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1.1 Ionic Liquids 

 

1.1.1 Characteristics of Ionic Liquids 

 

     The liquids which are the materials made from ions and synthesized at low 

temperatures are called as “Ionic Liquids”. In recent, ionic liquids have gain much 

attentions in all over the world, starting from the question that why they have low melting 

points to the behavior of their unique properties which usual liquids can not have. The 

one of the most noteworthy characteristic of ionic liquids for researchers who would like 

to use might be non-volatile liquids. Liquids can not avoid being evaporated, however, 

some of ionic liquids can exist in stable in the air, have no vapor pressure, dissolve several 

materials, and have large ionic conductivity. Therefore, it has been expected to apply them 

to several science fields [1]. 

     Many of them consist of organic ions and complex ions. Researchers have been 

attracted this point because they can design them, and try to find several physical 

properties and functions. Moreover, a suitable liquid can be synthesized by changing the 

cation and anion pair. As you can see, the applied filed of ionic liquids are in a very wide 

range. 

     It seems that ionic liquids have been started to be used in the nineteenth centuries.  

Researchers engaging in the electrochemistry have focused on them as the solvent of 

molten salt which can transfer the electron at low temperatures. However, the problem 

was not stable to the air and water. For this problem, Wilkers et al. [2] has successfully to 

synthesize the ionic liquids using BF4
- which was stable to the air and water. Following 

this report, ionic liquids have been focus on as reaction and separation fields which was 

non-volatility, non-flammability and thermal stability as well as the electrolyte [3, 4]. 

Then, they have gained much attention in the electrochemistry [5-13]. Other application 

will be described later. The detail of the background should be referred with the Wilkes’ 

review on 2002 [14]. As recent ionic liquids, it is defined the salts which have a melting 

point lower than 100 oC [14-16]. 

    As described above, ionic liquids are consisted from cation and anion. The typical 

cations are imidazolium-based, pyrrolidinium-based, pyridinium-based, piperidinium-
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based, ammonium-based, or phosphonium-based one. The typical anions are halogen ions 

(Cl-, Br-, I-), tetrafluoroborate (BF4
-), hexafluorophosphate (PF6

-), 

bis(trifluoromethanesulfonyl)amide ([NTf2]
-) [17-19]. The typical structures are shown 

in Fig. 1.1. 

 

 

 

Fig. 1.1 The classification of the typical structure of ionic liquids [17] (Copyright 2017 

by J. Mol. Liq. Reproduced with permission of J. Mol. Liq. by Copyright Clearance 

Center’s RightsLink® service) 
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     The main characteristics of ionic liquids are following, while it should be noted that 

all ionic liquids have all following characteristics, and the degree of these characteristics 

changes depending on the constitution of cation and anion. 

 

・Non-flammability 

・High thermal stability 

・High electrochemical stability 

・High ionic conductivity 

・Easily design of their properties and functions 

 

     Here, for considering the application to the electrochemistry, the characteristic of 

the electrochemistry which means a wide electrochemical window is described. Ionic 

liquids can have high electrochemical windows of 3 ~ 6 V, while some ionic liquids have 

that of around 2 V [20-21], because they are mostly composed from low reactive ions. It 

should be noted that the potential range becomes lower with the addition of some 

molecules such as precursors [22-23]. Lane [24] has reviewed the mechanism of the 

decomposition of cations and classified their stabilities (Fig. 1.2). 

 

 

 

Fig. 1.2 The estimated cathodic stability of main types of cations [24] (Copyright 2012 

by Electrochim. Acta. Reproduced with permission of Electrochim. Acta by Copyright 

Clearance Center’s RightsLink® service) 
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The anodic stabilities of main types of anions have also been reported as follows: 

[TFSA]- > [FAP]- > [TfO]- > [DCA]- >[TFA]-, in which it means that [TFSA]- has high 

stability [25]. It should be noted that their viscosity would occasionally be challenging 

for the application, while there are several good characteristics. In basic, the viscosity of 

ionic liquids is higher than water, and some ionic liquids have several hundred times than 

water at room temperature [26]. For example, the ionic liquid of 1-Butyl-3-

methylimidazolium nonafluorobutanesulfonate has 323 cP [26]. The viscosity of other 

ionic liquids can be referred the report by Hagiwara et al. [26]. Therefore, it is necessary 

to choose the ionic liquids which have low viscosity, and/or decrease the viscosity with 

the increase of the temperature [27-28] in order to overcome these challenging points of 

ionic liquids. 
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1.1.2 Application of Ionic Liquids 

 

     Ionic liquids are applied for a wide range fields owing to their unique characteristics 

described in previous section, such as the synthesis of nanomaterials, biochemical, 

batteries, electrodeposition of metals and semiconductors, capacitors, dye-sensitized solar 

cells and so on. The examples of application fields are shown in Fig. 1.3. Here, the 

application in the electrodeposition will be focused on as following. 

 

 

 

Fig. 1.3 The examples of the applications of ionic liquids [17] (Copyright 2017 by J. 

Mol. Liq. Reproduced with permission of J. Mol. Liq. by Copyright Clearance Center’s 

RightsLink® service) 
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The application of ionic liquids to the electrodeposition 

The one of the promising application field is the electrodeposition of reactive 

metals and semiconductors [29]. The characteristics of ionic liquids especially the wide 

electrochemical windows can help to electrodeposit metals and semiconductors. These 

studies seem to have started been from the Hall-Heroult process which is the 

commercialization of the Al electrodeposition [1]. The electrodeposition using ionic 

liquids would also be helpful for the metals which can be electrodeposited in aqueous 

solvents because they do not produce the hydrogen evolution during the electrodeposition, 

which prevent the hydrogen embrittlement, owing to their aprotic properties. Figure 1.4 

shows the elementals which can and can not be electrodeposited in aqueous solvents [30]. 

 

 

 

Fig. 1.4 The table of elements which can be electrodeposited in aqueous solvents, in 

which the elements which can not be electrodeposited in aqueous solvents are also 

shown. [31] (Copyright 2015 by Solid State Mater. Sci. Reproduced with permission of 

Solid State Mater. Sci. by Copyright Clearance Center’s RightsLink® service) 
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In those electrodeposition, it has been reported that ionic liquids based on 

trifluoromethanesulfonate (CF3SO3
-), bis (trifluoromethanesulfonyl) amide 

[(CF3SO2)2N
-], and tris (trifluoromethanesulfonyl) methide [(CF3SO2)3C

-], which are the 

hydrophobic anions, should be used to be stable in the air [32, 33]. Based on these 

background, the electrodeposition of less reactive metals has been conducted: Zn [34-36], 

Cu [37-40], Ag [41-44], Pt [45,46] etc.  

In the electrodeposition of reactive metals and semiconductor, air- and water-stable 

ionic liquids have also been used: Al [47-50], Li [51, 52], Ta [53-57], Ge [58-60], Si etc. 

The study of the Si electrodeposition will be described later.  
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1.2 The Demand of Si 

 

 

     Si is one of the key material in industry such as semiconductor electric devises, 

solar cells, MEMS, Li ion batteries [61, 62], etc. Especially, in considering the sustainable 

energy in the future, the demand of Si for solar cells will continuously increase (Fig. 1.5). 

It has been considered that the CO2 emission cause the global warming, and it is 

prospected that the amount of the CO2 emission in 2030 will increase with the 

development of the industries in China and India [63]. In recent, United Nations 

Framework Convention on Climate Change, COP21 was held in Paris, in which it has 

been decided to suppress the temperature increase within 2 oC for creating the low-carbon 

society not depending on the fossil fuels [64]. For this, the photovoltaic (PV) power 

generation has been attracted as one of the renewable energy. It is no doubt that several 

countries will pay attention to the enlargement of the solar cell industry. It is predicted 

that this market will increase to 45 ~ 55 GW per a year in 2020 [65]. In Japan, the New 

Energy and Industrial Technology Development Organization also showed us the road 

map for developing the solar cells by 2050 as called “PV2030+” (Fig. 1.6) [66], in which 

the road map to fabricate the solar cells with the cost less than 7 JPY/kWh is described. 
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Fig. 1.5 The shipment of solar cell in the world [67] (Copyright 2005 by Progress in 

Photovoltaics. Reproduced with permission of Progress in Photovoltaics by Copyright 

Clearance Center’s RightsLink® service) 

 

 

Fig. 1.6 The roadmap of PV 2030+ [67] (Copyright 2005 by Progress in Photovoltaics. 

Reproduced with permission of Progress in Photovoltaics by Copyright Clearance 

Center’s RightsLink® service) 
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1.2.1 Si-based solar cells 

 

     Among the various types of solar energy conversion, Si-based solar cells are 

attractive because the technology and its stability have been reliably established over 

many years [68-71], especially the crystalline Si solar cells are the dominant in the solar 

cell industry [67], which can achieve the conversion efficiency over 25 % [68-74]. In the 

crystalline Si-based solar cells, high purity Si (6 ~ 7N) with semiconductor characteristic 

is used. As the fabrication process of the crystalline Si and solar cells, the following 

process [75] are widely used; metallurgical grade Si (MG-Si) was fabricated from silica 

stones, quartz sand, and diatomaceous earth with wood, charcoal, and coal. These MG-Si 

will be gasified to silane gases such as SiHCl3 and SiH4 by the reaction of MG-Si with 

H2 and SiCl4 to fabricate 11N Si. Then off-grade Si or scrap Si are used as solar grade Si 

(SG-Si). For the fabrication of single-crystal or poly-crystalline Si, the Czochralski (CZ) 

method or the floating-zone (FZ) method are conducted. To fabricate the solar cell 

structure, several treatments such as doping are performed. The simplified procedure is 

described in Fig. 1.7 by the author. 
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Fig. 1.7 The conventional process to fabricate the crystalline Si and solar cell 

 

 

As described above, the conversion efficiency of crystalline Si solar cells is higher 

than other Si-based one, while there are challenging to fabricate them with low cost and 

saving the resources. In considering the future as described above, the solar cells with 

high efficiency will be necessary fabricated by low cost. For this, Si thin film solar cells, 

which can save the Si source, has been attracted. The thickness of Si layer in thin film 

solar cells are thinner than crystalline Si solar cells by 1/100. The conversion efficiency 

is not higher than crystalline one (7 ~ 10 %), while there are some characteristics such as 

the small temperature dependence of the conversion efficiency. In the Si thin film solar 

cells, amorphous Si and/or microcrystalline Si are used, in which several ~ several tens % 

H are incorporated. Thus, they are sometimes called as hydrogenated amorphous silicon 

or hydrogenated microcrystalline Si. 

To develop the Si thin film solar cells, it has been researching to obtain the high 

efficiency. A relatively high efficiency by applying nanostructure to the thin films has 

been reported, and then the Si thin film solar cells with nanostructure have been attracted 
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as a next-generation solar cells [76-84]. For example, M. A. Green [76] has reported that 

the conversion efficiency over 40 % could be achieved by laminating several layers with 

Si quantum dots super lattice. W. J. Nam et al. [82] has reported that the conversion 

efficiency of 8.2 % has been achieved by forming a-Si:H nanostructured array with the 

length of 400 nm, and E. C. Garnett et al. [80] has also reported that a radial nanowire 

structure could increase the conversion efficiency of 0.5 % and obtain higher efficiency 

with decreasing the resistance of nanowire.  

 

1.2.2 Fabrication process of Si thin film solar cells 

 

As the fabrication method of these thin films and nanostructures, plasma-enhanced 

chemical vapor depositions (PECVD) has commonly used [85-88], in which SiH4 is 

decomposed by glow discharge and the deposited on a glass or plastic substrate. The 

fabrication process is simply described as follows; SiH4 gas is induced to the vacuumed 

chamber. SiH4 gas decomposed to the radical SiHn (n = 0 ~ 3) and H by the generated 

plasma. SiH3 is attached to the substrate, and then dangling bonds are formed the 

abstraction reaction by SiH3 radical and/or voluntary breaking off the terminated 

hydrogen. The reaction of these dangling bonds and SiH3 radical is considered to result 

in the formation of amorphous Si. Doping can also be conducted by using B2H6 and PH3, 

and be controlled from 10-11 ~ 10-2 S/cm [85]. In fabricating Si thin films, the operating 

temperature is around 200 oC which is lower than that in fabricating crystalline Si (over 

1000 oC). However, it has still challenging to fabricate thin films in the fabrication cost, 

which can not avoid using high vacuum and high voltage equipment, and especially, it is 

not still easy to fabricate the nanostructures by above technologies. 
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1.3 The Electrodeposition of Si 

 

 

     Electrodeposition have been widely used as a useful fabrication method of thin 

films and/or nanostructure, especially of metals in the past, in a large area without using 

high vacuum and high voltage equipment [89]. On the other hand, the semiconductor 

electrodeposition such as Si can also be conducted with the recent increase of the research 

using ionic liquids. 

Electrodeposition can also potentially be a way to fabricate the Si thin films solar 

cells because they have advantages in successive processing of the solar cell structures 

with nanostructures in a large area without using high vacuum and high voltage 

equipment. These advantages could provide an effective fabrication process of the Si thin 

films solar cells with high efficiency in the future. Based on these background, there are 

several researches to fabricate Si structures by electrodeposition. 

In the Si electrodeposition, non-aqueous solvents should be used as electrolytes due 

to the very negative reduction potential and the high reactivity with water of almost Si 

precursor. There are three types of ionic liquids for the Si electrodeposition; molten salts, 

ionic liquids, organic solvents. Here, the study in ionic liquids will be described for 

considering the characteristics of the ionic liquids described above, while there are several 

studies in molten salts [90-100] and organic solvents [101-111] on focusing on their 

characteristics.  

 

 

The electrodeposition of Si in ionic liquids 

     Among of three types of non-aqueous solvents, ionic liquids exhibit the advantages 

such as a low temperature usage, a wide electrochemical window, etc. Following these 

characteristics, several researches have been performed. 

     It seems that the electrodeposition in ionic liquids has firstly reported by Katayama 

et al. [112] in 2001. In that study, they have electrodeposited Si in 1-ethyl-3-

methylimidazolium hexafluorosilicate at 90 oC, while opinions are divided whether that 

ionic liquid can be classified as ionic liquids because that ionic liquids are called as low 
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temperature molten salt by some researchers. In that study, the condition of the 

electrodeposited Si was oxidized one, resulting in the difficulties to decide whether they 

were semiconductor or not as well as the process of oxidation of the films because they 

were exposed to the air after the electrodeposition. From these results, Katayama et al. 

has not reported the aspects relating to the semiconductor, while it is seemed to be able 

to electrodeposit Si in ionic liquids at low temperature. In 2004, it has been reported that 

the semiconductor Si can be electrodeposited by S. Zein El Abedin et al. [113]. They 

electrodeposited Si in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide 

([Py1,4] TFSA) saturated with SiCl4 using a highly oriented pyrolytic graphite (HOPG) as 

working electrode, in which in situ current/voltage tunneling spectroscopy was used, and 

those techniques indicated a symmetrical band gap of 1.0 ± 0.2 eV that the intrinsic 

elemental semiconductor of Si have typically have. It was challenging to maintain the 

adhesion of Si to the HOPG substrate because there was a weak interaction between the 

electrodeposited Si and the substrate. For this, Borisenko et al. [114] and Al-Salman et al. 

[115] have exhibited to use Au substrate as working electrode, and same semiconductor 

property was confirmed and the Si thin films with 1 m thickness and the spherical 

morphology of the small grain of 10–50 nm was obtained in 1-butyl-1-

methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Py1,4] TFSI) with 0.1 M SiCl4, 

while it has also confirmed the oxygen inclusion to the films due to the exposure to the 

air in the analysis. Bebensee et al. [116] have also confirmed the elemental Si by X-ray 

photoelectron spectroscopy analysis in the electrodeposited Si thin films in [Py1,4] TFSA 

with 0.1 M SiCl4. At the almost same time, Nishimura et al. [117, 118] has been reported 

the electrodeposition of Si from different ionic liquids of in trimethyl-n-hexylammonium 

bis (trifluoromethylsulfonyl) imide (TMHATFSI) which is the most popular ionic liquids 

as a hydrophobic at room temperature with high stability against the reduction reaction 

[119, 120]. This ionic liquid also exhibited the well dissolution of SiCl4 by van der Waals 

force, and could hinder the hydrolysis of SiCl4. Other ionic liquids and precursor also 

have been used for the Si electrodeposition. Martineza et al. [119] have used N-butyl-N-

methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide (BMPy-TFSA) with SiCl4 and 

SiBr4, and Pulletikurthi et al. [120] have used 1-butyl-1-methylpyrrolidinium 

trifluoromethylsulfonate ([Py1,4] TfO) and 1-butyl-1-methylpyrrolidinium 
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tris(pentafluoroethyl)-trifluorophosphate ([Py1,4] FAP). Pulletikurthi et al. has also 

investigated that the difference of anion in ionic liquids, in which in situ STM revealed  

the differences in the interfacial behavior of [Py1,4] FAP and [Py1,4] TfO with SiCl4, 

resulting in an influence on the deposition process. As for the reaction mechanism of the 

Si precursor in ionic liquids, Nishimura et al. [121] has reported that the species of SimCln 

might be generated during the reduction of SiCl4 in TMHATFSI from in-situ Raman 

measurement. Komadina et al. [122] has reported that the charge efficiency of the Si 

electrodeposition was estimated as 190 ~ 250 % for four-electron reduction from 

electrochemical quartz crystal microbalance (EQCM) method, while it should also be 

noted that those EQCM analyses might include many deviations in the assumptions for 

accurate estimation of the mass in the study of the Si electrodeposition, and that the 

condition of the inclusion of ionic liquids were assumed, resulting in the overestimation 

of the charge density. 

 

 

  

Fig. 1.8 The examples of the Si thin films electrodeposited (a) at -2.7 V vs. Fc/Fc+ in 

[Py1,4] TFSI with 0.1 M SiCl4 [113] (Copyright 2004 by Electrochemistry 

Communications. Reproduced with permission of Electrochemistry Communications by 

Copyright Clearance Center’s RightsLink® service) (b) at -2.0 V vs. Pt QRE in 

TMHATFSI with 0.1 M SiCl4 for 14,400 s [118] (Copyright 2008 by Electrochem. Solid-

State Lett. Reproduced with permission of Electrochem. Solid-State Lett. by Copyright 

Clearance Center’s RightsLink® service) 

 

(a) (b) 
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     Si nanostructures have also been fabricated by some researchers as well as the thin 

films. It seems that Al- Salman et al. and [123] Mallet et al. [124] has firstly reported the 

electrodeposition of Si nanowires in [Py1,4] TFSA with 0.5 and 1.0 M SiCl4 with using a 

polycarbonate membrane, in which the Si nanowires with several diameters of 400, 110, 

90 and 15 nm were electrodeposited though they were randomly formed. Three 

dimensionally ordered macroporous (3DOM) [125] silicon films have been formed in 

[Py1,4] TFSA with 0.1 M SiCl4with using an ordered polystyrene (PS) templates by Liu 

et al. The sphere of diameters was 235 nm, 455 nm and 515 nm, and then electrodeposited 

films shows a bandgap in the near infrared region, while there not perfectly 

electrodeposited in all areas. In addition, Ishibashi et al. [126] have reported that Si 

nanopillars were able to be fabricated in TMHATFSI with 0.5 M SiCl4 on the substrate 

prepared by UV-nanoimprint lithography was employed, in which the thickness of resist 

was 90-100 nm, and mold feature diameter was 150 nm, with a pitch of 450 nm. 

  



Chapter 1 

18 

 

 

 

 

Fig. 1.9 The example of the fabrication of Si nanostructures; (a) the preparation of the 

patterned substrate by UV-nanoimprint lithography technique, (b) the schematic images 

of the prepared patterned substrate, and (c) the electrodeposited Si nanopillars [126] 

(Copyright 2013 by ECS Trans. Reproduced with permission of ECS Trans. by 

Copyright Clearance Center’s RightsLink® service) 

 

 

 

 

 

 

 

(a) 

(b) 
(c) 
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1.4 Strategy of this study 

 

 

     As described, Si is widely used in various fields, and it is thought that the demand 

of Si continuously increases in the future, especially for Si solar cells application. For the 

fabrication of Si, it has been studied via dry processes. However, these approaches 

occasionally face difficulties in depositing nanostructures in a large area as well as the 

fabrication cost due to the high voltage and high vacuum environment.  

On the other hand, the electrodeposition has advantages in fabricating 

nanostructures with nm order in a large area without using high voltage and high vacuum 

environment. Following these characteristic and the recent availability of ionic liquids, 

the fabrication of Si by electrodeposition has been attracted as an alternative approach. 

Although there are several studies of Si electrodeposition in ionic liquids, it still has 

challenging in the decrease of impurities in the films and the elucidation of reaction 

mechanism. The reason of these difficulties seems to be strongly related to the insufficient 

clarification of the reaction system in utilizing the ionic liquids in the electrodeposition, 

while there are many studies of the electrodeposition in ionic liquids. It is considered that, 

especially in the Si electrodeposition, the impurities inclusion might relate to the 

uncertainty of the reaction mechanism. It also indicates that comprehensive 

understanding of the reaction mechanism will be necessary for the realization that the Si 

electrodeposition could be controlled more precisely based on the proper understanding 

of the reaction mechanism, and the impurities inclusion in the films could be suppressed 

in the future. Therefore, the reaction of the Si electrodeposition in ionic liquids was 

analyzed in this thesis work focusing on the molecular level understanding at the solid-

liquid interface with the view point of establishing the reaction analysis system in non-

aqueous solvents. In this thesis work, trimethyl-n-hexylammonium 

bis(trifluoromethylsulfonyl)imide (TMHATFSI) which has ammonium based cation and 

sulfonyl based anion was chosen as the ionic liquid because this ionic liquid has relatively 

low viscos (250 mPa s at 25 C) and the solubility of SiCl4 is high (up to 1.0 M) compared 

with other hydrophobic ionic liquids. Such characteristics, especially basing on 

hydrophobic characteristics, are important for the electrodeposition of Si. 
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     In order to analyze such reaction at the solid-liquid interface, several interfacial 

techniques should be used. For this, the combination of experimental measurement and 

theoretical analysis is focused on as a powerful tool to elucidate the mechanism. Based 

on these frameworks, experimental measurements are firstly conducted, and then, the 

validity of suggested mechanisms are evaluated by theoretical calculations in ionic liquids 

and indicate molecular level behaviors. In addition, the elucidation of the cause of the 

impurities inclusion, application of the reaction system to other non-aqueous solvents, 

and the formation of thin films in terms of the application, especially focusing on the solar 

cell applications, are focused on as well as the reaction mechanism analysis. 
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2.1 Introduction 

 

 

For considering the fabrication of the electrodeposited Si structure for the 

application, it is required to electrodeposit Si with an appropriate electrodeposition 

condition and avoid the impurities inclusion to the structures after understanding the 

detailed reaction mechanism. 

As for the analysis of the reaction mechanism of the Si electrodeposition in ionic 

liquids, the detailed mechanism has not been reported yet, while several researches were 

engaging in the Si electrodeposition [1-12]. As the most recent example until now, S. 

Ivanov et al. [12] has reported the Si electrodeposition in 1-butyl-1-methylpyrrolidinium 

bis(trifluoromethylsulfonyl)imide with SiCl4 as Si source. However, it has also been still 

unclear in that paper with the respect to the details of reduction processes even though 

they have confirmed several cathodic peaks with / without frequency decreases, in which 

the decrease of frequency suggests the silicon deposition, with using the technique of 

electrochemical quartz crystal microbalance. 

The objective of the study in this chapter is to investigate three aspects, focusing 

on an overall reaction mechanism of the Si electrodeposition. First, films electrodeposited 

at several potentials are characterized. Second, X-ray photoelectron spectroscopy (XPS) 

and electrochemical quartz crystal microbalance (EQCM) measurement are used to obtain 

the electrodeposition rate of Si in the films. Third, the electrodeposited films are 

characterized using Raman spectroscopy. XPS and Raman spectroscopy provide 

complementary information regarding Si electrodeposition, in particular ionic liquid 

inclusion into Si thin films and the possibility of its binding with the films. These analyses 

allow us to partially understand the Si electrodeposition reaction mechanism in ionic 

liquids. 
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2.2 Experimental 

 

 

The ionic liquid trimethyl-n-hexylammonium bis(trifluoromethylsulfonyl)imide 

(TMHATFSI) containing less than 10 ppm H2O and less than 1 ppm Cl- were used with 

0.5 M SiCl4 (99.98% purity) (Stella Chemifa). This ionic liquid is hydrophobic and 

exhibits high solubility of SiCl4 up to 1.0 M. The working electrode (deposition substrate) 

was a 6 MHz AT-cut quartz crystal with Au contacts (Hokuto Denko). Its surface area was 

1.32 cm2. Pt wires 0.1 cm in diameter were used as a quasi-reference electrode (QRE) 

and as a coiled counter electrode. The Pt QRE was insulated by a heat-shrinkable tube, 

leaving the tip of the Pt wire exposed, and it was immersed directly in the ionic liquid. 

The surface area of the QRE tip was 0.01 cm2, whereas that of the Pt wire coil counter 

electrode was about 5 times larger than that of the working electrode. The working 

electrode was pretreated in oxygen plasma for 2 min, and the Pt electrodes were pretreated 

in 20 % sulfuric acid solution before electrodeposition. The potential of ferrocene/ 

ferrocenium (Fc/Fc+) was measured to be -0.23 V vs. Pt QRE (Fig. 2.1), resulting in the 

discussion of our potential with the standard of Fc/Fc+. 
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Fig. 2.1 Cyclic voltammogram (scan rate = 10 mV s-1) in TMHATFSI with 1.0 M 

Fc/Fc+ at 40 C 

 

The EQCM apparatus was mounted in an aluminum block, and the electrolyte 

temperature was maintained at 18, 30 and 40 C during all the experiments using this Al 

thermo-block (NISSIN, COOL/HEAT BLOCK NDC-100). After the measurements, all 

the electrodes were cleaned by rinsing with 99.5 % dimethyl carbonate and dried in 

vacuum for 10 min. In the EQCM analysis, the Sauerbrey equation [Eq. (1)] and the 

related equations for damping [Eqs. (2), (3)] were used to calculate the mass change 

during electrodeposition [12]. 
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∆f
mass

=
−2fs

2∆m

A(μq𝜌q)
1 2⁄                                                    

∆f
viscosity

=
−∆w

2
=

−fs
3 2⁄

[∆(ηρ)
1 2⁄

]

(πμq𝜌q)
1 2⁄                                         

∆fs = ∆fmass + ∆fviscosity = ∆fmass −
∆w

2
                                 

 

where 

fmass is the resonance frequency change deriving from the mass, 

fviscosity is the resonance frequency change deriving from viscous damping,

fs is the series resonance frequency change (frequency of peak in conductance), 

m is the mass change, 

A is the surface area, 

qq is the product of the quartz crystal’s shear modulus and density, 

w is the change in the half-width at half-maximum of the conductance peak, and  is 

the product of the ionic liquid’s viscosity and density. 

 

 

 

Fig. 2.2 The mean of uncommon parameters in EQCM analysis 
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Cyclic voltammetry (CV) and constant potential measurements were then 

performed using a potentiostat/galvanostat (Hokuto Denko, HZ-5000). EQCM (Hokuto 

Denko quartz crystal mount and Agilent Technologies Frequency Analyzer, E5061A) 

measurement was also performed. CV was conducted from open circuit potential (OCP) 

to -3.0 V vs. Pt QRE at a scan rate of 10 mV s-1, and constant potential electrodeposition 

was performed at -2.0, -2.5, and -3.0 V vs. Pt QRE. The reproducibility of the OCP 

measurement was within 50 mV at -0.20 V vs. Pt QRE in the ionic liquid containing 0.5 

M SiCl4. All electrochemical measurement was performed in an Ar-filled glove box. 

XPS (ULVAC, PHI 5000 Versa Probe WS) using Al-Kα irradiation and 4 kV Ar ion 

etching was employed to measure the content profiles of elements. One minute of Ar 

sputter time etches approximately 50 nm in SiO2. A transfer vessel was used to prevent 

Si thin films from oxidizing in the air before XPS measurement as possible as I could, 

however, it might not be avoided the oxidation perfectly. The XPS peaks were fitted using 

the MultiPak software utility (ULVAC, PHI 5000 Versa Probe WS). 

The electrodeposited thin films were also characterized using focused ion beam 

scanning electron microscopy (SEM, HITACHI High-Technologies, NB 5000) with Ga 

ion etching to measure cross-sectional views, and scanning transmission electron 

microscopy (TEM, HITACHI High-Technologies, HD 2700) as well as by Raman 

spectroscopy (TOKYO INSTRUMENTS SOLAR TII, Nanofinder 30). Detailed analysis 

of the Raman spectra was performed using Origin (OriginLab Corporation). It can 

compensate for the background noise level in each measurement so that the modified 

spectrum represents the essential chemical signal strength corresponding to each peak. 

As-deposited Si films were subjected to rapid thermal annealing (ULVAC, MILA 3000) 

at 350 and 700 C for 1 h in Ar (90 %) and H2 (10 %) atmosphere. 
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2.3 Results and Discussion 

 

 

To understand the electrochemical behavior of SiCl4 in TMHATFSI, the current 

transient and EQCM measurement were conducted. Figure 2.3 illustrates those results 

along the dotted line during the anodic scan in the ionic liquid alone (containing no SiCl4). 

The increase in the cathodic current density and decrease in the mass recorded at -3.8 V 

vs. Pt QRE stemmed from decomposition of the ionic liquid. Then, EQCM measurement 

during CV measurement was conducted in the ionic liquid with 0.5 M SiCl4. 

 

 

 

Fig. 2.3 (a) Cyclic voltammogram (scan rate = 10 mV s-1) (b) Mass change calculated 

from EQCM measurement during CV in TMHATFSI with (continuous line) and without 

(dotted line) 0.5 M SiCl4 at 40 C (Arrows show the path of voltammogram.) 
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The uncommon parameters are described in Fig. 3. In the above equations, fs 

represents the series resonance frequency, and fs represents the series resonance 

frequency change, which is equal to the sum of the contributions to the resonance shift 

from the mass and viscosity: fmass and fviscosity, respectively (assuming that fviscosity ≪ 

fmass). This viscosity component is almost equivalent to the change in the half-width at 

half-maximum of the conductance peak relative to the quartz crystal in air (no liquid 

contact). The viscosity of the electrolytes appears to change during electrodeposition in 

ionic liquids. Therefore, the resonance frequency change deriving from the viscosity must 

be calibrated in order to calculate the mass gain. 

The cathodic current starts to increase slightly from -1.0 to -1.5 V vs. Pt QRE and 

then rises significantly around -2.0 V vs. Pt QRE, as seen in the inset of Fig. 2.3. Two 

current peaks, on the other hand, appear around -2.5 and -3.0 V vs. Pt QRE with an 

associated mass increase that is likely due to SiCl4 reduction. These EQCM results 

suggest that SiCl4 reduction may progress in multiple stages, i.e., via intermediary 

electroreduction reactions, although further detailed study is necessary to clarify the 

stages of SiCl4 reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

35 

 

 

 

Fig. 2.4 Current density (continuous line) and charge density (dotted line) during 

potentiostatic electrodeposition in TMHATFSI with 0.5 M SiCl4 at 40 C at each 

potential at 1000 mC cm-2 

 

 

Next, the mass change during potentiostatic electrodeposition at three potentials 

was investigated using the EQCM. Figure 2.4 shows the transient variations in the current 

density and charge density at each potential. The current density recorded at -2.0 and -2.5 

V vs. Pt QRE over the initial 400 to 600 s is negligibly small. An incubation period for Si 

electrodeposition may be expected. 

After this incubation period, a current increase is observed from 400 to 1250 s at 

both potentials. Two solid curves reach the minimum values around 1250 s, indicating 

that the current tends to decrease after 1300 s. On the other hand, the current density 

rapidly increases just after potentiostatic electrodeposition starts, with a quite short 

incubation period, at -3.0 V vs. Pt QRE. It increases in a zigzag manner over the initial 

300 s, and then the current tends to increase more smoothly. (Three peaks are observed, 

which represent reactions that are difficult to identify at present.) These current increases 
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are surely attributed to the electroreduction of SiCl4. Morphological variations in Si films 

electrodeposited at the three potentials were examined at 500 mC cm-2 (Fig. 2.5). A cross-

sectional image of a compact, dense Si film on a Au substrate is observed at -2.0 V vs. Pt 

QRE. A much thicker film with some pores in its cross section appears at -2.5 V vs. Pt 

QRE. The surface morphology is rather uniformly composed of precipitated grains 50 nm 

in diameter. This surface roughness may be enhanced by coagulated precipitated grain 

ensembles with submicron diameter at -3.0 V vs. Pt QRE.  

 

 

 

Fig. 2.5 SEM images of the Si thin films electrodeposited at 40 C at 500 mC cm-2 at 

each potential: (a) -2.0 V vs. Pt QRE (b) -2.5 V vs. Pt QRE (c) -3.0 V vs. Pt QRE 

 

 

The current density starts to decrease after 1300 s at -2.0 and -2.5 V vs. Pt QRE, as 

seen in Fig. 2.4. This decreasing tendency may be caused by the resistance of the 

electrodeposited dense Si thin films, as the electrodeposited Si thin films might be a 

semiconductor. On the other hand, the current density continues to increase as 

electrodeposition progresses, accompanying the formation of a porous film structure at -
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3.0 V vs. Pt QRE. The porous film structure enhances the effective electrode surface area, 

increasing the current density under potentiostatic electrolysis.  

     In the SEM images, it was confirmed that voids were existed inside the films. To 

analyze these voids whether some elements are existed or not, the films were observed 

by TEM. The results are shown in Fig. 2.6. From these analyses, the peak derived from 

carbon, which is considered as ionic liquids, was strongly observed in voids (No. 3), while 

the peak derived from Si was strongly observed in grey area (No. 2 and 4). These results 

suggest that the impurities driving from the ionic liquids are incorporated during the Si 

growth. As the condition of the ionic liquids, it is possible that ionic liquids themselves 

are incorporated in the films because they are not decomposed at -2.5 V vs. Pt QRE with 

the reference to their electrochemical windows to -3.5 V vs. Pt QRE as shown in Figure 

2.1, while very small amount of ionic liquids are decomposed despite the electrochemical 

window. It was also confirmed that oxygen was existed in the films. In the region in grey 

area (No. 2 and 4), the exposure to the air cause the oxidation of the sample, and the 

existence of oxygen in voids (No. 3) also suggest that the ionic liquids are incorporated 

in the films. Then, the structure of the included ionic liquids was investigated by Raman 

spectroscopy. The result of Raman spectrum of Si thin films electrodeposited at -2.5 V vs. 

Pt QRE is shown as Fig. 2.7. From this result, the peak deriving from C-C-C, S=O, C-F, 

C-H were observed, in which C-C-C and C-H should derive from the cation, and S=O 

and C-F should derive from the anion. It also indicates that ionic liquids themselves were 

incorporated into the films during the Si growth. However, it should be noted here that it 

can not mention that it is hard for ionic liquids to decompose at -2.5 V vs. Pt QRE because 

CV of the blank ionic liquid shows the small cathodic current, meaning the decomposition 

of a part of ionic liquids. Therefore, the result by Raman spectrum might include the 

decomposed products of ionic liquids. 
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Fig. 2.6 TEM images (a) and electron energy loss spectroscopy (EELS) analysis in TEM 

images (b) of the films electrodeposited at -2.5 V vs. Pt QRE at 40 C 
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Fig. 2.7 Raman spectrum of the film electrodeposited at -2.5 V vs. Pt QRE 

 

 

The Si binding energy of the topmost surface of the deposits at each potential are 

shown in Fig. 2.8. These data were analyzed using MultiPak to obtain detailed peak fitting 

information. The black lines show the original data measured by XPS, and the red and 

blue lines show the analyzed data. The jagged red lines are the background spectrum. At 

all the potentials, Si–Si and Si–Ox bonding were observed at the topmost surface. The 

ratio of the Si–Si bonding peak intensity to that for SiOx is increased as the potential is 

decreased from -2.0 to -2.5 V vs. Pt QRE. It is almost saturated at -3.0 V vs. Pt QRE. This 

behavior is also expected from the depth profile measurement shown in Fig. 2.10, where 

the O concentration is highest near the topmost surface (until 1 min of Ar sputter time). 
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Fig. 2.8 Si 2p binding energy of the top most surface of the thin films electrodeposited 

at 40 C at each potential: (a) -2.0 V vs. Pt QRE (b) -2.5 V vs. Pt QRE, (c) -3.0 V vs. Pt 

QRE 

 

 

Raman spectra are shown in Fig. 2.9. A peak around 480 cm-1 was observed in the 

Si thin films electrodeposited at all the potentials. This peak was analyzed using Origin 

[Fig. 2.9 (d)]. The pink dots show the original data measured by Raman spectroscopy, 

and the continuous lines show fitting results. This analysis confirms the existence of a 

peak around 480 cm-1. The peak at around 480 cm-1 generally originates from amorphous 

Si (a-Si) inside Si thin films. The other peaks in Fig. 2.9 are thought to be derived from 

ionic liquids. For example, the peak around 770 cm-1 probably indicates S=O bonding, 

and that around 300 cm-1 indicates C–C–C bonding. CH3 bonding appears around 2950 

cm-1. It becomes sharper as the electrode potential is shifted in the negative direction. 

This may suggest that cations including CH3 bonding may participate in the cathodic 

reduction process. These peaks due to such chemical bonding may be caused by 

adsorption of the fragment ion in ionic liquids, which is good agreement with the previous 
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discussion in SEM and TEM analysis. 

 

 

 

Fig. 2.9 Raman spectra, with possible weak Si peaks (wavenumbers indicated in the 

figures), of thin films electrodeposited at 40 C at each potential: (a) -2.0 V vs. Pt QRE 

(b) -2.5 V vs. Pt QRE (c) -3.0 V vs. Pt QRE (d) analyzed result of the peak around 480 

cm-1 
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after around 4 min of Ar sputtering (Au content not shown in this figure). The profiles are 

divided into three regions, (1), (2), and (3), in this figure. Region (1) is close to the top 

surface layer, where the sputtering time is limited to 1 min, region (2) is an intermediate 

area with a substantially uniform concentration profile through the Si film, and region (3) 
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is the zone close to the Au substrate, which corresponds to 3 to 4 min of sputtering time. 

Region (1) is characterized by an increasing Si profile and the resulting decrease in the O 

and C profiles along its depth. When the electrodeposited sample is characterized, its 

surface is always rinsed by dimethyl carbonate, which contains oxygen atoms. Moreover, 

the film may be instantaneously exposed to a slightly oxidizing atmosphere when it is 

placed in the XPS instrument, even if a transfer vessel is employed. Thus, region (2) may 

represent compositions characterized primarily by the electrodeposition conditions. Table 

1 demonstrates the averaged mass concentration of each element in region (2). The Si 

mass concentration is 57 %, 65 %, and 53 % at -2.0, -2.5, and -3.0 V vs. Pt QRE, 

respectively, in region (2). The concentration level of Cl is quite low compared with that 

of Si in the film. Thus, SiCl4 molecules are electrochemically reduced to Si, leaving Cl- 

ions in the electrolyte. Note that the C content increases and the O content decreases with 

the shift toward negative potential. The potential dependence of the other element is, 

however, not clearly observed. These data may suggest that the SiCl4 reduction reaction 

partially accompanies cation decomposition. 
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Fig. 2.10 XPS depth profiles of the Si thin films electrodeposited at 40 C at each 

potential: (a) -2.0 V vs. Pt QRE, (b) -2.5 V vs. Pt QRE, and (c) -3.0 V vs. Pt QRE 
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Table 1 Average % of mass concentration of each element in region (2) in Fig. 2.9 

Table 1  

  -2.0 Vvs. Pt QRE -2.5 Vvs. Pt QRE -3.0 Vvs. Pt QRE 

N 1 1 1 

S 2 1 2 

O 18 14 7 

C 17 14 31 

F 3 1 2 

Cl 2 4 4 

Si 57 65 53 

 

 

Another concern is the high content of C and O in the electrodeposited a-Si film. It 

is likely that even after rinsing with dimethyl carbonate, some ionic liquid remains on the 

surface of the deposits. In addition, for considering the ionic liquids incorporation in the 

films, annealing treatment could be helpful to get rid of them because the thermal 

decomposition of ionic liquids of TMHATFSI is nearly 380 C. Then, the as-deposited 

Si film was annealed at 700 C in the Ar gas stream. The composition of each thin film 

was measured by XPS depth profiling before and after annealing, as shown in Fig. 2.11. 

The carbon content was significantly decreased by annealing, suggesting that there are no 

covalent bonds between carbon and silicon. The increase in the oxygen content after 

annealing is due to the exposure to air in the annealing treatment during sample transfer 

to the annealing apparatus. 
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Fig. 2.11 XPS depth profiles of the thin films electrodeposited -2.5 V vs. Pt QRE (a) 

before and (b) after annealing (at 700 C for 1 h) 

 

 

Figure 2.11 (a) shows the frequency change measured by the EQCM during potentiostatic 

electrodeposition. The mass change calculated from the frequency change in Fig. 2.11 (b) 

is the total mass change calculated from frequency change in (a). Based on these results, 

the mass of Si accumulated on the substrate due to SiCl4 reduction is obtained by 

multiplying the total mass changes with the Si mass concentrations obtained from the 

XPS depth profiles, as illustrated in Fig. 2.12 as a function of the charge density. The 

straight line expressing the relationship between the mass of Si and the charge density is 

drawn using Faraday’s law assuming a four-electron transfer reaction. 

 

 

∆𝑚 =  
𝑀𝑆𝑖  𝑄

𝑧𝐹
                                                                       (2.1)                                                                      

where, 

Δm = the mass change 

MSi = the molar mass of Si 

Q = the chegre density 

z = the number of the electron 

F = the Faraday constant 
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The measured data follow this straight line during the initial stage and start to deviate 

slightly above 400 mC cm-2 at -2.0 and -2.5 V vs. Pt QRE. The agreement with Faraday’s 

law is maintained to 150 mC cm-2 at -3.0 V vs. Pt QRE. The deviation from this straight 

line may be caused by enhanced surface roughness of the Si thin films [13]. SEM images 

of Si thin films with rough surface morphology electrodeposited at all potentials at a 

charge density of 500 mC cm-2 actually showed those tendency.  

     By comparing the mass change due to SiCl4 reduction with Faraday’s law at 400 

mC cm-2, the current efficiency of SiCl4 reduction was calculated to be 94.6 %, 93.4 %, 

and 73.2 % at -2.0, -2.5, and -3.0 V vs. Pt QRE, respectively. Thus, Si may apparently be 

electrodeposited by four-electron electroreduction. The poorer efficiency is probably 

caused by the difficulty of converting the frequency data to the mass gain in the film with 

a rough surface at -3.0 V vs. Pt QRE. 
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Fig. 2.12 (a) Frequency change measured by EQCM during potentiostatic 

electrodeposition at each potential (b) the total mass change calculated from frequency 

change in (a) 
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Fig. 2.13 Accumulation of mass of Si on the films estimated from average % Si 

determined by XPS 

 

 

     Here, the stage of mass changes is clarified as three regions; (i) 0 ~ 20 mC cm-2, 

(ii) 20 ~ 400 mC cm-2, (iii) 400 mC cm-2 ~. In stage (i), there were no mass changed at -

2.0 and -2.5 V vs. Pt QRE, while the mass changes at -3.0 V vs. Pt QRE was 

proportionally increased with the increase of charge density. The enlarged figure focusing 

on -2.5 and -3.0 V vs. Pt QRE to see the difference clearly is shown as Fig. 2.14. It is 

clearly seen that there are no mass changes from 0 to 15 mC cm-2 at -2.5 V vs. Pt QRE. 

Same result was observed at -2.0 V vs. Pt QRE. For this, morphologies at -2.5 and -3.0 V 

vs. Pt QRE at approximately 10 mC cm-2 were shown in Fig. 2.14. More detailed 

discussions depending on the charge density will be described in Chapter 5. 
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Fig. 2.14 The mass change calculated from frequency change in Fig. 2.12 (a) focusing 

on 0 ~ 30 mC cm-2 

 

 

  

Fig. 2.15 The morphology of the films electrodeposited at (a) -3.0 and (b) -2.5 V vs. Pt 

QRE at charge density of 10 mC cm-2 
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As seen in Fig. 2.15, the electrodeposited Si entirely covered the surface at -3.0 V 

vs. Pt QRE, while the area where Si was not electrodeposited was observed at -2.5 V vs. 

Pt QRE. This tendency might cause the results that there were no mass changes in the 

very initial stage -2.5 V vs. Pt QRE. In general, in EQCM measurement using high viscos 

solvents, the frequency derived from viscosity was compensated as described above, and 

such effect seems to be large. Therefore, the frequency deriving from small amount of 

deposition like this structure might be buried and not be detected [14, 15]. When the 

influence of the viscosity was not compensated, the mass changes are shown as Fig. 2.16. 

It is difficult to mention whether mass changes are observed or not, however, it seems 

that the noise increased with the increase of the charge density, implying the mass increase. 

These results also suggest that the compensation of the viscos in EQCM analysis buried 

the information of small amount of the electrodeposited Si at the very initial stages. 

 

 

 

Fig. 2.16 The mass changes without the consideration of the viscosity of ionic liquids 
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In stage (ii), the proportional mass changes with the increase of charge density were 

observed at -2.0 and -2.5 V vs. Pt QRE, while there were non-proportional mass changes 

at -3.0 V vs. Pt QRE. This might be due to the crack formation (Fig. 2.17). In EQCM 

measurement, it is generally mentioned that this crack formation affects the measured 

frequency during the electrodeposition, in which one example is the increase of the 

roughness deriving from the crack. There are some researches discussing the influence of 

roughness on the frequency [12]. Among them, following theory is well discussed and 

might apply to this case. The frequency changes relating to the roughness is described as 

Eq. (2.2). In general, the roughness changes during the electrodeposition, therefore, it is 

difficult to consider the time dependence changes of the roughness to the total frequency 

changes. This background also causes the difficulties to consider the influence of the 

roughness. 

 

 

 

Where, 

δr is the absolute value of the mean roughness 

 

 

When the influence of the roughness is considered with this equation, Δfroughness becomes 

positively with the increase of the roughness, resulting in positive increase of the total 

change of measured frequency. In this case, the roughness was not considered, therefore, 

the positive increase of the frequency directly affected the Δfmass. It means that mass 

changes indicate the negative value as shown in Fig. 2.12 and 2.13. 

     In stage (iii), the electrodeposited films had very rough surfaces as shown in Fig. 

2.17. Those roughness also cause the error in measuring the frequency described above. 

Therefore, the mass changes showed the decrease tendencies. 

 

 

 

 

(2.2) 
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Fig. 2.17 Morphology of the film electrodeposited at -3.0 V vs. Pt QRE at 150 mC cm-2 

  

10 m



Chapter 2 

53 

 

Conclusions 

 

 

In this chapter, to understand the overall reaction of the Si electrodeposition in the 

ionic liquids with SiCl4, the impurities incorporation mechanism and reaction mechanism 

was analyzed via the formation of the films electrodeposited under several conditions. 

Form the analysis of the effect of the applied potential and the electrodeposition 

temperature, the ionic liquids are incorporated as the impurities, which was also suggested 

by the annealing treatment effect that mainly carbon content was dramatically decrease. 

The primarily amorphous Si thin films with Si–Si bonding were obtained, while 

impurities driving form ionic liquids incorporated to the films during the Si growth. Based 

on these results, it is suggested the apparent Si electrodeposition with a net four-electron 

reduction from SiCl4 of SiCl4 + 4 e- → Si + 4 Cl- by EQCM measurement. Especially, the 

current efficiency was calculated as 94.6 and 93.4 % at -2.0 and -2.5 V vs. Pt QRE, 

respectively at the very initial stage.  

This analysis technique of the combination of EQCM and XPS, in which the total 

mass changes was multiplied with the mass concentrations of the films obtained from the 

XPS depth profiles in order to analyze the accumulated amount on the substrate relating 

to the precursor’s reduction. 
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3.1 Introduction 

 

 

To provide details on the reaction of SiCl4 on the substrate surface, it is important 

to understand the mechanism for how these reactions proceed or what kind of 

intermediate are produced by focusing on the molecular level behavior at the solid-liquid 

interface.  

In this chapter, these detailed interfacial reaction mechanisms starting with the 

elementary steps of the SiCl4 reduction process in Si electrodeposition with ionic liquids 

as the solvent are discussed. Here, several precise interfacial analyses are used. The 

electrochemical quartz crystal microbalance (EQCM) measurement is continuously one 

of techniques, which proves to be applicable for such interfacial analyses of Si deposition 

for detecting the formation of intermediates if the effects from solvent viscosity on 

measurement results were taken into account precisely as discussed in the previous 

chapter. X-ray reflectivity (XRR) has been used as a selective probe of the interface and 

has allowed us to suggest a detailed molecular level deposition mechanism including the 

presence of intermediate states [1-3]. Density functional theory (DFT) calculation is also 

performed to investigate the theoretical aspects. The ability of DFT to provide a molecular 

level understanding of several solid-liquid interfacial reaction system behaviors in 

aqueous solution has been shown [4-6], so that this theoretical calculation was selected 

to use. 
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3.2 Experimental 

 

 

In all experimental measurements, trimethyl-n-hexylammonium 

bis(trifluoromethylsulfonyl) imide (TMHATFSI) containing less than 10 ppm H2O was 

used as the ionic liquid with 0.5 M SiCl4 (99.98% purity) (Stella Chemifa).  

In EQCM measurement, A 6 MHz AT-cut quartz crystal with Au contacts was used 

as the working electrode with a surface area of 1.32 cm2 (Hokuto Denko). A Pt wire was 

used as the counter electrode. Here, a Ag/Ag+ reference electrode would enable to follow 

the detailed reduction processes in these reactions including the number of reduction 

processes undergone by the SiCl4 as well as the possible formation of intermediate states, 

and then this reference electrode was determined to use. In this application of the Ag/Ag+ 

reference electrode, an Ag wire is immersed into TMHATFSI dissolved 0.05 M AgTFSI 

(Aldorich) and the reference electrode is separated from the electrolyte of 0.5 M 

SiCl4/TMHATFSI by a vycor glass with porous tip. The electrochemical cell for the 

EQCM measurement was mounted in an aluminum block, and the electrolyte temperature 

was maintained at 40 C using an Al thermo-block (NISSIN, COOL/HEAT BLOCK 

NDC-100) in an Ar-filled glove box. Frequency was measured by a frequency analyzer 

(Agilent Technologies Frequency Analyzer, E5061A) during cyclic voltammetry (CV). 

The CV measurement was performed using the potentiostat/galvanostat (Hokuto Denko, 

HZ-7000). The detailed technique used in our EQCM analysis has been shown in previous 

chapter. 

In XRR measurement, the samples for XRR were fabricated by spinning the ionic 

liquid with 0.5 M SiCl4 on a flat Au covered surface that served as the working electrode 

for the electrochemical deposition. The counter electrode was also a Au film with a 1 mm 

separation from the working electrode. The Au (100 nm) film was formed on glass 

substrate with a Cr adhesion layer (10 nm) both deposited by electron beam evaporation 

(ULVAC, EBX-6D). The ionic liquids were coated as thinly as possible on the Au 

substrate by spinning at 3000 rpm in order to minimize the absorption of the X-ray 

intensity during the reflectivity measurements. XRR was performed on beamline 2-1 at 

the Stanford Synchrotron Radiation Lightsource at an energy of 11.5 keV and measured 
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with a Pilatus 100k area detector. The substrate temperature was maintained at 30 C in a 

controlled Ar or N2 atmosphere via a thin-film heater. The XRR measurement data were 

analyzed by GenX software [7].  

     All calculations were performed by DFT with Gaussian 09 [8]. The exchange-

correlation function was B3LYP, the basis set for H and Cl was 6-31+G** [9, 10], and the 

basis set for Si was LANL 2DZ dp ECP [11]. To model ionic liquids as surrounding 

reactants, the ONIOM method was applied; the main reactant was expressed by quantum 

mechanics (QM), and solvent molecules were expressed by molecular mechanics (MM) 

with universal force field (UFF) parameters [12]. Since ionic liquids generally exhibit 

complicated behaviors in their dielectric constant, a polarized continuum model (PCM) 

[13] that usually provides a sufficiently appropriate solvent model in the case of aqueous 

system is not capable of working well in this situation. The procedure for the DFT 

calculation was as follows: first, the solvent molecules were periodically located around 

the QM region. After that, the structural optimization of the prepared model was carried 

out by a mechanical embedding process in which the QM and MM regions are optimized 

independently. Finally, the optimized structures were obtained by an electronic 

embedding process, in which the electrostatic interaction between the QM and MM 

regions is taken into consideration. Figure 1 shows the structural optimization process 

used in this study. First, the MM part solvents sphere with vacancy for reactant is prepared 

(Fig. 1 (a)). The QM part reactant is placed into the vacancy to build the initial geometry 

(Fig. 1 (b)). Geometrical optimization is performed in two steps in order to more easily 

reach convergence: (1) the QM part is roughly optimized without considering the force 

field of the MM part, which is called mechanical embedding, ME (Fig. 1 (c)), and (2) it 

is optimized with the force field of MM part, and called electrical embedding, EE (Fig. 1 

(d)). Figure 2 also shows the examples of equilibrium structure obtained from the 

optimization. 
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Fig. 3.1 Schematic image of the structural optimization process 

(a) after adding solvent molecules, (b) after placing the QM part with the addition of 

reactants, (c) after ME optimization, and (d) after EE optimization 

 

 

 

 Fig. 3.2 Example of the equilibrium structure obtained from the QM/MM optimization  

(a) (b)

(c) (d)

QM region

MM region
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3.3 Results and Discussion 

 

3.3.1 Analysis of reduction steps during the electrodeposition 

 

To understand the electrochemical behavior of SiCl4 in TMHATFSI in detail, the 

electrochemical measurement with Ag/Ag+ was newly conducted. Figure 3.3 shows the 

current transient and mass change from the open circuit potential to –2.7 V. This CV 

measurement identified several reduction peaks: -1.0, -1.7, and -2.2 V. There were no 

mass changes taking place at either the -1.0 or -1.7 V reduction steps, indicating that these 

two steps corresponded to just reductions of the electroactive species, not deposition. 

However, mass changes accompanied the reduction peak at -2.2 V in the CV measurement. 

This was believed to derive from the deposition of Si because the evaluation by X-ray 

photoelectron spectroscopy showed the existence of Si. This behavior had been also 

corresponded to the results in the previous chapter. These electrochemical measurements 

suggest that this Si electrodeposition involves several elementary steps with stable 

intermediates before the deposition; before reaching -2.2 V, electroactive species, such as 

SiCl4 in our case, receive electrons to form some intermediate. Considering the fact that 

these steps were not observed in the blank ionic liquids as shown in Fig. 3.4, they should 

drive from SiCl4, and they might be oxidized during the anodic CV scan. This mechanism 

is also demonstrated by S. Ivanov et al. [14]. They electrodeposited Si from 1-butyl-1-

methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP][TFSI]) in the presence 

of SiCl4 on copper sputtered quartz piezoelectric resonators. Their EQCM during linear 

sweep voltammetry identified some reduction peaks before the deposition peak with mass 

change, which was around -1.87 V vs. Pt QRE. They also attributed these peaks to the 

adsorption and reduction of electroactive species from electrolyte. 
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Fig. 3.3 (a) Cyclic voltammogram, scan rate = 10 mVs-1, (b) Mass changes during 

cyclic voltammetry in 0.5 M SiCl4/TMHATFSI 

 

 

 

Fig. 3.4 Cyclic voltammogram in TMHATFSI with or without the addition of SiCl4, 

scan rate = 10 mVs-1 
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3.3.2 Analysis of the intermediate state during the electrodeposition 

 

To identify the intermediate species of the deposition reaction, XRR measurement 

was carried out for the electrode surface during the Si deposition. Fig. 3.5 shows the 

reflectivity in each case: before applying potential (ionic liquids are adsorbed on Au 

substrate described as "Au substrate only", black dots), after applying 0 V ("0 V", red 

dots), and after applying -4 V for each time ("-4 V each time", green and blue dots). In 

this XRR measurement, the two electrode system described above was used, whereas 

three electrodes were used in the EQCM measurement described above. The potential of 

0 V in XRR corresponds to the potential before -2.2 V vs. Ag/Ag+ in EQCM, which is the 

first cathodic peak implying the formation of an intermediate, because the cathodic 

current density was observed at 0 V in XRR. As for the current value at each potential, it 

was also shown such correspondence that -0.001 mA was measured at both 0 V in XRR 

and -1.7 V vs. Ag/Ag+. -4 V in XRR corresponds to the potential after -2.2 V vs. Ag/Ag+ 

in EQCM, which is the second larger cathodic peak attributed to Si deposition. Current 

values measured at each potential also showed such correspondence that -0.01 mA was 

measured at both -4 V in XRR and -2.3 V vs. Ag/Ag+. This correspondence can be seen 

in Fig. 3.6. 
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Fig. 3.5 Reflectivity changes during Si electrodeposition at each condition in 

TMHATFSI with 0.5 M SiCl4 at 30 C (Black dots show the reflectivity of only the Au 

substrate coated by TMHATFSI with 0.5 M SiCl4, red, green, blue and light blue dots 

show the reflectivity after applying 0 V and -4 V for each time, respectively.) 

 

 

 

Fig. 3.6 Correspondence of the potential between three electrode system (a) and two 

electrode system (b) 
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The black dots demonstrate the structure of the fringes indicating that the surface of the 

Au electrode adsorbed ionic liquids. In XRR, these fringes reflect mainly the roughness 

and density of the layer at the surface. This characteristic shape will be changed when 

some layers form on the surface of electrode. As shown by the red dots, the reflectivity 

of the substrate after applying 0 V clearly changed compared with black dots, suggesting 

that some layers are newly formed at this potential. This suggests basically two 

possibilities: a change in the accumulation of adsorbed ionic liquid molecules at the 

interface or the formation of some layers on the surface. The XRR measurement in this 

study should detect interfacial changes thickness is larger than Au substrate’s roughness, 

1.1~1.4 nm in this case. Since the thickness of the accumulation layer of the ionic liquid 

molecules adsorbed at the interface of the electrode is less than the substrate’s roughness, 

it can be concluded that a new layer has formed after the application of 0 V. The accuracy 

of the curve fitting analysis using GenX is shown as Fig. 3.7. The thickness of the 

prepared Au substrate (Au: 100nm, Cr: 10 nm) was correctly same with the GenX analysis, 

in which the thickness of Au was assumed as 103 ~ 104 nm and that of Cr was assumed 

as 10 ~ 11 nm. The roughness of the prepared Au substrate (1.3 ~ 1.7 nm, measured by 

AFM) also corresponds to the analyzed results by GenX (1.1 ~ 1.4 nm). 
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Fig. 3.7 Reflectivity change of Au substrate (Green dots show the measured result, blue 

lines are simulated result.) 

 

 

It is assumed that this layer derives from decomposition of the ionic liquids (carbon 

products) or the result of reduction of the SiCl4 (i.e., an intermediate). However, based on 

the correspondence to the potential as discussed above, decomposition of ionic liquids 

should be hard to occur at 0 V. This is also supported by the curve fitting analysis of the 

XRR. The shape of the XRR could not be explained by the existence of such a thin layer 

composed mainly of carbon derived from the decomposition of the ionic liquids. The fact 

that critical angle changes so little also supports this viewpoint. Only when a layer 

including Si2Cl6 as a part of a reduced species of SiCl4 was assumed to be at the surface, 

the measured reflectivity curve could be explained well. By evaluating that how the 

curves of considered layer model fit the experimental data, the interpretation of the XRR 

data can be assessed. This suggests that Si2Cl6 forms as an intermediate state during the 

reduction of SiCl4, which corresponds to the EQCM results (Fig. 3.8). All these data 
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suggest that SiCl4 reduces to Si2Cl6 before Si deposition. Therefore, this can be used to 

demonstrate a layer-by-layer structure involving the ionic liquid (IL), Si2Cl6, and Au 

substrate (Fig. 3.8 (b)).  

 

 

 

 

 

Fig. 3.8 (a) Reflectivity change after electrodeposition at 0 V in TMHATFSI with 0.5 M 

SiCl4 at 30 C (Green dots show the measured result, red and blue lines are simulated 

results. The different between red and blue lines is with/without assuming a formation 

of Si polymer layer.), (b) Layer model electrodeposited at 0 V 
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Similar results have been reported from research on organic electrolytic synthesis [15-

17]. The CV studies of X. Wang et al. [17] on the electroreduction scheme of organo-

substituted dichlorosilanes in tetrahydrofuran revealed that RR’SiCl2 species reduced to 

R2R’2Si2Cl2 by radical coupling or nucleophilic substitution. When RR’SiCl2 receives 

electrons from the electrode, an anion radical of RR’SiCl2 is formed, followed by more 

electrons being received to form dianionic of RR’SiCl2. These anion radicals and 

dianionic components release Cl species to react with other neighboring species, resulting 

in the formation of R2R’2Si2Cl2 (Fig. 3.9). 

 

 

 

Fig. 3.9 The proposed reduction mechanism of dichlorosilanes [17] (Copyright 2005 by 

J. Electrochem. Soc. Reproduced with permission of J. Electrochem. Soc. by Copyright 

Clearance Center’s RightsLink® service) 
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The reflectivity in the case just after when -4 V was applied, did not significantly 

changed from the red dots (at 0 V, in which a polymer-like intermediate state was formed), 

suggesting that a polymer-like intermediate state remained just after applying the negative 

potential even though that potential reached to the formation of Si (Fig. 3.10). 

 

 

Fig. 3.10 Reflectivity change of the electrodeposited Si film just after applying -4 V in 

TMHATFSI with 0.5 M SiCl4 at 30 C (Green dots show the measured result, blue line 

is simulated results.) 
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increases in that region due to its higher density, thus suppressing the damping of the 

reflectivity at low angles, which then results in the convex shape of the reflectivity curve. 

This implies that the polymer-like intermediate state is solidified by the application of -4 

V. Fringes at angles higher than 1.3 deg. are reduced, when compared with the red dots, 

also implying the formation of a new solid layer on the electrode surface as described 

above. Therefore, it is suggested that applying -4 V deposits Si in the solid state from the 

polymer-like intermediates. It also appears that the formation of the Si2Cl6 species is a 

reasonable way to explain the measured reflectivity changes shown in Fig. 3.11 (a): the 

red line represents the case without the assumption of a Si2Cl6 deposit on the Si, while 

blue line includes the Si2Cl6. In the curve without Si2Cl6 (red), the experimental result 

cannot be explained well, whereas the curve with Si2Cl6 (blue) is able to describe the 

experimental results quite well, especially the fringes from 1.0 to 1,3 deg. (Fig. 3.12). 

These results suggest that Si2Cl6 is also formed on the deposited Si thin film at -4 V. 

Therefore, a layer containing Si2Cl6 is considered to be continuously formed during the 

Si deposition step as described in Fig. 3.11 (b). This Si2Cl6 formation pathway is 

considered as the reaction pathway of polymer intermediate state formation. In this Si2Cl6 

formation reaction, the following process should be possible: a SiCl4 molecule is reduced 

with the release of a Cl- ion, followed by the reaction between the residual SiCl3 and 

another nearby SiCl4 to produce the intermediate Si2Cl6. It should be noted that Si2Cl6 

could not be the final product after the electron transfer, which should continuously 

receive electrons to react with another nearby SiCl4 and then form a polymer-like 

structure. No mass changes during the intermediate reaction stage in EQCM implies non-

solid layer formation in this stage, supporting this hypothesis. Analysis of the XRR results, 

which assume Si3Cl8 and Si4Cl10 as intermediates, successfully reproduced the 

experimental curve, also suggests that a layer formed after the reduction of SiCl4 is a 

polymer-like structure. 
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Fig. 3.11 (a) Reflectivity change of the Si film electrodeposited at -4 V for 2 hrs in TMHATFSI 

with 0.5 M SiCl4 at 30 C (Green dots show the measured result, red line and blue line are simulated 

results. The different between red line and blue line results is with/without assuming a formation of Si 

polymer layer on Si deposit.), (b) Layer model electrodeposited at -4 V for 2 hrs 
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Fig. 3.12 Enlarged reflectivity changes between 1.0 and 1.3 deg of Fig. 3.11.  
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Fig. 3.13 Reflectivity change of the Si film electrodeposited at -4 V for 2 hrs in 

TMHATFSI with 0.5 M SiCl4 at 30 C (Green dots show the measured result, blue line 

is simulated results.) 
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3.3.3 Analysis of the pathway of the intermediate state formation  

 

To examine the possibility of the Si2Cl6 formation scheme described above, 

stability of the Si-Si bond of this product is theoretically analyzed. The pathway in 

forming the intermediate state can be investigated by the experiment. However, as 

described later, the formed specie, especially anion, will be same in each considerable 

pathway, implying the experiment might not be suitable to decide the concrete pathway 

in this case. Therefore, this theoretical analysis was conducted here. For this, we 

compared two different types of Si-Si bonds as follows; (i) Si-Si formation between two 

SiCl4 molecules which are located close to each other to form Si2Cl6 (“scheme 1”) and 

(ii) Si-Si formation between the SiCl4 molecule and Si surface, which is referred as direct 

deposition (“scheme 2”). In the scheme 1, there are possibilities to occur via three types 

of intermediate formation reaction; SiCl3 anion intermediate formation, SiCl3 radical 

intermediate formation, and SiCl3 anion intermediate formation with the formation of Cl2 

(Fig. 3.14). To estimate which is the more favorable pathway, energy profiles of scheme 

1 from DFT calculations were compared (Fig. 3.15). 
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Fig. 3.14 Three types of the reaction pathway to form Si2Cl6 

  

 

Fig. 3.15 Energy profiles of each reaction of Fig. 3.14 
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This energy profiles shows that the reaction via SiCl3 anion intermediate formation is the 

most favorable reaction. In the scheme 2, there are possibilities to occur via three types 

of intermediate formation reaction; SiCl3 radical intermediate formation, SiCl3 anion 

intermediate formation, and anion surface intermediate formation (Fig. 3.15). To estimate 

which is the more favorable pathway, energy profiles of scheme 2 from DFT calculations 

were compared (Fig. 3.16). 

 

 

 

Fig. 3.15 Three types of the reaction pathway to form Si species directly on the surface 
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Fig. 3.16 Energy profiles of each reaction of Fig. 3.15 

 

This energy profiles shows that the reaction via SiCl3 radical intermediate formation is 

the most favorable reaction. To estimate which is the more favorable pathway, energy 

profiles of the reaction via SiCl3 anion intermediate formation in scheme 1 and the 
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Fig. 3.17 Energy profiles of reaction scheme 1 and 2 

(Scheme 1 shows the reaction of SiCl4 with another SiCl4 to form Si2Cl6 via SiCl3 anion 

intermediate formation in scheme 1. Scheme 2 shows the reaction of SiCl4 with Si 

surface the reaction via SiCl3 radical intermediate formation.) 

 

 

From these comprehensive works have revealed that the elementary steps of the 

SiCl4 reduction process in Si electrodeposition with TMHATFSI was described as Fig. 

3.18. 
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Fig. 3.18 Schematic image of the Si electropodeposition 

 

 

In addition, to investigate the difference between scheme 1 and 2, Mulliken 

population analysis of the final products in each scheme was carried out (Fig. 3.18); the 

electron population of the Si-Si bonds in the Si surface model (in which all value is 0.72) 

turned out to decrease after reacting with SiCl4 in scheme 2 (in which each value shows 

0.72, 0.72, and 0.70). Since the Si-Si bond is considered to be categorized as a covalent 

bond, such a decrease of electron population in the bond should result in reducing the 

strength of the Si-Si bond, which affects the stability of reaction intermediates and 

products. This result indicates that the reaction between the Si surface and SiCl4 does not 

fully stabilize the Si-Si bonds on the Si surface. Solvation effects were also considered to 

contribute the difference between these two schemes.  
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Fig. 3.18 Mulliken population analysis of the product in the reaction scheme 2; (a) 

before (Si surface only), (b) after (SiCl3 with Si surface) the reaction with SiCl4 

(Dark and light grey dots are Si and H, respectively, and green dots are Cl. All electron 

population of Si-Si bond of Si surface before the reaction is 0.75, while that after the 

reaction changes to 0.72, 0.72, and 0.70, respectively.)  

 

 

The solvation structures of reaction schemes 1 and 2 (Fig. 3.19) suggests that the 

final products interact with only the TMHA+ cation to stabilize themselves in reaction 

scheme 2, while the final products of reaction scheme 1 interact with both the cation of 

TMHA+ and anion of TFSI- to be stabilized. Such a difference should be caused by the 

steric factor of the structure of ionic liquid; since ionic liquid molecules applied to the 

present work have relatively larger molecular volume and are bulky, their interaction 

should be sterically restricted. Thus, it is expected that the number of ionic liquids which 

are capable of interacting with the product species will be different, due to the molecular 

structure of the ionic liquids, measurably determining the favorable reaction pathway. 

Therefore, it is concluded that Si bonding to electronegative Cl (Si of SiCl4) is more active 

for Si-Si bond formation rather than Si bonding to surrounding Si (Si of the Si surface). 

From the view point of these calculations, the intermediate formation of Si2Cl6 described 

above is theoretically reasonable. In addition, the released Cl- was interacted and 

stabilized with two cations, suggesting the favorability of the discussed reaction as shown 

in Fig. 3.20. 

 

(a)

(b)
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Fig. 3.19 The solvation structure of the final products in (a) reaction scheme 1; Si2Cl6 

and (b) reaction scheme 2; SiCl3 with Si surface 

(Dark and light grey dots are Si and H respectively, and green dots are Cl. Cation and 

anion of ionic liquids are described directly in Fig.) 

 

 

Fig. 3.20 The interaction of Cl- and cations of the ionic liquids 
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As for the transition state in scheme 1, more detailed calculation was performed. 

The existence of transition state formation is shown in Fig. 3.21. First, as for the transition 

state when two electrons trapped into SiCl4, and then SiCl3
- was formed, it was suggested 

that there is no transition state formation. Such mechanism is described in Fig. 3.22. 

Figure 3.22 shows each electron density distribution in HOMO orbital. As described 

above, SiCl4
2- could act as transition state, however, the reaction process can progress 

smoothly. From these results, it was revealed that Cl- could be easily dissociated from Si 

when two electrons were trapped, and it seemed not to have activation energy to release 

Cl- because SiCl4
2- should be more stable than SiCl4, and SiCl3

- should also be stable than 

SiCl4
2-.  

 

 

 

Fig. 3.21 Transition state in Si dimer formation as intermediate state during 

electrodeposition 
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Fig. 3.22 Electron density distribution in HOMO orbital; (a) SiCl4
2- in which the bond 

length between Si and Cl is 2.1 Å, (b) SiCl4
2- in which the bond length between Si and 

Cl is 2.5 Å, and (c) SiCl3
- in which the bond length between Si and Cl is 4.0 Å 

 

 

Second, the transition state from SiCl3
- to Si2Cl6 was investigated. As a result, two 

transition state were considered. For this, Si2Cl7
- acted as an intermediate state. In general, 

Si tends to form the structure of three center four electron bonding [18], which turn out 

to be an intermediate state in this case. Each transition state structure is shown in Fig. 

3.23. In the formation of three center four electron bonding of Si2Cl7
-, SiCl4 and SiCl3

- 

were bonded after reaching to 2.8 Å that is the bond length between Si and Si. After the 

formation of Si2Cl7
-, the Cl- in the rightest side in Fig. 3.23 (b) will tend to be dissociated 

after releasing to 2.9 Å. 

 

 

 

Fig. 3.23 Transition state in Fig. 3.21, (a) TS1 with the bond length between Si and Si of 

2.8 Å, (b) TS2 in Fig. 3.21 with the bond length between Si and Cl of 2.9 Å 

(a) (b) (c)

(a) (b)
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To predict whether the further reaction of this Si2Cl6 intermediate species behaves 

like a polymer or not, as discussed above, the DFT calculation was continuously 

conducted for Si2Cl6 that had received another electron from the Si surface. The 

calculated reaction energy indicated that dissociation of Cl- ions to generate Si2Cl5 took 

place favorably, mainly because the structure of the released Cl- ion that strongly interacts 

with the ionic liquids becomes stable as described above. That reaction energy was 

calculated as -374.6 kJ/mol, while the reaction energy was calculated as -306.8 kJ/mol if 

the reaction that Si2Cl6 receives electrons to form SiCl3 and SiCl3
-, which means the 

reverse reaction of the formation of polymer. The structural analysis also shows that the 

Si-Cl bond of Si2Cl6 is extended after receiving additional electrons from 2.04 Å to 2.21 

Å, which also indicates that a Si2Cl6 emits a Cl- ion and proceeds the reaction by receiving 

an electron. Si of Si2Cl5 that has already releases a Cl- tends to exhibit bond formation 

with another Si of SiCl4 due to its strong activity, generating a Si trimer species. This 

reaction eventually leads to the formation of a polymer structure during Si 

electrodeposition, as discussed in the XRR measurement. This polymer-like intermediate 

is expected to be finally deposited as Si on the substrate. 

  



Chapter 3 

84 

 

Conclusions 

 

 

In this chapter, the interfacial reaction mechanism of the elementary steps of the 

SiCl4 reduction process in Si electrodeposition with an ionic liquid was analyzed, 

focusing on the molecular level behavior of the reactants at solid-liquid interface to 

provide details on the reaction of SiCl4 on the substrate surface.  

It has been revealed that there is an intermediate formation step, in which a 

polymer-like structure such as Si2Cl6, is formed during the reduction of SiCl4, in which 

the electrochemical behavior was analyzed by EQCM measurement, and based on those 

results, the possibility of the intermediate formation was discussed by XRR measurement. 

Then, proposed scheme was confirmed from the view point of reaction energy and 

solvation effect by using DFT calculation. 

The following process is proposed to describe the detailed interfacial reaction 

mechanism of the SiCl4 reduction process from molecular point of view: a SiCl4 molecule 

reduces with the release of a Cl- ion, followed by the reaction between the residual SiCl3
- 

and another nearby SiCl4 to produce the intermediate states containing Si2Cl6. This 

intermediate formation takes place successively, generating a polymer-like species, which 

is finally deposited as Si on the substrate. 

From these results, these comprehensive works would be greatly helpful to 

understand the reaction mechanism focusing on the reductant itself in the 

electrodeposition using non-aqueous solvents. 
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Overall Reaction Mechanism Analysis of Si 

Electrodeposition in Ionic Liquids 
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4.1 Introduction 

 

 

In previous chapter (chapter 2 and 3), the solvent of ionic liquid was focused on. 

On the other hand, among the non-aqueous solvents, organic solvents are also the 

promising solvent for the electrodeposition of Si at low temperatures. Several studies of 

the Si electrodeposition have also been conducted because organic solvents have 

characteristics that their low viscosity can allow us a faster electrodeposition at room 

temperature, which could turn out to be useful for practical applications [1-11]. In this 

chapter, focusing on such characteristics of organic solvents, the electrodeposition using 

organic solvents is described.  

Several studies of the electrodeposition of Si using organic solvents have been 

reported. In the 1980’s, in which acetic acid containing tetramethylammonium chloride 

or tetraethylammonium chloride with tetraethylorthosilicate [1], propylene carbonate 

containing tetrabutylammonium chloride [2] or tetrabutylammonium perchlorate [3] with 

SiHCl3 were used as electrolytes. In recent, the growth process of electrodeposited Si has 

been gradually discussed. Y. Nishimura et al. [7] has reported that the Si electrodeposition 

process in propylene carbonate containing tetrabutylammonium chloride with SiCl4 

might involve the formation of SimCln species, and T. Munisamy et al. [8] has studied the 

initial growth of the electrodeposited Si in acetonitrile and tetrahydrofuran containing 

tetrabutylammonium chloride with SiCl4 and SiHCl3. For further developing such Si 

electrodeposition in organic solvents, it is necessary to overcome current problems such 

as the inclusion of impurities into the films and uncertainty of the reaction mechanism. 

As for the impurities, there are some reports that an annealing treatment is effective to 

decrease the impurities in Si thin films [3, 6, 8, 10]. On the other hand, the influence of 

as-deposited conditions on the electrodeposition process, which could also have an 

influence on the film composition, is still unclear. For this, two possible concerns have 

been discussing, which might affect the electrodeposition process; species of oxidized 

and non-oxidized solvents [10,11], and the water content in organic solvents [8]. The 

presence of water is believed to cause hydrolysis reaction of the Si precursors [12], 

thereby affecting the electrodeposition process. However, the details of such influences 
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have not been reported. Also, when using SiCl4 as the Si source, the reduction step and 

the intermediate species remain to be clarified. In this regard, Y. Nishimura et al. [7] 

hypothesized that the Si electrodeposition process in propylene carbonate containing 

tetrabutylammonium chloride with SiCl4 might involve the formation of SimCln. 

Therefore, in this chapter, the author investigates the influence of as-deposited 

condition, namely the oxidized/non-oxidized solvent species and the water content in the 

solvent, on the deposited Si film, as well as the reduction mechanism of SiCl4. To 

elucidate such interfacial reactions during the electrodeposition, electrochemical quartz 

crystal microbalance (EQCM) and Raman spectroscopy experiments were conducted, 

since these methods were proven to be useful for analyzing the interface during the Si 

electrodeposition process in previous chapter. Additionally, density functional theory 

(DFT) was used to provide a molecular-level understanding of the solid-liquid interfacial 

reactions as shown in previous chapter. 
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4.2 Experimental 

 

 

The Si electrodeposition was carried out with a three-electrode system. The bath 

was SiCl4 (0.5 M) in acetonitrile (CH3CN) or PC, with the addition of 

tetrabutylammonium chloride (TBACl, 0.3 M for CH3CN and 0.1 M for PC) as a 

supporting electrolyte. PC containing approximately 30 ppm water was purchased from 

Kishida Chemical Corporation, non-dehydrated CH3CN containing approximately 30 

ppm water was purchased from Kanto Chemical Corporation, and dehydrated CH3CN 

containing approximately 10 ppm water was purchased from Wako Pure Chemical 

Industries. SiCl4 and TBACl were purchased from Sigma-Aldrich. As a working electrode, 

an Au film (200 nm) was formed on a Si (111) substrate with a Cr adhesion layer (10 nm), 

both layers being deposited by electron beam evaporation (ULVAC, EBX-6D). A Pt wire 

was used as the counter electrode; and the reference electrode was Ag/Ag+ in which an 

Ag wire was immersed into the organic solvent containing 0.05 M AgNO3 (Kanto 

Chemical Corporation). The reference electrode was separated from the electrolyte by a 

vycor glass with a porous tip. The rotating disk electrode was used in the electrodeposition 

in the PC bath. The electrodeposition potential in PC and CH3CN was -2.5 and -2.3 V vs. 

Ag/Ag+, respectively, and the Si thin films were normally electrodeposited at 1000 mC 

cm-2 unless specified otherwise. For the EQCM measurement, a 6 MHz AT-cut quartz 

crystal with Au contacts was used as the working electrode with a surface area of 1.32 

cm2. Frequency was measured by a frequency analyzer (Agilent Technologies, E5061A) 

during linear sweep voltammetry (LSV). The detailed technique used for EQCM analysis 

can be found in our previous report5,17. All electrochemical measurements were 

performed using a potentiostat/galvanostat (Hokuto Denko, HZ-7000) at room 

temperature in an Ar-filled glove box. For measurements carried out under light 

irradiation, a quartz halogen lamp of 30 W m-2 was used. 

Before each characterization experiment, the deposited Si films were rinsed with 

dehydrated CH3CN several times to remove the residual solvents. The average 

composition of the samples was measured by X-ray photoelectron spectroscopy (ULVAC, 

PHI 5000 Versa Probe WS) using Al-K irradiation and 4 kV Ar ion etching. A transfer 
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vessel was used to prevent the Si thin films from oxidization during transport to the XPS 

apparatus. The deviation of the average composition measured with this apparatus was ± 

3 at.%. The chemical species in the electrodeposited films were characterized by Raman 

spectroscopy (TOKYO INSTRUMENTS, Nanofinder 30). Before the Raman 

measurement, the Au substrate with the electrodeposited film was attached to a cover 

glass with a Kapton tape to prevent exposure to air. The morphology of the samples was 

characterized by a scanning electron microscope (Hitachi High-Technologies, SU-4800). 

The electrodeposited Si films were annealed at 700 C for 1 h in Ar (90 %) and H2 (10 %) 

gas atmosphere using a rapid thermal annealing apparatus (ULVAC, MILA 3000). 

All calculations were performed by density functional theory (DFT) with Gaussian 

09 [13]. The exchange-correlation function was B3LYP [14, 15], and the basis set for each 

element was 6-311++(2d, 2p). Solvation effect was considered by using polarized 

continuum model (PCM) [16]. In this PCM, surrounding solvents were assumed by using 

their dielectric constant as shown in Fig. 4.1.  

 

 

 

Fig. 4.1 Schematic diagram of PCM (r is the dielectric constant of solvents) 

  

CH3CN

=εr of 37.6
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4.3 Results and Discussion 

 

4.3.1 Analysis of the effect of electrodeposition conditions on as-

deposited films 

 

As mentioned in the section of Introduction, the annealing treatment effect on the 

composition of the electrodeposited films is described here. The electrochemical behavior 

was shown in Fig. 4.1. The current density increased around -1.5 V, suggesting the 

reduction of SiCl4, while the current density deriving from the decomposition of solvents 

themselves also increased. The decomposition mechanism of PC has been theoretically 

reported [17]. Then, the electrodeposition potential was set at -2.5 V, and the average 

atomic percentage of each element of the films electrodeposited at -2.5 V in the PC bath 

before and after the annealing treatment are shown in Fig. 4.2 and Table 4.1. The 

impurities were dramatically decreased by the annealing. The increase of oxygen content 

is considered to drive from the exposure to the air of the samples even though the samples 

were transferred to the rapid thermal annealing apparatus as quickly as possible. These 

decreases of the impurities by the annealing also suggested that one of the reason why the 

impurities included into the electrodeposited films was the incorporation of the solvents 

themselves or their decomposed products. Actually, it has been reported that PC is 

thermally decomposed over 400 C [18], indicating that the incorporated PC in the films 

was decomposed by the annealing. Then, the fundamental aspects of Si electrodeposition 

in the as-deposited condition are described below. 
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Fig. 4.1 Linear sweep voltammogram (scan rate = 10 mV s-1) in TMHATFSI with and 

without 0.5 M SiCl4 

 

 

 

Fig. 4.2 The XPS depth profiles of the Si thin films electrodeposited at -2.5 V in the PC 

bath; (a) before annealing, (b) after annealing 
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Table 4.1 The average atomic percentage of each element of the electrodeposited films 

in the PC bath before and after the annealing treatment in Fig. 4.1 

 

 

 

First, to discuss the influence of the diffusion of SiCl4, the rotating disk electrode 

was used. The electrochemical behavior with and without rotating (300 rpm) are shown 

in Fig. 4.3. As seen in Fig., the current density increased with the rotating. In the blank 

solution, it did not confirm the increase of the current density which is entirely same with 

the black curve in Fig. 4.3 when the electrochemical measurement was conducted under 

the rotating of 300 rpm condition, so that it is considered that only reduction of SiCl4 was 

enhanced by accelerate the diffusion of SiCl4. 

 

 

 

Fig. 4.3 Linear sweep voltammogram (scan rate = 10 mV s-1) in the PC bath with and 

without rotating 
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This tendency was also confirmed in the current transients during the constant 

electrodeposition at -2.5 V with and without the rotating were shown in Fig. 4.4. The 

current density gradually decreases during the electrodeposition without the rotating, 

while the current density kept the same value during the electrodeposition under the 

rotating condition, suggesting a stable supply of SiCl4 to the electrode surface. Following 

these results, the composition analyses showed the same tendency that the content of Si 

increased, while the content of carbon which is the dominant of impurities decreased (Fig. 

4.5). It is suggested that the reduction of SiCl4 is competitively occurred with the 

decomposition of the solvents. 

 

 

 

Fig. 4.4 Current transient during the electrodeposition at -2.5 V in the PC bath (a) 

without and (b) with rotating 
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Fig. 4.5 XPS depth profiles of the Si thin films electrodeposited at -2.5 V in the PC bath 

with rotating at 300 rpm 

 

 

Next, Since the organic solvent species, especially the oxygen content can affect 

the Si film composition, PC and CH3CN as representative oxidized and non-oxidized 

solvents, respectively were used. In the beginning, the electrochemical measurement was 

performed in the Ch3CN bath. In Fig. 4.6, the result of dehydrated CH3CN was also shown, 

which will be mentioned later. The increase of the current around -2.0 V vs. Ag/Ag+ was 

considered to derive from the reduction of SiCl4. Then, the electrodeposition potential 

was set at -2.3 V vs. Ag/Ag+ in the CH3CN bath. 
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Fig. 4.6 Linear sweep voltammogram (scan rate = 10 mV s-1) in the CH3CN bath 

 

 

The average compositions of the electrodeposited films from XPS measurement in 

CH3CN are shown in Fig. 4.7 and Table 4.2. In Table 4.2, the average composition of each 

element of the electrodeposited films in the PC bath also represented as the comparison. 
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Fig. 4.7 XPS depth profiles of the Si thin films electrodeposited at -2.3 V in the CH3CN 

bath 

 

Table 4.2 The average atomic percentage of each element of the electrodeposited films 

in the PC and CH3CN bath 

  

 

 

Compared to PC, the use of CH3CN only reduced the oxygen content by 5 at.%, a small 

amount that could be attributed to the incorporation of the oxidized solvent. Therefore, 

we concluded that the film composition did not change much between the oxidized and 

non-oxidized solvents Based on these results, in order to consider the influence of water 

on the films composition, non-dehydrated and dehydrated CH3CN containing 

approximately 30 and 10 ppm water, respectively was used as the solvent. As shown in 

Fig. 4.6, the current density in the non-dehydrated CH3CN was larger than that in 

dehydrated CH3CN. The consideration mechanism will be described later. The average 

composition of each element of the electrodeposited films in the non-dehydrated CH3CN 
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bath and the dehydrated CH3CN bath are shown in Fig. 4.8 and Table 4.3.  

 

 

Fig. 4.8 XPS depth profiles of the Si thin films electrodeposited at -2.3 V in the 

dehydrated CH3CN bath 

 

Table 4.3 The average atomic percentage of each element of the electrodeposited films 

depending on the water content in the dehydrated CH3CN bath 

 

 

 

The carbon content increased with increasing water content in the solvent, while the 

oxygen content did not increase. It is considered that this oxygen was not incorporated 

during the electrodeposition process. Instead, the oxygen could come from oxidation 

during the cleaning process after the electrodeposition, and/or during the transfer to the 

XPS apparatus despite using a transfer vessel. The reason is that, when we used the 

vacuum-dried samples without cleaning for the XPS apparatus, the oxygen content 

decreased to 6 at %, while the carbon content increased because it could be considered 

that the solvents were not perfectly removed by using only vacuuming. In order to confirm 
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the effect of the annealing treatment, that process was also conducted against the films, 

and the significant carbon decrease was observed (Fig. 4.9). 

 

 

 

Fig. 4.9 XPS depth profiles of the Si thin films electrodeposited at -2.3 V in the 

dehydrated CH3CN bath after annealing 

 

 

In order to understand the molecular-level effect of residual water, DFT calculation 

was performed for the Si electrodeposition in CH3CN. SiCl4 is assumed to hydrolyze in 

the presence of water [12] (SiCl4 + H2O → SiCl3OH + HCl), with a negative reaction 

energy of -19.6 kJ/mol compared with the formation of a hydrated structure (Fig. 4.10). 

Here, it should be mentioned that the hydrolysis reaction seems to progress more 

favorable than the formation reaction of the hydrated structure, however, such hydrated 

structure formation might be considered as a transition state in the hydrolysis reaction. It 

is thought that the hydrolysis reaction could proceed after the hydrated structure 

formation because water should get close to SiCl4 to form the hydrolysis product. The 

reaction energy also suggests this phenomenon because it was +7.7 kJ/mol. If this reaction 

energy would be an activation energy, the reaction can be occurred without the reaction 

barrier. 
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Fig. 4.10 The assumption of the reaction between SiCl4 and H2O 

 

 

In this SiCl3OH formation, the effect of solvent molecules on the formation of 

SiCl3OH (the hydrolysis product) was investigated. The activation energy of the above 

reaction in a CH3CN environment was +45.7 kJ mol-1, while that in a solvent-free 

environment was +105.0 kJ mol-1. The transition state structure is shown in Fig. 4.11. In 

addition, the solvation energy between the SiCl3OH (the hydrolysis product) and CH3CN 

molecules was -25.5 kJ/mol, meaning the stabilization of SiCl3OH by the CH3CN 

molecules, while SiCl4 did not interacted with CH3CN molecules (the solvation energy 

was calculated as +11.7 kJ/mol). That optimized structure is shown in Fig. 4.12. These 

results indicate that the CH3CN molecules stabilize the hydrolysis reaction, in which the 

hydroxy group in SiCl3OH were interacted with CH3CN molecules. 
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Fig. 4.11 The transition state during the hydrolysis reaction (a) with and (b) without the 

consideration of CH3CN molecules 

 

 

Fig. 4.12 The optimized structure of SiCl3OH and CH3CN 

(The black dot lines show the interaction between the hydroxy group of CH3CN 

molecules and the hydrolysis product.) 

 

 

Then, in order to consider whether SiCl3OH adsorbs on the electrode surface during 

the electrodeposition or not, the structure of SiCl3OH adsorbing on the surface was 

considered, in which the surface was considered as the Si cluster Si9H14. The optimized 

structure was shown as Fig. 4.13, and the adsorption energy was -493.0 kJ/mol. These 
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results suggest that the CH3CN molecules would get close to the surface because the 

formed SiCl3OH attracts them to be stabilized described above. This phenomenon would 

result in the incorporation of the solvents into the electrodeposited films during the 

electrodeposition, suggesting the increase of the carbon content in the films with the 

increase of the water content in the solvent. 

 

 

 

Fig. 4.13 The stable structure between the hydrolysis product of SiCl4 and Si surface 

(It is assumed that a Cl- ion of SiCl3OH, which is the hydrolysis product of SiCl4, was 

released in order to bond with the Si surface. The black dot lines show the interaction 

between the CH3CN molecules and the hydrolysis product.) 

 

 

This hydrolysis reaction is considered to be continuously progressed after the 

formation of SiCl3OH as follow’s equation [12]. The energy diagram of each reaction is 

also shown in Fig. 4.14 
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Fig. 4.14 Energy profiles in the hydrolysis reaction 

 

 

From this energy profile, the continuous hydrolysis reaction will be occurred. Then, 

the structure of each hydrolysis product on the surface were assumed. The adsorption 

energy of SiCl(OH)3 and Si(OH)4 on the surface was -124.4 and -83.1 kJ/mol, respectively, 

in which the CH3CN molecules interacted with the hydroxy group in each hydrolysis 

product. 
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4.3.2 Analysis of the reduction mechanism of SiCl4 

 

The reduction mechanism of SiCl4 was analyzed because SiCl4 was the dominant 

precursor in the Si electrodeposition, whereas the hydrolysis reaction was proceeded. 

Figure 4.15 shows a current transient and mass changes from the open circuit potential to 

–3.0 V vs Ag/Ag+.  

 

 

 

Fig. 4.15 (a) Linear sweep voltammogram, scan rate = 10 mVs-1, (b) Mass changes 

during linear sweep voltammogram in the dehydrated CH3CN bath 

 

 

This linear sweep voltammetry (LSV) measurement identified several reduction 

peaks: -1.0, -1.8 (very small changes), and -2.1 V vs Ag/Ag+. No mass changes were taken 

place at either -1.0 or -1.8 V vs Ag/Ag+, indicating that the electroactive species were 

reduced at these points but not deposited. On the other hand, mass changes accompanied 

the reduction peak at -2.1 V vs Ag/Ag+, which was attributed to the deposition of Si 

(whose existence was confirmed by XPS). These distinct peaks suggest that this Si 
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reduction process involves multiple elementary steps with stable intermediates before the 

deposition. In other words, before reaching -2.1 V vs. Ag/Ag+, electroactive species of 

SiCl4 in this system receive electrons to form some type of intermediate. This multiple 

step was also suggested by J. Gobet et al. [3]. They electrodeposited Si from 

tetrahydrofuran with silicon halides, and reported that all the electrons were probably 

transferred in a multistep process. After sweeping to -2.1 V vs. Ag/Ag+ in the LSV 

measurement, some films considered as the intermediates were observed to form. These 

films were rinsed off in the cleaning process of the samples after the LSV measurement, 

suggesting that they seemed not to adhere to the electrode surface. This phenomenon was 

corresponding to the result of the EQCM measurement which showed that there were no 

mass changes until -2.1 V vs. Ag/Ag+. The XPS analysis of those films, which are only 

vacuumed after the measurement to dry the residue organic solvents instead of the 

cleaning using the dehydrated CH3CN, showed the existence of Si and Cl (Fig. 4.16), 

indicating that the compounds of Si and Cl were the intermediate species. 

 

 

 

Fig. 4.16 The XPS result of the electrodeposited films after sweeping to -2.1 V in the 

linear sweep voltammetry in the dehydrated CH3CN bath 
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In order to elucidate the kinds of intermediate species formed, the films 

electrodeposited at -2.1 V vs. Ag/Ag+ for several minutes were analyzed by Raman 

spectroscopy (Fig. 4.17). 

 

 

 

Fig. 4.17 The time dependence of Raman spectra of the films electrodeposited at -2.1 V 

in the dehydrated CH3CN bath 

 

 

With increasing deposition time, a peak appeared at around 230 cm-1. Since the 

samples were carefully cleaned before the measurement, and there were no peaks at 0 

min, this peak could not have been derived from the solvent. Instead, this peak was 

assigned to reduction products of the electroactive species such as SiCl4. Indeed, there 

are several reports about Si species with -SiCl3 bonding that have spectral peaks at around 

230 cm-1 [19-21] In this case, Si species with -SiCl3 bonding such as Si dimer or multimer 

could be formed as intermediate states during the electrodeposition. A similar reduction 

behavior of dichlorosilanes to form Si dimer has been reported in the research of organic 

electrolytic synthesis, even though the functional groups of these dichlorosilanes are not 
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dichlorosilanes in tetrahydrofuran, the RR’SiCl2 species are reduced to R2R’2Si2Cl2 by 

radical coupling or nucleophilic substitution with the release of Cl-, and other similar 

studies have also been reported [23-24].  

The Raman spectra also showed that these intermediates of Si multimers are 

electrochemically reduced to form a-Si, as shown in Fig. 4.18. From these results, the 

following reduction steps are proposed. SiCl4 is first reduced to produce intermediate 

states containing –SiCl3, and this intermediate formation process continues to generate Si 

multimers, which are finally electrodeposited as a-Si on the substrate with the release of 

Cl- ion  

 

 

 

Fig. 4.18 Raman spectrum of the films electrodeposited at -2.3 V at 1000 mC cm-2 in the 

dehydrated CH3CN bath (The peak around 480 cm-2 was appeared, meaning the 

electrodeposition of a-Si.) 

 

 

It has also been reported that these electrodeposited Si films in organic solvents might be 

a semiconductor [8]. In order to check the nature of semiconductor, a halogen lamp was 

used to irradiate the sample during the electrodeposition, with reference to the photo-

assisted electrodeposition of semiconductors. The current density changes with and 

without the light irradiation are shown in Fig. 4.19.  
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Fig. 4.19 The current density changes during the electrodeposition at -2.3 V vs. Ag/Ag+ 

at 500 mC cm-2 in the dehydrated CH3CN with and without the light irradiation 

 

 

The current density during the electrodeposition with the light irradiation was larger than 

that without the light irradiation and it was observed the decrease of the crack formation 

during the electrodeposition. In addition, the cross-sectional view (Fig. 4.21) at the crack 

with the light irradiation condition seems to be more compact and thicker than that 

without light irradiation. These mechanisms with the light irradiation will be described in 

detail in Chapter 5. From these results, it should be mentioned here that the 

electrodeposited films seem to be semiconductors.  
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Fig. 4.20 The morphology of the film electrodeposited at -2.3 V vs. Ag/Ag+ at 500 mC 

cm-2 in the dehydrated CH3CN (a) without and (b) with the light irradiation 

 

 

Fig. 4.21 The morphologies of the films electrodeposited at -2.3 V at 500 mC cm-

2 in the dehydrated CH3CN bath with and without the light irradiation 
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Conclusions 

 

 

This chapter described the Si electrodeposition in organic solvents, and the 

influence of the solvent species and the water content on the film composition, and the 

reduction mechanism of SiCl4 in the Si electrodeposition with organic solvents were 

mainly described. 

It was revealed that the water content affected to the film composition, especially 

the carbon content, while there is small influence of solvent species. With the increase of 

the water content in the solvents, the carbon content in the films increased. The molecular 

level mechanism in this phenomenon was suggested that the solvent molecules of CH3CN 

could get close to the electrode surface during the electrodeposition due to the strong 

interaction of solvents molecules with the hydrolysis product of the SiCl4 under the water 

existence condition. In order to decrease the impurities inclusion into the films, the 

suppression of above mechanism can potentially be a way as well as the annealing 

treatment. It was also shown by the measurement using the rotating disk electrode to 

enhance the diffusion of SiCl4, which indicated the enhancement of the reduction of SiCl4 

would improve the film composition. In addition, the measurement of the light irradiation 

supported that mechanism. 

As for the reduction mechanism of SiCl4, it was confirmed that there was the 

intermediate state formation step, in which Si species with SiCl3 bonding were formed. 

Form this chapter, the analysis methods for the reaction mechanism used in ionic 

liquid system can be applied to the other solvents, and the analysis method described in 

this chapter would be potentially be a way for the reaction mechanism analysis of other 

electrodeposition systems in organic solvents as well as the formation of films. 

  



Chapter 4 

112 

 

References 

 

 

[1] Y. Takeda, R. Konno, and O. Yamamoto, J. Electrochem. Soc., 128, 1221 (1981) 

[2] A. K. Agrawal and A. E. Austin, J. Electrochem. Soc., 128, 2292 (1981). 

[3] J. Gobet and H. Tannenberger, J. Electrochem. Soc., 135, 109 (1988). 

[4] Y. Nishimura and Y. Fukunaka, Electrochim. Acta, 53, 111 (2007). 

[5] Y. Nishimura and Y. Fukunaka, ECS Trans., 6, 77 (2007). 

[6] R. Epur, M. Ramanathan, F. R. Beck, A. Manivannan, and P. N. Kumta, Mater. Sci. 

Eng., B, 177, 1157 (2012). 

[7] D. Elwell, J. Cryst. Growth, 52, 741 (1981) 

[8] T. Munisamy and A. J. Bard, Electrochim. Acta, 55, 3797 (2010). 

[9] J.P. Nicholson, J. Electrochem. Soc., 152, C795 (2005). 

[10] M. Bechelany, J. Elias, P. Brodard, J. Michler, and L. Philippe, Thin Solid Films, 520, 

1895 (2012). 

[11] C. Vichery, V. Le Nader, C. Frantz, Y. Zhang, J. Michler, and L. Philippea, 

Phys.Chem.Chem.Phys., 16, 22222 (2014). 

[12] S. K. Ignatov, P. G. Sennikov, A. G. Razuvaev, L. A. Chuprov, O. Schrems, and B. 

S. Ault, J. Phys. Chem. A, 107, 8705 (2003). 

[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. 

Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. 

Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, 

M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, 

O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. 

Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. 

Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, 

N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. 

Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, 

J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, 

J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. 

Cioslowski, and D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford, CT 

(2009). 

[14] A.D. Becke, J. Chem. Phys., 98, 5648 (1993). 

[15] C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B, 37, 785 (1988). 



Chapter 4 

113 

 

[16] B. Mennucci, WIREs Comput. Mol. Sci., 2, 386 (2012). 
[17] Katsuei Ishida，Annual report, i09sf, TAIYO YUDEN CO., LTD, (2009) 

[18] C. Puglisi, L. Sturiale, and G. Montaudo, Macromolecules, 32, 2194 (1999). 

[19] M. A. Qtaitat, A. B. Mohamad, T. A..Mohamed, D. J.Gerson, A. Q. McArver, M. S. 

Afifi, and J. R. Durig, Spectrochim. Acta, Part A, 50, 621 (1994). 

[20] W. Malisch, H. Jehle, S. Möller, G. Thum, J. Reising, A. Gbureck, V. Nagel, C. 

Fickert, W. Kiefer, and M. Nieger, Eur. J. Inorg. Chem., 1999, 1597 (1999). 

[21] T. H. Johansen, K. Hassler, A. D. Richardson, G. Tekautz, and K. Hagen, 

Spectrochim. Acta, Part A, 61, 1307 (2005). 

[22] X. Wang, Y. Yuan, and I. Cobasso, J. Electrochem. Soc., 152, 259 (2005). 

[23] M. Umezawa, M. Takeda, H. Ishikawa, T. Ishikawa, T. Koizumi, T. Fuchigami, and 

T. Nonaka, Electrochim. Acta, 36, 621 (1991). 

[24] S. Kashimura, M. Ishifune, N. Yamashita, H-B. Bu, M. Takebayashi, S. Kitajima, D. 

Yoshiwara, Y. Kataoka, R. Nishida, S. Kawasaki, H. Murase, and T. Shono, J. Org. Chem., 

64, 6615 (1999). 

[25] A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and 

Applications (John Wiley and Sons, NY), Chapter 18 (2001). 

[26] S. Yoshihara, K. Endo, E. Sato, and J. O’M. Bockris, J. Electroanal. Chem., 372, 91 

(1994). 

[27] Y. L. Kawamura, T. Sakka, and Y. H. Ogata, J. Electrochem. Soc., 152, C701 (2005). 

[28] D. W. Redman, H. J. Kim, K. J. Stevenson, and M. J. Rose, J. Mater. Chem. A, 4, 

7027 (2016). 

  



 

   



 

   

 

Chapter 5: 

Study for The Fabrication of Si Thin Film Solar 
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5.1 Introduction 

 

 

In this chapter, the study for the fabrication of Si thin film solar cells as one example 

of the application of the electrodeposited Si thin films by electrodeposition is described. 

It is important to electrodeposit Si for considering the application as well as the reaction 

mechanism analysis discussed in the previous chapters. 

As the author mentioned in previous chapters, electrodeposition can potentially be 

a way to fabricate thin film solar cells because it can help to fabricate the nanostructures 

in a large area without using high voltage and high vacuum equipment. In applying the 

electrodeposited thin films for solar cells, the impurities inclusion and the crack formation 

and/or porous structure [1-6] is problem, and it is necessary to electrodeposit doped thin 

films. As for the improvement of the morphology, there are some reports that the mixed 

electrolyte of ionic liquids and organic solvents [7], and the selectivity of the supporting 

electrolyte [8] would be helpful to obtain the relatively smooth surface. On the other hand, 

it is necessary to control the morphology by understanding the growth mechanism of Si 

thin films. For this, T. Munisamy et al. [2] has studied the initial growth of the 

electrodeposited Si in acetonitrile and tetrahydrofuran containing tetrabutylammonium 

chloride with SiCl4 and SiHCl3. However, the above study did not furnish sufficient data 

for the precise control of Si electrodeposition. As for the doped films, J.P. Nichlson [9] 

has reported as one trial study the doped films in organic solvents would be possible to 

add the dopant such as PCl5 and AlCl3, although the effects of dopant on electric 

properties have not been discussed. Further development of Si electrodeposition in ionic 

liquids for the fabrication of solar cells based on Si thin films requires the establishment 

of methods for controlling their growth and doping. 

To address this issue, in this chapter, the influence of electrodeposition parameters 

on Si thin film morphology by analyzing the initial-stage growth of these films was 

investigated to control the growth process of Si thin films, and the effects of dopant and 

the electric properties of doped thin films were also focused on as the initial study to form 

doped thin films. 
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5.2 Experimental 

 

 

The electrochemical cell used in this study is schematically illustrated in Fig. 5. 1. 

TMHATFSI, which is received from Stella Chemifa Corp) containing 0.5 M SiCl4 was 

used as the ionic liquid, and electrodeposition was performed using a three-electrode 

system. Three substrates were used as working electrodes, namely Au film (100 nm-thick) 

on mica and Au film (200 nm-thick) on a Si (111) substrate with a Cr adhesion layer (10 

nm-thick), both deposited by electron beam evaporation (ULVAC, EBX-6D), and a highly 

doped n-type Si substrate (100) with a resistivity of ~1.9 × 10–3 Ω cm–1. A Pt wire was 

used as the counter electrode, and a Ag/Ag+ electrode was used as a reference. The Au 

film on mica was used to analyze early-stage electrodeposition due to exhibiting a very 

smooth surface (Ra = 0.20 nm; Fig. 5.2) and thus being suitable for the observation of 

initially produced Si grains. Figure 5.2 also illustrates the roughness of Au films formed 

on Cr/Si and pure Si. 

 

 

 
Fig. 5.1 Schematic illustration of the electrochemical cell, in which a halogen lamp was 

used only in the electrodeposition with the light irradiation 
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Fig. 5.2 AFM images of each substrate; (a) Au / mica (Ra = 0.20 nm), (b) Au / Cr / Si 

(Ra = 2.2 nm), and (c) Si (Ra = 0.15 nm) 
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In the formation of n-type thin films, 8.8 × 10-4 M AlCl3 was used as p-type dopant, 

and as for p-type thin films, 8.8 × 10-7 M PCl5 was used as n-type dopant, in which dopant 

was added to the ionic liquids of TMHATFSI with 0.5 M SiCl4. 

All electrochemical measurements were performed at 40 C in an Ar-filled glove 

box using a potentiostat/galvanostat (Hokuto Denko, HZ-7000). A quartz halogen lamp 

(30 W m–2) was employed as a light source. 

Sample morphology was characterized by high-resolution scanning electron 

microscopy (Hitachi High-Technologies, S5500). After exposure to air, as-deposited Si 

films were subjected to rapid 1 h annealing (ULVAC, MILA 3000) in Ar/H2 (90/10, v/v) 

at 700 °C. Seebeck coefficient and resistivity were measured by the two-probe method in 

a steady state using a self-made apparatus [10]. When measuring Seebeck coefficient, the 

effects of the substrate were eliminated which will be described in Results and Discussion 

section. Film compositions were determined by glow discharge optical emission 

spectrometry (GDOES; Rigaku, GDA 750). 
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5.3 Results and Discussion 

 

5.3.1 The control of the film structure control 

 

It has been shown that the electrodeposited films they became rougher and more 

porous with increasing electrodeposition time, i.e., with increasing film thickness. Figure 

5.3 shows the electrodeposited films at 500 and 1500 mC cm-2.  

 

 

 

Fig. 5.3 SEM images of the films electrodeposited at -2.3 V vs. Ag/Ag+ 

(a) at 500 mC cm-2, (b) at 1500 mC cm-2 
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The thickness of the electrodeposited films is estimated approximately 150 and 450 nm 

at 500 and 1500 mC cm-2, respectively by Faraday’s law. 

 

 

𝐴ℎ𝜌 =  
𝑀𝑆𝑖  𝑄

𝑧𝐹
                                                                       (5.1)                        

where, 

A = the electrodeposited area 

h = the thickness of the electrodeposited Si 

= the density of Si 

MSi = the molar mass of Si 

Q = the chegre density 

z = the number of the electron 

F = the Faraday constant 

 

 

In order to understand the growth process of Si, the very initial stage during Si 

electrodeposition was analyzed. Figure 5.4 shows the morphologies of the films 

electrodeposited at the very initial stage at -2.3 V vs. Ag/Ag+, in which Au formed on 

Mica was used. With the increase of the charge density from 0 to 10 mC cm-2, it was 

observed the electrodeposited Si covers the electrode surface. However, it was confirmed 

that there were voids or areas where Si grains were not formed at the charge density of 

50 mC cm-2 (red dots circle in Fig. 5.4 (d)). These tendencies were same when the 

cleaning process before the electrodeposition was changed; the Au substrate are usually 

cleaned by O2 plasma ashing to remove the impurities on the surface. As other cleaning 

processes, wet cleaning processes using acid solutions and/or ethanol with O2 plasma 

ashing. Therefore, it could be concluded that Si was not electrodeposited in these areas, 

which was also confirmed by EDX analysis (Fig. 5.5).  
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Fig. 5.4 SEM images of the films electrodeposited at -2.3 V vs. Ag/Ag+ at the very 

initial stage (a) before electrodeposition, (b), (c), and (d) after electrodeposition; (b) at 5 

mC cm-2 (approximately 1.5 nm), (c) at 10 mC cm-2 (approximately 3.0 nm), (d) at 50 

mC-2 (approximately 15 nm) 
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Fig. 5.5 EDX analysis results of the films electrodeposited at -2.3 V vs. Ag/Ag+ at 50 

mC-2 at the area (a) where Si is electrodeposited (red solid circle), and (b) where Si is 

not electrodeposited (red dot circle) 

 

 

     From these results, the nuclei of Si were grown in two dimensions when the 

potential of -2.3 V vs. Ag/Ag+ was applied, and a lateral growth should be enhanced if 

SiCl4 exists enough to react at the electrode surface. In this case, it was also confirmed 

the diffusion limited phase during the electrodeposition. The current transient during the 

electrodeposition is shown in Fig. 5.6. As you can see, the current has almost reached the 

limiting current density around 3 or 4 s. It means that, the ideal two-dimensional and 

lateral growth can not be occurred in this case. In general, this diffusion limited condition 

is known to afford rough surfaces. Here, it should be noted that T. Munisamy et al. [2] 

has reported that the electrodeposited Si should be semiconductor and behaves like an 

insulator, resulting in the current decay tendency during the electrodeposition. For this, 

the author also focuses on later. 
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Fig. 5.6 Initial current density changes during the constant potential electrodeposition at 

-2.3 V vs. Ag/Ag+ (The inner figure is the enlarged one between 0 ~ 10 s.) 

 

 

As discussed above, the two-dimensional growth was considered at -2.3 V vs. 

Ag/Ag+. Therefore, in order to analyze the effect of overpotential at the initial stage, Si 

electrodeposition was investigated at –3.0 V vs. Ag/Ag+, since large overpotentials 

typically result in increased numbers of nuclei and enhance three-dimensional growth. 

[11]. Figure 5.7 shows the morphologies of films electrodeposited on Au/mica at –3.0 V 

vs. Ag/Ag+ at the initial stage. 
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Fig. 5.7 SEM images of the films electrodeposited at -3.0 V vs. Ag/Ag+ at the very 

initial stage (a) before electrodeposition, (b), (c), and (d) after electrodeposition; (b) at 5 

mC cm-2 (approximately 1.5 nm), (c) at 10 mC cm-2 (approximately 3.0 nm), (d) at 50 

mC-2 (approximately 15 nm) 

 

 

As the charge density was increased from 0 to 10 mC cm–2, the electrodeposited Si 

covered the electrode surface, although a porous structure was formed at 10 mC cm–2. As 

electrodeposition was continued (at 50 mC cm–2), two phases of growing process of 

aggregation and plateau appeared, with the plateau considered to be formed after 

aggregation. Thus, a relatively smooth surface would be obtained if the plateau covered 

the electrode surface. However, as described above, homogeneous growth was suppressed 

under the diffusion-limited conditions, with this limitation being more pronounced than 

in the case of –2.3 V vs. Ag/Ag+ due to the applied potential being more negative. For 

considering forming the smooth surface, a periodic reverse (PR) electrodeposition was 

applied. As described above, the current has almost reached the limiting current density 
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around 3 or 4 s, thus, PR electrodeposition featured the application of a potential for 2 s 

to electrodeposit Si followed by a 3-s rest phase to recover the cation depletion layer. The 

recovery of the diffusion rate of SiCl4 molecules to the electrode surface resulted in the 

concentration of SiCl4 at the substrate surface being retained at a relatively high level. 

Notably, PR electrodeposition conditions were selected in consideration of an appropriate 

duty ratio it has reported that it would be better to set from 0.2 to 0.6 to retain the 

concentration of reductant at a relatively high level near the electrode surface during the 

electrodeposition [12-14]. Therefore, we set 3 s rest phase to recover the depletion layer. 

The results are shown in Fig. 5.8 and 5.9. 

 

 

 

Fig. 5.8 SEM images of the films formed by PR electrodeposition at -2.3 V vs. Ag/Ag+ 

at 1500 mC cm-2 

 

 

Fig. 5.9 SEM images of the films formed by PR electrodeposition at -3.0 V vs. Ag/Ag+ 

at 1500 mC cm-2.) 
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From these results, the relatively smooth surface was obtained by applying this PR 

electrodeposition, especially electrodeposited at -2.3 V vs. Ag/Ag+. At the -3.0 V vs. 

Ag/Ag+, a random nucleation for 2 s on the surface might result in the crack formation 

during electrodeposition. 

Another concern is the semiconducting nature of electrodeposited Si thin films. 

Studies on photo-assisted electrodeposition of semiconductors indicate that light 

irradiation can produce photoexcited electrons that are consumed by the electrochemical 

reaction, whereas the growing semiconductor layers might restrict the reaction rate due 

to their low carrier concentration [15]. Therefore, to determine whether the 

electrodeposited Si is a semiconductor, PR electrodeposition was performed during light 

irradiation. Figure 5.10 shows the current density changes during each cycle of PR 

electrodeposition, revealing that in the absence of the light irradiation, the current density 

decreased upon cycling, whereas almost no such decrease was observed during the light 

irradiation. These mechanisms are described as follows. 
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Fig. 5.10 Current density changes during the electrodeposition time at -2.3 V vs. Ag/Ag+ 

at (a) 10th, (b) 100th, (c) 1000th, and (d) 2000th cycle in the PR electrodeposition with 

and without the light irradiation 

 

 

In order to consider these phenomena, band structures should firstly be described. 

The general band bending structures in a junction between a semiconductor and solution 

can be illustrated in Fig. 5.11. After applying the cathodic potential, the bands are bent 

upward in spite of the nature of semiconductor [15]. Following this knowledge, the band 

bending during the electrodeposition under the condition in the absence of the light 

irradiation can be illustrated in Fig. 5.12 [15-19]. At the initial stage, metal of Au 

contacted to the solution, therefore, there are no band bending (Fig. 5.12 (a)) because 

there are a lot of free electrons in metals which can accumulate at the surface and move 

toward the solution side. When the electrodeposited Si is accumulated on the metal 

substrate, the junction formation between semiconductor and solution should be 

considered. At the stage during the electrodeposition of very thin Si films, the band 

bending structure was formed because the interface was consisted of the semiconductor 
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and solution However, the electrons could accumulate at the surface when very thin films 

were electrodeposited, resulting in the behavior of an inert metal electrode (Fig. 5.12 (b) 

[15]. This tendency would not change depending on the nature of the electrodeposited Si 

thin films, although the current density should change because electrons are major carrier 

in n-type semiconductor, while electrons are minor carrier in p-type semiconductor. After 

the accumulation of the electrodeposited Si, the number of electrons which accumulate at 

the surface (idiff) decrease (Fig. 5.12 (c)) due to the resistivity of Si even if n-type Si would 

be electrodeposited, resulting in the decrease of current density.  

 

 

 

Fig. 5.11 Formation of the junction between (a) n-type, (b) p-type semiconductors and a 

solution; left side is semiconductor and right side is solution 

 

 

Fig. 5.12 Formation of the junction between the metal, semiconductor and solution 

during the electrodeposition; left sides are metal and semiconductor and right side is 

solution 
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This current density change can also be understood by Eq. (5.2) [15], indicating that the 

decrease of the current density with decreasing the concentration of electrons at the 

interface. This phenomenon was observed in the absence of the light irradiation in this 

case, therefore, the current density decreased upon cycling. 

 

 

                      i = nF𝑘𝑏
′ 𝑛𝑆𝐶𝐶𝑂(𝑥 = 0)                       (5.2)   

 

where, 

nsc: the concentration of electrons at the interface 

kf
’: heterogeneous rate constant 

 

 

     During the light irradiation, the band bending structure is considered to change as 

shown in Fig. 5.13. The difference between in the absence of the light irradiation and 

during the light irradiation would be the creation of electron-hole pair as shown in Fig. 

5.13 (b). Photo excited electrons in the bulk and at the interface help not to decrease the 

number of electrons to accumulate at the interface (Fig. 5.13 (c)), resulting in not 

decreasing the current density during the electrodeposition. In addition, it is known that 

photo generated holes decrease the flat band potential (Efb) [18], meaning the positively 

shift of the open circuit potential [19]. It also indicates that the overpotential becomes 

large with the positively shift of the open circuit potential when a same cathodic potential 

is applied, which might cause a densification of the electrodeposited films. It could be 

also indicated by the accumulation of electrons at the interface because the accumulation 

of electrons causes the increase of over potential. The knowledge in the photo-assisted 

electrodeposition on semiconductors would help this mechanism. It has been reported that 

the grain size and precipitated particle density could be controllable with the light 

irradiation, in which the nucleation process could be the dominant [20-22]. 

Abovementioned phenomena were observed during the light irradiation in this case, 

therefore, the current density did not decrease upon cycling, and it increases in same cycle 

number compared with that in the absence of the light irradiation. The effect of 
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overpotential might be shown in Fig. 5.14. The morphology seems to become relatively 

smother compared with the absence of the light irradiation, though there are not 

significant change. 

 

 

 

Fig. 5.13 Formation of the junction between the metal, semiconductor and solution 

during the electrodeposition with the light irradiation; left side is metal and 

semiconductor and right side is solution 

 

 

Fig. 5.14 SEM images of the films formed by the PR electrodeposition with the light 

irradiation 
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The cross-sectional view of the films electrodeposited by each process are also 

shown in Fig. 5.15. The increase of film thickness also indicated that the abovementioned 

mechanism. The films formed by the constant potential electrodeposition was more 

porous and thicker than the films under PR electrodeposition. It corresponds to the 

compactness of the films by applying the PR electrodeposition. Therefore, it is suggested 

that the electrodeposited films would be a semiconductor (not perfectly) to suppress the 

cathodic reaction during the electrodeposition without the light irradiation. 

Form these results, it was confirmed that the current decay during the Si 

electrodeposition was due to both the diffusion-limited condition and the nature of the 

semiconductor characteristic of the electrodeposited films. 

 

 

 

Fig. 5.15 Cross-sectional SEM images of the films formed by (a) the constant potential 

electrodeposition, (b) the PR electrodeposition in the absence of the light irradiation, (c) 

the PR electrodeposition with the light irradiation 
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5.3.2 Doping on the electrodeposited films 

 

As the formation of p-type thin films, there are possibility to dope Al as a dopant 

because the electrodeposition of Al has been reported in non-aqueous solutions by many 

researchers [9, 15]. Then, in this thesis work, it is thought that AlCl3 could be helpful to 

electrodeposit p-type dopant, and in this formation of p-type thin films, a working 

substrate of Si was used for considering annealing treatment. In the evaluation of the 

electric property of the electrodeposited films, it would be better to measure the films 

with low impurities and a relatively smooth surface. As described in chapter 2, the 

annealing treatment can decrease impurities in films, however, it was shown that the crack 

was formed after the annealing treatment in using Au substrate due to the diffusion of Au 

during the annealing. These optical images are shown in Fig. 5.16. 

 

 

 

 

Fig. 5.16 SEM images of each substrate (a), (c) before and (b), (d) after the annealing 

treatment; (a), (b) Au substrate, (c), (d) Si substrate 
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In order to understand the possibility of Al electrodeposition in TMHATFSI, the 

electrochemical behavior was investigated. Figure 5.17 shows the cyclic voltammogram 

in TMHATFSI with 1.0 M AlCl3. 

 

 

 

Fig. 5.17 Cyclic voltammogram in 1.0 M AlCl3 / TMHATFSI on Si substrate 

 

 

It seems that the increase of the current density around -3.0 V vs. Ag/Ag+ derived from 

the cathodic reaction of AlCl3, while the second peak would derive from the 

decomposition of ionic liquids. Then, the electrochemical behavior in mixed electrolyte 

of SiCl4 and AlCl3 was investigated. Figure 5.18 shows the cyclic voltammogram in 

TMHATFSI with only 0.5 M SiCl4 and 8.8 × 10-4 M AlCl3 and 0.5 M SiCl4. 
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Fig. 5.18 Cyclic voltammogram in 0.5 M SiCl4 / TMHATFSI and 8.8 × 10-4 M AlCl3 

and 0.5 M SiCl4 / TMHATFSI 

 

 

With the addition of AlCl3, the current density of the Si electrodeposition increase, 

suggesting the resistivity of the electrodeposited films became low. Therefore, it could be 

considered that doped films are formed. 

In order to evaluate the electric property of the electrodeposited films, the Seebeck 

coefficient and resistivity was measured for the films after the annealing treatment, in 

which the electrodeposition was conducted at -3.0 V vs. Ag/Ag+. In the measurement of 

the Seebeck coeeficient, the effect driving from the substrate itself was eliminated by the 

following Eq. (5.3), which can help to understand the Seebeck coefficient of the 

electrodeposited films themselves. In addition, the smooth films are surely obtained after 

annealing treatment as shown in Fig. 5.19. 
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𝑆 =
𝑅ℎ𝑆𝑒+𝑅𝑒𝑆ℎ

𝑅𝑒+𝑅ℎ
               (5.3) 

where, 

S = the measured Seebeck coefficient 

Rh = the resistance of the Si substrate 

Re = the resistance of the electrodeposited films 

Sh = the Seebeck coefficient of the Si substrate 

Se = the Seebeck coefficient of the electrodeposited films 

 

 

 

Fig. 5.19 SEM images of the electrodeposited films at -3.0 V vs. Ag/Ag+ 

(The condition of the annealing treatment was at 700 oC for 1h with the heating up time 

of 1680 oC/min.) 

 

 

As a result, the films with the Seebeck coefficient of 700 ~ 900 μV K-1 and the resistivity 

of 6 ~ 576 × 102 Ω cm was successfully electrodeposited. Therefore, it was suggested that 

the film with p-type characteristic could be formed by electrodeposition. 

As described above and Chapter 2, the annealing treat can decrease impurities in 

films. This annealing treatment also be helpful to obtain the crystalline films. The 

crystallinity was measured by Raman spectra of the Si thin films electrodeposited at -2.3 

V vs. Ag/Ag+ before and after annealing are shown in Fig. 5. 20 (a). A broad peak detected 

10 m
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at around 480 cm-1 changed to a sharp peak at 520 cm-1 after annealing. The sharper peak 

suggests that Si in the deposited films is crystallized by annealing. This spectrum was 

also analyzed using Origin (Fig. 5.20 (b)). The pink line shows the original data measured 

by Raman spectroscopy, and the black and red lines show the existence of peaks in the 

measured spectrum. Further, the blue line shows the fitting results. This analysis confirms 

the existence of the peak around 520 cm-1. As you can see, it is possible to fabricate 

crystalline Si thin films, which could also enlarge the application field of the 

electrodeposited films. 

 

 

 

Fig. 5.20 (a) Raman spectra of the Si thin films electrodeposited at -2.3 V vs. Ag/Ag+ 

before and after annealing (at 700 C for 1 h) (b) Analyzed result of the peak around 

520 cm-1 
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Table 5.1 shows the Seebeck coefficient and resistivity measurements of the Al-

doped Si thin films after annealing treatment. The films showed the Seebeck coefficient 

ranges (600 - 900 V K-1) and the resistivity (400 - 800 Ω cm). The positive value of the 

Seebeck coefficient suggests that films electrodeposited in TMHATFSI containing 0.5 M 

SiCl4 and 8.8 × 10–4 M AlCl3 exhibited p-type characteristics. Figure 5.21 presents film 

compositions measured by GDOES, showing that the content of Al equaled ~600 ppm, 

with the considerably higher oxygen content ascribed to air exposure. Here, Al content is 

too high for the application in comparison with the study in molten salts [23], therefore, 

the p-type characteristics of doped films need to be determined from their photoresponses. 

Nevertheless, this study revealed that the addition of AlCl3 to the electrolyte promotes the 

electrodeposition of p-type Si films.  

 

 

Table 5.1 The results of the Seebeck coefficient and resistivity measurement of Al-

doped Si thin films 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Potential

/ V vs. Ag/Ag+

Dopant (AlCl3) 

concentration / M

Seebeck coefficient 

/ μV K-1

Resistivity

/ Ω cm

-3.0 8.8 × 10-4 600 - 900 400 - 800
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Fig. 5.21 (Color Online) The film composition of doped Si thin films electrodeposited at 

-3.0 V vs. Ag/Ag+ in TMHATFSI with 0.5 M SiCl4 and 8.8 × 10-4 M AlCl3 (The inner 

figure shows the Al content.) 

 

 

The same tendency was observed in the measurement of the Seebeck coefficient 

and resistivity of the films electrodeposited at -3.0 V vs. Ag/Ag+ in CH3CN, meaning the 

possibility to form the p-type Si thin films in organic solvents. 

     As for the n-type Si thin films electrodeposition, first, in order to understand the 

possibility of P electrodeposition in TMHATFSI, the electrochemical behavior was 

investigated. Figure 5.22 shows the cyclic voltammogram in TMHATFSI with 1/30 M 

PCl5. Several peaks were observed, and the electrodeposition at -2.0 V vs. Ag/Ag+ was 

conducted. The EDX result showed the existence of P, while there are no peak relating to 

Cl, meaning that the successful electrodeposition of P in TMHSTFASI. Figure 5.23 

shows the cyclic voltammogram in TMHATFSI with only 0.5 M SiCl4, and 0.5 M SiCl4 

with 8.8 × 10-7 M PCl5. 
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Fig. 5.22 Cyclic voltammogram in 1/30 M PCl5 / TMHATFSI on Si substrate 

 

 

 

Fig. 5.23 Cyclic voltammogram in 0.5 M SiCl4 / TMHATFSI and 0.5 M SiCl4 and 8.8 × 

10-7 M PCl5 / TMHATFSI 
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With the addition of PCl5, the current density of the Si electrodeposition increase, 

suggesting the resistivity of the electrodeposited films became low. Therefore, it could be 

considered that doped films are formed. In order to evaluate the electric property of the 

electrodeposited films, the Seebeck coefficient and resistivity was measured for the films 

after the annealing treatment, in which the electrodeposition was conducted at -3.0 V vs. 

Ag/Ag+. In this measurement of the Seebeck coefficient, the effect driving from the 

substrate itself was also eliminated by Eq. (5.3). Table 5.2 shows the Seebeck coefficient 

and resistivity measurements of the P-doped Si thin films after annealing treatment. The 

films showed the Seebeck coefficient (-90 - -190 V K-1) with the resistivity (50 - 80 Ω 

cm). The negative value of the Seebeck coefficient indicates the n-type semiconductor, 

suggesting that films electrodeposited in TMHATFSI with 0.5 M SiCl4 and 8.8 × 10-7 M 

PCl5 exhibited n-type characteristics. 

 

 

Table 5.2 The results of the Seebeck coefficient and resistivity measurement of P-doped 

Si thin films 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potential

/ V vs. Ag/Ag+

Dopant (PCl5)

concentration / M

Seebeck coefficient 

/ μV K-1

Resistivity

/ Ω cm

-3.0 8.8 × 10-7 -90 ~ -190 50 ~ 80
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Conclusions 

 

 

By analyzing the influence of the electrodeposition parameter on the morphology, 

the relatively smooth films were obtained by applying PR electrodeposition in ionic 

liquids, in which the applied potential and the diffusion of the reductant of SiCl4 to the 

electrode surface played a key role. It was also suggested that the electrodeposited films 

were semiconductor and behaved like an insulator. For this, the photoexcited electrons by 

the light irradiation during the electrodeposition was helpful to enhance the Si 

electrodeposition. 

As the formation of the doped thin films, the addition of AlCl3 and PCl5 to the 

electrolyte could potentially be a way to form films with p-type and n-type characteristic 

by electrodeposition in both ionic liquids and organic solvents. 
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The fabrication of Si by electrodeposition in ionic liquids has been attracted as an 

alternative approach for several applications. There are the backgrounds of that the 

electrodeposition has advantages in fabricating nanostructures with nm order in a large 

area without using high voltage and high vacuum environment, and the characteristic and 

recent availability of ionic liquids. Although there are several studies of Si 

electrodeposition in ionic liquids, it still has challenging in the decrease of impurities in 

the Si structures which is especially needed for solar cell applications and the elucidation 

of reaction mechanism. The reason of these difficulties seems to be strongly related to the 

insufficient clarification of the reaction system in utilizing the ionic liquids in the 

electrodeposition, while there are many studies of the electrodeposition in ionic liquids. 

It is also considered that, especially in the Si electrodeposition, the impurities inclusion 

might relate to the uncertainty of the reaction mechanism. Therefore, the main objective 

of this thesis work is to elucidate the electrodeposition reaction of Si in ionic liquids 

focusing on the molecular level understanding at the solid-liquid interface. Following this 

thesis work, it is also studied in order to elucidate the cause of the impurities inclusion, 

to establish the reaction analysis system in other non-aqueous solvents, and the formation 

of thin films in terms of the application, especially for solar cell applications. 

In order to achieve these objectives, several interfacial techniques were used such 

as electrochemical quartz crystal microbalance method, X-ray reflectivity, and density 

functional calculation etc. These combinations of experimental measurement and 

theoretical analysis was powerful tools to elucidate the mechanism.  

In this chapter, elucidated results in this thesis work are summarized, and the 

possibility of Si electrodeposition in the future is described. 

 

     In chapter 2, the overall reaction mechanism of the Si electrodeposition in ionic 

liquids were discussed. 

     In order to understand the growth behavior of Si thin films at several conditions, 

the effect of the applied potential and the electrodeposition temperature was investigated. 

Form these discussions, it was suggested that the ionic liquids were incorporated as the 

impurities. It was also indicated by the annealing treatment because the impurities of 

mainly carbon content decreased after the treatment. As the Si thin films, amorphous thin 
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films with Si–Si bonding were obtained. As the reduction mechanism of SiCl4, the 

combination of EQCM and XPS results showed suggested the apparent Si 

electrodeposition with a net four-electron reduction from SiCl4 of SiCl4 + 4 e- → Si + 4 

Cl-, in which the current efficiency was calculated as 94.6 and 93.4 % at -2.0 and -2.5 V 

vs. Pt QRE, respectively at the very initial stage. 

 

     In chapter 3, the detailed interfacial reaction mechanisms starting with the 

elementary steps of the SiCl4 reduction process in Si electrodeposition with ionic liquids 

as the solvent were discussed. Based on chapter 2, in order to elucidate the detailed 

reduction behavior of SiCl4, it is continuously needed to understand the mechanism for 

how these reactions proceed or what kind of intermediate are produced by focusing on 

the molecular level behavior at the solid-liquid interface. 

     In order to elucidate such interfacial reaction mechanism, several precise interfacial 

analyses of EQCM, XRR measurement and DFT calculation were used. As the detailed 

interfacial reaction mechanism of the SiCl4 in ionic liquids reduction process from 

molecular point of view, the following process is proposed: a SiCl4 molecule reduces with 

the release of a Cl- ion, followed by the reaction between the residual SiCl3
- and another 

nearby SiCl4 to produce the intermediate states containing Si2Cl6. This intermediate 

formation takes place successively, generating a polymer-like species, which is finally 

deposited as Si on the substrate. Dividing these process, EQCM measurement firstly 

showed the multiple steps reduction during the electrodeposition. XRR measurement 

secondly revealed that the details of the multiple steps in which Si multimer such as Si2Cl6 

were formed, and those multimer seemed to be electrodeposited as Si. DFT calculation 

finally indicated the reduction pathway that Si multimer was formed by the reaction of 

SiCl3
- and another nearby SiCl4, and their polymer-like reaction. 

 

     In chapter 4, the electrodeposition of Si in organic solvents were described. Organic 

solvents are also the promising solvent for the electrodeposition of Si at low temperatures 

which allow a faster electrodeposition at room temperature and could turn out to be useful 

for practical applications, so that several studies of the Si electrodeposition have also been 

conducted. For this, the influence of solvent species (an oxidized and a non-oxidized 
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solvents), and the water content in solvents on the electrodeposition process was 

investigated, and the reduction mechanism of SiCl4 that how the reactions proceed or 

what kind of intermediate are produced during the electrodeposition was analyzed as well 

as the investigation of the application of the reaction mechanism analysis system in ionic 

liquids to other non-aqueous solvents. 

It was revealed that the water content affected to the film composition, especially 

the carbon content, while there is small influence of solvent species. With the increase of 

the water content in the solvents, the carbon content in the films increased. The molecular 

level mechanism in this phenomenon was suggested that the solvent molecules of CH3CN 

could get close to the electrode surface during the electrodeposition due to the strong 

interaction of solvents molecules with the hydrolysis product of the SiCl4 under the water 

existence condition. As for the reduction mechanism of SiCl4, it was confirmed that there 

was the intermediate state formation step, in which Si species with -SiCl3 bonding were 

formed. 

 

In chapter 5, the study for the fabrication of Si thin film solar cells as one example 

of the application of the electrodeposited Si thin films by electrodeposition was described. 

For the further developing the Si electrodeposition, it is important to fabricate the Si thin 

film for applications. For this, the film structure control and the doping on the films were 

investigated. 

In order to prevent the crack formation and porous structure, the PR 

electrodeposition and the light irradiation during the electrodeposition was engaged. It 

was suggested that the diffusion of the reductant of SiCl4 to the electrode surface played 

a key role and the light irradiation in this thesis work was enough to retain the electron 

accumulation to the interface. In order to form the doped thin films, AlCl3 and pCl5 was 

added to the electrolyte, and these techniques could potentially be a way to form films 

with p-type and n-type characteristic.  

 

This thesis work could provide the electrodeposition reaction mechanism of Si in 

ionic liquids as well as the film formation control though there are few study focusing on 

and revealing the detailed reaction mechanism of Si electrodeposition in especially ionic 
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liquids. Based on these studies, the Si electrodeposition could be further developed for 

several applications, and also it could be possible to indicate ways to analysis other 

electrochemical reaction of metal or semiconductor in non-aqueous solvents and their 

developing and possibilities in the future. 
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