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Abstract 

We propose energy management methods for maximum utilization of photovoltaic (PV) generation 

in supply and demand side. The rapid increase of PV penetration increases reverse power flow and 

causes overvoltage in low-voltage distribution systems (LVDSs), so that the PV output tends to be 

curtailed. Our proposed methods utilize a low-voltage regulator (LVR) for voltage control in the LVDS 

to mitigate overvoltage and an electric vehicle (EV) for increasing the self-consumption of PV 

generation to reduce reverse power flow. In our supply side energy management method using the LVR, 

we determine an appropriate deployment and control parameters of LVRs to coordinate with the 

existing voltage control devices and mutually improve the voltage control performance. We also 

propose a method for rapidly determining control parameters of LVR by using classifiers based on 

machine learning technique for an upgraded voltage control scheme. Moreover, in our demand side EV 

management scheme, an auction mechanism is introduced to effectively reduce the PV curtailment and 

residential operation cost, while securing the autonomy and the equity of customers. 

The proposed coordinated voltage control method of the LVR significantly reduced the voltage 

violation (up to 99%) while avoiding interference with existing voltage control devices. Additionally, 

the rapid determination method reduced the computational time required for obtaining the control 

parameters of LVR up to 96%, and it can be applied to the upgraded voltage control scheme for handling 

the frequently varying voltage trend by periodically updating the control parameters. It can be also 

applied to the simultaneous optimization for the huge number of LVRs. In our EV charging 

management method, introduction of the auction mechanism secured the autonomy and equity, which 

will promote the customers’ contribution, and effectively reduced the PV curtailment and residential 

operation cost. The PV curtailment issue will become more and more obvious in many countries in the 

near future. Since the introduction of the LVR is simple and that of the EV will be promoted whether 

willing or not, how to effectively utilize these devices will have more important role in these countries.  

This thesis is composed as follows. A coordinated voltage control scheme of the LVR is proposed 

in Chapter 2. As an upgraded supply side voltage control scheme, a method for rapidly determining the 

control parameters of LVR using classifiers is proposed in Chapter 3. A demand side EV charging 

management scheme using auction mechanism is introduced in Chapter 4. Finally, we discuss the 

conclusion in Chapter 5. 
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Chapter 1  
Introduction 

1.1 Energy outlook in the power sector 

The maximum utilization of renewables is essential for future sustainability of the earth. Energy 

from the sun is special for us because it is the only one energy source that we can get from outside of 

the earth. The original source of most renewable energies, i.e., solar, solar thermal, wind, biomass, tidal, 

is provided by the sun. As a consequence, renewables are under spatial and temporal constraints; that 

is, we need to overcome these constraints in order to make use of the renewables. In the power sector, 

which is the primary user of the renewables, electricity will account for almost a quarter of the total 

energy consumption by 2040 [1-1]. Therefore, it is strongly required to promote renewables while 

dealing with these constraints.  

In this section, the trends of energy usage in the world and Japan is reviewed, focusing on the power 

sector and on the installation of renewables on the basis of statistical data in the “World Energy Outlook 

2015” reported by the International Energy Agency (IEA) [1-1].  

1.1.1 World energy outlook in the power sector 

After the Paris agreement was adopted in December 2015, the implementation plans of new policies 

and improved technologies have been discussed and announced all over the world. The goal is to 

suppress the average global temperature rise below 2C throughout this century and pursue efforts to 

limit the temperature rise to 1.5°C before the industrial revolution [1-2]. Quantitative projections of 

long-term energy trends are presented in [1-1] according to three scenarios: the new policies scenario, 

the current policies scenario, and the 450 scenario, each assuming different progress of energy policies 

of the world. The new policies scenario takes into consideration polices and measures that affect the 

energy trends that were adopted by mid-2015. Additionally, it incorporates other relevant intentions 

that were announced but when implemented is not clearly defined. The current policies scenario 

considers only policies and measures that were formally adopted by mid-2015 and assumes that nothing 

new will be added, which is not realistic. The 450 scenario adopts a different approach, an outcome-

oriented scenario. It adopts the international goal, which is to suppress the global average temperature 

rise below 2C, and illustrates how that might be achieved. In this scenario, the concentration of the 

greenhouse gas in the atmosphere is assumed to reach 450 parts per million (ppm) and to be stabilized 

at around 450 ppm after 2100. The projections of total primary energy demand (TPED) and total CO2 

emissions in the world are shown in Fig. 1.1 and Fig. 1.2. Although all scenarios assume that the TPED 

will continue to increase towards 2040 (Fig. 1.1), in the 450 scenario, the CO2 emissions are suggested 

to decrease to a level below that in 1990 (Fig. 1.2). It has been recognized that a large number of energy 
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sources whose CO2 emissions are less than conventional energy sources are essential to achieve the 2C 

target. Fig. 1.3 and Fig. 1.4 show that this movement to alter the energy sources is strongly required in 

the power sector. 

The projections of world’s share of the power sector in TPED and in total CO2 emissions are shown 

in Fig. 1.3 and Fig. 1.4, respectively. This shows that the share of the power sector will increase beyond 

40% by 2040 along with the increasing TPED (Fig. 1.3). On the other hand, in the 450 scenario the 

share of the power sector in total CO2 emissions significantly decreases. This lower share in 2040, 

which is approximately half of 2013 and much smaller still compared with 1990, implies that 

deployment of energy sources with less or no CO2 emissions is expected in the power sector. This is a 

significant contribution to the reduction of CO2 emissions and important for achieving the 2C goal.  

The 450 scenario trend for achieving a significant reduction of CO2 emissions in the power sector 

also appeared in the world’s share of total electricity generation types as shown in Fig. 1.5. Although 

coal was used to generate energy almost more than twice than the other sources until 2013, the share of 

renewables sharply increased after 2013. As a result, the share of renewables in the electricity 

generation is described to exceed 30% and become the largest even discounting hydro power. That will 

become more than twice share of coal. Regarding the amount of electricity generation of each renewable 

energy source shown in Fig. 1.6, the amount of wind generation sharply increases from 2013. In 2040, 

wind power will become almost 2.5 times larger than all others whereas the solar photovoltaic (PV) and 

concentrating solar power (CSP) will follow closely behind.  
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Fig. 1.1 Total primary energy demand in the world 

(created based on [1-1], pp. 584–585). 

  

Fig. 1.2 Total CO2 emissions in the world 

(created based on [1-1], pp. 586–587). 

 

Fig. 1.3 Share of power sector in total primary energy demand in the world 

(created based on [1-1], pp. 584–585). 
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Fig. 1.4 Share of the power sector in total CO2 emissions in the world 

(created based on [1-1], pp. 586–587). 

 

Fig. 1.5 Share of renewables in total electricity generation of 450 scenario in the world 

(created based on [1-1], pp. 587). 

 

Fig. 1.6 Electricity generation of renewables in 450 scenario in the world 

(created based on [1-1], pp. 587). 
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1.1.2 Japanese energy outlook in the power sector 

Some energy projections are different between Japan and the world. Japanese TPED and total CO2 

emissions are shown in Fig. 1.7 and Fig. 1.8. The TPED of Japan, which is assumed to increase in the 

world, decreases along with the total CO2 emissions in all scenarios. It is considered that the critical 

reason of the reduction is a population decrease. On the other hand, in scenario 450 the share of the 

power sector in the TPED along with total CO2 emissions will increase towards 2040 though the total 

share of the power sector will dramatically decrease (see Fig. 1.9 and Fig. 1.10). These projections are 

now similar to the world projections. Therefore, it can be recognized that this similar issue of requiring 

power resources with lowered CO2 emissions is essential and common between Japan and the world.  

Regarding to the Japanese share of energy resource types in total electricity generation in the 450 

scenario, renewables and nuclear power sharply increase in order to achieve the 2C goal. The share of 

renewables will reach approximately 50% of all energy generation by 2040 while gas and coal account 

for the majority in 2013 (see Fig. 1.11). Moreover, a characteristic point in Japanese electricity 

generation of renewables in the 450 scenario is that solar PV is the largest of all renewables except 

hydro power. This trend had happened suddenly and caused some problems in Japan.  

In Japan, in addition to CO2 emissions, primary energy self-sufficiency is a large issue. Energy self-

sufficiency has stayed at only 6% after the Great East Japan earthquake and the Fukushima Daiichi 

nuclear accident in 2011. In order to break down this emergency, the government is aiming to increase 

it to approximately 25% by 2030 [1-3]. Also, the introduction of PV is promoted by implementing the 

Feed-in Tariff (FIT) program to significantly pursue a future best mix of power supply configuration 

[1-4]. The implementation of the FIT program has led to the rapid PV introduction. The certificated and 

operating amount of PV capacity in Japan is depicted in Fig. 1.13 [1-5]. The certificated PV capacity 

rapidly increased and has already exceeded the target of FY2030: 64 [GW] in March 2014. In addition, 

it reached 80 [GW] in 2017. The operating PV capacity is maintaining an increase following the 

certificated PV capacity. This trend suggests that solutions to these issues that has already occurred and 

are likely enhanced by expanding the operating PV capacity is expected to develop. 

In our research, we focus on the maximum utilization of PV generation. PV is the largest share of 

renewables in Japan and a large share of power generation in the world when excluding hydro. The next 

section discusses issues caused by the massive introduction of PV in the power system.  
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Fig. 1.7 Total primary energy demand in Japan 

(created based on [1-1], pp. 612–613). 

 

Fig. 1.8 Total CO2 emissions in Japan 

(created based on [1-1], pp. 614–615). 

 

Fig. 1.9 Share of power sector in total primary energy demand in Japan 

(created based on [1-1], pp. 612–613).  
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Fig. 1.10 Share of power sector in total CO2 emissions in Japan 

(created based on [1-1], pp. 614–615). 

 

Fig. 1.11 Share of renewables in total electricity generation of the 450 scenario in Japan 

(created based on [1-1], pp. 615). 

 

Fig. 1.12 Electricity generation of renewables in the 450 scenario in Japan 

(created based on [1-1], pp. 615). 
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Fig. 1.13 Certificated and operating PV capacity in Japan 

(created based on [1-5]). 

1.2 Occurrence of PV curtailment in distribution systems 

In power systems with a large number of PVs, the PV curtailment, which is a part of the power loss, 

is carried out to 1) maintain the power supply-demand when PV output peaks and electricity 

consumption decreases in the power system [1-6], and 2) avoid overvoltage from the prescribed voltage 

range in the DS [1-7]. Let 𝑡 = 1,… , 𝑇 be the time in a day where 𝑇 is the total time, 𝒑 = (𝑝𝑡; 𝑡 ∈

{1,… , 𝑇}) be the sequence of the PV output, the PV curtailment is given as 

𝒙 = 𝒑∗ −  𝒑, (1.1) 

where 𝒑∗  is the original PV output (before curtailment) and 𝒑  is the realized PV output (after 

curtailment).  

In the former issue, the PV is curtailed according to the obliged generation limit 𝑝̅ provided by the 

utility and the realized PV output in time 𝑡 is described as  

𝑝𝑡 = {
𝑝𝑡
∗

𝑝̅
if 
if 

𝑝𝑡
∗ ≤ 𝑝 ̅
𝑝𝑡
∗ > 𝑝̅.

 (1.2) 

Note that obliged generation limit 𝑝̅ is determined to coordinate the supply-demand balance among 

multiple DSs. 

On the other hand, in the latter issue, the PV is curtailed according to the voltage at the connecting 

point of PV to the grid. In distribution systems (DSs), where the PV is mainly connected to, the voltage 

shall be maintained within the prescribed range. In Japan, this is regulated by the electric utility industry 

law where the voltage at the customers’ receiving end shall be maintained within 101±6 [V] or 202±20 

[V]. An overvoltage above these values would break the electrical appliances and a lower voltage 

violation would degrade their performance. In the conventional DSs without PVs the voltage typically 

decreases along the distribution line, so that the conventional DSs are planned and operated to maintain 

their regulated voltage. On the other hand, in the DS with PVs, the PVs supply the generated power to 

the households and the surplus PV output is fed and sold to the grid (Fig. 1.14). The reverse power flow 
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from the surplus PV output increase the voltage in the DS. The voltage rise may cause an overvoltage 

because the conventional DSs are not planned and operated to deal with the voltage rise. As a result, 

the active power of the PV output is curtailed by the PV inverter to avoid overvoltage. Therefore, the 

PV curtailment occurs and the expected generation amount could not be obtained [1-7]. An example of 

the PV curtailment mechanism to avoid overvoltage can be described as following:  

𝑝𝑡 = {
𝑝𝑡
∗

𝑝𝑡
∗ − 𝑎 ∙ (𝑣𝑡

pv
− 𝑣s)

if 
if 

𝑣𝑡
pv
≤ 𝑣th 

𝑣𝑡
pv
> 𝑣th,

 (1.3) 

where 𝑣𝑡
pv

 is the voltage at connecting point of the PV to the DSs at time 𝑡, 𝑣th is the threshold of the 

voltage to start and end the PV curtailment, and 𝑎 is a conversion coefficient that means the speed of 

the PV curtailment.  

 

Fig. 1.14 PV penetration, voltage rise, PV curtailment. 

1.3 Supply and demand side energy management for reducing PV curtailment 

To achieve the 2C goal mentioned in 1.1, not only an increase in the PV capacity but also the 

maximum utilization of the PV generation is important so that a reduction of the PV curtailment is 

essential. While many energy management schemes to reduce the PV curtailment have been proposed, 

the required energy management schemes depend on the characteristics of the target DSs and the 

expansion of the devices related to these schemes. In addition, they are various and will change 

depending on the target periods of practical use. To recognize the energy management schemes that 

have been proposed for reducing the PV curtailment and their remaining issues, they are classified in 

terms of the range affected by their control and the time-period of expected practical use (Fig. 1.15). 
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This section presents these conventional energy management schemes primarily divided into two parts, 

supply and demand side energy management schemes, and specifies their remaining issues.  
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1.3.1 Supply side energy management: voltage control in distribution systems 

 (a) Development of voltage control devices 

In supply side energy management, the PV curtailment can be reduced to maintain the voltage within 

the prescribed range. To maintain this voltage, voltage should be increased when it is too low and 

reduced when it is too high. Many schemes have been proposed to maintain the voltage in the DSs [1-

8]. The simplest scheme is grid reinforcement [1-9]–[1-11], for example, distribution line improvement 

by replacing the line with a cable that reduces the impedance of the line, interconnecting the line to 

smooth out differences in parallel distribution lines, and separation of low-voltage distribution systems 

(LVDSs) to shorten the distribution line. However, the grid reinforcement tends to require a high 

investment and construction might be difficult for some locations. Other schemes are used in order to 

postpone this high investment until it gets definitely necessary.  

Reactive power control is another scheme to control the voltage in the DSs. The voltage decreases 

when the lagging reactive power is injected into the grid and the voltage increases when the lagging 

reactive power is absorbed from the grid. There are various devices that can adjust the reactive power 

injection to control the voltage in the DSs. A shunt capacitor (SC) bank and shunt reactor (ShR) bank 

are the traditional devices and adjust the amount of reactive power discretely by varying the amount of 

connected capacitors and reactors to the grid [1-13]–[1-16]. Additionally, the flexible alternative current 

transmission system (FACTS) devices based on power electronics such as a static synchronous 

compensator (STATCOM), which is called a static var compensator (SVC) in Japan, are utilized for 

voltage control [1-10], [1-15]–[1-19]. The FACTS devices can continuously adjust the reactive power 

injection and flexibly regulate the voltage in the DSs. In recent years, the battery energy storage system 

(BESS) for the grid has got a lot of attention and its introduction to the grid has begun and there are 

quite a few example of installation [1-20]. Although most of introduced BESSs are utilized for adjusting 

the supply-demand balance, they can be mostly located in the DSs and utilized also for voltage control. 

The BESS can control the voltage by continuously adjusting not only active power injection but also 

reactive power injection [1-21]–[1-23]. The flexibility for the voltage control of a BESS is equal to or 

higher than the FACTS, while both devices require a high capital cost.  

On-load tap changers (OLTCs) are widely used for voltage control in the DSs. The OLTCs are 

basically autotransformers with many taps in the series winding. They adjust the tap position, that is the 

transformer ratio, and discretely control the voltage. In ordinary OLTCs, the voltage varies 

approximately by 1–2.5% of the nominal voltage per one tap and the full voltage control range is 

approximately 10–20%. The basic tap changing mechanism of OLTCs are shown in Fig. 1.16. The 

OLTCs automatically change the tap based on the internally sensed voltage and current. The tap is 

changed when the deviation of the sensing value from the target value exceeds a specific value. The 

mechanism includes a time delay, which is the waiting time when the sensing value exceeds the dead 

band and when the tap change is operated. The time delay is provided to avoid over frequent tap 
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changing that leads to a shorter lifespan due to machine wear. In the traditional DSs, medium-voltage 

(MV) OLTCs such as a load ratio control transformer (LRT), which is located in the distribution 

substation, and a step voltage regulator, which is located in the middle of a long-distance distribution 

feeder, are mainly used for voltage control [1-24]–[1-26]. In addition, recently a thyristor type step 

voltage regulator (TVR), which is not affected by machine wear due to frequent tap changes, has 

developed to deal with the frequent voltage fluctuation [1-27]. These MV OLTCs are designed to 

maintain the voltage within a specific range in the medium-voltage distribution system (MVDS), which 

includes many LVDSs, so that the voltage in all LVDSs is varied when the MV OLTC changes the tap 

position. However, the penetration of a large number of PVs causes a local voltage rise around the PV 

connected point. This voltage increases in some LVDSs due to the reverse power flow from the PV 

while decreasing in the other LVDSs. This is a complicated situation for the MV OLTC to maintain for 

the voltage in all LVDSs because they cannot control the voltage in a specific LVDS. As a solution to 

this local voltage violation, low-voltage (LV) OLTCs have been studied [1-28]–[1-34]. There are two 

types of LV OLTCs; one type is installed in the middle of the LV distribution feeder and the other is 

installed in place of a traditional pole transformer. We call this latter option a low-voltage regulator 

(LVR) (Fig. 1.17). The LVR is a pole transformer with an auto tap changer and can control the voltage 

in each LVDS [1-35] so that the local voltage violation in the specific LVDS can be avoided (Fig. 1.18). 

The cost superiority of the LVR to the traditional grid reinforcement is suggested in [1-34] and some 

voltage control schemes have been proposed [1-29]–[1-31], [1-33]. The point of LVR operation requires 

considering the MV OLTCs behavior. This is because in the radial DSs, the voltage in the control area 

of the LVR is affected by the tap changing of MV OLTCs located upstream of the LVR. However, the 

voltage control scheme that includes the determination of deployment and the voltage control 

parameters of the LVR considering the voltage control of the MV OLTCs has not been proposed.  

 

 (b) Development of voltage control frameworks 

On the other hand, upgrades to the voltage control frameworks are progressing as well as 

improvements of the voltage control devices. Traditional voltage control frameworks of OLTCs are to 

decentralize the control method based on program control methods called a 90 relay method and a line 

drop compensator (LDC) method [1-36]–[1-39]. The decentralized control framework adjusts the tap 

position of the OLTCs on the basis of the predetermined control parameters and sensing measurement, 

which are set prior to factory shipment. However, in the DS with PV, the control parameters that can 

avoid the voltage violation difference due to the weather such as limited generation during a cloudy 

day. This requires updating the control parameters corresponding to the PV generation.  

Therefore, studies with the upgraded decentralized framework have begun [1-40]–[1-42]. In the 

upgraded decentralized control framework, the control parameters can be updated from the outside 

through communication (Fig. 1.19). Since the assumed frequency is updated once every few hours, an 

enhanced communication infrastructure should not be required. To sequentially and appropriately 
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update the control parameters depending on PV generation, they should be determined on the basis of 

reliable power forecasting. In such a mechanism, the immediacy to determine the control parameters is 

important. However, in the LVR operation, a method for rapidly determining the voltage control 

parameters has not been proposed.  

As a further upgrade, centralized voltage control frameworks has been studied [1-26], [1-43], [1-44]. 

The centralized frameworks control the voltage on the basis of a real-time measurement in the sensors 

located in middle of the distribution feeders acquired thorough the enhanced communication 

infrastructure. Thus, implementation of the centralized framework requires a large investment and take 

longer time to develop the infrastructure that the other framework. In addition, communication fault 

countermeasures are essential and must be considered.  

As mentioned above, the solution to reduce the overvoltage and PV curtailment is urgently required 

and the investment cost should be reduced. Therefore, in this thesis, the utilization of the LVR, which 

is easy to deploy and competitively low cost, is focused on as a supply side energy management. 

Additionally, the distributed and upgraded distributed control frameworks, which would not take long 

time to construct the required infrastructure, of the LVR are addressed. 

 

Fig. 1.16 Tap control of the OLTC based on the target value, dead band, and time delay. 
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Fig. 1.17 Low-voltage regulator (LVR) 

(created based on [1-35]). 

 

Fig. 1.18 Voltage control by LVR. 

 

Fig. 1.19 Image of upgraded decentralized voltage control framework. 
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1.3.2 Demand side energy management: self-consumption of PV output with customers 

In demand side energy management, the PV curtailment can be reduced by increasing the self-

consumption of PV generation. The increase in the self-consumption of PV generation reduces the 

reverse power flow to the grid, so that the voltage rise is mitigated and the voltage margin from the 

prescribed limit, which is the constraint of the PV curtailment, increases (Fig. 1.20). To adjust the self-

consumption of the PV, controllable electricity loads such as an electric vehicle (EV), residential BESS, 

and heat pump water heater (HPWH) are easily utilized by shifting their operation periods. In Japan, 

the government set a policy to achieve net-zero energy houses (ZEHs) by 2030 for the average newly 

constructed house [1-45]. To achieve the ZEHs, maximum utilization of PV generation is essential. 

Therefore, these controllable loads should be deployed in households to flexibly utilize electricity from 

the PV. Particularly in terms of an EV, regulations on the sale of gasoline and diesel cars have been 

announced in specific countries (Table 1.1) and car companies also announced shifting to electrified 

car development (Table 1.2). Therefore, the increase in EVs is strongly expected in many countries. 

Additionally, the literature in [1-46] mentioned the EV is parked for more than 95% of a day, so that it 

is rational to utilize the EV for the energy management. There are many studies of demand side load 

management for voltage control and reducing the PV curtailment using EVs, residential BESSs, and 

HPWHs. Although the effective load management on the demand side can reduce the PV curtailment 

and result in the reduction and postponement of investment for voltage control on the supply side, the 

important point on the demand side of the management is not to lower the convenience of the customers 

and equitably share in the benefit accordingly with customer contribution. Energy management using 

the EVs has particularly affected the former point because the EVs are fundamentally installed for 

driving. However, the demand side energy management scheme to reduce the PV curtailment 

using EVs that secures the autonomy of contributing to the energy management and the equity 

of benefits according to the customers’ contribution has not been proposed.  

On the other hand, inverters implemented in the PV system, BESS, and EV charger have the active 

and reactive power control function. They can be utilized for the voltage control in the grid as well as 

the demand side energy management [1-47]–[1-49]. Moreover, smart inverters, which have a 

communication function and are flexibly set the control parameters from the outside, are started to be 

discussed for regulation, voltage control function, and operation methodologies. The spread of the smart 

inverter will take time, but it will contribute to the voltage control to help maximum utilization of PV 

generation in the near future. 

In terms of the demand side management, the EV is considered the most likely device to be 

introduced worldwide and competitively in near future than the other demand side devices. Therefore, 

this thesis focuses on the EV management scheme as a demand side energy management for reducing 

the PV curtailment. 
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Fig. 1.20 Schematic image of increasing self-consumption of PV generation. 

Table 1.1 World movement toward car electrification (created based on [1-50]–[1-54]). 

Country Announcement 

Britain Bans sales of new gasoline and diesel cars by 2040. 

France Plans to end sales of gas and diesel cars by 2040. 

India Promotes to sell only electric cars by 2030. 

China Introduced regulations obliging car companies to manufacture 

and sell 10% new energy vehicles in 2019. 

Norway Should alter all new passenger cars and vans sold in 2025 to 

the zero-emission vehicles. 

Table 1.2 Trend of car companies toward electrification (created based on [1-55]–[1-59]). 

Car company Announcement 

BMW 
By 2025, they expect electrified vehicles to account for 

between 15-25% of sales. 

Volvo cars All launched cars from 2019 will have an electric motor. 

Daimler Plans for more than ten different all-electric vehicles by 2022. 

Volkswagen 
More than 30 purely battery-powered electric vehicles will be 

launched by 2025. 

TOYOTA 

Established a new company for joint technology development 

including electric vehicles with Mazda and Denso. The capital 

is 10 million yen. 
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1.4 Research purpose and construction of this thesis  

As mentioned above, a large number of PVs will be installed in the LVDSs and the reverse power 

flow from the PV generation will locally raise the voltage in the LVDSs around the connected points 

of the PVs. This results in the occurrence of PV curtailment to avoid voltage violation from the 

prescribed range. The reduction of PV curtailment caused by the local voltage rise is an important issue 

to achieve the international 2C goal. Energy management schemes on both the supply and demand 

side, which are the voltage control in the DS to maintain the voltage by using the LVR within the 

prescribed range and the EV charging management by customers to adjust the self-consumption of the 

PV output, are required to reduce this PV curtailment. Although such energy management schemes 

have been proposed, some issues remain in the LVDS. In this research, we propose energy management 

schemes for maximum utilization of PV generation in the LVDS using the LVR on the supply side and 

using EVs on the demand side. In chapters 2 to 4, supply and demand side energy management schemes 

are proposed and the effectiveness of these schemes are evaluated. Chapter 5 gives the conclusions and 

future work.  

1.4.1 Distributed and coordinated voltage control of multiple on-load tap changers 

In supply side energy management, voltage control using the LVR enables one to solve the local 

voltage violation that results in the PV curtailment. The LVR is located on the pole transformer where 

the MV (6.6 [kV]) is transformed to LV (100/200 [V]). Locating the LVRs in the radially spreading 

DSs, the control areas of the LVRs, whose voltage is affected by the voltage control of the LVRs, is 

included in the control area of MV OLTCSs. Therefore, to determine the appropriate location and 

control parameters of LVRs the tap operation behavior of the MV OLTCs, which are located at the root 

from the LVRs, should be considered. 

Chapter 2 presents a distributed and coordinated voltage control scheme that appropriately 

determines the location and the control parameters of LVRs. In the proposed scheme, the control areas 

of each MV OLTC is defined not to overlap and the control parameters are determined in order from 

the MV OLTCs located at the upper stream. The LVRs are deployed in the LVDSs where the MV 

OLTCs cannot avoid the voltage violation. Moreover, the control parameters of LVRs that cannot 

disturb the voltage violation with the default control parameters are appropriately determined. The 

effectiveness of the proposed coordinated voltage control scheme is evaluated based on a Japanese DS 

model and actual measurement in terms of the number of customers with voltage violation. In addition, 

the characteristics of the LVDSs that the LVR should be deployed are specified.  
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1.4.2 Rapid determination for voltage control parameters of LVR using classifiers 

In the LVDSs with PVs, the control parameters of the LVR that can avoid voltage violation are 

varied depending on the weather. To appropriately manage the complex voltage fluctuation, an 

upgraded voltage control scheme operates to determine and update the appropriate control parameters 

in a short period, i.e., every few hours, on the basis of the required reliable power forecast. In such an 

upgraded scheme, a large sum of computational time is required because candidates of the appropriate 

control parameters are exhaustively evaluated to achieve the robust voltage control against the error 

included in the power forecasting. Therefore, to implement this upgraded scheme in the operation of 

the LVR, a reduction of the computation time is needed to meet the sequential update of control 

parameters.  

As an upgraded energy management scheme on the supply side to reduce the local voltage violation, 

an alternative method for rapidly determining the voltage control parameters of the LVR using 

classifiers is proposed in chapter 3. The proposed determination method learns offline the classifiers 

that distinguish the appropriateness of the control parameters to the forecasted power profiles. In 

addition, it narrows the candidates of the appropriate control parameters by using the composed 

classifiers and precisely evaluates the narrowed candidates of the control parameters by a power flow 

calculation (PFC). The proposed method is validated by a numerical simulation based on the LVDS 

model and actual data of power measurement in terms of the computation time and the voltage control 

performance.  

1.4.3 EV charging management 

In demand side energy management, the amount of curtailed PV output can be reduced by shifting 

the EV charging period to increase the self-consumption of PV output. The effective EV charging shift 

contributes to the reduction of investment for voltage control in the supply side as well as the residential 

operational cost of customers. In such an EV charging scheme, not only reducing the PV curtailment 

and residential operation cost but also the equity of customers’ benefits and autonomy of contributing 

to the load shift to increase the self-consumption of the PV output should be secured to ensure customer 

participation. The equity of customers’ benefit means that the benefit should be coordinated depending 

on the contribution of customers. The autonomy of contributing to the load shift means that the 

customers should optionally decide to participate in the EV charging shift based on a comparison of the 

benefits received by contributing to the EV charging shift and utilizing the EV for driving.  

In Chapter 4, we proposed an EV charging management scheme based on the auction mechanism 

to reduce the PV curtailment and the residential operation cost in the LVDS with securing the equity of 

the benefits and autonomy of contributing to the EV charging shift. The introduction of an auction 

mechanism coordinates the amount of benefits to secure their equity through collecting and distributing 

the incentive. In addition, it allows customers to secure autonomy to optionally decide whether they 
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will contribute to the EV charging shift considering the benefits of EV utilization schemes. The 

effectiveness of our proposed EV charging scheme based on the auction mechanism is evaluated by the 

numerical simulation using the actual Japanese DS model and power measurement from the view point 

of the amount of PV curtailment and the residential operation cost.  
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Chapter 2  
Coordinated voltage control scheme of multiple OLTCs  

2.1 Introduction to this chapter 

Some voltage control schemes for supply sides have been proposed to avoid voltage violation when 

PVs are introduced in DSs. In this regard, some coordinated methods on the SC and LRT have been 

suggested [2-1]–[2-3]. A real-time centralized voltage control method by supervisory control and data 

acquisition (SCADA) system was proposed [2-4]. Optimal control in the DS with LRT, SVR, SC, ShR, 

and SVC has been researched by different groups [2-5], [2-6] and their solutions involved the 

introduction of a communication infrastructure in the power system with a controller that determines 

the operation of a large number of candidates by using a genetic algorithm (GA). Subsequently, 

decentralized control methods for micro-grids were reviewed [2-7], and coordinated control for 

enhanced voltage harmonics was discussed [2-8]. A voltage control scheme that determines the 

parameters of multiple SVRs in one feeder by using a combination of a greedy algorithm and tabu 

search was also reported [2-9]. Optimal decentralized control was achieved by developing a multi-agent 

system to appropriately control multiple SVRs [2-10], [2-11]. A voltage control method using an LVR 

in the LVDN was evaluated [2-11]. Although these studies focused on the voltage control to maintain 

the voltage in MVDSs, the voltage condition in all LVDSs should be evaluated and the local voltage 

violation should be addressed because the PV penetration causes the local voltage rise in LVDSs. On 

the other hand, a voltage control scheme that focuses on the LVDS can be effective in resolving this 

problem [2-12]–[2-16]. Voltage control using the LV OLTC, i.e., LVR, which is more cost-effective 

than the grid reinforcement when the PV penetration increases [2-17], has been studies as a solution to 

the local voltage violation in the LVDS. There are some studies on voltage control using the LVR [2-

18]–[2-23], such as distributed and centralized voltage control methods and determination of 

installation location. These studies described the improvement of voltage condition in the LVDS by 

using the LVR without considering the impact of voltage control devices locate upstream from the LVR. 

Since the MV OLTCs is commonly deployed in the conventional DSs, a newly deployed LVR will 

affected by the voltage control of them. Thus, the voltage control scheme of the LVR should be studied 

with the consideration of voltage control of MV OLTCs, which are located in upstream from the LVR. 

Although the voltage control performance of the LVR is assessed in [2-24] considering the impact of 

MV OLTCs, the control method is based on the sensor data and requires a rich communication network. 

In addition, the installation location of the LVR is not discussed.  

Therefore, in this chapter, we propose a coordinated voltage control scheme in DSs by implementing 

various OLTCs: an LRT, SVRs, and LVRs. The proposed scheme is capable of determining the 

installation location of the LVRs as well as the control parameters of the OLTCs by considering the 

behavior of the other OLTCs. We validated the proposed method by carrying out numerical simulations 
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based on an actual DS model in Japan. In the simulation, we varied the penetration ratio of PV to 

evaluate the capability of our scheme to control various kinds of voltage fluctuations caused by PVs. 

2.2 Decentralized voltage control methods of OLTCs in DSs 

In conventional DSs, MV OLTCs, such as, LRT and SVR are widely deployed to maintain the 

voltage within a prescribed range. The MV OLTCs simultaneously control the voltage in multiple 

LVDSs. However, a local voltage violation caused by the penetration of the PV makes it difficult for 

the MV OLTCs to maintain the voltage across all LVDSs. This is because the local voltage violation 

may arise in an area smaller than that for which the MV OLTC were designed to control. To solve the 

local voltage violations, the LVR, which is an LV OLTC, is expected to compensate for the limitations 

of the MV OLTCs by independent control.  

Voltage control of an OLTC consists of adjusting a tap position to achieve the desired profile. In 

most control frameworks, each OLTC monitors its secondary voltage and current to dynamically 

control the tap (Fig. 2.1). Let 𝒗̇𝑡 and 𝒊̇𝑡 be the monitored secondary voltage and current of the target 

OLTC at time 𝑡. These values are used for calculating the cumulative difference from the target value. 

Let 𝐷𝑡
u(𝜸) and 𝐷𝑡

l(𝜸) be the cumulative differences between the monitored values and the target values. 

The tap position of the OLTC 𝑠𝑡 at time 𝑡 ∈ {1,… , 𝑇} is found according to the following:  

𝑠𝑡 = {

𝑠𝑡−1 − 1, if 𝐷𝑡
u(𝜸) > 𝛿 and 𝑠𝑡 ≠ 𝑠

l,

𝑠𝑡−1 + 1, if 𝐷𝑡
l(𝜸) > 𝛿 and 𝑠𝑡 ≠ 𝑠

u,
𝑠𝑡−1,              otherwise,

 (2.1) 

where 𝜸 are the parameters of the voltage control, 𝛿 is the given threshold, and 𝑠u and 𝑠l are the upper 

and lower limits of the tap positions. The methods for calculating the cumulative differences 𝐷𝑡
u(𝜸) 

and 𝐷𝑡
l(𝜸) differ depending on the control framework. In the remainder of this section, we describe the 

voltage control frameworks that we adopted for implementing the LRT, SVR, and LVR.  

 

Fig. 2.1 Schematic image of voltage control using OLTCs. 
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2.2.1 Voltage control framework for LRT 

An LRT is located at a distribution substation of an MVDS and is required to appropriately regulate 

the tap position to maintain the voltage in multiple feeders. Let 𝜸lrt = {𝑣lrt, 𝑧lrt} be the parameter set 

of a control framework implemented in the LRT, and let 𝜀 be the dead band. The controller finds the 

cumulative difference 𝐷𝑡
u(𝜸lrt) and 𝐷𝑡

l(𝜸lrt) as follows: 

𝐷𝑡
u(𝜸lrt) = max{0, 𝐷𝑡−1

u (𝜸lrt) + |𝒗̇𝑡| − 𝑧
lrt|𝒊̇𝑡| − 𝑣

lrt − 𝜀}, (2.2) 

𝐷𝑡
l(𝜸lrt) = max{0, 𝐷𝑡−1

l (𝜸lrt) + 𝑧lrt|𝒊̇𝑡| + 𝑣
lrt − 𝜀 − |𝒗̇𝑡|}. (2.3) 

 

2.2.2 Voltage control framework for SVR and LVR 

A voltage control framework based on the LDC method is implemented in the SVR and LVR. Let 

𝜸ldc = {𝑣ldc, 𝑙}  be a parameter set of the LDC method. The voltage 𝑣𝑡
ref  is an arbitrary voltage 

reference point on the secondary side of each OLTC estimated in the LDC method by: 

𝑣𝑡
ref(𝑙) = |𝒗̇𝑡 − 𝑙𝒛̇𝒊̇𝑡|, (2.4) 

where 𝑙 is the line length between the OLTC and the voltage reference point at time 𝑡, and 𝒛̇ is the unit 

line impedance. Then, the OLTC derives the cumulative differences between the estimated voltage 𝑣𝑡
ref 

and target voltage 𝑣ldc, 𝐷𝑡
u(𝜸ldc) and 𝐷𝑡

l(𝜸ldc), according to the following equations: 

𝐷𝑡
u(𝜸ldc) = max{0,𝐷𝑡−1

u (𝜸ldc) + 𝑣𝑡
ref(𝑙) − 𝑣ldc − 𝜀}, (2.5) 

𝐷𝑡
l(𝜸ldc) = max{0,𝐷𝑡−1

l (𝜸ldc) + 𝑣ldc − 𝜀 − 𝑣𝑡
ref(𝑙)}. (2.6) 

2.3 Coordinated voltage control scheme of OLTCs 

The OLTC controls the voltage according to the framework outlined in Section 2.2 based on the 

parameters 𝜸lrt  and 𝜸ldc . These parameters must be designed to coordinate action. In a DS with 

multiple OLTCs, appropriate voltage control actions may not occur because a downstream OLTC will 

be influenced by the tap operation of the upstream OLTC. In a decentralized control framework, each 

OLTC is independently operated; thus, interference among the tap operations is more likely.  

We propose a scheme of coordinated voltage control for multiple OLTC types (i.e., an LRT, SVRs, 

and LVRs) to avoid interference. Our design is composed of three parts: 1) determining the control 

parameters of the MV OLTCs (i.e., LRT and SVRs), 2) locations of the LVRs, and 3) control parameters 

of some of the LVRs.  

The voltage control design first determines appropriate control parameters for the LRT and SVRs to 

maximize their local voltage control performance. This process can mitigate most of the voltage 

fluctuations in DSs with PVs but may be insufficient in some LVDSs. In addition, it contributes to 

suppressing the installation cost by reducing the number of LVRs, which are considered in the next step. 

Assume that the DS is divided into specific areas, each of which is controlled by an MV OLTC. 

Each MV OLTC manages a zone from the point of its location to that of the next downstream MV 
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OLTC (Fig. 2.2). The control parameters of each MV OLTC are determined in the order of upstream 

to downstream to maintain the voltage of LV consumers in their control areas. Therefore, the control 

parameters of a downstream MV OLTC can be determined by considering the influence of the voltage 

control of the upstream MV OLTC/s. Next, LVRs are introduced in areas where the MV OLTCs cannot 

prevent excessive voltage violations. All the LVRs are initially given identical default control 

parameters to minimize complexity.  

Once the LVRs—for which the default control parameters are used—have been introduced, 

appropriate control parameters are determined for the LVRs in those LVDSs where voltage violations 

occur. The control parameters of the LVRs are determined on the basis of power flow calculation (PFC) 

that can confirm the behavior of the MV OLTCs during voltage control. The LVRs using the control 

parameters determined in this way should control the voltage in coordination with the MV OLTCs.  

 

Fig. 2.2 MVDS example showing the control areas of each MV OLTC. 

2.3.1 Determination of control parameters for the LRT 

The LRT must maintain the voltage in multiple feeders. The secondary voltage 𝒗̇𝑡 and current 𝒊̇𝑡 

should include characteristics of the total power fluctuation in multiple feeders; thus, the control 

parameters of an LRT 𝜸lrt = {𝑣lrt, 𝑧lrt} are determined as follows on the basis of the maximum and 

minimum of |𝒗̇𝑡| and |𝒊̇𝑡|(Fig. 2.3): 

𝑧lrt =
𝑣max − 𝑣min
𝑖max − 𝑖min

, (2.7) 

𝑣lrt =
𝑣max + 𝑣min − 𝑧

lrt(𝑖max + 𝑖min)

2
, (2.8) 

where 

{
 
 

 
 
𝑣max = max

𝑡
|𝒗̇𝑡|

𝑣min = min
𝑡
|𝒗̇𝑡|

𝑖max = max
𝑡
|𝒊̇𝑡|

𝑖min = mix
𝑡
|𝒊̇𝑡|

. (2.9) 
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Fig. 2.3 Graphic illustration showing the determination of the LRT parameters [2-25] © 2016 IEEE. 

2.3.2 Determination of control parameters for SVR and LVR 

The control parameters of the LDC method implemented in the SVRs and LVRs are 𝜸ldc = {𝑣ldc, 𝑙}. 

Let 𝑣𝑡
𝑗
 be the voltage at the LV receiving end 𝑗 at time 𝑡, and let 𝒥 be the set of LV receiving ends. We 

also let 𝑣u and 𝑣l are the upper and lower acceptable voltage limits. The appropriate LDC control 

parameter set 𝜸𝑞
ldc is determined to minimize the voltage difference, which is the one between the 

voltage at the LV receiving ends 𝑣𝑡
𝑗
 and the central voltage of the acceptable voltage limits in the LDVS, 

and the number of tap operations using a suitable weight coefficient 𝛼 > 0: 

𝜸𝑞
ldc = argmin

𝜸ldc
{max
𝑗∈𝒥,𝑡

|𝑣𝑡
𝑗
(𝜸ldc|𝜸1, … , 𝜸𝑛) −

𝑣u − 𝑣l

2
|

+ 𝛼∑|𝑠𝑡−1(𝜸
ldc|𝜸1, … , 𝜸𝑛) − 𝑠𝑡(𝜸

ldc|𝜸1, … , 𝜸𝑛)|

T

𝑡=1

}, 

(2.10) 

where 𝜸𝑛 and 𝑛 are the parameter set and number of the OLTCs located upstream of the target OLTC. 

The above minimization problem can be solved by evaluating the values derived by the PFC on all 

control parameter set candidates, 𝑙 ∈ ℒ and 𝑣ldc ∈ 𝒱.   
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2.4 Numerical simulation 

The validity of our coordinated voltage control scheme was verified by carrying out a voltage control 

simulation using the DS model shown in Fig. 2.4 [2-26], which also explains the fixed tap ratio of pole 

transformers. This model was built on the basis of actual Japanese DSs and has two distribution feeders 

that include both MV and LV DSs. The DS model has five MV OLTCs, i.e., an LRT is located at the 

distribution substation, and four SVRs are deployed in the middle of the feeders. Feeder 1 (F1) simulates 

an industrial area with an 18.4-km main line, three SVRs, 20 MV consumers, 60 low-voltage 

distribution systems (LVDSs), and 551 LV consumers. Feeder 2 (F2) simulates a residential area with 

a 10.5-km main line, an SVR, 14 MV consumers, 48 LVDSs, and 479 LV consumers.  

We conducted the numerical case studies on the basis of the load and PV profiles of MV and LV 

consumers. Fig. 2.5(a) shows the MV load profiles in each feeder created from actual measurements. 

Fig. 2.5(b) shows the set of the load and PV profiles for an LV consumer with a time step of 10 s. The 

different real-world profiles were individually used for each LV consumer. The PVs were introduced 

by the LV consumers at the end of each feeder to validate our scheme in different voltage distributions. 

Their penetration ratios varied (0, 25, 50, 75, 100%). Table 2.1 outlines our experimental setup, 

including several dominant parameters. The total number of LV consumers and PV introduction areas 

in each MV node are shown in Fig. 2.6. In this simulation, we evaluate the controls under the following 

conditions: 

 MV OLTCs only (conventional scheme, case 1) 

 MV OLTCs and LVRs with default control parameters (case 2) 

 MV OLTCs and LVRs with coordinated control parameters (proposed scheme, case 2) 

 

 

Fig. 2.4 Distribution system model that includes both MV and LV distribution systems. 
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(a) Load profiles in MV consumers 

 

 (b) Load and PV profiles in as LV consumer 

Fig. 2.5 Profiles used in the simulation [2-25] © 2016 IEEE. 

 

Fig. 2.6 Number of LV consumers and PV introduction area in each MV node. 
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Table 2.1 Simulation setup. 

DS model 
Appropriate voltage range in 

LVDS 
95–107 [V] 

LRT 

parameters 

Tap position {1, 2, ..., 21} 

Tap width 60 [V] 

Dead band 1 [%] 

SVR 

parameters 

Tap position {1, 2, ..., 9} 

Tap width 100 [V] 

Dead band 1.5 [%] 

Candidates for 𝑙𝜏 

SVR 1: {0.5, 1.0, ..., 4.0} [km] 

SVR 2: {0.5, 1.0, ..., 4.5} [km] 

SVR 3: {0.5, 1.0, ..., 3.5} [km] 

SVR 4: {0.5, 1.0, ..., 4.5} [km] 

Candidates for 𝑣𝑡
ref {95, 95.5, ..., 107}*6600/105 [V] 

LVR 

parameters 

Tap position {1, 2, ..., 5} 

Tap width 2.38 [V] 

Dead band 1.5 [%] 

Candidates for 𝑙𝜏 {0.01, 0.02, ..., 0.18} [km] 

Candidates for 𝑣𝑡
ref {95, 95.5, ..., 107} [V] 

 

Fig. 2.7 shows the number of LV consumers with voltage violations for all cases. Table 2.2 presents 

the number of LVRs introduced in the LVDSs in which the MV OLTCs cannot prevent voltage 

violations. These results show that the MV OLTCs can maintain the voltage within the prescribed range 

when the PV introduction ratio is 0%. Thus, the conventional voltage control scheme was found to be 

suitable for cases without PV introduction. These results also indicate that there was no voltage violation 

in F2 for all cases. Therefore, the following discussion focuses on the results obtained for F1 hereafter. 

Fig. 2.7 shows that the introduction of LVRs significantly reduces voltage violations, which is further 

reduced by the coordinated voltage control scheme.  
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Fig. 2.7 Number of LV consumers with voltage violation [2-25] © 2016 IEEE. 

Table 2.2 Number of LVRs [2-25] © 2016 IEEE. 

PV penetration 0% 25% 50% 75% 100% 

Number of LVRs 0 4 20 15 15 

 

The number of houses with voltage violation in each MV node of line F1 is shown in Figs. 2.8-2.10. 

Figs. 2.8(a)-(d) indicate that there are three major reasons for voltage violation in the conventional 

scheme: boundaries of fixed tap ratio of PTs, boundaries of PV introduction, and a large number of 

houses. 

Figs. 2.8(b)-(d) show that there are many houses with voltage violation in the MV nodes located on 

the primary side of SVR1 and between SVR2 and SVR3. These areas include a boundary of the fixed 

tap ratio of PTs. Voltage control in these areas is difficult for legacy LTCs because the difference in the 

voltage trend in each LVDN in an area controlled by an LTC becomes much larger than in other areas. 

Figs. 2.8(b), (c) show the harmful effect of boundaries of PV introduction. Fig. 2.8(b) shows that 

there is a boundary of PV introduction in an area between SVR2 and SVR3 where many voltage 

violations occur. This is why the number of voltage violations of PV 50% is the highest of all in case 1 

(Fig. 2.7). Voltage control is complicated for LTCs that have both LVDSs with and without PV in their 

control area. It particularly occurs during the daytime because the voltage will rise in the LVDSs with 

PV despite the voltage dropping in the LVDSs without PV. Moreover, the PV introduction area of the 

F2 in Fig. 2.4 shows that the boundaries of PV introduction on 50% and 75% are in a control area of 

the LRT. Figs. 2.7(a), (b) shows that voltage violation on the primary side of SVR1 sharply increases 

when the introduction ratio of PV increases from 25% to 50%. These results suggest that the boundary 

of PV introduction in F2 affects the voltage violation on the primary side of SVR1. Voltage control of 

the LRT becomes difficult when the introduction ratio of PV increases from 25% to 50% because the 
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voltage will rise at the end of control area of the LRT in F2 despite the voltage dropping in the other 

area controlled by the LRT. 

Voltage violation cannot be prevented in the MV node at the vertical end of F1 as shown in Figs. 

2.8(a)-(d). This section of F1 contains an LVDN with 29 houses, which is the largest of all, in the MV 

node. It is complicated to maintain the voltage within the prescribed range because the amount by which 

the voltage rises and drops from the PT to the end of the LVDN increases. 

Figs. 2.9(a)-(d) show that the introduction of LVRs with default parameters solves the voltage 

violation problem in all LVDNs except for the area with the 29 houses. This result illustrates that the 

LVRs introduced at appropriate locations effectively compensate for the performance of the LRT and 

SVRs and mitigate the voltage violation based on the boundaries of the fixed tap ratio of PTs and the 

boundaries of PV introduction. However, the number of occurrences of voltage violation increases in 

the LVDN with 29 houses because the default parameters are not suitable regarding coordination with 

the LRT and SVRs. 

Figs. 2.10(a)-(d) show that the proposed scheme succeeds in achieving a further reduction in the 

number of houses with voltage violation compared to case 2. The coordinated scheme also mitigates 

the voltage violation caused by the large number of houses in addition to the other reasons. This is why 

the coordinated control parameters of the LVR are determined considering the influence of the other 

LTCs. Moreover, the proposed scheme is shown to appropriately compensate for the shortcomings of 

the legacy LTCs, and can prevent the various kinds of voltage violation. 
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(a) PV penetration ratio 25% 

 

(b) PV penetration ratio 50% 

 

(c) PV penetration ratio 75% 

 

(d) PV penetration ratio 100%s 

Fig. 2.8 Number of houses with voltage violation in each MV node of line F1 (case 1, conventional 

scheme) [2-25] © 2016 IEEE. 
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(a) PV penetration ratio 25% 

 

(b) PV penetration ratio 50% 

 

(c) PV penetration ratio 75% 

 

(d) PV penetration ratio 100% 

Fig. 2.9 Number of houses with voltage violation in each MV node of line F1 (case 2) 

 [2-25] © 2016 IEEE. 
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(a) PV penetration ratio 25% 

 

(b) PV penetration ratio 50% 

 

(c) PV penetration ratio 75% 

 

(d) PV penetration ratio 100% 

Fig. 2.10 Number of houses with voltage violation in each MV node of line F1  

(case 3, proposed scheme) [2-25] © 2016 IEEE. 
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2.5 Summary of this chapter 

In this chapter, we proposed a coordinated voltage control scheme for multiple kinds of OLTCs. The 

proposed scheme appropriately determined the installation location of LVRs and the control parameters 

of each OLTC by considering the influence of the other OLTCs on the voltage control. We performed 

a numerical simulation using a DS model. The proposed scheme succeeded in preventing almost all 

occurrences of voltage violation. The proposed scheme is capable of responding to additional kinds of 

voltage violation, which cannot be solved by the conventional method, such as those caused by 

boundaries on the fixed tap of PTs, boundaries of PV introduction, and a large number of houses. 

Moreover, the improvement on the voltage control performance of LVR is expected corresponding to 

various voltage fluctuations that varies depending on the weather condition. 
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Chapter 3  
Method for rapidly determining voltage control parameters of LVR 

using classifiers 

3.1 Introduction to this chapter 

The LVR controls the voltage in situations where the uncertain fluctuation of PV output significantly 

affects the DSs. To handle the uncertainty, various forecasting methods for PV output and electricity 

load have been proposed [3-1]–[3-3]. In addition, various model predictive control scheme has been 

introduced in the supply side energy management [3-4]–[3-9]. Particularly, in [3-9], an upgraded 

voltage management scheme, which consists of forecast, operational plan, and control, has been studied. 

This scheme updates the voltage control parameters in a short period corresponding to the sequentially 

forecasted power profile. The updated control parameters should be determined within the limited time 

between end of forecasting phased and start of control phase. Therefore, to apply such model predictive 

control to the LVR operation, the voltage control parameters should be rapidly determined to meet for 

every updating.  

In this chapter, we apply the upgraded voltage management scheme in [3-9] and propose a method 

for rapidly and accurately determining the control parameters of LDC method for the LVR as a part of 

an upgraded voltage management scheme. In the proposed method, solution candidates of the 

appropriate LDC parameters are selected with low computational cost by using classifiers that learns 

the relation between power series data and the appropriateness of LDC parameters. We performed 

numerical simulations to evaluate the validity from the viewpoints of computational time and 

classification accuracy for determination of the LDC parameters, and verified the voltage control 

performance of the proposed method. 

3.2 Upgraded voltage management scheme using LVR 

We apply the voltage management in [3-9] to the LVR to appropriately adjust the tap position to 

respond to the fluctuating PV output and electricity load. A scheme of the voltage management is shown 

in Fig. 3.1, which is composed of the following three phases: 

 prediction, in which the future fluctuation of the load demand and PV output are estimated, 

 operational plan, in which the appropriate control parameters are derived on the basis of the 

prediction results, 

 control, in which the voltage is automatically controlled on the basis of the derived control 

parameters. 



Chapter 3 Rapid determination of LVR parameters using classifiers 

 

44 

 

According to this scheme, we proposed the method for determining control parameters required for 

appropriate voltage control of the LVR. The important objective on the LVR operation is to satisfy the 

following requirements: 

 adjusting the tap position that can stabilize the voltage within an prescribed range, 

 avoiding extra tap changes in terms of the equipment life, 

 deriving the control parameters quickly to reflect the reliable prediction results, which are 

slightly ahead, for control (shortening of the operation phase). 

The main purpose of the LVR operation is to automatically adjust the tap position to maintain the 

voltage at all receiving ends (∀𝑗 ∈ 𝒥) in the LVDS. Although some control methods that satisfy this 

purpose are available, the LDC method described in 2.2.2 is implemented in the LVR. Equations (2.1), 

(2.4)–(2.6) indicate that a parameter set of the LDC method 𝜸ldc = {𝑣ldc, 𝑙} must be set properly to 

achieve an appropriate tap change. In the next section, a framework how to evaluate and determine the 

LDC parameter set 𝜸ldc = {𝑣ldc, 𝑙}. 

 

Fig. 3.1 Schematic image of the upgraded voltage management scheme, which consists of forecast, 

operational plan, and control. 
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3.3 Determination of LDC parameters for LVR 

This section presents the method for determining the appropriate parameter set according to the 

voltage management scheme described in section 3.2. The appropriate parameter set is determined in 

each control phase 𝐹𝑘 composed of 𝑡 = 1,… , 𝑇 on the basis of the forecasted profile of PV output and 

electricity demand. Here, under the constraint condition that the voltage 𝑣𝑡
𝑗
 at every LV receiving end 

(∀𝑗 ∈ 𝒥)  is always maintained within the prescribed range, we define such parameter set as the 

appropriate parameter set that minimizes the number of LVR tap changes in order to extend the 

operation life, and maximize the voltage margin from the upper and lower limit in order to correspond 

to the uncertainty of forecasting. Regarding to the evaluation of maximizing the voltage margin, the 

highest and lowest voltage of all receiving ends and time steps are evaluated in order to focus on the 

worst point voltage closest to the limits. In the voltage management scheme in section 3.2, since the 

appropriateness of the parameter set depends on the initial tap value 𝑠𝑡=1, the appropriate parameter 

sets to all tap values 𝑠 ∈ {1,… , 𝑃} should be prepared by the beginning of the control phase 𝐹𝑘. The 

parameter set is finalized from the prepared parameter set corresponding to the tap value at the 

beginning of control phase 𝐹𝑘 . Such parameter set 𝜸𝑞
ldc  on each tap value can be achieved by 

considering the following problem at a suitable weight coefficient 𝛼 > 0: 

For each tap value 𝑠 ∈ {1,… , 𝑃},  

𝜸𝑞
ldc = argmin

𝜸ldc
{∑|𝑠𝑡−1(𝜸

ldc) − 𝑠𝑡(𝜸
ldc)|

T

𝑡=1

+
𝛼

min
𝑗∈𝒥,𝑡

(𝑣𝑡
𝑗(𝜸ldc) − 𝑣l) + min

𝑗∈𝒥,𝑡
(𝑣u − 𝑣𝑡

𝑗(𝜸ldc))
}, 

(3.1) 

subject to 𝑣l ≤ 𝑣𝑡
𝑗
(𝜸ldc) ≤ 𝑣u         (∀𝑗 ∈ 𝒥, 𝑡 = 1,⋯ , 𝑇).  

In this study, ℒ and 𝒱, which consist of a finite number of elements, are solved as the candidates of the 

above optimization problem.  

The above framework can only be evaluated when the forecasted PV output and electricity load at 

𝑡 = 1,⋯ , 𝑇  are obtained. The PFC, whose scale and complexity vary with the power system 

configuration, is also required to evaluate the objective function. Therefore, the practical issue is how 

to solve the minimization problem in (3.1). Let |ℒ| and |𝒱| be the numbers of parameters in search 

ranges, 𝑃 × |ℒ| × |𝒱| times PFC is required. However, in the scheme introduced in 3.2, the parameter 

set must be determined online during the operational plan phase; between end of the forecasting phase 

and beginning of the control phase, so that the scalability to the size of LVDS and immediacy of 

optimization process are significant. In the next section, we propose a method that uses classifiers that 

learn the appropriateness of the parameters for a given forecasted PV output and electricity load from 

the previous data to instantly derive either an optimized or a suboptimized solution for such problems. 
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The proposed method combines the PFC [3-10], whose evaluation accuracy is high though calculation 

time is not fast, and the classifiers [3-11], [3-12], whose evaluation accuracy is not high though 

calculation time is rapid, to achieve the rapid and accurate determination of parameters (Fig. 3.4). 

 

Fig. 3.2 Comparison of conventional and proposed method for determining LDC parameter set. 

3.4 Method for determining LDC parameters using classifiers 

A method for rapidly and accurately determining the appropriate parameter set is proposed in this 

section. The proposed method rapidly narrows the candidate of the appropriate parameters on the basis 

of the classification probability derived by classifiers. In addition, it strictly evaluates the narrowed 

parameters candidates by the PFC (Fig. 3.2).  

The narrowing by the classifier is divided into two processes, learning and classifying. First, the 

classifier is learned offline in advance to determine whether the parameter set 𝜸ldc is appropriate to the 

past-accumulated data of the PV output and electricity load. Let 𝐽 = |𝒥| be the number of customers in 

the LVDS, the input for classification is the 𝐽 × 𝑇 -dimensional time series data 𝒙 =

(𝑥1,1, … , 𝑥1,𝑇 , 𝑥2,1, … , 𝑥𝐽,𝑇), which consists of a power balance (PV output – electricity load) of 𝐽 

customers in the LVDS at each time 𝑡 = 1,… , 𝑇 . When the 𝑁 -input data {𝒙𝑛 =

(𝑥1,1
𝑛 , … , 𝑥1,𝑇

𝑛 , 𝑥2,1
𝑛 , … , 𝑥𝐽,𝑇

𝑛 ); 𝑛 = 1,… ,𝑁} are applied to each parameter set 𝜸ldc for learning process, 

the following classification function 𝐺𝜸ldc and classification probability are built in each parameter set: 

For each tap value 𝑠 ∈ {1,… , 𝑃},  

𝐺𝜸ldc : 𝒙 → 𝑦𝜸ldc ∈ {−1,1}, (3.2) 

𝑃𝜸ldc (𝑦𝜸ldc = 1|𝒙) ∈ [0,1]. (3.3) 

where 𝑦𝜸ldc  is an output of the classification that becomes 1 when (3.1) is solved and the parameter set 

𝜸ldc is optimal and it becomes -1 in other cases. In this study, we focus on support vector machine 
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(SVM) [3-13], random forest (RF) [3-14], and a combination method of SVM and RF, although some 

typical approaches for building a binary classification function based on the accumulated data are 

available [3-15], [3-16]. 

The basic concept of each method is presented below. Additionally, we apply these methods to 

narrow the choice of resolution candidates by majority vote to improve the accuracy of the classification 

because the use of only one method cannot always achieve highly accurate classification. In 3.4.1–3.4.3, 

we explain methods for classifying the parameter set and deriving the classification probability in each 

approach when the input data aggregate {𝒙𝑛}  and the corresponding output data aggregate 

{𝑦
𝜸ldc
𝑛 ∈ {−1,1}; 𝑛 = 1,… ,𝑁}. 

After the narrowing, in online operation phase, the appropriateness of each parameter set to the 

forecasted power profile 𝒙 is evaluated on the basis of the classification function 𝐺𝜸ldc that has learned 

the relation past-accumulated power data and the appropriateness of parameter set. Since the 

appropriateness of parameter set to the past data has been learned offline, the appropriateness of 

parameter set to the forecasted data can be classified without carrying out the PFC. In addition, this 

results in the rapid classification without depending on the size of LVDSs. Then, following the 

flowchart in Fig. 3.3, the parameter sets whose classification probability 𝑃𝜸ldc is included in the 𝐶th 

highest are precisely evaluated in terms of the optimization problem (3.1). The parameter sets that 

minimize the objective function is finally selected in each initial tap. The narrowing based on the 

classification probability can significantly reduce the number of PFCs and accurately determine 

parameter sets.  

  



Chapter 3 Rapid determination of LVR parameters using classifiers 

 

48 

 

 

(a) Learning 

 

 

(b) Classification and strict evaluation 

Fig. 3.3 Schematic image of proposed method based on classification. 
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Fig. 3.4 Flowchart of PFC after narrowing solution candidates by the classifier [3-17]. 

3.4.1 Support vector machine 

An SVM is known as a typical approach to no-linear binary classification problems. In this study, 

the formulation of the following classification function is presented (Fig. 3.4): 

𝐺𝜸ldc(𝒙) = ℎ (𝑓𝜸ldc(𝒙)), (3.4) 

where ℎ(∙) and 𝑓𝜸ldc(𝒙) is shown as following functions: 

 ℎ(𝑧) = {
−1
1
 
if
if
 
𝑧 ≤ 0 
𝑧 > 0,

 (3.5) 

𝑓𝜸ldc(𝒙) =∑𝑎̂𝑛𝐾(𝒙, 𝒙
𝒏) + 𝑏̂

𝑛

. (3.6) 

𝐾(𝒙, 𝒙𝑛) is a function called ad kernel used to describe the similarity in the dimensions where the 

nonlinear conversion between the two 𝐽 × 𝑇-dimensional vectors 𝒙 and 𝒙𝑛 is performed. In this study, 

the following Gaussian kernel is used: 
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𝐾(𝒙, 𝒙′) = exp(−
‖𝒙 − 𝒙′‖2

2

𝜎2
). (3.7) 

In addition, {𝑎̂𝑛; 𝑛 = 1,⋯ ,𝑁} and 𝑏̂ in (3.6) are described as a solution for the following optimization 

problem: 

{{𝑎̂𝑛}, 𝑏̂} = argmin
{𝑎̂𝑛},𝑏̂

1

2
∑𝑎𝑛𝑎𝑛′𝐾(𝒙

𝑛, 𝒙𝑛
′
)

𝑛𝑛′

+ 𝑐∑max {1 − 𝑦
𝜸ldc
𝑛 (∑𝑎𝑛′

𝑛′

𝐾(𝒙𝑛
′
, 𝒙𝑛) + 𝑏) , 0}

𝑛

. 

(3.8) 

The classification probability is defined as the following sigmoid function: 

𝑃𝜸ldc (𝑦𝜸ldc = 1|𝒙) =
1

1 + exp(𝐴𝑓𝜸ldc(𝒙) + 𝐵)
. (3.9) 

When the output of the classification is given as 𝑓
𝜸ldc
𝑛 = 𝑓𝜸ldc(𝒙

𝑛) and the target probability is given as  

𝑞
𝜸ldc
𝑛 =

𝑦
𝜸ldc
𝑛 + 1

2
, (3.10) 

The parameters 𝐴 and 𝐵 are determined to solve the following optimization problem on the basis of 

learning data set {(𝑓
𝜸ldc
𝑛 , 𝑞

𝜸ldc
𝑛 ) ; 𝑛 = 1,… ,𝑁}: 

min−∑{𝑞
𝜸ldc
𝑛 log (𝑝

𝜸ldc
𝑛 ) + (1 − 𝑞

𝜸ldc
𝑛 ) log (1 − 𝑝

𝜸ldc
𝑛 )}

𝑛

, (3.11) 

where  

𝑝
𝜸ldc
𝑛 =

1

1 + exp (𝐴𝑓
𝜸ldc
𝑛 (𝒙) + 𝐵)

. (3.12) 

 

Fig. 3.5 Classification based on SVM. 
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3.4.2 Random forest 

An RF is a type of ensemble learning that generates a plurality of classifiers called a decision tree 

by choosing the data and dimensions from the set of  𝑁 𝐽 × 𝑇-dimensional vector data (Fig. 3.5). 

In the decision tree for binary classification, a threshold d is set well when we focus on a certain 

dimension (𝑗, 𝑡) of the input data set {𝒙𝑛}. Consequently, the 𝐽 × 𝑇-dimensional feature quantity area 

of the input 𝑿 ∈ ℝ𝐽×𝑇 is separated into two areas, 𝑿1 = {𝑿|𝑥𝑗,𝑡 ≤ 𝑑} and 𝑿2 = {𝑿|𝑥𝑗,𝑡 > 𝑑}, in order 

that the corresponding output group {𝑦
𝜸ldc
𝑛 } in each area can be preferably separated by 1 or -1. The 

same process is conducted repetitively for the included input data sets in each area. By replicating this 

process, a multistep classifier having a tree structure is obtained. The terminations corresponding to the 

leaves are focused for the new data 𝒙, and the following classification is performed on the basis of the 

learning data that belong to the ith leaf that expresses the area 𝑿𝑖 ∋ 𝒙, including 𝒙: 

𝐺̅𝜸ldc(𝒙) = ℎ( ∑ 𝑦
𝜸ldc
𝑛

𝒙𝑛∈𝑿𝑖

). (3.13) 

In the RF, the subset initially consists of 𝑁′(< 𝑁) input–output relationships randomly extracted 

from N learning data sets. Second, a new data set 𝒟̅ = {(𝒙̅𝑛, 𝑦
𝜸ldc
𝑛 ) ; 𝒙̅𝑛 ∈ ℝ𝑆, 𝑛 = 1,⋯ ,𝑁′} is created 

by randomly extracting only 𝑆(< 𝐽 × 𝑇) dimensions from the 𝐽 × 𝑇-dimensional data of each input. In 

this manner, the randomly created data sets {𝒟̅𝑚;m = 1,⋯ ,𝑀} are prepared, and discriminations are 

performed on each data set by the decision trees. The basic approach of the RF is to perform the 

following final discrimination using the majority vote of the obtained results: 

𝐺𝜸ldc(𝒙) = ℎ (∑𝐺̅
𝜸ldc
𝑚 (𝒙)

𝑚

), (3.14) 

where 𝐺̅
𝜸ldc
𝑚  represents the classifier based on the decision tree in (3.13) learned on the basis of 𝒟̅𝑚. 

From (3.13) and (3.14), the RF improves the generalization ability using the majority vote on the basis 

of the results of the various weak classifiers. The various weak classifiers are created to randomly 

extract different subsets, which consist of different combinations of partial variates and case study sets 

in the data. Here, the classification probability is defined as the following value: 

𝑃𝜸ldc (𝑦𝜸ldc = 1|𝒙) =
1

𝑀
∑

ℎ(𝐺̅
𝜸ldc
𝑚 (𝒙)) + 1

2
𝑚

. (3.15) 
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Fig. 3.6 Classification based on RF. 
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3.4.3 Multiple classifiers 

More accurate classification results could be obtained to combine multiple classifiers. Therefore, we 

suggest the following classification probability combining the classification probabilities of the SVM 

and RF described in (3.12) and (3.15): 

𝑃𝜸ldc (𝑦𝜸ldc = 1|𝒙) = {
𝑃
𝜸ldc
𝑆𝑉𝑀 + 𝑃

𝜸ldc
𝑅𝐹

2
0

     if    𝑃
𝜸ldc
𝑆𝑉𝑀 > 0.5 and 𝑃

𝜸ldc
𝑅𝐹 > 0.5

otherwise
, (3.16) 

where 𝑃
𝜸ldc
𝑆𝑉𝑀and 𝑃

𝜸ldc
𝑅𝐹  are the classification probabilities based on the SVM and RF. 

3.5 Numerical simulation 

To verify the validity of the proposed method in terms of the determination accuracy, the 

computation time required for determining the parameter set, and voltage control performance using 

the determined parameter set, we carried out numerical simulation using an LVDS model shown in Fig. 

3.6, which includes an LVR and 29 LV consumers with PVs. In the simulation, the following methods 

for determining the parameter set are compared: 

 evaluation of the optimization problem by carrying out PFCs of all solution candidates; 

 use of the classifiers (SVM, RF, multiple classifiers: SVM+RF) without carrying out a PFC; 

and 

 narrowing of the solution candidates by the classifiers before carrying out a PFC, which is the 

proposed method. 

Table 3.1 lists the simulation setup, including some dominant parameters. A period of control phase is 

set one hour; the control parameter set is updated every one hour. In addition, we prepared 51-day actual 

measurement of PV output and electricity load with a time step of 10 s in each 29 house. The example 

data for two days are shown in Fig. 3.7. 31-day data set is used for evaluation of the methods. 20-day 

data set is divided into one-hour data and used as a training data for building the classifier 𝐺𝜸ldc. The 

forecasted power profile 𝒙 used to determine the parameter set does not contain any forecasting errors. 

 

Fig. 3.7 LVDS model with LVR and PVs [3-18]. 



Chapter 3 Rapid determination of LVR parameters using classifiers 

 

54 

 

Table 3.1 Simulation setup. 

LVR 

Rated capacity 75 kVA 

Rated primary voltage 6.6 kV 

Rated secondary voltage 105 V 

Tap value 

(primary voltage) 

𝑠={1, 2, 3, 4, 5} 

(6.9, 6.75, 6.6, 6.45, 6.3 kV) 

LDC method 
Parameters search range 

ℒ={0,10, …, 180 m} 

𝒱={96, 97, …, 106 V} 

Dead band 𝜀=1.5 % 

LVDS condition 
Impedance of LV main line 0.2526+j0.3485 Ω/km 

Prescribed voltage range 95–107 V 

Conversion factor  

in (3.1) 
𝛼=0.01 

Number of PFCs for the 

proposed method 
𝐶=5 

 

 

(a) PV output 

 

(b) Electricity load 

Fig. 3.8 Example power profiles for 2 days [3-17]. 
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Fig. 3.7 shows average accuracy of the parameters determination for 31 days. Let {𝑙, 𝑣ldc}
𝑘
 be the 

LDC parameters finally used in control phase 𝐹𝑘 and {ℒ′, 𝒱′}𝑃𝐹𝐶
𝑘  be the set of solutions obtained by the 

PFC, where ℒ′ ≤ ℒ,𝒱′ ≤ 𝒱, the average accuracy, which evaluates whether the parameters {𝑙, 𝑣ldc}
𝑘
 

are included in the set of solutions {ℒ′, 𝒱′}𝑃𝐹𝐶
𝑘 , is described as following:  

Accuracy = {
1

24
∑𝛿 ({𝑙, 𝑣ldc}

𝑘
, {ℒ′, 𝒱′}𝑃𝐹𝐶

𝑘 )

24

𝑘=1

, (3.17) 

where 

𝛿 ({𝑙, 𝑣ldc}
𝑘
, {ℒ′, 𝒱′}𝑃𝐹𝐶

𝑘 ) = {
1
0
   if   {𝑙, 𝑣ldc}

𝑘
∈ {ℒ′, 𝒱′}𝑃𝐹𝐶

𝑘

otherwise
. (3.18) 

The result in Fig. 3.7 shows the accuracies of the proposed methods (classifier +PFC) are higher than 

only using the classifier (SVM, RF, SVM+RF). Further, the accuracy of the proposed methods is always 

greater than 0.9. The values suggest that exactly evaluating the parameter candidates by the PFC after 

narrowing the parameter candidates by the classifier can exclude inappropriate parameters that are 

classified as the appropriate parameters by the classifier. Moreover, the accuracy of SVM+RF+PFC is 

particularly higher than the others, thereby, it is considered that the classification using multiple 

classifiers can result in the accurate narrowing in the classification process. In the narrowed areas of 

parameters candidates, whose classification probabilities is larger than 0.5 (𝑃𝜸ldc > 0.5), on each 

classifier SVR and RF, 𝑃𝜸ldc gradually decreases toward the boundary of the area. Although there is 

large difference between the narrowed areas of SVM and RF, the classification probability 𝑃𝜸ldc 

becomes close to 0.5 around the boundary of narrowed area. Therefore, accurate narrowing is achieved 

around the boundary by using the multiple classifiers based on (3.16).  

 

Fig. 3.9 Accuracy of parameters determination [3-17]. 
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Fig. 3.9 shows the relative computation time for determining the appropriate parameter set for every 

initial tap value. The results suggest that the computation times of using the classifier and classifier 

+PFC are much shorter than the PFC because the former methods avoid the large number of PFCs 

requiring a large computational cost. Particularly in RF, the computation time is significantly shorter 

than the others. Furthermore, we can verify that the increase in computation time due to the several 

PFCs in the RF+PFC method is not a serious problem. 

 

Fig. 3.10 Relative computation time required for determining appropriate parameters [3-17]. 

Fig. 3.10 shows the number of days in which the voltage is maintained within the prescribed range 

when voltage control is performed using the parameter set determined by each method. The proposed 

method (classifier +PFC) can maintain the voltage for 30 days, which is almost equivalent to the PFC 

method. On the other hand, the number of days that the classifier method can maintain the voltage is 

much less than the proposed method, and the difference is more notable than that of the accuracy. This 

result suggests that even one classification error when maintaining the voltage produces a worse voltage 

control result, although this affects the parameters determination accuracy very little. 

 

Fig. 3.11 Number of days without voltage violation [3-17]. 
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The number of the average tap changes for 30 days when the proposed methods (classifier +PFC) 

can maintain the voltage is shown is Fig. 3.11. The proposed methods obtain similar results as the PFC 

method. From the results above, the proposed method can rapidly and accurately determine the 

parameters, and the validity of the proposed method is verified. 

 

Fig. 3.12 Average number of tap changes for 30 days when four methods maintain the voltage within 

prescribed range [3-17]. 

3.6 Summary of this chapter 

In this chapter, we proposed a method for rapidly and accurately determining the LDC control 

parameter set by narrowing the solution candidates using an classifiers before solving the optimization 

problem. Learning the relationship between the power series data and the control parameters on the 

basis of the past data and classifying the solution narrowed the solution candidates in the proposed 

method. As a result, the computational cost for determining the parameters was reduced because the 

number of PFCs necessary for evaluating the objective function was reduced. By comparing the voltage 

control results using the proposed method with the method using a PFC that can obtain the optimal 

solution in terms of the number of the voltage violation days and the number of LVR tap changes, the 

proposed method achieved equivalent voltage control performance. This work is significant because 

the rapid determination of the control parameters could lead to an increase in the forecasting accuracy. 

In addition, high-performance voltage control leads to maximum utilization of PV power. 
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Chapter 4  
EV charging management using auction mechanism for reducing PV 

curtailment in LVDSs 

4.1 Introduction of this chapter 

PV curtailment is carried out to maintain the power supply-demand balance [4-1] when PV output 

exceeds electricity consumption with minimum thermal power generation in the power system, and to 

avoid overvoltage from the prescribed voltage upper limit in the DS with intensive PV penetration [4-

2]; the former is addressed to coordinate the supply-demand balance among whole grid scale, while the 

latter can be prevented by mitigating voltage rise in the DS. The reduction of the PV curtailment is an 

important issue to achieve maximum utilization of the penetrated PV power. It can be an alternative to 

power sources with high fuel cost in the supply side and can reduce the residential operation cost in 

demand side. We consider several approaches to mitigate voltage rise in the DS from the viewpoint of 

both the supply and the demand sides. In the supply side, OLTCs and BESSs are used to control the 

voltage in the DS. The solution in the supply side would be costly because such voltage control schemes 

require investment in additional apparatuses and communication network. 

On the other hand, in the demand side, voltage rise could be avoided to increase the self-consumption 

of the PV output by utilizing controllable loads in the households, such as EV, residential BESS, and 

HPWH. Particularly, EVs are expected to be a core of the promising controllable loads, since they will 

be penetrated largely owing to the prohibition of selling gasoline and diesel cars proposed in some 

countries. The controllable loads contribute to increase the self-consumption of the PV output by 

shifting their electricity consumption to mid-day when the PV output would be curtailed. 

Various approaches have been proposed in the supply side to mitigate voltage rise caused by PV 

penetration and to reduce PV curtailment. Although the simplest solution in the supply side is grid 

reinforcement, it is more expensive than other schemes such as [4-3], [4-4]. Another possible approach 

is voltage control scheme using OLTCs [4-5]–[4-8]. Voltage control using MV OLTCs has been 

improved to implement a centralized control scheme [4-5], which requires an enhanced communication 

infrastructure. The LV OLTCs are deployed in LVDSs with voltage violation that cannot be avoided 

by the MV OLTCs [4-6]–[4-8]. Another technique to mitigate the overvoltage problem is the method 

of voltage control using BESS deployed in the supply side [4-9], [4-10]. The BESS could be used for 

other objectives as well, such as the coordination of the supply-demand balance [4-9] and cost reduction 

in EV charging facilities [4-10], as well as voltage control. A main advantage of these approaches is 

that the supply side can operate the devices only for the most convenient way to achieve its objectives; 

however, additional investment is required in the supply side. 

Another effective approach for mitigation of voltage rise and reduction of PV curtailment are based 

on utilization of the customers’ controllable loads, such as the EV, residential BESS, and HPWH; these 
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loads contribute to increase the self-consumption of the PV output by shifting their operation time. Such 

a demand side management scheme can reduce PV curtailment without additional investment (or with 

minimal investment) in the supply side solutions. In this case, customers’ benefits of their contribution 

in mitigating voltage rise, such as reduction of residential operation cost and acquisition of economic 

incentive, should be provided. For example, the operation scheme of the HPWH proposed in [4-11] 

reduces PV curtailment by increasing the self-consumption of the PV output in peak periods. The 

residential operation cost of customers who carry out the load shift of HPWHs can be reduced because 

the electricity purchased for the HPWH operation is replaced by the self-consumed PV output that 

would be curtailed. There also have been proposed several voltage control methods based on the 

residential BESS [4-12]–[4-14]. Although the voltage violation caused by the PV penetration will be 

mitigated by these methods, the benefits to the customers for contributing to voltage control was not 

discussed explicitly. The EV can be utilized for the load shift as well though the EVs are originally 

introduced for travel. According to the literature [4-15], most EVs are parked almost 95% of a day, so 

that the EV owner will obtain the benefit by utilizing the EV for load shift when it is connected to the 

house. When the EV is utilized for load shift to increase the self-consumption of PV output, unlike the 

other controllable loads, securing the convenience of the customers is an important issue in addition to 

the economic benefit because the EV is primarily used for travel. In [4-16], the consensus based 

cooperative control of the EVs has been proposed to mitigate overvoltage. In this scheme, effect of 

uncertainty in customer’s response due to securing the EV utilization for travel was evaluated by 

considering the variation in the number of connected EVs to the grid during voltage control. However, 

in these researches, the equity of customers’ benefits and autonomy of the load shift for the self-

consumption of PV output have not been studied. The equity of customers’ benefit implies a philosophy 

such that the benefit should be coordinated depending on the contribution of each customer; customers 

who carry out the load shift should receive a larger benefit than those who do not. The autonomy to the 

load shift similarly implies another philosophy such that the customers should voluntarily decide to 

participate in the load shift based on a comparison between the benefit of the load shift contribution and 

that of travel for themselves. 

In this chapter, we propose an EV charging management scheme based on an auction mechanism 

for increasing self-consumption of PV so as to reduce PV curtailment originating from the voltage 

constraint in the LVDS. The auction mechanism is introduced in order to simultaneously secure the 

customers’ equity of benefit and the autonomy of contributing to the load shift of EV charging from an 

economic perspective. The proposed scheme allows customers to voluntarily decide whether they will 

contribute to the load shift considering the benefits of EV utilizations; the valid benefit of the load shift 

is equitably returned to the contributors by sharing fees collected from the auction participants. 

Moreover, the scheme proposed in this work does not require an enhanced communication 

infrastructure, such as real-time communication, among all customers with EVs. 
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The remainder of this chapter is organized as follows. In Section 4.2, the formulation and the issues 

of the EV charging shift for reducing PV curtailment and residential operation cost is described. We 

introduce the proposed EV charging scheme based on the auction mechanism in Section 4.3. Section 

4.4 provides the expected bidders’ behavior in the auction mechanism preparing for the numerical 

simulation. The simulation results of the proposed charging shift scheme are shown in Section 4.5. 

Section 4.6 summarizes this chapter. 

4.2 EV charging shift for reducing PV curtailment  

In our scheme, EV is assumed to be charged by considering the residential operation cost, regarding 

purchased and sold electricity, and customer’s convenience. To minimize the residential operation cost 

in a house with a PV and an EV under the present Feed-in Tariff (FIT) Program, the electricity 

consumption should be avoided when the PV is generating so as to sell surplus PV output to the grid as 

much as possible. However, considering the grid voltage constraint, the significant reverse power flow 

caused by surplus PV output leads to voltage rise and PV curtailment resulting in the reduction of 

expected profit. In this situation, although the supply side utility is required to reinforce the grid to 

mitigate voltage rise, so that the PVs installed in the target area tend to curtail their output, a customer 

residing within the target area can contribute to reduce PV curtailment by shifting the charging period 

of EV to increase the self-consumption of PV output. The reduction of PV curtailment will reduce the 

residential operational cost of the customers because some purchased electricity is replaced by the 

curtailed PV output; therefore, the implementation of effective charging shift in the demand side 

provides benefits to both the demand and supply sides. In this section, we formulate the problem setting 

of the EV charging shift scheme and discuss issues of a charging shift for reducing PV curtailment and 

residential operation cost. 

4.2.1 Formulation of EV charging shift 

Suppose some houses with PVs and EVs are connected to an LVDS where PV curtailment frequently 

occurs. We introduce a charging shift scheme to reduce PV curtailment and residential operation cost 

in the target LVDS. Let 𝑡 ∈ {1,… , 𝑇} be the time in a day where 𝑇 is the total time, and 𝑛 ∈ 𝒩 be an 

index of a customer in the LVDS where 𝒩 is the index set of the customers. We also let 𝒑 = (𝑝𝑛,𝑡; 𝑛 ∈

𝒩, 𝑡 ∈ {1,… , 𝑇}) be a sequence of the consequent (after curtailed) PV output in the target houses and 

𝒑∗ be the original (before curtailed) one; then, a sequence of the PV curtailment 𝒙 in the target houses 

is given by 

𝒙 = 𝒑∗ −  𝒑. (4.1) 

Let 𝒚 = (𝑦𝑛,𝑡; 𝑛 ∈ 𝒩, 𝑡 ∈ {1,… , 𝑇}) and 𝒛 = (𝒛𝑛 ∈ {𝒛𝑛
ori, 𝒛𝑛

sft}; 𝑛 ∈ 𝒩) be electricity consumptions of 

uncontrollable load and EV in houses where 𝒛𝑛
ori = (𝑧𝑛,𝑡

ori; 𝑡 ∈ {1,… , 𝑇})  and 𝒛𝑛
sft = (𝑧𝑛,𝑡

sft; 𝑡 ∈

{1,… , 𝑇}) indicate the sequences of EV charging electricity consumption determined not considering 
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PV curtailment and that shifted for reducing PV curtailment, respectively. We also let 𝒲 ⊂𝒩 be the 

subset of customers who carry out the charging shift (hereinafter called “shifters”). In the case of 𝒲 =

∅, the sequence of EV charging in all customers becomes 𝒛𝑛 = 𝒛𝑛
ori (∀𝑛) and the total residential 

operation cost of customers in the LVDS is given by 

  𝐶(𝒛) = ∑ 𝐶𝑛
ori(𝒛(𝒲))

𝑛∈𝒩

 

= ∑∑(𝑐𝑡
g
[𝑦𝑛,𝑡 + 𝑧𝑛,𝑡

ori − 𝑝𝑛,𝑡(𝒛(𝒲))]
+
− 𝑐𝑡

PV[𝑝𝑛,𝑡(𝒛(𝒲)) − 𝑦𝑛,𝑡 − 𝑧𝑛,𝑡
ori]

+
)

𝑇

𝑡=1𝑛∈𝒩

, 

 

(4.2) 

where  

[𝑎]+ = {
𝑎     if     𝑎 ≥ 0 
0    otherwise,

 (4.3) 

𝐶𝑛
ori is the residential operation cost of non-shifter 𝑛 ∉ 𝒲, who does not carry out the charging shift, 

and 𝑐𝑡
g
 and 𝑐𝑡

PV are the cost conversion coefficients of the purchased and sold electricity at time 𝑡, 

respectively. On the other hand, when customers carry out the charging shift (𝒲 ≠ ∅), the electricity 

consumption of EV charging of shifters 𝑛 ∈ 𝒲  is converted from 𝒛𝑛
ori  to 𝒛𝑛

sft , so that the total 

residential operation cost in the LVDS is given by 

𝐶(𝒛(𝒲)) = ∑ 𝐶𝑛
sft(𝒛(𝒲))

𝑛∈𝒲

+ ∑ 𝐶𝑛
ori(𝒛(𝒲))

𝑛∉𝒲

, (4.4) 

where 𝐶𝑛
sft indicates the residential operation cost of shifters 𝑛 ∈ 𝒲 given by  

𝐶𝑛
sft(𝒛(𝒲)) =∑(𝑐𝑡

g
[𝑦𝑛,𝑡 + 𝑧𝑛,𝑡

sft − 𝑝𝑛,𝑡(𝒛(𝒲))]
+
− 𝑐𝑡

PV[𝑝𝑛,𝑡(𝒛(𝒲)) − 𝑦𝑛,𝑡 − 𝑧𝑛,𝑡
sft]

+
)

𝑇

𝑡=1

. (4.5) 

As shown in Eqs. (4.2)–(4.5), the effectiveness of charging shift depends on how to determine the subset 

of shifters 𝒲 and the shifted EV charging profiles 𝒛𝑛
sft. The charging shift scheme can be classified into 

two types from a perspective of how to determine them: distributed and centralized approaches. Both 

types of charging shift might be executed according to the pre-set schedules given via in-home 

controllers. In the distributed charging shift approach, each customer autonomously manages individual 

charging shift; 𝒲 and 𝒛𝑛
sft are determined as a result of the customers’ decisions. On the other hand, in 

the centralized charging approach, an aggregator manages the charging shift in the target area; 𝒲 and 

𝒛𝑛
sft are determined by the aggregator and customers carry out the EV charging shift according to the 

aggregator’s decision. In the next subsection, issues of the EV charging shift are discussed on both 

types of approach. 

4.2.2 Issues of EV charging shift 

There are three issues introducing the EV charging shift for reducing the PV curtailment and 

residential operation cost. The first issue is determination of an appropriate amount of charging shift 
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based on 𝒲  and 𝒛𝑛
sft . An inappropriate amount of charging shift would result in an inappropriate 

amount of self-consumption of PV output; the residential operation cost would be increased when the 

PV output that could be sold is self-consumed, or the PV output that would be curtailed is not self-

consumed. In the distributed approach, it is difficult for each customer to appropriately determine when 

and how much EV charging should be shifted to reduce PV curtailment and residential operation cost 

because the voltage varies with the electricity consumption of all houses connected to the same LVDS. 

PV curtailment in a house increases when the loads in the other houses are light, and decreases when 

they are heavy. Therefore, customers cannot accurately estimate their expected PV curtailment unless 

they acquire the behavior of the other customers. On the other hand, in the centralized charging shift 

approach, an aggregator can manage when and how much charging shift should be carried out 

considering an appropriate balance in amounts of charging shift and expected PV curtailment in all 

houses connected to the same LVDS.  

The second issue is to secure equity: a philosophy such that the customers’ benefit obtained by the 

charging shift should be coordinated depending on contribution of the customers, i.e., the shifters should 

receive a larger benefit than the non-shifters. The charging shift carried out by certain customers will 

reduce PV curtailment not only in their own house but also in other local houses connected in the same 

LVDS because the increase of self-consumption of PV output by the charging shift reduces the voltage, 

which is the implicit constraint of PV curtailment, in the entire LVDS. The reduction of voltage depends 

on the number and location of shifters. Therefore, the consequent PV output 𝑝𝑛,𝑡(𝒛(𝒲)) changes 

depending on set of shifters 𝒲. Equation (4.5) suggests that the residential operation cost of shifters 

changes depending on the increase of consequent PV output 𝑝𝑛,𝑡, i.e., reduction of PV curtailment, 

caused by customer’s own and others’ charging shift. On the other hand, Eq. (4.2) shows that the 

residential operation cost of non-shifters changes depending on the increase of consequent PV output 

𝑝𝑛,𝑡 caused by the decrease of voltage due to the others’ charging shift. This relationship implies that 

the total benefit produced by the charging shift carried out by a subset of customers is expressed as the 

total reduction of PV curtailment in all the customers. However, from the viewpoint of the shifters, the 

benefit seems only the cost reduction resulting from reducing PV curtailment in shifter’s own house; 

the benefit is lower than the appropriate value of the charging shift, so that non-shifters could obtain 

the benefit even though they do not contribute to the charging shift (see Fig. 4.1). This inequity on the 

benefit would have a negative impact on customers’ participation in the charging shift. Thus, the value 

for non-shifters should be appropriately evaluated and returned to shifters. In the distributed charging 

shift approach, the mechanism for solving the inequity is not included. Meanwhile, the centralized 

charging shift approach have a potential to equitably share the benefit between the customers mediated 

by the aggregator.  

The third issue is to secure autonomy: another philosophy such that the customers should voluntarily 

decide to participate in the charging shift based on a comparison between an EV utilization benefit by 
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the charging shift contribution and that by travel for themselves, because EV is preliminary utilized for 

travel. In the distributed charging shift approach, since each customer independently decides the 

participation in the charging shift, the autonomy is secured. However, in the centralized charging shift 

approach, autonomy is difficult to be secured because it is difficult for the aggregator to compare the 

individual values of EV utilization. Let 𝒲̂ ⊂ 𝒩 be the set of shifters determined by the aggregator, 𝒲̂ 

is determined for satisfying the objectives indicated by the aggregator, although the target customers 

𝑛 ∈ 𝒲̂ will not contribute to the charging shift when the benefit of EV travel is higher for the customer 

than the value of cost reduction by the charging shift. In order to secure the autonomy and not to neglect 

the convenience of customers, the centralized approach should include the mechanism that the 

customers voluntarily participate in the charging shift evaluating the values of EV utilization. 

Therefore, the admittable charging shift scheme requires to solve above three issues. i.e., 

determination of appropriate amount of charging shift, securing equity, and securing autonomy. In the 

next section, we propose an EV charging shift scheme based on an auction mechanism, which is a 

hybrid approach of the distributed and centralized ones, to tackle these three issues. 

 

Fig. 4.1 Total benefit produced by the EV charging shift. The benefit obtained by the customer who 

carries out the EV charging shift is smaller than the total reduction benefit in the LVDS. 
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4.3 EV charging shift based on auction mechanism  

We introduce the second-price sealed-bid auction mechanism [4-17] in the EV charging shift scheme 

to determine the shifters so as to secure the equity and autonomy in the charging shift as well as an 

appropriate amount of charging shift. This auction mechanism is known that it is reasonable for the 

bidders to submit their bids according to the truthful bids for the target value. In the auction mechanism, 

customers voluntarily determine the bids without knowing the other’s bids and compete to obtain the 

rights to carry out the charging shift. Customers can determine the bids that will not win the auction 

when they do not want to carry out the charging shift, so that the autonomy is secured. Moreover, the 

winners of the auction carry out the charging shift and obtain the incentive that is sum of collected price 

from the other bidders to compensate for the difference between the appropriate total value of charging 

shift and the benefit resulting from reducing their own PV curtailment, thereby the equity is secured. 

The detailed procedure of the auction mechanism is explained below. 

4.3.1 Determination of participants and number of winners  

The aggregator decides to hold the auction for EV charging shift in the next day on the basis of the 

estimated result of day-ahead PV curtailment, i.e.,  

𝒙̂ = 𝒑̂∗ − 𝒑̂, (4.6) 

because the actual day-ahead sequences in Eq. (4.1) are not available; here, we will use the symbol  ∙ ̂ 

to denote forecasted values. We assume that the aggregator owns information of the target LVDS and 

estimate the day-ahead PV curtailment 𝒙̂ on the basis of the numerical simulation that can grasp the 

voltage in the whole LVDS. The auction for charging shift is held when: 1) PV curtailment would occur 

in the next day in multiple customers; this gives the following inequality, 

∑ 𝛿(𝒙̂𝑛)

𝑛∈𝒩

≥ 2, (4.7) 

where 

𝛿(𝒙̂𝑛) = {
1     if     ∑ 𝒙̂𝑛,𝑡

𝑇

𝑡=1

> 0

0            otherwise     ,

 (4.8) 

and 2) the expected residential operation cost in the target LVDS would be reduced by carrying out the 

charging shift, i.e.,  

𝐶(𝒛(𝒲 = 𝒲̂)|𝒙̂) < 𝐶(𝒛(𝒲 = ∅)|𝒙̂), (4.9) 

Then, the aggregator suggests a set of relevant participants 𝒫 = {𝑛|𝛿(𝒙̂𝑛) > 0}, preferable number of 

winners, i.e., shifters, |𝒲̂|, and request of the charging shift 𝒛𝑛
sft. Note that the number of shifters for 

minimizing PV curtailment and that for minimizing the residential operation cost would be different. 

Since the charging shift in the demand side is not achieved without contribution of customers, the 

aggregator should consider increasing the benefit to the customers even though a major objective of the 
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charging shift is to reduce PV curtailment. Here, the preferable number of winners |𝒲̂| is derived by a 

set of winners 𝒲̂ that is determined for minimizing the total residential operation cost in the LVDS 

under the forecasted PV curtailment 𝒙̂,  

𝒲̂ = argmin
𝒲⊂𝒫

𝐶(𝒛(𝒲)|𝒙̂). (4.10) 

Equation (4.10) can be solved through the power flow calculation by evaluating the total residential 

operation cost described in Eq. (4.4) in terms of all combinations of 𝒲 in 𝒫. Note that computational 

cost required for searching minimizer 𝒲̂  is increases exponentially according to the number of 

participants |𝒫| ; therefore, the computational cost for exact minimization of Eq. (4.10) becomes 

significantly high when |𝒫| is large. We introduce the following greedy algorithm for searching such a 

set of winners 𝒲̂.  

Algorithm 1 Determination of the set of winners 𝒲̂. 

𝑖 = 0,𝒲(0) = ∅,𝒫(0) = {𝑛|𝛿(𝒙̂𝑛) > 0}  

REPEAT 

𝑖 = 𝑖 + 1  

𝑛̂ = argmin
𝑛∈𝒫(𝑖−1)

𝐶(𝒛,𝒲(𝑖−1) ∪ {𝑛}|𝒙̂)  

𝒲(𝑖) = 𝒲(𝑖−1) ∪ {𝑛̂}  

𝒫(𝑖) = 𝒫(𝑖−1)\{𝑛̂}  

UNTIL 𝐶(𝒛,𝒲(𝑖)|𝒙̂) ≥ 𝐶(𝒛,𝒲(𝑖−1)|𝒙̂) or 𝑖 = |𝒫(0)| − 1 

𝒲̂ = 𝒲(𝑖−1)  

Note that, since the set of winners 𝒲̂ and participants 𝒫 determined by the aggregator are derived on 

the basis of the forecasted values 𝒙̂, it is not always equal to the optimal set of winners 𝒲o  and 

participants 𝒫o derived on the basis of the consequent values 𝒙 given by 

𝒲o = argmin
𝒲⊂𝒫

𝐶(𝒛(𝒲)|𝒙),  

and 𝒫o = {𝑛|𝛿(𝒙𝑛) > 0}. 

4.3.2 Determination of winners based on bidding  

Assume that a bidder 𝑛 ∈ 𝒫, who is determined by the aggregator as a participant, submits his/her 

bid 𝑏𝑛, which is not known by the other bidders. The aggregator determines |𝒲̂| winners from the 

lowest bidders. Let 𝑏[|𝒲̂|]  be the |𝒲̂| th lowest bid. Then, the final winners are shown as 𝒲∗ =

{𝑛|𝑏𝑛 ≤ 𝑏[|𝒲̂|]} and the losers are shown as {𝑛|𝑏𝑛 ≥ 𝑏[|𝒲̂|+1]} = 𝒫\𝒲
∗. The aggregator collects the 

price 𝑏[|𝒲̂|+1] from all the losers and distributes the incentive cost,  

(|𝒫| − |𝒲̂|)𝑏[|𝒲̂|+1]

|𝒲̂|
,  
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to the winners 𝑛 ∈ 𝒲∗. Hence, the expected residential operation cost of each customer after carrying 

out the charging shift based on the auction mechanism is given as  

𝐶𝑛(𝒛(𝒲𝑏
∗)) = {

𝐶𝑛
sft(𝒛(𝒲𝑏

∗)) −
(|𝒫| − |𝒲̂|)𝑏[|𝒲̂|+1]

|𝒲̂|
          (𝑛 ∈ 𝒲∗) 

𝐶𝑛
ori(𝒛(𝒲𝑏

∗)) + 𝑏[|𝒲̂|+1]                                   (𝑛 ∉ 𝒲
∗),

 (4.11) 

where 𝒲𝑏
∗ = 𝒲∗({𝑏𝑛}). In this scheme, the collected price 𝑏[|𝒲̂|+1] never exceeds any bid of the losers. 

The bidders will submit their bids by considering the amount of incentive when they win and the benefit 

of their individual PV curtailment reduction when they lose; the bidders will set their bids high when 

they want to utilize the EVs for travel and not to contribute to the charging shift. Besides, the aggregator 

does not need to prepare the additional incentive because the sum of the incentive cost and the collected 

price is zero. The benefit of the charging shift is produced from the total reduction of the PV curtailment, 

i.e., the total reduction of the purchased electricity of all customers in the target LVDS. Moreover, the 

required communication in the proposed scheme is significantly low; therefore, the proposed scheme 

can be operated without an enhanced communication infrastructure.  

4.4 Expected behavior of bidders  

Economic rationality is an important factor for the bidders to determine the bids. Although some 

economical decision policies have been discussed for determination of such bids, here, we assume the 

minimax strategy for bidders’ decision making, which minimizes the possible loss for a worst-case 

scenario. Fig. 4.2 depicts the schematic image of customer’s bid determination based on the minimax 

strategy. Applying the minimax strategy to our auction mechanism, the individual bid is determined to 

minimize the possible total cost, which is the sum of the residential operation cost and the incentive or 

the collected price, for a worst-case winner set that makes the total cost the highest as following: 

𝑏𝑛
∗ = argmin

𝑏𝑛

(max [max
𝒲∋𝑛

{𝐶𝑛
sft(𝒛(𝒲)) −

(|𝒫| − |𝒲̂|)𝑏𝑛

|𝒲̂|
+ 𝑜𝑛} ,max

𝒲∌𝑛
{𝐶𝑛

ori(𝒛(𝒲)) + 𝑏𝑛}]), 

 (4.12) 

where 𝑜𝑛 indicates the opportunity cost of EV utilization for travel, which is the conceptual cost that 

the bidder obtains by selecting the utilization instead of the changing shift. Note that required 

computational cost for evaluation of all winner sets 𝒲 ⊂ 𝒫  is proportional to C|𝒫| |𝒲̂| ; again, the 

computational cost for exact determination of bids and winners becomes significantly high when |𝒫| is 

large. In our simulation given in the next section, the plausible bids derived from the economic 

rationality are assumed to be determined according to the following greedy algorithm.  
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Algorithm 2 Derivation of expected bids {𝑏𝑛
∗} based on minimax policy. 

𝒫(0) = {𝑛|𝛿(𝒙̂𝑛) > 0}  

FOR 𝑖 = 1 to |𝒲̂| 

𝑏𝑛
∗ = argmin

𝑏𝑛

{max [𝐶𝑛
sft(𝒛(𝒲 = {𝑛})) − (|𝒫(𝑖−1)| − 1)𝑏𝑛 + 𝑜𝑛,

max
𝑚∈𝒫(𝑖−1)\{𝑛}

{𝐶𝑛
ori(𝒛(𝒲 = {𝑚})) + 𝑏𝑛}]} 

(4.13) 

𝑛∗(𝑖) = argmin
𝑛∈𝒫(𝑖−1)

𝑏𝑛
∗   

𝒫(𝑖) = 𝒫(𝑖−1)\𝑛∗(𝑖)  

FOREND 

In algorithm 2, 𝑛∗(𝑖) denotes the determined winner and 𝒏∗ ∈ {𝑛∗(𝑖)|𝑖 = 1,… , |𝒲̂|} is the set of winners. 

Note that 𝒲∗  may not equal to 𝒲̂  when the assumption of economic rationality and uniform 

opportunity cost are violated. 

 

Fig. 4.2 Schematic plot of bid determination based on minimax strategy. 

4.5 Simulation  

Our proposed EV charging management scheme based on the auction mechanism is expected to 

achieve the autonomy and equity in the charging shift. To verify the effectiveness of our method in 

terms of the total residential operation cost, the total amount of PV curtailment, and the difference of 

the effectiveness caused by uncertainties resulting in difference of the auction results, i.e., difference of 

𝒲o, 𝒲̂, and 𝒲∗, we conducted numerical simulation using a DS model [4-18] based on a 30-day (June 

2007) actual measurement of PV output and electricity consumption with a time step of 10 s. This model 
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simulates an actual DS in Japan and comprises two distribution feeders (industrial area and residential 

area), which include MV (6.6 kV) and LV (100/200 V) systems (Fig. 4.3). The model has four MV 

OLTCs operated on the basis of the centralized voltage control method [4-5], and includes 35 MV 

customers, 91 LVDSs, and 812 LV customers. The residential PV systems are installed in 90% of the 

LV customers, the situation suggests the condition that the total PV curtailment in the DS is significantly 

large. The load shift based on the auction mechanism is implemented in the LVDS #10 which includes 

14 LV customers with a PV and an EV. Table 4.1 shows the simulation setup, including some dominant 

parameters. Table 4.2 presents the electricity rate for calculating the residential operation cost, which 

is based on an actual time-of-use (TOU) menu provided by the Tokyo Electric Power Company Energy 

Partner, Inc.  

In this simulation, we assessed the effectiveness of the charging shift based on the auction 

mechanism in the LVDS #10. We assumed that all LV customers charge their EVs 4 kWh (2 kW x 2 

hours) in a day. The all winners of the auction charge their EVs at 11:00–13:00 when PV curtailment 

frequently occurs, while others charge their EVs at 2:00–4:00 when the purchasing price of the TOU 

menu is low. To assess the uncertainties included in the auction results, we compared the following 

seven cases (see also Table 4.3).  

 

Fig. 4.3 Simulation model. 
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Table 4.1 Simulation setup. 

Distribution system model 

Line length 

Feeder 1: 18.4 km 

Feeder 2: 7.48 km 

Load capacity 

Feeder 1: 2220 kW 

Feeder 2: 2113 kW 

Appropriate voltage range 95–107 V 

Spec of PV inverters 

Curtailment starting voltage 107 V 

Curtailment ending voltage 106.5 V 

Speed of curtailment 0.02 kW/s 

Table 4.2 Electricity rate. 

Purchasing price (TOU pricing) 

7:00–23:00 32.14 JPY/kWh 

23:00–7:00 20.74 JPY/kWh 

Selling price (Feed-in tariff)  30.00 JPY/kWh 

Table 4.3 Simulation cases. 

 

Auction 

mechanism 

Consideration of uncertainties in auction mechanism 

EV charging period Forecasting 

error 

Opportunity 

cost 

Economic 

rationality 

Case 1 w/o - - - Random 

Case 2 w/o - - - 2:00–4:00 

Case 3 w/ w/o w/o w/o 

Winners: 11:00–13:00,  

Others: 2:00–4:00 

Case 4 w/ w/ w/o w/o 

Case 5 w/ w/o w/ w/o 

Case 6 w/ w/o w/o w/ 

Case 7 w/ w/ w/ w/ 

 

 Case 1: customers do not carry out the charging shift based on the auction mechanism and all 

customers charge their EVs at random arbitrary time.  

 Case 2: customers do not carry out the charging shift based on the auction mechanism and all 

customers charge their EVs at 2:00–4:00 to reduce residential operation cost. 
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 Case 3: customers carry out the charging shift based on the auction mechanism in the ideal 

condition; there is no forecasting error on PV curtailment; the bidders decide their bids with 

economic rationality under the common opportunity cost 𝑜𝑛 for all customers, i.e., 𝒫 = 𝒫o, 

𝒲∗ = 𝒲o = 𝒲̂. 

 Case 4: customers carry out the charging shift based on the auction mechanism under the 

condition that the aggregator estimates the forthcoming PV curtailment on the basis of the 

forecast of PV output [4-19], [4-20] and electricity consumption [4-21]; note that forecasting 

error affects the number of participants 𝒫 and winners |𝒲̂| suggested by the aggregator, so that 

𝒫 and 𝒲̂ would be different from the ideal ones 𝒫o and 𝒲o, respectively. Namely, this case 

assumes that 𝒲∗ = 𝒲̂ holds, but 𝒫 = 𝒫o and 𝒲̂ = 𝒲o may not. 

 Case 5: customers carry out the charging shift based on the auction mechanism under the 

condition that the opportunity cost 𝑜𝑛  is individually given at random; customers whose 

opportunity cost of EV travel is high increases their bids in order not to win the auction and 

avoid carrying out the charging shift, therefore the final winners 𝒲∗ would be different from 

the ideal condition. Namely, this case assumes that 𝒫 = 𝒫o and 𝒲̂ = 𝒲o  hold, but 𝒲∗ =

𝒲o may not. 

 Case 6: customers carry out the charging shift based on the auction mechanism under the 

condition that the customers determine their bids without economic rationality; they randomly 

determine their bids, so that the determined winners 𝒲∗ would be different from the ideal 

condition. Namely, this case assumes that 𝒫 = 𝒫o and 𝒲̂ = 𝒲o  hold, but 𝒲∗ =𝒲o may 

not. 

 Case 7: customers carry out the charging shift based on the auction mechanism on the condition 

of all uncertainties considered in Cases 4–6. Namely, this case assumes that 𝒫 = 𝒫o, 𝒲∗ =

𝒲o, and 𝒲̂ = 𝒲o may not hold. 

Fig. 4.4 shows the simulation results on the total amount of the residential operation cost (Fig. 4.4(a)) 

and PV curtailment (Fig. 4.4(b)) in the LVDS #10 for 30 days. The results of Cases 4–6 indicate the 

average values of 100 times simulations. The residential operation cost of Case 1 is 2.17 times higher 

than that of Case 2, although the amount of PV curtailment of Case 1 is smaller than that of Case 2. 

This result suggests that. If the individual EVs are charged at a random arbitrary time, the residential 

operation cost can be large. If all EVs are charged at the same period (2:00–4:00) in which the TOU 

pricing is low, the residential operation cost is significantly reduced. This result also implies that 

customers should charge the EVs at night to reduce the residential operation cost when there is no 

aggregator to coordinate charging shift in the LVDS. However, the residential operation cost in Case 2 

seems to be further reduced by effectively reducing PV curtailment. On the other hand, the introduction 

of our proposed charging shift based on the auction mechanism in the ideal condition (Case 3) achieves 

20.1% reduction in the residential operational cost and 45.1% reduction in the amount of PV curtailment 
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compared with Case 2. The figures also show that Cases 4–7 reduce the residential operation cost by 

18.8%, 12.2%, 8.2%, and 6.2%, respectively, and PV curtailment by 45.1%, 28.4%, 32.3%, and 22.2%, 

respectively, compared with Case 2 (w/o the charging shift scheme), although the reduction ratio is 

smaller than in Case 3. These results suggest that the proposed charging shift scheme can effectively 

reduce the residential operation cost and the amount of PV curtailment, even by considering the effects 

of uncertainties involved in forecast methods and human behaviors that result in the auction result. Note 

that the residential operation cost and the PV curtailment of Case 4 are lower than those of Cases 5 and 

6. This result suggests that the negative effect caused by the forecasting error of the PV curtailment is 

smaller than the other uncertainties. A comparison between the results of Case 5 and Case 6 shows that 

the residential operation cost of Case 5 is lower than that of Case 6, while the amount of PV curtailment 

of Case 5 is larger than that of Case 6. These results imply that the reduction of the residential operation 

cost becomes higher when the customers determine the bids with economic rationality, and the 

reduction of the PV curtailment becomes larger when the proposed scheme is introduced in the LVDS 

whose customers’ opportunity costs are the same and relatively low.  

 

(a) Total amount of residential operation cost in the LVDS #10 

 

(b) Total amount of PV curtailment in the LVDS #10 

Fig. 4.4 Simulation results. 
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Fig. 5.5 shows the total residential operation cost (Fig. 5.5(a)) and the total amount of PV curtailment 

(Fig. 5.5(b)) in a day for Cases 1–3 and 7 under various number of shifters (number of winners on the 

auction mechanism). In Case 3, the residential operation cost declines until the number of winners 

increases to four and then increases, although the amount of PV curtailment is monotonically reduced 

when the number of winners increases. It is notable that the residential operation cost of Cases 3 and 7 

becomes higher than that of Case 2 when more than ten (Case 3) or eight (Case 7) customers carry out 

the charging shift. However, in the proposed scheme, the aggregator can determine the number of 

shifters to reduce the residential operation cost on the basis of the forecasted amount of day-ahead PV 

curtailment. Since the sensitivity of the operational cost to the optimal number of winners is low, there 

seems to have little impact of the estimation error of number of winners due to the PV forecast error in 

the proposed scheme. 

 

(a) Residential operation cost in the LVDS #10 

 

(b) PV curtailment in the LVDS #10 

Fig. 4.5 Total residential operation cost and total amount of PV curtailment under various number of 

shifters (number of winners on the auction system). 
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Fig. 4.6 shows the total amount of PV curtailment in the LVDS with the charging shift and in the 

other LVDSs. The result indicates that the introduction of the proposed scheme reduces PV curtailment 

not only in the LVDS where the scheme is introduced but also in the other LVDSs. This can be 

interpreted as follows; the reduction of the reverse power flow by the charging shift in the LVDS 

slightly reduced the voltage in LVDSs, so that the PV generation in the LVDSs were increased.  

The simulation results suggest that our proposed scheme contributes to achieve a robust reduction 

of the residential operation cost and PV curtailment even under uncertainties without an enhanced 

communication network, while securing the autonomy and equity on the charging shift.  

 

Fig. 4.6 Total amount of PV curtailment in the LVDS and in the other LVDSs. 

4.6 Summary of this chapter 

In this study, we proposed the EV charging management scheme based on the auction mechanism 

to reduce PV curtailment caused by voltage rise in the DS. The proposed scheme reduces PV 

curtailment by increasing the self-consumption of PV output, and lowers the voltage by shifting the 

charging period of EVs, while securing the equity of customers’ benefit and the autonomy of 

contributing to the charging shift. The introduction of the auction mechanism allowed EV owners to 

participate in the load shift of EV charging voluntarily by comparing the benefits of using EV for 

carrying out load shift and for travel. In this scheme, customers who contribute to the charging shift can 

obtain not only the benefit from reducing PV curtailment in their own houses but also the benefit of the 

incentive of contributing to reduce PV curtailment in other houses. Besides, the proposed scheme can 

be implemented without an enhanced communication network. The effectiveness of the proposed 

scheme was evaluated using a DS simulation model and actual measurements of power profiles in terms 

of the residential operation cost and PV curtailment. The simulation results demonstrated that our 

proposed scheme is expected to achieve a reduction in the residential operation cost and PV curtailment, 

even with small difference of auction result caused by the uncertainties in the day-ahead PV curtailment 

forecast, number of participants, and economic rationality of the customers. Although the auction 
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mechanism is used for the load shift of EV charging, it could be applied in other frameworks that require 

the equity of the customers’ benefit and autonomy of customers’ participation, such as the active power 

curtailment of PV inverters. 
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Chapter 5  
Conclusion and Future work 

5.1 Contribution 

In this thesis, supply and demand side energy management schemes in the LVDSs were proposed 

for maximum utilization of PV generation. Supply side energy management is based on the voltage 

control using the LVR to mitigate voltage violation that causes PV curtailment. Demand side energy 

management focused on the EV charging management to adjust the amount of self-consumed PV output 

to reduce the PV curtailment and residential operation cost in the LVDS.  

In chapter 2, a decentralized and coordinated voltage control scheme of MV OLTCs and LVRs was 

proposed. As a solution to the local voltage violation that cannot be avoided by using only MV OLTCs, 

installation of LVRs in the LVDSs instead of conventional transformers was investigated. The LVR is 

located downstream of the MV OLTCs in the radial DSs and its functionality is affected by their 

operation. In our proposed coordinated voltage control scheme, we specified the LVDSs where the MV 

OLTCs cannot alone avoid voltage violation and deployed the LVRs. In addition, the appropriate 

control parameters of the LVRs were determined considering the operation of the MV OLTCs located 

upstream of the LVRs. The effectiveness of the proposed scheme was evaluated based on numerical 

simulation using a DS model in terms of the number of houses with voltage violation. The simulation 

results suggested that the voltage control using LVRs whose location and control parameters are 

appropriately determined reduced the number of houses with voltage violation by 99% versus the 

voltage control by only using the MV OLTCs. Moreover, it was found that the LVR should be deployed 

at the LVDS with many customers, at the boundary of PV penetration, and at the boundary of pole 

transformers with different fixed tap.  

In chapter 3, a method for rapidly determining the voltage control parameters of the LVR using 

classifiers based on the machine learning technique was proposed. Since voltage in the LVDS is varying 

due to PV generation, the voltage control parameters of the LVR that prevent the voltage violation are 

different depending on the weather. To mitigate the complex voltage fluctuation, an upgraded voltage 

control scheme that updates the control parameters in a short period on the basis of reliable power 

forecasting is presented. At the same time, the improvement of the calculation time required for 

determining the control parameters is necessary to meet the continuous update of control parameters. 

The proposed method built the classifier that learns the appropriate control parameters to the forecasted 

power profiles and rapidly classifies to narrow candidates of appropriate control parameters. The 

narrowed control parameters were precisely evaluated by the PFC. The proposed method was validated 

in the numerical simulation using an LVDS model in terms of calculation time required for determining 

the voltage control parameters and the number of days with voltage violation. The simulation results 
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showed that the proposed method successfully reduced the computation time for determination of 

control parameters by 96% while keeping a high performance voltage control.  

In chapter 4, an EV charging management scheme based on an auction mechanism was proposed. 

The PV curtailment in the LVDS can be reduced by shifting the customers’ EV charging period so as 

to adjust the amount of self-consumed PV generation. To aggregate the customers and obtain the 

appropriate amount of EV charging by some customers connected in the same LVDS, a reduction of 

the residential operation cost as well as the PV curtailment is needed. At the same time, the equity of 

the customers’ benefit obtained by contributing to the EV charging shift and the autonomy to participate 

in the EV charging shift should be secured. In the proposed EV charging scheme, the application of the 

auction mechanism allows customers to secure the benefit equity by sharing the incentive with 

contributed customers. Additionally, it enables the customers to voluntarily determine comparting the 

benefit of EV utilization for contributing to the charging shift and for travel. The effectiveness of the 

proposed EV charging management scheme was evaluated by a numerical simulation based on an actual 

Japanese DS model and power measurement. The simulation results described the proposed scheme 

that reduced the PV curtailment and residential operation cost up to 20.1% and 45.1%, respectively. 

The reduction was found even under the condition with some uncertainties; the forecasting error of the 

day-ahead PV curtailment, the difference of opportunity cost of EV utilization, and the economic 

rationality of customers, which result in the different auction result. 

Considering the world energy trend promoting PV penetration in the grid, the issue of PV 

curtailment will become more and more obvious in many countries all over the world in near future. 

We focused on the utilization of the LVR and EV for addressing the issue because the introduction of 

the LVR is relatively easy regardless of the location and the EV will be strongly promoted under the 

policy to preserve the environment in the world. Therefore, we believe our proposed methods for 

maximum utilization of PV generation can be useful worldwide in the near future.  

5.2 Future work 

This thesis focused on energy management in the DS with PV; voltage control using OLTCs 

including LVR in the supply side and EV charging management in the demand side. Although each 

side energy management scheme was individually verified to be able to contribute the maximum 

utilization of PV generation, further improvement of the energy management performance is expected 

through a coordination between the supply and demand side schemes. The coordinated energy 

management scheme between the supply and demand side should be studied in the future work. 

Moreover, these studies of the coordination scheme should include a consideration for various devices 

that will increase in the DS. Particularly, a smart inverter implemented in the PV and BESS will become 

a key device in both voltage control and residential load management. Due to the difference in 

operational time of OLTCs and smart inverters, a coordinated voltage control to avoid the mutual 
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interference is expected. In demand side energy management, the net-zero energy scheme will be 

required by effectively utilizing the PV, EV, and BESS, especially after the FIT is no longer valid.  

An integrated consideration of the transmission system (TS) and DS should be studied as another 

future work. Large injection of active and reactive power from the PVs and BESSs in the DS will affect 

the TS operation and then in turn, voltage fluctuation in TS will affect the voltage control in the DSs. 

Therefore, the integrated evaluation framework of the TS and DS should be built and utilized as an 

assessment of the mutual effect and development of energy management considering both the TS and 

DS.  

Furthermore, the effectiveness of the proposed schemes is evaluated based on the numerical 

simulation in this thesis. This assessment by the numerical simulation is only a, “simulation,” such that 

an assessment with real world hardware is essential for practical deployment. 
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