− 1

b2

]
, (3.7)

for B ≳ BQ (Lai and Ho, 2002). I compare these approximate expressions for f
with the exact one in Figure 3.1. In my calculations, I employ Equations (3.4) and
(3.5) for b < 0.1, whereas I adopt Equations (3.6) and (3.7) for b ≥ 50. In between,
I use the exact expressions (Equations (3.2) and (3.3)).

For E ∼ Ead, the adiabatic approximation is no longer valid. The mode conver-
sion occurs only partially, and its probability may be given approximately (Lai and
Ho, 2003a) as

Pcon = 1− exp

[
−
(π
2

)( E

Ead

)3
]
. (3.8)

The surface radiation of neutron stars is thought to be strongly polarized. This
is because the opacity for the E-mode photon is smaller in magnetized plasma com-
pared with that of the O-mode photon, κE ∼ (E/Ece)

2κO, where Ece = ℏeB/mec
is the electron cyclotron energy (Lodenquai et al., 1974). The photosphere of the
E-mode is hence located inside the photosphere of the O-mode; i.e., the E-mode
photons are emitted from deeper and hotter regions in the atmosphere than the
O-mode photons. As a result, emergent photons are dominated by the E-mode
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photons. Since I focus on how the mode conversion affects the photon polarization,
and solving the radiative transfer of photons in the atmosphere is outside the scope
of this chapter, I assume for the sake of simplicity that photons are all in the E-mode
at the top of the atmosphere in the absence of the mode conversion.

The mode conversion modifies the polarization produced in the surface radia-
tion. It is the relative positions of the vacuum resonance point with respect to the
photospheres that are relevant here. When the magnetic field is not so strong and
satisfies the condition

B < Bl ≃ 4.9× 1013 G fT
−1/8
1 E

−1/4
1 G−1/4, (3.9)

where E = 1keV E1 and G = 1 − e−E/kT , with E being the photon energy, the
vacuum resonance point lies outside the photospheres for both the E- and O-modes.
If the magnetic field is stronger, in contrast, and the following condition holds,

Bl < B < Bh ≃ 2.8× 1016 G f 2T
−1/4
1 E

−3/2
1 G−1/2, (3.10)

the vacuum resonance point is still located outside the E-mode photosphere but
now lies inside the O-mode photosphere (Lai and Ho, 2003b). It follows, then, that
when B < Bl, both the E- and O-modes photons experience mode conversion, and
the O-mode, into which the originally dominant E-mode is converted, becomes pre-
dominant as long as the photon energy satisfies the adiabaticity condition: E ≳ Ead

(Lai and Ho, 2003a). If Bl < B < Bh is met, in contrast, the E-mode photons
emitted from their photosphere transform into the O-mode photons at the vacuum
resonance point. Since this point is inside the O-mode photosphere, the O-mode
photons thus converted cannot escape immediately and diffuse out until the O-mode
photosphere is reached. The E-mode photons generated at the vacuum resonance
point, in contrast, can escape as soon as they are produced, since matter is trans-
parent for them there. This implies that the vacuum resonance point behaves as
the effective E-mode photosphere, whereas the O-mode photosphere is essentially
intact; as a result, the E-mode is dominant in this case (Lai and Ho, 2003b). In this
chapter, I assume that all photons are initially emitted in the E-mode from their
photosphere if B < Bl and from the resonance point if B > Bl. I also explicitly take
into account the mode conversion only for the former, although even in the case of
B > Bl, the mode conversion occurs in the atmosphere between the photospheres
of the two modes.

The polarization is further modified in the magnetosphere according to the equa-
tion

d

dZ

(
AX

AY

)
=
ik0δ

2

(
M P
P N

)(
AX

AY

)
(3.11)

for photons propagating in the Z-direction, where A = (AX , AY ) are the X- and Y -
components of the electric-field amplitude of the photon with an angular frequency
ω, k0 = ω/c, δ = (α/45π)b2. HereM , N , and P are given asM = 7B̂XB̂X+4B̂Y B̂Y ,
N = 4B̂XB̂X + 7B̂Y B̂Y , and P = 3B̂XB̂Y , where B̂X = B · êX/|B| and B̂Y =
B·êY /|B| are theX- and Y -components of the unit vector aligned with the magnetic
field, respectively. The above equation is the same as Equations (21) and (22) in
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Fernández and Davis (2011), except that those authors assumed that the magnetic
field lies in the X-Z plane, which is not assumed in this chapter for numerical
convenience (see also Taverna et al. (2014, 2015)). Note that these expressions of
M , N , and P are valid in the weak-field limit (B ≪ BQ), which is well satisfied
in the magnetosphere in the present case. There are two length scales of relevance
in these equations: one is the scaled wavelength of the photon, lA = 2/k0δ, and
the other is the scale height of the magnetic field in the direction of the wave
vector, lB = |B||k|/|k·∇B| ∼ r, where r is the radial distance. If the wavelength
of the photon is short and/or the magnetic field is strong, satisfying lA ≪ lB,
then the polarization varies adiabatically as the direction of the external magnetic
field changes slowly. If the opposite is true, lA ≫ lB, in contrast, the polarization
cannot follow the rapid change of the magnetic field and is unchanged. This means
that the polarization is essentially fixed at the point corresponding to the so-called
polarization-limiting radius, at which lA = lB is satisfied.

This point is somewhat far from the surface if the magnetic field is strong, B ∼
1014G and is given, for example, as

rpl
RNS

≃ 74

(
Bp

1014G

)2/5(
E

1keV

)1/5(
RNS

10km

)1/5

, (3.12)

on the symmetry axis of a dipolar magnetic field, where Bp is the field strength at
the magnetic pole and RNS is the radius of the neutron star. If one considers an
imaginary surface that is formed by the polarization-limiting radii and referred to
hereafter as the polarization-limiting surface, the photons reaching a distant observer
should pass through a small patch on the surface. Since the magnetic field is fairly
uniform on the patch, the superposition of radiation coming from different portions
on the neutron star surface does not cancel the polarizations (Heyl and Shaviv,
2002).

Although the evolution of polarization in the magnetosphere is obtained by solv-
ing Equation (3.11) in principle, I use the adiabatic approximation; i.e., the polar-
ization state follows the change in the eigenvectors of the matrix in Equation (3.11):
bE = (−B̂Y , B̂X) and bO = (B̂X , B̂Y ), which correspond to the E- and O-mode,
respectively. It is true that the adiabaticity is violated near the limiting radius, but
I ignore it for simplicity and apply the approximation down to the limiting radius,
at which I evaluate the final polarization state (Taverna et al., 2015).

3.2.2 Method

I now explain the procedure to obtain the polarization angle and fraction of X-rays
emitted from magnetars based on the picture just mentioned. I first specify the
configuration of the magnetic field. In this chapter, I consider only dipole magnetic
fields, although the formulation is applicable to other configurations as well. I
introduce coordinates as shown in Figure 3.2. In this frame, an observer is assumed
to be sitting at an infinite distance on the positive Z-axis. I assume without loss
of generality that the spin axis of the magnetar (Ω) lies in the X-Z plane and that
the angle between the Z-axis and the spin axis Ω is γ. The magnetic dipole d is
assumed to be tilted from the rotation axis by an angle η. Its rotation around Ω is
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Figure 3.2: Configuration of a magnetar. The rotation axis and magnetic dipole are
denoted by Ω and d, respectively. The angles that Ω makes with the Z-axis and
d are denoted by γ and η, respectively. The observer is assumed to be sitting at
infinity on the Z-axis.

specified by another angle ψ, which is measured from the X-Z plane. The magnetic
dipole moment d in this reference frame is expressed as

d = RY (γ)RZ(ψ)RY (η)dZ , (3.13)

where

RY (θ) =

⎛⎝ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞⎠ , RZ(θ) =

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞⎠
are rotational matrices around the Y - and Z-axes, respectively, and dZ is defined
as dZ = BpR

3
NS(0, 0, 1/2).

The initial polarization is determined by the magnetic field at the photosphere.
As explained earlier, if the condition B > Bl is satisfied, I assume that the radiation
is completely in the E-mode, though the mode conversion occurs inside the O-
mode photosphere. If, in contrast, the surface magnetic field satisfies B < Bl,
then the originally dominant E-mode is converted to a mixture of the O- and E-
modes according to Equation (3.8). As a result, the radiation generally contains in
general both polarized and unpolarized parts, and I consider the former alone in the
following. The fraction of the polarized part is |1− 2Pcon|.

As mentioned above, I employ the adiabatic approximation in solving Equation
(3.11). Then, the solution is expressed as follows:

A(r) = AEbE(r) + AObO(r), (3.14)

in which bE(r) and bO(r) are the eigenvectors of the coefficient matrix in Equation
(3.11) at point r. Since the matrix depends on the magnetic field at each point
on the photon trajectory, the eigenvectors also change along the path. Since I
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Figure 3.3: Emission (red arrow) from a patch (blue square) on the (effective)
photosphere. The location of the patch is specified by the zenith and azimuth
angles ΘS and ΦS. The observer is assumed to be located at infinity on the positive
Z-axis.

assume in this chapter that the polarization state is finally fixed at the polarization-
limiting radius, it is given by the coefficients AE and AO determined at the (effective)
photosphere and the eigenvectors at the limiting radius. I neglect gravitational
effects such as redshifts and ray bendings other than those on the scale height Hρ

of the atmosphere. Observed polarizations are the sum of individual polarizations
obtained in the fashion described just now for emissions from different portions of
the (effective) photosphere, which are specified by the zenith and azimuth angles,
ΘS and ΦS, as shown in Figure 3.3 (Taverna et al., 2015).

To derive the polarization angle and fraction, I utilize the Stokes parameters, Q,
U , and V , which describe the linear and circular polarizations. They are expressed
as

Q = Ap
XA

p∗
X − Ap

YA
p∗
Y , (3.15)

U = Ap
XA

p∗
Y + Ap

YA
p∗
X , (3.16)

V = i(Ap
XA

p∗
Y − Ap

YA
p∗
X ), (3.17)

where Ap = (Ap
X , A

p
Y ) is the amplitude of the polarized component. The other

Stokes parameter, I, is nothing but the intensity of the emission. The polarization
angle and fraction are finally derived from the Stokes parameters as

χp =
1

2
arctan

(
U

Q

)
, (3.18)

ΠL =

√
Q2 + U2

I
. (3.19)

Note that the Stokes parameters are additive quantities and are hence used
in calculating the polarization properties of spatially and/or temporally integrated
radiation. It should be also mentioned that I assume in this chapter that the E- and
O-modes are completely uncorrelated with each other. In reality, however, circular
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polarizations will be produced by the partial mode conversion and they are expected
to be correlated (Lai and Ho, 2003a). They will also be produced if the magnetic field
near the polarization-limiting radius changes rapidly and the polarization cannot
catch up. Such situations may occur if the polarization-limiting surface is close to
the neutron star (Heyl and Shaviv, 2002). Although the superposition of radiation
emitted from different points on the neutron star surface will reduce the circular
polarization in general, quantitative investigations are certainly interesting and will
be conducted in the future.

3.3 Results and Discussions

3.3.1 Comparison with Previous Study

I now apply the formalism developed so far to concrete models. I begin with a
comparison with the work by Taverna et al. (2015), in which they studied the polar-
ization of the emissions from the surface of a neutron star with a mass and radius of
M = 1.4M⊙ and RNS = 10km, respectively. They assumed that the surface temper-
ature is given as T (θNS) = max(Tp| cos θNS|1/2, Te), where Tp = 150eV, Te = 100eV,
and θNS is the zenith angle measured from the north pole of the core-centered dipole
field (Greenstein and Hartke, 1983; Page, 1995); the surface emission was assumed
to be in the E-mode initially. Ignoring the mode conversion entirely, they calculated
the phase-resolved polarization fraction and angle, as well as the phase-averaged po-
larization fraction and semi-amplitude (defined to be half the range of variations in
the polarization angle during a single rotation) for different field strengths. They
also considered the ray bending and modifications of the dipole magnetic field by
the strong gravity of the neutron star.
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Figure 3.4: Phase-resolved polarization angles (upper panels) and fractions (lower
panels) for the same condition as in Taverna et al. (2015), except for the relativistic
ray bending and the modifications of the magnetic field by the strong gravity near
the neutron star. (a) The mode conversion is ignored, as in Taverna et al. (2015).
(b) The mode conversion is considered.
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Let us start with the phase-resolved quantities. I apply my method to the same
model with Bp = 1013G, γ = 15◦, and η = 5◦. Note that χ, ξ, and γ in Taverna
et al. (2015) correspond to γ, −η, and −ψ in my notation. For comparison, I first
neglect the mode conversion. The results are shown in the left panels of Figure
3.4. The upper and lower panels present the polarization angle χp and fraction ΠL,
respectively, as color contours in the E − ψ plane, which are to be compared with
Figure 5 in Taverna et al. (2015). I find a good agreement between them.

ψ=0° ψ=90° ψ=180°(b)

Figure 3.5: Schematic pictures to explain how the polarization is determined. (a)
The left panel is a snapshot of the configuration of the neutron star considered in
Figure 3.4. The central gray sphere is the neutron star, and the green arrow and
curves are the star magnetic axis and some field lines, respectively. The orange
cylinder is a bundle of light rays emitted from the neutron star parallel to the Z-
axis; the outer sphere of radius rpl is the polarization-limiting surface. The middle
panel is a top view of the patch on the polarization-limiting surface cut out by
the cylinder; the green cross is the point where the star magnetic axis meets the
polarization-limiting surface, and θa is its angle from the X-axis. The right panel
is the same as the middle one but for the average magnetic field (blue arrow) and
polarization direction (red arrow); the polarization angle is denoted by χp. See the
text for definitions. (b) The upper three panels show the projected magnetic field
lines on the patch at different rotational phases; the green cross is again the magnetic
north pole on the polarization-limiting surface. The red dotted circle indicates the
locus of the magnetic north pole. The lower three panels show the case with larger
rpl, in which the magnetic north pole is located outside the observed patch.

The behavior of the polarization angle is understood from Figure 3.5 as follows.
In the upper left panel, I draw a schematic picture of a snapshot of the neutron
star I am considering now. The central gray sphere is the neutron star, with the
green arrow and curves being the magnetic dipole and some field lines, respectively.
The outer sphere with the radius rpl is the polarization-limiting surface. Note that
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the surface is not a sphere in general. Photons reaching the distant observer on the
positive Z-axis should propagate in the cylinder drawn in orange.

It is the configuration of the projected magnetic field on the patch of the polarization-
limiting surface cut out by this fictitious cylinder that finally determines the polar-
ization angle. In the top middle panel, I schematically depict this patch as the
orange circle and mark with the green cross the point at which the star magnetic
axis meets the polarization-limiting surface. The angle of this point from the X-axis
is denoted by θa. Note that, depending on the configuration of the neutron star and
the radius of the polarization-limiting surface, the green cross may sit outside the
orange circle, the radius of which is equal to that of the neutron star (see also the
bottom panels).

The top right panel is the same as the top middle panel, except that the mag-
netic field averaged over the patch and the corresponding polarization direction are
exhibited in blue and red, respectively, instead of the circle to indicate the patch. I
find that the average magnetic field, which is defined to be the integral of the (pro-
jected) magnetic fields over the observed patch of the polarization-limiting surface
divided by its area, is actually directed from the green cross to the origin of the
patch from the symmetry of the projected magnetic fields around the green cross.
In fact, the angle between the projection of the magnetic axis and the X-axis θa
is given as θa = arctan(d2/d1) from the magnetic dipole momentum expressed as
d = (d1, d2, d3); then, the orientation from the green cross to the origin on the patch
is given by the angle θa+180◦ from the X-axis, which is found to be almost identical
to the direction of the averaged magnetic field obtained numerically from the surface
integral. In the case of γ = 15◦, η = 5◦, for example, I find θa + 180◦ = 198.◦02,
whereas the numerically obtained value is 198.◦68 for ψ = π/2; they are identical
at ψ = 0. In the same figure, I assume that the photons are all in the E-mode
and hence the polarization direction, which is specified by the electric field of the
photon, is perpendicular to the (averaged) magnetic field. Then, the polarization
angle is given as χp = θa + 90◦ (mod 180◦).

In Figure 3.5 (b), I display some (projected) field lines on the observed patch
at different rotational phases. As mentioned above, the location of the green cross,
i.e., the (extension of the) magnetic north pole to the polarization-limiting surface,
may be inside (upper panels) or outside (lower panels) the observed patch. It moves
around on the surface, as indicated in red, owing to the rotation of the neutron star.
The radius of the trajectory depends on the angles γ and η (see Figure 3.2), which
I assume here to be γ = 15◦ and η = 5◦. In this case, it is not very large, and the
polarization angle does not change much, as confirmed in the upper left panel of
Figure 3.4.

Using the same figure, I can also understand the behavior of the polarization
fractions shown in the lower left panel of Figure 3.4. In fact, it is clear from the
upper panels of Figure 3.5 (b) that the polarization is somewhat canceled when
averaged over the observed patch if the green cross, or the magnetic north pole,
is located inside the patch. This happens if the magnetic field is weak and/or the
photon energy is low, and, as a consequence, the polarization-limiting surface is
rather close to the neutron star (see Equation (3.12)). Such cancellations do not
occur if the polarization-limiting surface is distant from the neutron star and the
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magnetic north pole sits outside the observed patch on the surface (see the bottom
panels of Figure 3.5 (b)).

In the lower left panel of Figure 3.4, the polarization fraction is ∼ 1 at high
photon energies, since the polarization-limiting surface is far away from the neutron
star and the magnetic north pole is always outside the observed patch during the
entire rotation period. As the energy is decreased, this is no longer the case, and
the pole enters the patch at some rotational phases near ψ = π. As a result, the
cancellation occurs, and the polarization fraction is reduced there. At very low
energies, the north pole stays inside the patch at all times, and the polarization
fraction is always low accordingly.

This is the essential picture in the absence of the mode conversion. I now consider
how it is modified by the mode conversion, using the same model.

In the right column of Fig. 3.4, the results with the mode conversion are dis-
played. The density scale height is set to Hρ ≃ 10.3T1/ cos θ cm in this calculation.
The upper and lower panels are for χp and ΠL, respectively. One can see that
they are different from the previous ones for high-energy photons with E ≳ 1keV.
The most remarkable is the abrupt change in the polarization angle χp by ≃ 90◦

at E ≃ 2keV, which indicates that the dominant polarization mode changes from
the E-mode at low energies to the O-mode when the photon energy exceeds 2keV.
At this energy, E ∼ Ead is satisfied. The adiabatic mode conversion occurs at the
vacuum-resonance points above this energy, whereas the conversion is suppressed
below it (Lai and Ho, 2003a).

The effects of the mode conversion on the polarization fraction are shown in
the bottom right panel. It is remarkable that there is a blue strip at E ≃ 2keV,
where the polarization fraction is very small. As mentioned above, this energy
corresponds to the adiabatic energy given by Equation (3.1). The mode conversion
occurs nonadiabatically below this energy, and both the E- and O-mode photons
are emitted according to Equation (3.8). In the blue strip of the panel, in particular,
both modes are almost equally mixed, and the polarization fraction becomes very
small as observed. At much smaller energies, the mode conversion is essentially
frozen, and the polarization fraction returns to the original value at emission.

One can recognize, however, that other vertical strips exist at E ∼ 30eV and
∼ 60eV, where the polarization fraction is somewhat reduced again. These energies
are special, corresponding to the cyclotron energies of protons for the magnetic
fields of 5 × 1012G at the (magnetic) equator and 1013G at the (magnetic) pole,
respectively. Note that when the photon energy equals the proton cyclotron energy
and Ead = 0, the completely adiabatic conversion occurs again for this particular
energy of photons. As a result, the O-mode photons increase at this energy, reducing
the polarization fraction. Note also that the magnetic pole and equator are the two
main contributors to the surface emissions in the current configuration (see the
explanations given later).

I next discuss the phase-averaged quantities. The semi-amplitudes and polariza-
tion fractions are shown in the upper and lower panels of Figure 3.6, respectively.
Note that, rigorously speaking, the semi-amplitude is not a phase-averaged quantity,
but I consider it here just for comparison. In this chapter, the semi-amplitude is
defined as the quantity related to the total variation of the polarization angle during
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Figure 3.6: Semi-amplitudes of the polarization angle Xp (upper panels) and phase-
averaged polarization fractions (lower panels) for different configurations of a rotat-
ing neutron star. The left and right columns correspond to the cases without and
with the mode conversion, respectively. The photon energy is set to E = 300eV.

the rotational period divided by four, which is expressed as

Xp =
1

4
sup
P

[
nP−1∑
i=0

min ((∆χp)i, 180
◦ − (∆χp)i)

]
,

(∆χp)i = |χp(ψi+1)− χp(ψi)|, (3.20)

where the supremum is taken over all possible partitions of the range [0, 2π] for ψ.
This definition coincides with that given in Taverna et al. (2015) in most cases but
not always (see below). The photon energy is set to E = 300eV following Taverna
et al. (2015). In the left column, the mode conversion is neglected on purpose for
comparison with the previous work, whereas it is incorporated in the right column.
The results without mode conversion are consistent with those in Taverna et al.
(2015). The discontinuous suppression of the semi-amplitude on the diagonal line
observed in my result (see the top left panel of Fig. 3.6) but absent in their result
is mainly due to the fact that my definition of the semi-amplitude is not completely
the same as theirs.

I explain this in more detail using Figure 3.7, which shows how the polarization
angle changes with the rotational phase for different combinations of η and γ.

In the middle three panels of Figure 3.7 (a), I schematically draw the top views
of the observed patch on the polarization-limiting surface for η < γ, η = γ, and
η > γ. The green circles indicate the trajectories of the (extended) magnetic north
pole on this surface. Note that they are not exact circles in general. In the bottom
panels, I give the corresponding average magnetic fields (blue arrows) and polar-
ization directions (red arrows), which are estimated from the relative locations of
the magnetic north pole and the origin on the observed patch as explained earlier.
Again, I assume that the photons are all in the E-mode. It is apparent from the
middle panels and easily understood from the configurations that the coordinate
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Figure 3.7: (a) Top views of the observed patches (orange circles) on the polarization-
limiting surface in the middle row and the polarization directions (red arrows) at
different rotational phases in the bottom row for η < γ (left), η = γ (center),
η > γ (right). The trajectories of the (extended) magnetic north pole are drawn in
green. Blue arrows and black crosses in the bottom panels indicate the directions
of the average magnetic fields at the different rotational phases and the position
of the coordinate origin, respectively. (b) Polarization angles as functions of the
rotational phase. The angle η is fixed to η = 45◦, whereas the angle γ is changed:
γ = 40◦, 45◦, 50◦.
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Figure 3.8: (a) Classification of configurations in the η − γ plane. Ten cases are
distinguished. Regions (6) and (7) are the lower (< 45◦) and upper (> 45◦) halves
of the diagonal line of η = γ, shown in magenta. (b) Trajectories (green) of the
(extended) magnetic north pole on the observed patch (orange) of the polarization-
limiting surface and the corresponding directions of the average (projected) magnetic
field (blue) and the polarization (red) of E-mode. The length of these arrows rep-
resents either the amplitude of the magnetic field or the polarization fraction. Note
that the phase-averaged polarization fraction is not the average of the phase-resolved
polarization fraction but is obtained from the Stokes parameters integrated over the
entire rotational phase. The dashed lines are the trajectories of the south pole. The
black crosses are the center of the observed patch.
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origin is sitting outside, on, and inside the green circle for η < γ, η = γ, and η > γ,
respectively. Then, it should be also be clear that the average magnetic fields and
polarization angles behave as exhibited in the bottom panels.

In the case of η < γ (left column), the average magnetic field is always directed
leftward, or in the negative X-direction. As a result, the polarization angle is limited
in a certain range less than π. This is confirmed in Figure 3.7 (b), in which I show
the polarization angles as functions of the rotational phase for three combinations
of η and γ. The red solid line for η = 45◦ and γ = 50◦ corresponds to the current
case. The polarization angle changes continuously and is indeed limited between
23◦ and 157◦. Note that χp changes more rapidly near ψ = π as η approaches γ. In
fact, it becomes discontinuous at η = γ, as demonstrated by the black dotted line
in Figure 3.7 (b). In this case, the polarization angle changes by |∆χp| = 180◦ at
ψ = π, indicating the reverse of the magnetic field direction there. This is indeed
confirmed in the bottom center panel of Figure 3.7 (a). As a matter of fact, the
average magnetic field vanishes at that point. Although η = γ is a limit of η < γ,
Equation (3.20) gives a discontinuity to the semi-amplitude at η = γ. The semi-
amplitude defined in Taverna et al. (2015) is continuous, on the contrary. This is
the reason for the apparent discrepancy I mentioned earlier.

When η > γ is satisfied, in contrast, the direction of the average magnetic field
changes continuously again and rotates by 360◦ in this case, as demonstrated in the
bottom right panel of Figure 3.7 (a). As a result, the polarization direction also
varies by the same amount continuously. This is confirmed as the blue dotted line
in Figure 3.7 (b), although the polarization angle χp is given modulo 180◦ and looks
discontinuous at two values of ψ. Note also that even in this case, χp changes rapidly
around ψ = π.

Next, I shift my attention to the phase-averaged polarization fraction in the same
model. It is calculated according to Equation (3.19) from the Stokes parameters
integrated over the entire rotational phase. Note that it is not equal to the average
of the phase-resolved polarization fractions. For the understanding of this quantity,
it is not sufficient to distinguish the three cases, η < γ, η = γ, and η > γ, as for
the semi-amplitude, but it is necessary to divide the cases further according to the
values of η and γ. In fact, I distinguish 10 cases, as shown in Figure 3.8 (a). Note
that regions (6) and (7) are the lower (η < 45◦) and upper (η > 45◦) halves of the
diagonal line of η = γ, shown in magenta. The other diagonal line, η + γ = 90◦, is
shown in cyan.

I consider each regime in turn, referring to Figure 3.8(b). Region (1) is a regime
with η ≪ γ and η+γ < 90◦. As shown in the upper left panel of Figure 3.8 (b), the
north pole is always inside the observed patch but is not very close to the origin.
It does not move very much during a rotation, either. As a result, the average
magnetic field is directed in the −X direction, having similar amplitudes. This then
leads to the facts that the phase-averaged polarization fraction is very high and that
the polarization angle remains ∼ 90◦.

As η approaches γ, I enter region (2). The typical situation is displayed in the
second panel from the left in the upper row of Figure 3.8 (b). In this case, the north
pole still remains inside the observed patch but moves over a wider region. As a
result, the polarization angle changes more widely with the rotational phase, leading
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to the cancellation of polarizations. Note that the magnetic field averaged over the
observed patch nearly vanishes when the north pole comes close to the origin.

I move on to the regimes still with η < γ but with η + γ > 90◦, i.e., regions
(3)-(5). In these cases, not only the north pole but also the south pole comes into
sight. If η is small, i.e., region (3), the rotation axis is almost perpendicular to the
line of sight, and the typical situation is depicted in the third panel from the left in
the upper row. It is evident that the polarization angle is nearly 90◦ at all phases,
irrespective of which pole is visible. Since there is no cancellation in the averaging of
the magnetic field over the observed patch, the phase-averaged polarization fraction
is high. At intermediate η values in region (4), the variation of χp becomes large.
In the fourth panel from the left in the upper row of the figure, it changes between
χp ∼ 45◦ and χp ∼ 135◦. As a result, the phase-averaged polarization fraction is
lowered by the cancellation. At even larger η values in region (5), the polarization
angle does not change much again, lingering at χp ∼ 0◦, and the phase-averaged
polarization fraction returns to higher values.

I now consider the case of η = γ. In the case of low η values, the leftmost panel
in the lower row of Figure 3.8(b) shows the typical situation. The polarization angle
changes substantially, and the cancellation leads to low values of the phase-averaged
polarization fraction. Although the variation of the polarization angle still exists at
large η values, the cancellation is much reduced, and the phase-averaged polarization
fraction becomes higher in region (7).

Finally, I look at the regions with η > γ. Region (8) corresponds to the one with
η + γ ≤ 90◦. As demonstrated in the middle panel in the lower row of Figure 3.8
(b), the north pole goes around the origin in the observed patch, and, as a result,
the polarization angle also rotates by 360◦. The polarization is mostly canceled
when averaged over the rotational phase in this case. Regions (9) and (10), where
η + γ > 90◦, are distinguished by the value of γ. For low values of γ, i.e., region
(9), neither the north pole nor the south pole comes close to the origin and the
polarizations are large at all phases, while the polarization angle changes by large
amounts. The severe cancellation still occurs, and the phase-averaged polarization
fraction remains low. At high γ values in region (10), in contrast, the polarization
angle still varies by large amounts, but the polarization itself becomes very small
when the poles come close to the origin, where χp ∼ 90◦. When averaged over the
rotational phase, this leads to higher polarization fractions where the phase-averaged
polarization angle is either ∼ 0◦ or 180◦, which are, in fact, almost the same.

I now consider the effect of the mode conversion on these phase-averaged quan-
tities. The semi-amplitude is little affected for the case shown in Figure 3.6. This
is simply because the polarization angle is not modified at the energy of 300eV in
the figure, which is evident in the upper right panel of Figure 3.4. Then, the above
discussion is not changed by the mode conversion. The polarization fraction, in
contrast, tends to be reduced. It is particularly clear in regions (1) and (3). This is
because the O-mode photons that are partially converted from the E-mode cancel
the polarization. See the bottom right panel of Figure 3.4, in which the phase-
resolved polarization fractions are shown for different photon energies. Since the
energy of 300eV assumed in Figure 3.6 is a bit lower than E ∼ Ead ∼ 1keV, the
adiabatic mode conversion at the resonance point is partially suppressed, leading to
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the mixture of O- and E-mode photons just mentioned.

3.3.2 Phase-resolved Quantities for Various Configurations
with Different Magnetic Field Strengths

It should be evident from the results given in the previous section that I need to study
more systematically the phase-resolved polarization angle and fraction for various
configurations of the rotating magnetized neutron star, different photon energies,
and magnetic field strengths, based on the classification given in Figures 3.7 and
3.8. This is particularly true of the mode-conversion effects, since they are sensitive
to the photon energy.

I should begin without the mode conversion, however. I can then assume that
the photons are all in the E-mode. Although I vary it later, I set the strength of the
magnetic field to Bp = 1013G here. The parameters on the neutron star are fixed to
RNS = 10km, MNS = 1.4M⊙, and T = 0.4keV, though they are not relevant as long
as the mode conversion and general relativistic effects are ignored.

The phase-resolved polarization angles are displayed as a function of the photon
energy and rotational phase for 24 combinations of η and γ in Figure 3.9. It is clear
at a glance that the results do not actually depend on the photon energy. Small
glitches are just artifacts in drawing pictures. As explained in Figure 3.7, these
cases can be understood by dividing them into the three regimes: η < γ, η = γ, and
η > γ. In the first case, i.e., the upper left panels in Figure 3.9, the polarization
angle oscillates around χp = 90◦. It becomes χp = 90◦ exactly when the rotational
phase is 0, π, and 2π. The color maps in this case are hence rather featureless.
In the case of η = γ, in contrast, the polarization angle changes by 180◦ during a
single rotation. Note that the polarization angle has the mod (π) nature and that
χp = 0◦ and χp = 180◦ are equivalent. Finally, for η > γ, the polarization angle
varies by more than 180◦ in general (see cases (8), (9), and (10) in Figure 3.8), and,
as a result, the polarization is mostly canceled, as is evident from Figure 3.8 (a).
The color maps in this case (lower right panels in Figure 3.9) are characterized by
the two horizontal bands shown in, e.g., green sharp boundaries. Note again that
χp = 0◦ and χp = 180◦ are equivalent, which are shown in green. The polarization
angle becomes 90◦ exactly at ψ = 0, π, and 2π.

The phase-resolved polarization fraction is mainly determined by the position
of the (extended) north or south pole in the observed patch on the polarization-
limiting surface. Various cases are summarized in Figure 3.10. As the photon
energy increases, the radius of the polarization-limiting surface gets larger, and, as
a result, the pole tends to be located outside the observed patch longer, which then
leads to higher polarization fractions. During a single rotation, in contrast, the pole
comes closest to the origin at the rotational phase of ψ = π, and the polarization
fraction becomes minimum at that point. Note that in the case of γ = 0◦, which
is an example of case (8) given in Figure 3.8 (b), the polarization fraction is not
changed by rotation, since the curve drawn by the pole is a circle with its center
located at the origin. For η = γ, in contrast, the pole comes to the origin at ψ = π,
and the polarization fraction vanishes completely by the cancellation.

Having understood the variety of the polarization angle and fraction as functions
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Figure 3.9: Phase-resolved polarization angles for different combinations of η and
γ. The mode conversion is neglected in this figure. The magnetic field strength is
fixed to Bp = 1013G.
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Figure 3.10: Same as Figure 3.9 but for the phase-resolved polarization fraction.
Note the color scale in each panel.
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Figure 3.11: Same as Figure 3.9 but with the mode conversion taken into account.
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Figure 3.12: Same as Figure 3.11 but for the polarization fraction.
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Figure 3.13: Same as Figure 3.11 but for Bp = 5× 1013G.
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Figure 3.14: Same as Figure 3.12 but for Bp = 5× 1013G.
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Figure 3.15: Same as Figure 3.12 but for Bp = 1014G.
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Figure 3.16: Same as Figure 3.12 but for Bp = 5× 1014G.
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of the rotational phase without the mode conversion, I now look into how the mode
conversion modifies them. In so doing, I also change the magnetic field strength.
The results are exhibited for Bp = 1013, 5 × 1013, 1014, and 5 × 1014G in Figures
3.11-3.16, which I consider in turn in the following.

The phase-resolved polarization angles and fractions shown for Bp = 1013G in
Figures 3.11 and 3.12 are the mode-conversion counterparts of those given in Figures
3.9 and 3.10 without the mode conversion (note that the color scales are different
between Figures 3.10 and 3.12). At E ≳ Ead ≃ 1keV, the mode conversion occurs
adiabatically, and the O-mode photon becomes dominant. Then the polarization
angle changes by 90◦. Note again that χp = 0◦ and χp = 180◦ are the same from
the mod(π) nature of the polarization angle. In the case of η = γ, the 90◦ change
of the polarization angle occurs at much lower energies (E ≪ 1keV) for ψ ∼ π,
which is particularly true of η = γ = 5◦. This is because the magnetic field is
nearly aligned with the propagation direction of photons (θB ∼ 0), and Ead becomes
smaller (see Equation (3.1)). Note also that the influences of the cyclotron energies
of the protons are also apparent at ≲ 100eV.

The polarization fraction is reduced by the mode conversion in general if it occurs
at E ∼ Ead ∼ 1keV and both the original E- and converted O-modes exist in some
proportion, leading to partial cancellations. Note, however, that Ead is in fact a
function of the photon energy and is lowered remarkably at some energies. This is
particularly the case for the cyclotron energies of the protons, as already mentioned
earlier (see Figure 3.17 (a)). At these energies, the photon is adiabatically converted
from E-mode to O-mode completely. Since the cyclotron energy depends on the
magnetic field strength, it is not constant on the neutron star surface. As a result,
only those photons that have energies close to the local cyclotron energy and are
propagating in certain directions are mode-converted and mixed with unconverted
photons originating from different portions of the observed patch, which leads to
the reduction of the polarization fraction as strips at E ≲ 100eV. This issue will be
considered more in detail in the following.

The mode conversion occurs adiabatically when E ≳ Ead ∝ (tan θB|1 − ui|)2/3,
with ui = (Eci/E)

2 ∝ (B/E)2 (see Equation (3.1)) and θB being the angle between
the photon momentum and the magnetic field. Panel (a) schematically shows the
dependence of Ead on the magnetic field strength B (green and blue dashed lines).
It is seen that there is a region BMIN < B < BMAX, in which E > Ead is satisfied
and the mode conversion occurs for a given θB. Note that θB is fixed to a certain
nonzero value in drawing the dashed lines in the panel. Here Bci is the magnetic
field strength at which the cyclotron energy is equal to the photon energy E and the
adiabatic energy vanishes. This range is in fact dependent on θB, the angle between
the photon momentum and the magnetic field, through the adiabatic energy. It is
found from the companion of the two dashed lines that the range gets wider as the
θB becomes smaller. The adiabatic mode conversion occurs in wider ranges in B, as
the magnetic field tends to be aligned with the Z-axis.

The polarization fraction can be then understood from panels (b) and (c) in
Figure 3.17, in which I show the areas where the mode-converted O-mode photons
are emitted for different photon energies: 32eV ≤ E ≤ 34eV (red), 39eV ≤ E ≤
41eV (green), 49eV ≤ E ≤ 51eV (blue), and 59eV ≤ E ≤ 61eV (purple). It should
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Figure 3.17: (a) Schematic figure of the adiabatic energy Ead as a function of the
magnetic field strength B for a given photon energy E. The green and blue dashed
lines correspond to larger and smaller values of the angle between the photon mo-
mentum and the magnetic field, θB. In the panel, A and A′ are the corresponding
y-intercepts. Note that θB is fixed in drawing these lines. The mode conversion
occurs adiabatically when BMIN < B < BMAX is satisfied, the condition correspond-
ing to E > Ead. The adiabatic energy Ead vanishes at Bci. Panels (b) and (c)
exhibit the regions where the mode conversion occurs for the photon energies of
E ≃ 33eV (red), 40eV (green), 50eV (blue), and 60eV (purple), with different colors
on the neutron star surface toward the observer, which is projected onto the X-Y
plane. In the two panels, the configurations of the neutron star are different: (b)
η = 0◦, γ = 30◦ and (c) η = 0◦, γ = 80◦.

be mentioned here that there appear to be multiple strips with the same color in
some cases; in fact, it may change with the rotational phase. In the two panels, I
assume different configurations of the neutron star: (b) η = 0◦, γ = 30◦ and (c)
η = 0◦, γ = 80◦. The dipole magnetic field strength is set to Bp = 1013G for both
cases.

The case in panel (b) is representative of the configurations in which the (pro-
jected) magnetic pole is near the origin of the X-Y plane. It is found that the red
and purple areas are larger on the projected surface than the green and blue ones.
This leads to the fact that the polarization fraction is lower for E ≃ 30 and 60 eV
than for other photon energies, and two distinct strips appear in the corresponding
panel in Figure 3.12. In contrast, panel (c) is a representative case, in which the
magnetic pole is far from the origin and shows that each colored region has roughly
the same area. As a result, the polarization fraction decreases almost uniformly for
these photon energies, producing a single broad strip in the plot of the polarization
fraction.

In Figures 3.13 and 3.14, I present the results for one of the higher field strengths,
Bp = 5×1013G. It is apparent from Figure 3.13 that the behaviors of the polarization
angle are qualitatively different in some configurations from those for Bp = 1013G
given in Figure 3.11. In fact, in addition to the familiar result obtained for η = 80◦

and γ = 5◦, I find a case, e.g., with η = 5◦ and γ = 15◦, in which nothing occurs
at all. For η = 60◦ and γ = 30◦ or η = γ = 80◦, the polarization angle changes
only at some rotational phases; the result for η = γ = 5◦ has yet another pattern
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Figure 3.18: (a) Plot of Bl as a function of the photon energy E. (b) Fraction of the
projected area with B > Bl as a function of Γ, the angle between the line of sight and
the magnetic axis for three values of θdmax: θdmax = 30◦ (red solid line), θdmax = 45◦

(green dashed line), and θdmax = 60◦ (blue dotted line). (c)-(e) Snapshots of the
fraction of the E-mode photon at E = 2keV for three configurations: (c) η = 5◦,
γ = 15◦, ψ = 0, (d) η = 30◦, γ = 60◦, ψ = 0; and (e) η = 30◦, γ = 60◦, ψ = π.

different from those in the above cases. The reason for all these phenomena is that
the condition given in Equation (3.9) is no longer satisfied at all rotational phases,
and instead the condition in Equation (3.10) holds at some phases. In the latter
case, the mode conversion occurs inside the O-mode photosphere, and its effect is
mainly to shift the photosphere of the E-mode photons outward.

The above explanations are substantiated in the following. I plot the values
of Bl as a function of the photon energy in panel (a) of Figure 3.18, where the
surface temperature is set to kT = 0.4keV and f = 1 is assumed. Here Bl decreases
monotonically and the condition B < Bl is satisfied everywhere on the neutron star
surface at E ≲ 1keV for Bp = 5×1013G. At higher photon energies, this is no longer
the case. In fact, since Bl < Bp, the condition is violated near the magnetic pole,
and the mode conversion occurs inside the O-mode photosphere. If the area with
B > Bl near the magnetic pole projected on the X-Y plane is larger than the region
with B < Bl, the E-mode is dominant and the polarization angle is unchanged from
those of low-energy photons.

In the case of the dipole magnetic field, the condition of B > Bl is equivalent to
θd < θdmax for the magnetic colatitude θd. Then, the ratio between the (projected)
area of the region satisfying B > Bl and the (projected) star surface is a function
of θdmax and Γ, the angle between the magnetic axis and the Z-axis. It is plotted as
a function of the latter, with the former being fixed in panel (b) of Figure 3.18. I
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choose three different values of θdmax: θdmax = 30◦ (red), 45◦ (green), and 60◦ (blue).
Note that θdmax is a function of the photon energy and is larger for higher energies,
as can be understood from panel (a) in Figure 3.18.

I now revisit the results in Figure 3.13. In the case of η = 5◦ and γ = 15◦, the
north pole, which has the strongest magnetic field and violates the condition given
in Equation (3.9) for E ≳ 2keV, stays close to the origin of the X-Y plane: Γ varies
between 10◦ and 20◦. At E = 2keV, for example, the region, in which Equation (3.9)
is violated, corresponds to θdmax = 26◦. This area alone is not sufficient to make
the E-mode photons dominant, though. There is another region that predominantly
emits the E-mode photons (the bright ring in panel (c) of Figure 3.18). This happens
not because of the violation of the condition in Equation (3.9) but because of large
values of tan θB, which narrows the region of E > Ead, where the mode conversion
occurs adiabatically. The projected areas of both regions do not change much during
the rotational period. As a result, the original E-mode is dominant at all rotational
phases.

For η = 60◦ and γ = 30◦, in contrast, the rotational phase is important. The
angle between the magnetic and Z-axis, Γ, ranges from 30◦ to 90◦, and the north
pole comes close to the origin only at ψ ∼ π (see panels (d) and (e) in the same
figure). Then, the E-mode photon is dominant at 30◦ ≤ Γ ≲ 42◦ or, equivalently,
at 3π/4 < ψ < 5π/4 (panel (e)).

In the case of η = γ = 80◦, the condition B < Bl is not fulfilled at ψ ∼ 0
and 2π (Γ ∼ 20◦), where the south pole is located near the origin, as well as at
ψ ∼ π (Γ ∼ 0◦), where the north pole faces the observer. At these phases, the
mode conversion occurs inside the O-mode photosphere, and the polarization angle
is unchanged.

In all of the above cases, Equation (3.9) tends to be violated in wider regions
on the neutron star surface for higher photon energies: θdmax = 39◦ (E = 3keV),
θdmax = 52◦ (E = 5keV), and θdmax = 65◦ (E = 10keV). Then, the values of tan θB
become smaller for the higher photon energies, narrowing the range of E < Ead (see
Figure 3.17 (a)). This leads to narrower bright rings in panels (c)-(e) of Figure 3.18.

Finally, I shift my attention to the case of η = γ = 5◦, which yields a distinct
pattern in the polarization angle given in Figure 3.13. In fact, the jump of the
polarization angle occurs at ψ ∼ π in the range of 100 ≲ E ≲ 1000eV. This energy
range corresponds to the vicinity of the cyclotron energy again. In contrast, the
rotational phase ψ ∼ π is the phase at which tan θB takes small values. At E ≳ 2keV,
Equation (3.9) is violated near the magnetic pole, which always faces the observer
in this case, and the mode conversion occurs inside the O-mode photosphere.

The polarization fractions for Bp = 5× 1013G are displayed in Figure 3.14, with
the mode conversion being taken into account. This should be compared with Figure
3.12. Since the polarization-limiting radius is larger than that for Bp = 1013G (see
Equation (3.12)), the magnetic north or south pole tends to be located outside the
observed patch, and, as a result, the polarization fraction should be higher as long
as the mode conversion is ignored. This is true at low energies, E ≲ 100eV, where
no conversion is expected from the beginning. The polarization fraction is lowered
either when the partial conversion occurs nonadiabatically or when the observer sees
not only the region in which the mode conversion occurs outside the photospheres
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Figure 3.19: Semi-amplitudes of the polarization angle for two magnetic field
strengths: (a) Bp = 1013G and (b) Bp = 5 × 1013G. The photon energy is set
to E = 5keV.

of the two modes but also the region in which the mode conversion takes place
between the two photospheres. The former occurs at E ∼ Ead, while the latter
is evident near the boundary between the 90◦ change and the unchanging regimes
of the polarization angle. The cyclotron energy of the proton in this case varies
continuously from ∼ 300eV at the magnetic pole down to ∼ 150eV on the equator.
In most cases, its effect is visible at E ∼ 300eV. This is because for higher cyclotron
energies, the adiabatic condition Equation (3.1) is satisfied for wider ranges of θB,
the angle between the magnetic field and photon momentum. This leads to the
single vertical blue strip at E ∼ 300eV in Figure 3.14.

The polarization fractions for Bp = 1014G are presented in Figure 3.15. Although
not shown, the polarization angles are essentially the same as those given in Figure
3.9, with the mode conversion being ignored entirely. This is because the condition
given in Equation (3.9) is not satisfied at E ≳ Ead ∼ 1keV in this case. This does
not imply that the mode conversion occurs outside the O-mode photosphere in any
region. In fact, the polarization fraction is reduced at the cyclotron energies of
the proton, which range from ∼ 300eV on the equator to 600eV at the pole in the
current case. It is added that the polarization fraction is increased as a whole owing
to the larger polarization-limiting radius.

As shown in Figure 3.16, if I raise the field strength further to Bp = 5× 1014G,
then there remains no region that satisfies both E ≳ Ead and Equation (3.9) simul-
taneously, and the mode conversion occurs inside the O-mode photosphere even at
the cyclotron energies of the proton. As a result, the polarization angle and fraction
are identical to those in Figures 3.9 and 3.10 except for an overall increase due to the
larger size of the polarization-limiting surface. Note again that the E-mode photons
emerging from the E-mode photosphere are affected by the mode conversion in the
cases where B > Bl is satisfied.

I now consider the semi-amplitude defined in Equation (3.20) for the three mag-
netic fields: Bp = 1013, 5 × 1013 and 1014G. The results are shown in Figure 3.19
for the first two cases: (a) Bp = 1013G and (b) Bp = 5× 1013G. The photon energy
is set to E = 5keV for both. In the first case, the features in the semi-amplitude
are almost the same as those in Figure 3.6 (a), in which the mode conversion is ne-
glected. This is because the mode conversion occurs for all combinations of η and γ
at this photon energy, and, as a result, the O-mode is always dominant. In the case of
Bp = 1014G, in contrast, the mode conversion occurs inside the O-mode photosphere
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and the E-mode always prevails, since Equation (3.9) is not satisfied. Although the
polarization angles are different by 90◦, the semi-amplitude for Bp = 1014G is almost
identical to that for Bp = 1013G and hence is not shown in the figure.

In contrast, the right panel for case (b) exhibits qualitatively different features
with some discontinuous changes in the parameter space of η and γ. The reason
for these discontinuities is, of course, the mode conversion. In fact, the polarization
angle changes by 90◦ when the dominant mode is changed from E-mode to O-mode
or vice versa. Such a change takes place twice or four times during a single rotation,
as is understood from Figure 3.13. The semi-amplitude, which is the total variation
of the polarization angle divided by four, may hence change by 45◦ or 90◦ at the
discontinuities.

3.3.3 Phase-averaged Quantities for Different configurations,
Field Strengths and Photon Energies

Turning to the phase-averaged quantities, I show in Figure 3.20 the four repre-
sentative patterns of the polarization angle and fraction in the η − γ plane: (a)
Bp = 1013G, E = 5keV with no mode conversion; (b) Bp = 1013G, E = 5keV; (c)
Bp = 5 × 1013G, E = 5keV; and (d) Bp = 1014G, E = 5keV. Note again that the
phase-averaged quantities are calculated not as the averages of the corresponding
phase-resolved quantities but from the integral of the Stokes parameters over the
entire rotational phase.
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Figure 3.20: Phase-averaged polarization angles χp (upper panels) and fractions ΠL

(lower panels) for four different cases. The photon energy is fixed to E = 5keV.
The magnetic field strengths are assumed to be Bp = 1013G in (a) and (b) and
Bp = 5 × 1013 and 1014G for (c) and (d), respectively. The mode conversion is
considered for all cases except case (a).

It is seen from the upper panels that the phase-averaged polarization angle is
either χp ≃ 0◦, 90◦, or 180◦, shown in dark violet, light green, or dark violet,
respectively, and that the parameter space is divided into the regions either with
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χp ≈ 90◦ or with χp ≈ 0, 180◦. Note that the values of χp ≃ 0◦ and 180◦ are equal
to each other because of the mod(π) nature of the polarization angle and that they
are shown in the same color.

If the mode conversion is neglected (case (a)), the phase-averaged polarization
angle can be understood from Figure 3.8 (b). In regions (1) and (3) in the figure,
the polarization is roughly directed toward the X-axis at each rotational period,
and χp ≃ 90◦ is hence obtained. In regions (5)-(10), the average magnetic fields are
oriented in the Y -axis more often than not, and, as a result, the polarization angle
changes by 90◦. In the boundary layer, i.e., regions (2) and (4), the polarization
angle is still χp ≈ 0◦ or 180◦, but the polarization itself is suppressed. See the
corresponding bottom panel.

It is apparent from Figure 3.20 that case (d), with the highest magnetic field
strength, Bp = 1014G, is quite similar to case (a). This is the case not only for
the polarization angle but also for the polarization fraction and is simply because
the mode conversion occurs in the O-mode photosphere in case (d), either, which is
understood from Figures 3.15 and 3.18. For the lower magnetic fields, Bp = 1013 and
5× 1013G, assumed in cases (b) and (c), the mode conversion is important. In case
(b), photons are mostly in the O-mode at E = 5keV, as seen in Figures 3.11 and
3.12. As a consequence, the phase-averaged polarization angles are changed by 90◦

from those of case (a). There are some E-mode photons emitted, though, from the
region that satisfies E < Ead because of large values of tan θB in Equation (3.1). The
polarization is partially canceled then, and the phase-averaged polarization fraction
is lowered a bit in regions (1), (3), (5), (7), and (10).

In case (c) with Bp = 5 × 1013G, in contrast, the observer will see not only
the region in which the mode conversion occurs outside the photospheres of the two
modes but also the region in which the mode conversion takes place between the two
photospheres. The E-mode photons come from the latter region, at which Equation
(3.9) is not satisfied. It extends from the magnetic pole and covers approximately
half the neutron star surface. The O-mode photons are originated at low magnetic
latitudes, in contrast. As a result, the numbers of E-mode and O-mode photons are
nearly equal in this case, and the phase-averaged polarization fractions are severely
reduced. The phase-averaged polarization angles have different features in this case.
In some parameter regions, the polarization angle is seen to change by 90◦ because
of the mode conversion.

I have so far considered a single photon energy. I expect, however, that the
results depend strongly on the photon energy. This is confirmed in Figure 3.21, in
which I show the phase-averaged polarization angle and fraction for Bp = 5× 1013G
but at E = 1keV and E = 10keV this time. It is indeed found that the phase-
averaged polarization fraction is smaller at E = 1keV than at E = 5keV. This
is because E = 1keV is much closer to the adiabatic energy Ead, nearly half the
E-mode photons are converted to O-mode, and the polarization is almost canceled.

At E = 10keV, in contrast, the mode conversion occurs inside the O-mode
photosphere in some regions because of the violation of Equation (3.9) in this case
(see Figures 3.13 and 3.18 (a)). The cancellation between the two modes is less
severe than at E = 5keV, though. The phase-averaged polarization angles for
different photon energies change by 90◦ at different combinations of η and γ. Such



112 CHAPTER 3. POLARIZATION OF NEUTRON STARS EMISSION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90

γ 
[d

e
g

]

η [deg]

χp [deg] (Bp=5×10
13

G, E=1keV)

0

20

40

60

80

100

120

140

160

180

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90

γ 
[d

e
g

]

η [deg]

χp [deg] (Bp=5×10
13

G, E=10keV)

0

20

40

60

80

100

120

140

160

180

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90

γ 
[d

e
g

]

η [deg]

ΠL (Bp=5×10
13

G, E=1keV)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90

γ 
[d

e
g

]

η [deg]

ΠL (Bp=5×10
13

G, E=10keV)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure 3.21: Phase-averaged polarization angles χp (upper panels) and fractions ΠL

(lower panels) for the photon energies of E = 1keV (left) and E = 10keV (right).
The magnetic field strength is set to Bp = 5× 1013G.

energy dependence of the mode conversion will be useful to distinguish the effects
of the mode conversion from those of the configuration of the neutron star if they
are observed at multiple energy bands in the future.

3.3.4 Hot Spot

So far I have assumed that the temperature is uniform on the neutron star surface,
but this may not be true. In fact, the observed energy spectra of the magnetar
emissions are normally fitted with the composition of a blackbody radiation and a
power-law emission and give us an estimate of the temperature and size of the region
that produces the thermal emission as T ∼ 0.4keV and RTh ∼ 5km for anomalous
X-ray pulsars (AXPs) and T ∼ 0.7keV and RTh ∼ 1km for soft gamma-ray repeaters
(SGRs). These results suggest that the thermal-emission region does not cover the
entire surface and may be associated with a hot spot.

I hence consider the possible effects of the existence of such a hot spot on the
phase-averaged polarization angle and fraction. I actually assume that two hot
spots of the same size cover both the magnetic polar regions. I set the magnetic
field strength to Bp = 5 × 1014G so that the mode conversion should occur inside
the O-mode photosphere. The results are shown in Figure 3.22. The photon energy
is again fixed to E = 5keV. The phase-averaged polarization angles and fractions
are presented in the upper and lower panels, respectively, for the hot spot radii of
RTh = 10, 5, and 1km. As for the polarization fraction, it is immediately apparent
from the figure that the red region, where the polarization fraction is large, is not
changed much by the variation in the spot size; it is the vicinity of η = γ = 45◦

that is most affected. The increase of the polarization fraction is also seen in the
region near η = 90◦, γ = 20◦. The polarization angle also changes by 90◦ in
these parameter regions. As expected, the parameter regions with low polarization
fractions tend to be affected (González Caniulef et al., 2016).
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Figure 3.22: Phase-averaged polarization angles (upper panels) and fractions (lower
panels) of a neutron star with hot spots. The dipole magnetic field strength is set
to Bp = 5× 1014G. The spot size is assumed to be RTh = 10, 5, and 1km from left
to right.

In general, the polarization fraction tends to increase as the emission is limited
to a smaller region, since the magnetic field becomes more uniform in this region.
There is another reason, however, for the increases of the polarization fraction in
the parameter regions mentioned above. This is understood from Figures 3.23 and
3.24, in which the snapshots of the polarization directions in the observed patch
on the polarization-limiting surface are shown at different rotational phases for the
spot radii of RTh = 10km and RTh = 5km, respectively. The magnetic field strength
is fixed to Bp = 5 × 1014G, and η = γ = 45◦ is chosen. The localization of the
emission region to the hot spot is evident in the latter case. At ψ = 0, hot spots
at both the north and south poles are barely visible at the left and right edges of
the observed patch, while at ψ = π, the hot spot at the north pole comes at the
center. In the former case, the radiation is polarized in the Y -direction, whereas
in the latter, the net polarization vanishes. At ψ = π/2 and 3π/2, in contrast, the
polarization directions are tilted by about 45◦ to the Y -axis. It is easily understood,
then, that as the spot size gets smaller, the cancellation between the radiation at
ψ = 0 and that at ψ = π/2 and 3π/2 becomes weaker, since the hot spots at ψ = 0
are less visible. This is the reason for the increase in the polarization fraction around
η = γ = 45◦ with the decrease in the spot size exhibited in panels (a)-(c) of Figure
3.22. The change in the neighborhood of η = 90◦, γ = 20◦ is also understood in the
same way (see Figure 3.25).

The behaviors of the phase-averaged polarization angle should now be apparent.
In the vicinity of η = 45◦, γ = 45◦, the contributions from the rotational phases
around ψ = 0 are reduced as the spot radius gets smaller. Then, the phase-averaged
polarization angle tends to be χp ≃ 0◦, or 180◦ for small spot sizes. In the case of
η ≃ 90◦, γ ≃ 20◦, in contrast, it is evident from Figure 3.25 that the polarization
angle tends to be χp ≃ 90◦.
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Figure 3.23: Polarizations of photons at different rotational phases (ψ =
0, π/2, π, 3π/2) for the spot radius RTh = 10km. The magnetic field strength is
Bp = 5× 1014G and η = 45◦, γ = 45◦. The black circles indicate the observed patch
on the polarization-limiting surface. The red areas indicate the hot spot, which
covers the whole surface in this case.
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Figure 3.24: Same as Figure 3.23 but for the spot radius of RTh = 5km.
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Figure 3.25: Same as Figure 3.24 but for η = 90◦, γ = 20◦.
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Figure 3.26: Phase-averaged polarization angles and fractions for different hot-spot
sizes. The magnetic field strength is set to Bp = 1013G (top two rows) and 5×1013G
(bottom two rows). The left, middle, and right panels correspond to the spot sizes
of RTh = 10, 5, and 1km, respectively.
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The mode conversion still occurs inside the O-mode photosphere on any part
of the neutron star surface for Bp = 1014G at E = 5keV, since the condition B >
Bl is satisfied everywhere (see Figure 3.18 (a)). The phase-averaged polarization
properties are hence essentially the same as those for Bp = 5 × 1014G, irrespective
of the hot spot. As the magnetic field strength becomes even lower, the mode
conversion starts to the place at low magnetic latitudes and lowers the polarization
fractions in general if photons are emitted from the entire neutron star surface, as
was demonstrated in the previous section. This is particularly the case for Bp =
5×1013G (see the two bottom left panels of Figure 3.26), since the surface is almost
equally divided into the region where the mode conversion occurs inside the O-
mode photosphere, near the pole, and the region where the mode conversion occurs
outside the two photospheres, extended from the magnetic equator. In the case of
Bp = 1013G, the mode conversion always occurs, and photons are mostly in the
O-modes, except in the region where E < Ead is satisfied because of large values of
tan θB. The latter effect is the reason why the phase-averaged polarization fractions
are still somewhat reduced from those for the corresponding no mode conversion.

In Figure 3.26, I show how the existence of hot spots modified the phase-averaged
polarization angles and fraction for Bp = 1013 and 5× 1013G. The left, middle, and
right columns correspond to the spot sizes of RTh = 10, 5 and 1km, respectively.
Note that the left four panels are essentially the same as those presented in Figure
3.20. The top two rows show the results for Bp = 1013G. In the case of RTh = 10km,
as mentioned above, the polarization fractions decrease a little from those for no
mode conversion, particularly in the region where it is high. The polarization angles
are also changed by 90◦.

As the size of the hot spot becomes smaller, the phase-averaged polarization
fractions return to the higher values for no mode conversion. This is because the
region with E < Ead rarely enters the hot spot. The exceptional cases are limited
to the configurations with γ ∼ η + 80◦ for RTh = 1km. In these cases, E < Ead

is satisfied at some rotational phases, and the cancellation between the two modes
lowers the phase-averaged polarization fractions slightly, as observed. In contrast,
the O-mode is dominant for this magnetic field strength irrespective of the spot size,
and the behavior of the polarization angles in the η−γ plane is essentially the same
as that for Bp = 5 × 1014G, except for the overall difference by 90◦ because of the
mode conversion.

In the case of Bp = 5 × 1013G, the effect of the hot spot is drastic, as can be
immediately seen in the bottom two rows in Figure 3.26. In fact, the reduction of
the phase-averaged polarization fraction by the mode conversion is nearly nullified
when the spot size becomes as small as 5km. This is easily understood as follows.
Since the mode conversion occurs outside the two photospheres in the region near
the equator, it is not included in the hot spot if its size is small. Then, the photons
are mostly in the E-mode, just as in the case neglecting the mode conversion and the
phase-averaged polarization fractions for RTh = 1, 5km are almost the same as those
for Bp = 5×1014G. Since the dominant mode is the E-mode for all combinations of
η and γ for these small hot-spot sizes, the polarization angles are identical to those
for Bp = 5× 1014G in Figure 3.22.
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Figure 3.27: Same as for the case of η = 5◦ and γ = 15◦ in Figures 3.11 and 3.12
but (a) for a different temperature T = 1keV or (b) for a different mass of neutron
star MNS = 2M⊙.

3.3.5 Other Parameters

I next discuss the dependence on the surface temperature T , neutron star massMNS,
and radius RNS. They affect the results mainly through the adiabatic energy for the
vacuum resonance Ead, which depends on the scale height of the atmosphere Hρ in
Equation (3.1). The latter is proportional to the temperature and the inverse of the
surface gravity, g = GMNS/R

2
NS. Recall that the adiabatic energy Ead is the energy

above which the mode conversion occurs adiabatically and the polarization angle
changes by 90◦, and near which the polarization fraction tends to be reduced.

The phase-resolved polarization angle χp and fraction ΠL for η = 5◦ and γ = 15◦

are recalculated either with a higher temperature of T = 1keV or with a larger
neutron star mass of MNS = 2M⊙. They are T = 0.4keV and MNS = 1.4M⊙,
respectively, in the fiducial model. Note that it is the increase or decrease in the
scale height that matters, and one can equally change the neutron star radius instead
of the temperature or the neutron star mass, since the scale height is a function of
the combination T/(MNS/R

2
NS). The magnetic field strength is set to Bp = 1013G.

The results are shown in Figure 3.27. One can see that the difference between the
models is almost indiscernible. This is just as expected, since the adiabatic energy
depends on the scale height only weakly: Ead ∝ H

−1/3
ρ . I hence conclude that the

results obtained so far are robust.

3.3.6 Applications to Real Magnetars

I finally apply the theory developed thus far to real magnetars. My intention here
is not to make a strong claim on the possibility to detect polarizations as envisaged
in this chapter from these magnetars, which would be impossible if one considers
various uncertainties in theoretical interpretations and modelings of observations as
explained below. Instead, I would like to get a rough idea of what the polarization
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Table 3.1: Observationally inferred magnetic field strengths, surface temperatures
and the radii of hot spots for four of the known magnetars.

Magnetar 1 Bp (1014 G) T (keV) RTh (km)

2259+58 0.59 0.37 5.0
0142+61 1.3 0.36 9.4
0501+45 1.9 0.70 1.4
1708-40 4.7 0.48 4.5

angles and fractions would be like if my models were true. Here I deal with the
four magnetars 1E 2259+586, 4U 0142+61, SGR 0501+4516, and 1RXS J17089.0-
400910, since thermal radiation is identified observationally in the soft X-ray band
(Enoto et al., 2010).

I employ the values of the dipole magnetic field strength Bp, the temperature
T , and the radius of the emission region RTh obtained from the spectral fittings
by two blackbody components with different temperatures and radii by Nakagawa
et al. (2009). They are summarized in Table 3.1. Since the radius of the emission
region for the high-temperature component is only about a tenth of that for the low-
temperature component, and the former component gives a rather poor fit to the
high-energy part of the spectrum, I assume in this chapter that the low-temperature
component is originated from the hot spot on the magnetar surface and do not
consider the high-temperature component. In fact, the magnetars other than SGR
0501+4516 do not reproduce the apparent excesses at > 7keV in their spectral fit
(Nakagawa et al., 2009). It should also be mentioned that the spectra of persistent
emissions from these magnetars may be better fit by the superposition of a blackbody
component plus a power-law tail (Rea et al., 2007b,a, 2009; Vogel et al., 2014). The
power-law tails become important already ∼ 3−4keV in some cases. It is important
here, regardless of which model is better, that both of them indicate the existence of
the thermal component and that the temperatures and radii of the emission regions
inferred from the observed blackbody components are not much different between
the two cases. Note, however, that Comptonization effects, which are supposed to
be responsible for the formation of the high-energy tails in the spectra, are normally
associated with flows of charged particles along magnetic field lines (Thompson
et al., 2002), which will hit the magnetar surfaces intensely (Thompson et al., 2002;
Nobili et al., 2008). As a result, the atmospheric state may be different from what I
have considered in this chapter. As I know nothing of the mass and radius for these
magnetars, I simply adopt the canonical values, M = 1.4M⊙ and RNS = 10km, for
all of them.

With all of these caveats in mind, I present the phase-averaged polarization
angles and fractions for 5keV photons in Figure 3.28. As expected, the existence
of the hot spot is recognized from the increase in the polarization fraction around
η = γ = 45◦ for all of the cases except 4U 0142+61, in which the spot size is
comparable to the neutron star radius. In fact, the smaller the spot is, the larger
the enhancement becomes. These pictures are not changed qualitatively as long as

1The obvious abbreviations are employed for 1E 2259+586, 4U 0142+61, SGR 0501+4516, and
1RXS J17089.0-400910. The values are taken from Nakagawa et al. (2009).
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Figure 3.28: Phase-averaged polarization angles (upper panels) and fractions (lower
panels) at E = 5keV for the four magnetars: (a) 1E 2259+586, (b) 4U 0142+61, (c)
SGR 0501+4516, and (d) 1RXS J17089.0-400910.
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Figure 3.29: Phase-averaged polarization angles (upper panels) and fractions (lower
panels) for magnetar 1E 2259+586 at E = 0.9keV (left column), E = 0.5keV (middle
column), and E = 0.1keV (right column).
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the photon energy is higher than ∼ 1keV. The effects of the small spot radii are
also seen in the polarization angles in the parameter regions of η ≃ 90◦, γ ≃ 20◦,
except for the case for 4U 0142+61.

At lower energies, E ≲ 1keV, the phase-averaged polarization fraction may be
reduced as a consequence of the partial mode conversion at E ∼ Ead, and the
polarization angle is also affected. This is demonstrated in Figure 3.29 for magnetar
1E 2259+586 at the photon energies of E = 0.5 and 0.9keV. It is evident that
at E = 0.9keV (left column) the reduction of the polarization fraction is already
substantial, though the polarization angle is not so much affected. In contrast, at
E = 0.5keV (middle column), the polarization angle is also modified in some region
of η and γ, and, as a matter of fact, the photons are essentially unpolarized for all
configurations at this photon energy. At much smaller energies E ∼ 0.1keV (right
column), however, the mode conversion is frozen, and the polarization angles and
fractions return to those for nonconversion.

3.4 Summary

In this chapter, I have systematically computed the phase-resolved polarization an-
gles and fractions, which are one of the most important observables in future obser-
vations, for different photon energies and various configurations of the rotation axis
and the dipole magnetic field to facilitate the interpretation of observational data.
In so doing, I have accounted for the mode conversion, which was neglected in the
previous study (Taverna et al., 2015).

I have started with the reproduction of the previous results for Bp = 1013G
(Taverna et al., 2015). For that purpose, I have neglected the mode conversion
intentionally. I have found a good agreement, although the bending of photon
trajectories and modifications of the dipole magnetic field by general relativity are
not considered in my calculations. This suggests that these effects are rather minor.
I have then included the mode conversion and studied in detail how the results are
modified.

I have found that the adiabatic mode conversion occurs for high-energy photons
with E ≳ Ead ∼ 2keV and the polarization angle changes by 90◦. At E ≃ Ead,
the mode conversion occurs nonadiabatically and the E- and O-modes are mixed,
resulting in lower polarization fractions in general. At lower energies, the mode
conversion is frozen, the photons are all in the original E-mode, and the polarization
fraction returns to high values. The adiabatic energy Ead is actually a function of
photon energy, though, and vanishes at the cyclotron frequencies of the proton,
∼ 30 − 60eV. The polarization fraction is somewhat reduced at these energies
again, although the polarization angle is not affected. At very low energies, the
polarization fraction is lowered again, since the polarization-limiting surface gets
much closer to the neutron star and the polarizations are largely canceled among
photons coming from different parts of the neutron star surface.

I have also presented the semi-amplitude, i.e., the total variation of the polar-
ization angle (divided by a factor of 4) and the phase-averaged polarization fraction
following Taverna et al. (2015). I have divided the η-γ plane into 10 regions and
discussed the features in each region in detail. I have observed that high polarization
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fractions are obtained when η ≪ γ. The semi-amplitude is small in that case. The
mode conversion tends to reduce the phase-averaged polarization fractions.

I have then conducted more comprehensive investigations of both the phase-
resolved and averaged quantities, varying not only the configuration of the rotation
and magnetic axes but also the magnetic field strength and photon energy. I have
also considered the effect of the possible existence of a hot spot on the neutron star
surface. Although the dependence of the results on other parameters that specify
the properties of the neutron star, i.e., the mass, radius, and surface temperature,
has also been studied, I have found it minor, since they appear only in the adiabatic
energy through the density scale height of the atmosphere of the neutron star.

I have shown that in the absence of the mode conversion, the behavior of the
phase-resolved polarization angle in the E-ψ (rotational phase) plane can be divided
into three cases with η < γ, η = γ, and η > γ. In the first case, the polarization
angle oscillates around χp = 90◦. In the second case, it changes by 180◦, whereas in
the third case, it changes more than 180◦ during a single rotation of the neutron star.
Without the mode conversion, the phase-resolved polarization fraction is large at
high photon energies, as in the previous case. As the photon energy is lowered, the
polarization-limiting surface comes closer to the neutron star, and the cancellation
among photons originated from different parts of the neutron star surface tends to
decrease the polarization fraction. This is particularly the case at the rotational
phase of ψ = π/2.

Taking into account the mode conversion, I have demonstrated that the polar-
ization angle is changed by 90◦ at high photon energies E ≳ Ead. In the case of
η = γ, Ead becomes small at ψ = π/2, and the jump of the polarization angle occurs
accordingly at much lower energies at this rotational phase. The phase-resolved
polarization fraction is reduced by the mode conversion at E ≃ Ead, since it occurs
nonadiabatically at these energies and the E- and O-modes are mixed in some pro-
portions. At much lower energies, the mode conversion is frozen, and the results are
essentially the same as those without the mode conversion except at the cyclotron
energies of the proton ∼ 30 − 60eV for Bp = 1013G, where Ead vanishes and the
resultant adiabatic mode conversion lowers the polarization fraction a bit.

For a bit stronger magnetic field, Bp = 5 × 1013G, I have found that the 90◦

change of the polarization angle can occur twice or four times at E ≳ Ead during a
single rotation of the neutron star. This happens because the neutron star surface is
dominated at some rotational phases by the region that violates the condition given
in Equation (3.9), where the mode conversion occurs inside the O-mode photosphere,
in addition to the region that has a large value of tan θB and the effect of the mode
conversion is suppressed. The phase-resolved polarization fraction is modified in
two ways: since the polarization-limiting radius is larger, the polarization fraction
tends to be higher as a whole; the cyclotron energy is raised to ∼ 150− 300eV, and
the slight reductions of the polarization fraction have been observed at these photon
energies. I have also seen some variations with the rotational phase at E ≳ Ead. I
have found, in contrast, that the semi-amplitudes have an interesting pattern in the
η-γ plane according to the number of 90◦ changes in the polarization angle during
a single rotation of the neutron star.

For even stronger magnetic fields, the mode conversion tends to occur inside the
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O-mode photosphere. Although the reductions of the polarization fraction are still
visible at the cyclotron energies of the proton for Bp = 1014G, even they are gone
at Bp = 5× 1014G, and the results are completely the same as those neglecting the
mode conversion.

The phase-averaged polarization angles and fractions have been calculated for
Bp = 1013, 5 × 1013, and 1014G. The mode conversion is important at E = 5keV
in the first two cases. For Bp = 1013G, the polarization fraction is reduced, and the
polarization angle changes by 90◦ by the mode conversion. For Bp = 5× 1013G, in
contrast, the polarization fraction is lowered, because the observer sees not only the
region in which the mode conversion takes place outside the photospheres of the two
modes but also the region in which the mode conversion occurs between the two
photospheres. A complicated pattern of the polarization angles in the η-γ plane is
also produced in this case. I have also demonstrated that the polarization angles
and fractions depend strongly on the photon energy.

I have discussed the modifications that nonuniformities in the surface temper-
ature may make in the polarization. In fact, I have considered the situation in
which the thermal emissions are limited to the hot spots located at the magnetic
poles. I have shown for Bp = 5 × 1014G, at which the mode conversion occurs in-
side the O-mode photosphere, that the cancellation is somewhat relaxed, and the
phase-averaged polarization fraction is increased in the vicinity of η = γ = 45◦ and
η = 90◦, γ = 20◦. The smaller the spot is, the larger this effect becomes. The
phase-averaged polarization angle also changes by 90◦ in these parameter regions.

For Bp = 1013G and 5× 1013G, the mode conversion again becomes important.
In fact, in the former case, the condition given in Equation (3.9) is always satisfied
at E = 5keV, and the mode conversion occurs except when E < Ead holds because
of large values of tan θB. I have found that as the hot-spot size becomes smaller,
the latter condition is met only at some limited configurations, and the polarization
fractions are raised in general. The phase-averaged polarization angle is further
changed by the mode conversion in these cases.

At Bp = 5 × 1013G, the neutron star surface is divided into two regions: the
polar region, where the mode conversion occurs inside the O-mode photosphere and
the E-mode photons are emitted, and the equatorial region, in which the mode
conversion produces the O-mode photons. Since the two regions have nearly equal
areas, the polarizations are canceled almost completely if the entire surface radiates
these photons. In the presence of the hot spot, in contrast, I have demonstrated
that the polarization fractions are increased, since the radiation is limited to the
polar region and the cancellations tend to be suppressed. I have also shown that
the polarization angles are little affected by the mode conversion.

I have finally considered four of the existing magnetars for which the magnetic
field strength, surface temperature, and hot-spot size are estimated from observa-
tions. Realizing the possible caveats in my interpretation of the observations and
modeling of the atmospheres of these magnetars, I have applied the theory to cal-
culate the phase-averaged polarization angles and fractions for these objects. It
is found that, under the assumption that my models are indeed applicable, the
imprints of the mode conversion will manifest themselves only at low energies,
E ≲ 1keV, in magnetar 1E 2259+586, which has the lowest magnetic field strength,
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Bp ∼ 5 × 1013G, among the four, and that they will not be observed with the gas
pixel detectors aboard IXPE Weisskopf et al. (2013), XIPE Soffitta et al. (2016)
and eXTP Zhang et al. (2016), which are all based on the photoelectric effect and
of which operational energy is above 2keV. I will have to wait for polarimeters
employing the Bragg reflections Marshall et al. (2013).

In this chapter, I ignore general relativistic effects such as ray bendings and pos-
sible modifications of dipole magnetic fields. Although they are likely to be minor,
they have to be accounted for in the quantitative comparison with observations and
the determination of the configuration of the neutron star thereby. I have also as-
sumed for simplicity that the photons are all in the E-mode initially. In reality,
there are some O-mode photons as well. In order to handle them properly, I need
to solve the transport equations in the atmosphere of the neutron star. Circular
polarizations that are entirely neglected in this chapter are produced in principle
(Heyl and Shaviv, 2002; Lai and Ho, 2003a), in addition to the linear polarizations
considered in this chapter. Hence, they have to be investigated quantitatively in the
future. Although I have focused on the thermal emissions in this chapter, nonther-
mal components are also known to exist at E ≲ 10keV in the magnetar radiation
(Rea et al., 2007b,a, 2009; Enoto et al., 2010; Vogel et al., 2014). Then, scatterings
in the magnetosphere should be taken into account in considering these emissions
(Nobili et al., 2008; Fernández and Davis, 2011; Taverna et al., 2014). This is even
more true at higher energies, E ≳ 10keV, where these nonthermal emissions are
supposed to be dominant.

3.5 Derivations of Equations (3.2) and (3.3)

This section gives the supplementary explanation to derive Equations (3.2) and
(3.3). I start with the Euler-Heisenberg Lagrangian

L = −I
4
+

e2

8π2

∫ ∞

0

dη

η3
e−η

[
iη2

√
−K
4

cos(X+) + cos(X−)

cos(X+)− cos(X−)
+B2

Q +
η2

6
I

]
, (3.21)

in which X± are given as

X+ =
η

BQ

√
−I
2
+ i

√
−K
2

, X− =
η

BQ

√
−I
2
− i

√
−K
2

, (3.22)

with two Lorentz invariants: I = 2(|B|2 − |E|2), K = −(4E ·B)2. It contains the
one-loop level of the quantum correction to the classical Lagrangian of electrody-
namics.

Normalizing these invariants as IN = I/B2
Q and KN = K/B4

Q, I can rewrite the
Euler-Heisenberg Lagrangian as

L = −
INB

2
Q

4
+

e2

8π2

∫ ∞

0

dη

η3
e−ηB2

Q

×
[
iη2

√
−KN

4

cos(X+N) + cos(X−N)

cos(X+N)− cos(X−N)
+ 1 +

η2

6
IN

]
, (3.23)
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where X+N and X−N are X+ and X− expressed in terms of IN and KN, respectively.
Then, the parameters q and m are derived from this form of the Lagrangian as

q = − 32

B4
Q

∂L
∂KN

⏐⏐⏐⏐
KN=0

, m = − 16

B4
Q

∂2L
∂I2N

⏐⏐⏐⏐
KN=0

. (3.24)

Note that there is an alternative expression that appears different but is actually
equivalent:

m =

∫ ∞

0

dη
e2e−η

8bπ2η2

{
2b2η2

1

tanh3(bη)
− bη

1

sinh2(bη)
− (1 + 2b2η2)

1

tanh(bη)

}
. (3.25)

This can be obtained by using some formulae for the hyperbolic functions.



4
Conclusion

In this thesis, I considered the vacuum polarization which is one of the fundamen-
tal processes in nonlinear QED. In Chapter 2, I investigated the vacuum polar-
ization itself in the external electromagnetic plane waves. I derived the induced
electromagnetic current, which is proportional to the vacuum polarization tensor,
by Schwinger’s proper-time method. The refractive index of the probe photon was
computed by solving the modified Maxwell equation. I take into account the vari-
ations of the external field by utilizing the gradient expansion. I assumed that the
vacuum polarization tensor has three tensor components, two of which correspond
to the real polarization modes of the electromagnetic wave and the other is gauge-
dependent.

The refractive index of each polarization was first computed for the case of the
crossed field, which is the long wavelength limit of the plane wave. In this case, the
refractive indices are different for the two eigenmodes, which is the birefringence of
the vacuum. It was found that the expressions of the eigenmode vectors are the same
as those in the weak-field limit of the crossed field. The refractive index depends
on the external field strength and the energy of the probe photon. Although the
refractive index of the crossed field has been computed for the arbitrary probe photon
energy in the previous studies, it is not the case for the external field strength. The
refractive index has been investigated in the case that the external field strength is
not much stronger than the critical field strength and the case that a special limit of
the external field strength and the probe photon energy. In my study, the refractive
index of the crossed field can be computed without such limitations on the field
strength and the photon energy.

I then computed the refractive index for the case that the crossed field has the
gradient of the field strength. It was found that the field variation mainly changes
the imaginary part of the refractive index. The imaginary part of the refractive
index means the damping of the electromagnetic wave, which may correspond to
the creation of the electron-positron pair. Such situations would be realized in laser
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facilities that emit high energy photons, e.g., X-ray laser.
In Chapter 3, I considered the influence of the vacuum polarization to the po-

larization of the surface radiation from the isolated neutron star. It is known that
neutron stars are endowed with strong dipole magnetic fields and the vacuum in the
magnetosphere around the neutron star becomes birefringent. The polarization of
the emission further evolves in the magnetosphere according to the direction of the
magnetic field. If the gas atmosphere consisting of plasma exists on the neutron star
surface, the conversion of the polarization modes may occur because of the balance
between the dielectric properties by the plasma and the vacuum. This mode conver-
sion is thought to occur adiabatically when the energy of the photon propagating
therein is higher than a few keV. The point of the mode conversion moves to the
inward of the atmosphere, where the plasma density is higher, as the strength of
the magnetic field increases. It may be inside the photosphere for the strongly mag-
netized neutron stars such as magnetars. In such cases, I assumed that the effect
of the mode conversion is not manifested. I estimated the polarization angle and
fraction, which are the observable quantities in the polarimetry, with considering
these effects.

I first calculated the polarization for the case that the radiation is emitted from
the entire surface of the neutron star. To see the effects of the configuration of
the dipole magnetic field, I ignored the mode conversion. Then I took into account
it for some different magnetic field strengths. Both the phase-resolved and the
phase-averaged polarization properties were computed. It is found that the strongly
polarized emission is generally observed when the magnetic field is strong. When
the magnetic field is not so strong (Bp ≲ 1013G), the polarization angle differs by
90◦ between in the low energy regime (≲ 1keV) and in the high energy regime
(≳ 2keV). This is because the E-mode is dominant in the low energy regime, on
the other hand, most of the radiation is O-mode. In the energy between them, the
polarization fraction is low because the polarizations of the O-mode and the E-mode
photons cancel each other.

I next investigated the case that the emission area is limited to the hot spot,
which covers a part of the surface around the magnetic pole. In this case, it was
found that the emission area of the surface seen by the observer decreases in some
rotational phase and that the phase-averaged polarization fraction in some config-
urations increases. The effect of the mode conversion tends to be hidden in the
photosphere near the magnetic pole, where the magnetic field is strong. Finally,
I computed the cases assuming four real magnetars with taking into account the
dipole magnetic field and emission radius. The effect of the mode conversion cannot
be seen in the energy range of 1 − 10keV because of magnetars’ strong magnetic
fields. Therefore, the strongly polarized emission from a magnetar is expected in
the next-generation polarimetry satellites. In contrast, one of the four magnetars,
which has the weakest magnetic field among them, shows the cancellation of the
polarization in the energy below 1keV. Thus, the strongly polarized emission is ex-
pected in the radiation of magnetars with the magnetic field of Bp ≳ 1014G and the
effect of mode conversion would be observed in the emission of the not-so-strongly
magnetized (Bp ≲ 1013G) neutron stars in the near future.



A
Units of Electrodynamics

I use the Heaviside-Lorentz units in treating the vacuum polarization itself, and the
cgs Gauss units are utilized in the application to the polarimetry. There are the
multiple cgs units in electrodynamics, which is confusing. So I explain the units of
the electrodynamics here. The explanation is mainly based on the explanation in
the famous textbook by Jackson (Jackson, 1975). The basic units in the physical
quantities in the electrodynamics are the mass (M), the length (L) and the time
(T ). I show the dimension of a unit with a bracket, e.g., the dimension of the force
f is shown as [f ] = [ML2T−2]. The unit is defined by the fundamental laws of
electrodynamics.

First fundamental law is the Coulomb law. This gives the force between two
particles separated by a distance r with electric charges q and q′, which is expressed
with the proportional constant k1 as

fCoulomb = k1
qq′

r2
. (A.1)

It is necessary to fix the dimension of k1 to determine the dimension of the charge.
Next fundamental law is the Ampère law. It describes the force per the unit

length of electrical leads dfAmpèere/dl as

dfAmpère

dl
= 2k2

II ′

d
, (A.2)

where the current of I and I ′ flows in the two electrical leads, respectively, and the
distance between them is d. k2 is the proportional constant. The current is generally
defined as the change of the charge with time and it is known that the dimension of
k1/k2 is [k1/k2] = L2T−2 at this stage. The value of k1/k2 is also known to be given
as

k1
k2

= c2. (A.3)
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Now one can connect the dimension of the electric charge and current with that of
the force.

The dimension of the magnetic flux density B, which is called the “magnetic
field” in the other part of this thesis, is defined by the Biot-Savart law. The magnetic
flux density is defined as the force per unit current. The strength of the magnetic
flux density at the point separated from an infinitely long lead through which the
current I flows by the distance d is expressed as

B = 2k2α
I

d
, (A.4)

where α is again the proportional constant. From this expression, the ratio of the
electric field E and the magnetic flux density B is found to be [E/B] = [LT−1α−1].

Finally, the Faraday law of electromagnetic induction is considered. This law
describes that the electromotive force induced by the current circuit is proportional
to the change rate of the magnetic flux penetrating the circuit, which is expressed
as

∇×E + k3
∂B

∂t
= 0, (A.5)

where k3 is the proportional constant. The dimension of k3 is given as [k3] = [α−1]
because the two terms in the left hand side have the same dimension.

These laws described above are summarized into the Maxwell equations

∇ ·E = 4πk1ρ, (A.6)

∇×B = 4πk2αJ +
k2α

k1

∂E

∂t
, (A.7)

∇×E + k3
∂B

∂t
= 0, (A.8)

∇ ·B = 0. (A.9)

From these equations, the relation k3 = 1/α is found. The evolution of the transverse
plane electromagnetic wave is described as

∂2B

∂t2
=

k1
k2k3α

∂2B

∂x2
. (A.10)

We know that the electromagnetic wave propagates at the speed of light and

k1
k2k3α

= c2 (A.11)

is obtained. Then, from Equation (A.3),

k3 =
1

α
(A.12)

is known.
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There are four quantities E, D, B and H in the Maxwell equation and the
relation between E, D and that between B, H are necessary. They are defined as

D = ε0E, (A.13)

H =
1

µ0

B, (A.14)

in the (normal) vacuum so that the Maxwell equations are easy. First I explain
the emu (electromagnetic) units. In the cgs emu unit, k2 is defined to be unity.
Therefore, k1 is fixed as k1 = c2. The Gauss law (A.6) is given as

∇ ·D = 4πc2ρ. (A.15)

The electric flux density is determined as

D =
1

c2
E, (A.16)

so that the Gauss law take the form of

∇ ·D = 4πρ. (A.17)

The coefficient α in the Ampère-Maxwell law

∇×B = 4παJ +
α

c2
∂E

∂t
(A.18)

is fixed to be unity and this law is expressed as

∇×B = 4πJ +
∂D

∂t
. (A.19)

The left hand side contains the magnetic flux H . The relation between the magnetic
flux H and the magnetic flux density B is defined as

H = B, (A.20)

so that the equation is simple. Then, k3 is determined to be unity and the other
Maxwell equations are

∇×E +
∂B

∂t
= 0,

∇ ·B = 0. (A.21)

On the other hand, k1 equals unity in the cgs esu (electrostatic) units. Then,
k2 = 1/c2 is satisfied. α and k3 are defined to be unity as in the cgs emu units. D
and H are

D = E, H = c2B. (A.22)

In the cgs Gauss units, k1 is determined to be unity as the esu units, however,
H = B is satisfied. To satisfy this relation, α is fixed as α = c. Although the
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Heaviside-Lorentz units are similar to the Gauss units, the Maxwell equations do
not contain 4π in the Heaviside-Lorentz units. From this, the Heaviside-Lorentz
units are called rationalized. In contrast, the units which contain 4π in the Maxwell
equations are called non-rationalized. In the Heaviside-Lorentz units, k1 and α are
defined as k1 = 1/4π and α = c. The Maxwell equations in the cgs units are
summarized in Table A.1.

In the medium, the dielectric polarization P and the magnetic polarization M
are taken into account in the Maxwell equations. The relations between D, H and
these are given as

D = ε0E + χPP , (A.23)

H = µ0B + χMM , (A.24)

where χP and χM are the dimensionless quantities. They are defined as χP = χM = 1
in the rationalized units and defined as χP = χM = 4π in the non-rationalized units.
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