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Chapter 1

Introduction

1.1 Background

Information theory is a basic mathematical theory that deals with a digital commu-
nication. It started from the work by C. E. Shannon in 1948 [39]. Today, more and
more digital data are exchanged on a network. Further, a large amount of data can
be obtained in recent years. To accumulate, transmit, and analyze such digital data,
information theory plays a fundamental role.

A source coding is one of the fundamental and important research topics in infor-
mation theory. To explain the mathematical model of source coding, we take variable-
length lossless source coding as an example. A stochastic process {Xi}∞i=1 is said to
be a source, where X1, X2, . . . , are discrete random variables. Various assumptions on
{Xi}∞i=1 define various sources. For example, {Xi}∞i=1 is said to be a stationary mem-
oryless source if X1, X2, . . . , are i.i.d. random variables; a source {Xi}∞i=1 is said to
be a stationary ergodic source if {Xi}∞i=1 satisfies the stationarity and ergodicity. Let
x1, x2, . . . , xn be a realization of the random variables X1, X2, . . . , Xn. For a shorthand
notation, we denote X1, X2, . . . , Xn as Xn and x1, x2, . . . , xn as xn. A sequence xn are
mapped to another sequence by an injective function (called an encoder)

fn : X n → U⋆, (1.1)

where U := {0, 1, · · · , K − 1} (K is a positive integer greater than 2) and U⋆ is a set
of all sequences composed of elements of U and the empty string Λ. For example, if
K = 2, then U = {0, 1} and

U⋆ = {Λ, 0, 1, 00, 01, 10, 11, 000, 001, · · · }. (1.2)

An element of U⋆ is said to be a codeword. Length of a codeword is said to be a codeword
length and denoted by ℓ(fn(x

n)) for a source sequence xn. After the codeword is sent
to a receiver, the receiver recovers the original sequence xn by a function (called a
decoder)

gn : U⋆ → X n (1.3)
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such that

P[Xn ̸= gn(fn(X
n))] = 0 (1.4)

for all n = 1, 2, . . .. A pair of the encoder and the decoder (fn, gn) is said to be a code.

Table 1.1: Categorization of a source coding problem

derivation of a theoretical
fundamental limit

construction and evaluation
of an optimal code

non-asymptotic analysis
asymptotic analysis

As shown in Table 1.1, one way to categorize various studies of a source coding
problem is to divide them into the following viewpoints:

• the derivation of a theoretical fundamental limit or the construction and evalu-
ation of an optimal code,

• the non-asymptotic analysis or the asymptotic analysis.

The detail of each item is described in the following.

1.1.1 The derivation of a theoretical fundamental limit or the
construction and evaluation of an optimal code

The objective of study for a source coding problem mainly consists of two parts: the
derivation of a theoretical fundamental limit, and the construction and evaluation of
an optimal code.

The first objective of study is to derive a theoretical limitation under a certain
performance criterion. By deriving the theoretical limitation, we can clarify whether
there is room for improvement to the current technology. The standard approach to
show the theoretical fundamental limit is showing an achievability result and a converse
result. The achievability result shows that an operation is possible to a quantity. The
converse result shows that the operation is not possible over the quantity. For example,
in the variable-length lossless source coding, one of the major criteria on codeword
length is the mean codeword length per source symbol. It is defined by the expectation
of a codeword length per source symbol, i.e.,

1

n

∑
xn∈Xn

pXn(xn)ℓ(fn(x
n)), (1.5)

2



where pXn(xn) denotes a probability mass function of Xn. For a stationary memoryless
source, it is shown in [39] that, as n→ ∞, the mean codeword length per source symbol
is greater than or equal to the Shannon entropy

H(X) = −
∑
x∈X

pX(x) logK pX(x). (1.6)

This is the converse result. Further, it is also shown in [39] that, as n → ∞, there
exists a sequence of a code {(fn, gn)}∞n=1 for which the mean codeword length per
source symbol is asymptotically smaller than or equal to the entropy. This is the
achievability result. Combining the converse result and the achievability result, it is
clarified that

lim
n→∞

1

n

∑
xn∈Xn

pXn(xn)ℓ(fn(x
n)) = H(X). (1.7)

As we have explained in the previous paragraph, one of the research topics in source
coding is to characterize the fundamental limit of a certain criterion (e.g., the mean
codeword length per source symbol) by using a quantity defined by a probability
distribution of a source (e.g., the Shannon entropy). Not only the mean codeword
length but also other criteria have been proposed, and various studies have been done
to clarify the theoretical limitation of these criteria. For example, in a certain problem
setting, some studies have characterized the fundamental limit by using the Rényi
entropy [37]

Hα(X
n) =

1

1− α
logK

( ∑
xn∈Xn

(pXn(xn))α

)
for α ∈ (0, 1) ∪ (1,∞), (1.8)

and other studies have characterized the fundamental limit by using the smooth Rényi
entropy [34], [35]

Hγ
α(X

n) =
1

1− α
logK

(
inf

q∈Bγ(pXn )

∑
xn∈Xn

(q(xn))α

)
for γ ≥ 0, α ∈ (0, 1) ∪ (1,∞),

(1.9)

where Bγ(pXn) is a set of functions q : X n → [0, 1] such that q(xn) ≤ pXn(xn) for all
xn ∈ X n and

∑
xn∈Xn q(xn) ≥ 1− γ.

The existence of a code achieving the fundamental limit is guaranteed by the
achievability result. However, how to construct such a code is not clear. Therefore,
the second objective of study is to construct an optimal code to achieve the theoretical
fundamental limit and to analyze the performance of the code. For example, the
Shannon code [39], the Huffman code [14], and the arithmetic code (e.g., [23], [38])
have been proposed. The mean codeword length per source symbol of these codes
approaches the Shannon entropy for a stationary memoryless source as the blocklength

3



n→ ∞. These codes are designed under the assumption that a probability distribution
of a source is known. On the other hand, even if a probability distribution of a source
is unknown, several studies have proposed the code whose mean codeword length per
source symbol approaches the Shannon entropy. Such codes are said to be universal
codes.

Among universal codes, the Bayes code (e.g., [2], [5], [24]), which is elaborated in
Chapters 7 and 8 in this dissertation, is one of the codes whose mean codeword length
per source symbol approaches the Shannon entropy at the fastest speed. Roughly
speaking, the Bayes code works as follows. Suppose that the probability mass function
of a source sequence Xn is represented by pθk∗ (x

n), where θk∗ ∈ Θk ⊂ Rk is an unknown
parameter. When a class of a probability mass function

{pθk : θk ∈ Θk ⊂ Rk} (1.10)

and a prior probability density function of the parameter w(θk) are known, the Bayes
code estimates the probability of xn as∫

Θk

w(θk)pθk(x
n)dθk, (1.11)

and utilizes it as a coding probability of the arithmetic coding. The mean codeword
length of the Bayes code has been evaluated up to constant terms for some major
sources (see, e.g., [2], [8]).

1.1.2 The non-asymptotic analysis or the asymptotic analysis

As we have shown in Section 1.1.1, Shannon [39] has derived the fundamental limit
under the setting that the blocklength n goes to infinity, i.e., n→ ∞. Such analysis is
said to be the asymptotic analysis. From the early days of information theory, various
studies on the asymptotic analysis have been done.

However, the blocklength n is finite in the actual use of digital devices. Thus, the
non-asymptotic analysis, which deals with the case where the blocklength n is finite,
has attracted attention recently. This is also said to be the finite blocklength analysis.

1.2 Purpose of the dissertation

This dissertation deals with the overflow probability as a performance criterion. It is
defined as the probability of a codeword length per source symbol exceeding a threshold
R ≥ 0, i.e., the overflow probability is defined by

P
[
1

n
ℓ(fn(X

n)) > R

]
. (1.12)

The main purposes of this dissertation are summarized as the following (P1) and (P2)
(see also Tables 1.2 and 1.3):

4



(P1) The first research purpose is to derive the non-asymptotic theoretical funda-
mental limits on the overflow probability for several source coding problems. As
by-products, we derive the asymptotic theoretical fundamental limits based on
the non-asymptotic results.

(P2) The second research purpose is to evaluate the asymptotic performance of the
Bayes code from the viewpoint of the overflow probability.

Table 1.2: The first research purpose in the dissertation

derivation of a theoretical
fundamental limit

construction and evaluation
of an optimal code

non-asymptotic analysis (P1)
asymptotic analysis (P1)

Table 1.3: The second research purpose in the dissertation

derivation of a theoretical
fundamental limit

construction and evaluation
of an optimal code

non-asymptotic analysis
asymptotic analysis (P2)

The motivation of these research purposes are as follows.

Research motivation for (P1)

For a non-asymptotic analysis, it is important to focus on the distribution of a code-
word length. This is because codeword lengths vary from the mean codeword length in
the finite blocklength setting. The overflow probability represents the tail probability
of the distribution of a codeword length. Thus, the overflow probability is one way to
capture the distribution of the codeword length.

The overflow probability has close relationship to the fixed-length source coding in
which a codeword length is fixed. For example, studies such as [18] and [29] have
stated the equivalence between the error probability in fixed-length source coding and
the overflow probability in variable-length lossless source coding. Roughly speaking,
this is explained as follows. To construct the optimal fixed-length code (fixed-length
code that has the smallest error probability), we set the encoder as follows:

• For most likely source symbols (for example, 2k−1), the encoder assigns a unique
codeword of length k bits,

5



and

• for the rest of the source symbols, the encoder assigns the remaining codeword
of length k bits. (In this case, a decoding error occurs.)

On the other hand, to construct the optimal variable-length lossless code (variable-
length lossless code that has the smallest overflow probability), we set the encoder as
follows:

• For most likely source symbols (for example, 2k−1), the encoder assigns a unique
codeword whose length does not exceed k bits,

and

• for the rest of the source symbols, the encoder assigns a codeword whose length
satisfies the Kraft inequality

∑
xn∈Xn 2−ℓ(fn(xn)) ≤ 1. (In this case, an overflow

occurs.)

From the above construction, it can be shown that the error probability of the optimal
fixed-length code and the overflow probability of the optimal variable-length lossless
code are equivalent.

The preceding paragraph has explained the relationship between fixed-length source
coding and variable-length lossless source coding. These two regimes are essentially
the same. The difference is that fixed-length source coding treats least likely source
symbols as decoding error while variable-length lossless source coding treats them as
overflow. Thus, some questions to ask are as follows.

• In variable-length source coding allowing errors (variable-length source coding
that allows the decoding error probability), what result can we obtain? Are there
any relationship between the overflow probability and the error probability of
variable-length source coding?

• The variable-length lossy source coding under the excess distortion probability
can be viewed as the generalization of variable-length source coding allowing
errors. In this problem setting, what result can we obtain? Are there any rela-
tionship between the overflow probability and the excess distortion probability?

• Can we characterize the fundamental limit of the preceding problems (variable-
length lossless source coding, variable-length source coding allowing errors, and
variable-length lossy source coding) in some unified manner?

Motivated by these questions, the research purpose (P1) aims to give some insights
to these questions.
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Research motivation for (P2)

The major approach to the asymptotic analysis of the mean codeword length is based
on the law of large numbers because the mean codeword length is the mean of the
distribution of a codeword length. On the other hand, the major approach to the
asymptotic analysis of the overflow probability is based on the central limit theorem
(CLT) or the Berry-Esséen inequality because the overflow probability is the tail prob-
ability of the distribution of a codeword length. Thus, the method to analyze the mean
codeword length and the method to analyze the overflow probability differ. This fact
indicates the following: if some code has been evaluated based on only the mean code-
word length, a novel insight on the code can be obtained from the evaluation based
on the overflow probability.

As we have stated in Section 1.1.1, the mean codeword length of the Bayes code has
been analyzed by various previous studies. However, the performance of this code on
the overflow probability is not known. Thus, the research purpose (P2) aims to obtain
a new insight on the Bayes code from the analysis based on the overflow probability.

1.3 Organization of the dissertation

This dissertation consists of nine chapters.
As preliminaries, Chapter 2 introduces basic notations used throughout this dis-

sertation. Then, some typical sources and mathematical models of a source coding
problem are described. Finally, the major performance criteria on codeword length
are presented.

Table 1.4: Chapters 3, 4, 5, and 6 in the dissertation

derivation of a theoretical
fundamental limit

construction and evaluation
of an optimal code

non-asymptotic analysis Chapters 3, 4, 5, 6
asymptotic analysis Chapters 3, 4, 5, 6

As shown in Table 1.4, Chapters 3, 4, 5, and 6 correspond to the research purpose
(P1). These chapters derive the fundamental theoretical limits of

• variable-length lossless source coding (in Chapter 3),

• variable-length source coding allowing errors (in Chapter 4),

• variable-length lossy source coding (in Chapter 5),

• fixed-length Slepian-Wolf source coding (in Chapter 6).
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Although some previous studies have derived the fundamental limits on the over-
flow probability for these source coding problems, they are characterized by various
methods and various quantities in each problem. In contrast, Chapters 3–6 of this
dissertation characterize all the fundamental limits by using the smooth max entropy
or related quantity. This is one of the features of this dissertation. The smooth max
entropy Hγ(Xn) is defined by the limit α ↓ 0 of the smooth Rényi entropy Hγ

α(X
n).

It is shown in [43] that the smooth max entropy can be written as

Hγ(Xn) = min
Zn⊂Xn:

P[Xn∈Zn]≥1−γ

logK |Zn|. (1.13)

Chapter 3 considers the problem of variable-length lossless source coding. We de-
rive the non-asymptotic coding theorems by using the smooth max entropy. We use
the explicit code construction technique, which is used throughout Chapters 3–5, to
show the achievability results. Further, we show the asymptotic coding theorems,
which are easily derived from the non-asymptotic results. This chapter contains fun-
damental and basic ideas used in Chapters 4 and 5 and is positioned as a starting
point of Chapters 4 and 5.

Chapter 4 deals with the problem of variable-length source coding allowing errors.
Based on the smooth max entropy, the non-asymptotic coding theorems are derived for
both stochastic codes and deterministic codes. The main results clarify the difference
between the stochastic codes and the deterministic codes. Further, they also clarify the
relationship between the overflow probability and the error probability. Moreover, the
asymptotic coding theorems are obtained based on the non-asymptotic fundamental
limits.

Chapter 5 treats the problem of variable-length lossy source coding. We first
define the smooth max entropy-based quantity. Then, using this quantity, novel non-
asymptotic coding theorems are obtained for both stochastic codes and deterministic
codes. The main results clarify the difference between the stochastic codes and the
deterministic codes. Further, they also show the relationship between the overflow
probability and the excess distortion probability. Finally, we show asymptotic coding
theorems based on the non-asymptotic results.

As stated in Section 1.2, variable-length source coding under the criterion of the
overflow probability has close relationship to fixed-length source coding. In Chapter 6,
we consider the fixed-length Slepian-Wolf coding problem, which is one of the major
problems in fixed-length source coding. This problem deals with the case where one
decoder jointly decodes two codewords encoded by separate encoders for two corre-
lated sources. For this problem, we give another characterization of the second-order
achievable rate region by using the quantity related to the smooth max entropy and
the conditional smooth max entropy.

As shown in Table 1.5, Chapters 7 and 8 correspond to the research purpose (P2).
These chapters evaluate the performance of the Bayes code under the overflow prob-
ability.
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Table 1.5: Chapters 7 and 8 in the dissertation

derivation of a theoretical
fundamental limit

construction and evaluation
of an optimal code

non-asymptotic analysis
asymptotic analysis Chapters 7, 8

Chapter 7 deals with the case where a positive overflow probability is allowed.
This chapter analyzes the minimum threshold of the overflow probability of the Bayes
code. The upper and lower bounds on it are obtained. To prove the main results,
we use the asymptotic evaluation of the codeword length of the Bayes code and the
Berry-Esséen bound. This result clarifies one of the advantages of the Bayes codes
under the overflow probability.

Chapter 8 considers the case where the overflow probability of the Bayes code van-
ishes asymptotically. First, this chapter derives the necessary and sufficient condition
of the overflow probability of the Bayes code vanishing asymptotically. To show this
result, the asymptotic normality of the codeword length of the Bayes code plays a
crucial role. Next, this chapter analyzes the behavior of the overflow probability of
the Bayes code for the moderate deviation regime in which the overflow probability
approaches zero and the threshold approaches the theoretical limit at the same time.
The obtained result also clarifies one of the advantages of the Bayes codes under the
overflow probability.

Chapter 9 is devoted to the conclusion of the dissertation. In this chapter, con-
cluding remarks and future works are presented.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter defines basic notations, several sources, mathematical models of a source
coding problem, and major criteria of a source coding problem. Section 2. 2 introduces
basic notation. Section 2. 3 defines some sources that are treated in this dissertation.
Section 2. 4 presents mathematical models of

• variable-length lossless source coding,

• variable-length source coding allowing errors,

• variable-length lossy source coding,

• fixed-length source coding.

Section 2. 5 describes major performance criteria of the above source coding problems.

2.2 Notation

This section presents basic notations that are used throughout this dissertation.
A source is an indexed sequence of random variable1 {Xi}∞i=1, where Xi is a random

variable taking a value in a set X . The set X is said to be a source alphabet, and we
assume that X is a finite set unless otherwise noted. A random variable is denoted by
an upper-case letter and a realization of a random variable is denoted by a lower-case
letter. For example, X1 is a random variable taking a value on X and x1 ∈ X is a
realization of X1. Let X n be the n-th Cartesian product of X . A length n sequence
(X1, . . . , Xn) ∈ X n is denoted by Xn and a realization of Xn is denoted by xn.

1A random variable is defined on a probability space (Ω,F ,P), where Ω is a sample space, F
is a σ-field on Ω, and P is a probability measure on (Ω,F). In this dissertation, to simplify the
presentation, we do not explicitly state the probability space (Ω,F ,P) on which a random variable
is defined.
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Let a probability distribution of X be PX . A probability mass function is denoted
by pX(x). That is, pX(x) := PX({x}) for x ∈ X . Further, a joint probability distri-
bution of Xn is denoted by PXn and a joint probability mass function is denoted by
pXn(xn).

Throughout the dissertation, log denotes a logarithm of base 2. Further, ln denotes
a logarithm of base e, i.e., ln is a natural logarithm.

2.3 Definition of sources

2.3.1 Stationary ergodic source

A stationary ergodic source is often assumed in information theory. Before describing
the definition of a stationary ergodic source, we first define a stationary source.

Definition 2.3.1 A source {Xi}∞i=1 is said to be stationary source if

P[X1 = x1, X2 = x2, . . . , Xn = xn]

= P[Xl+1 = x1, Xl+2 = x2, . . . , Xl+n = xn] (2.1)

for any n, l ∈ N and x1, x2, . . . , xn ∈ X , where N denotes a set of natural numbers.

A stationary ergodic source is defined as follows.

Definition 2.3.2 A source {Xi}∞i=1 is said to be stationary ergodic source if {Xi}∞i=1

is a stationary source and it satisfies, with probability one,

lim
n→∞

1

n

n−1∑
i=0

f(Xi+1, Xi+2, . . . , Xi+k) = E[f(X1, X2, . . . , Xk)] (2.2)

for any k ∈ N and any integrable function f on X k, where the expecctation in the right
hand side is taken with respect to PXk .

2.3.2 Stationary ergodic Markov source

A source defined by a sequence of random variables with dependence is the fundamen-
tal and important source in information theory. The typical example is a stationary
ergodic Markov source, which is defined in this subsection.

First, a k-th order Markov chain is defined as follows.

Definition 2.3.3 Let k ∈ N. A sequence of random variable {Xi}∞i=1 is said to be a
k-th order Markov chain if it satisfies

P[Xn = xn | Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1]

= P[Xn = xn | Xn−1 = xn−1, Xn−2 = xn−2, . . . , Xn−k = xn−k] (2.3)

for any n > k. Regarding a k-th order Markov chain, X k is said to be a state space
and an element of a state space X k is said to be a state.
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Next, we define a stationary ergodic k-th order Markov source.

Definition 2.3.4 A source {Xi}∞i=1 is said to be a stationary ergodic k-th order Markov
source if {Xi}∞i=1 is a stationary ergodic and k-th order Markov chain. If k is finite,
we call a stationary ergodic k-th order Markov source as a stationary ergodic finite
order Markov source.

2.3.3 Stationary memoryless source

This section introduces a source described by a single probability distribution PX . It
is said to be a stationary memoryless source.

Definition 2.3.5 A source {Xi}∞i=1 is said to be a stationary memoryless source if

pXn(xn) =
n∏

i=1

pX(xi) (2.4)

for any xn = x1x2 . . . xn ∈ X n.

2.3.4 General source

So far, we have defined several sources by specifying the probabilistic structure. How-
ever, information theory also deals with a source allowing arbitrary probabilistic struc-
ture. Such a source is said to be a general source. Thus, a general source need not to
satisfy a consistency condition:

pXn(xn) =
∑
x∈X

pXn+1(xnx). (2.5)

The general source is very general, and it includes foregoing stationary ergodic source,
stationary ergodic Markov source, and stationary memoryless source. A general source
is denoted as X = {Xn}∞n=1 in this dissertation.

Example 2.3.1 We show one example for a general source, which does not satisfy
consistency condition (2.5). Let a source alphabet be X = {0, 1}. Furthermore, let
θ ∈ (0, 1/2) ∪ (1/2, 1) and define tn by tn = x1 + x2 + . . . + xn for a sequence xn =
x1x2 . . . xn. Then, we consider the source {Xi}∞i=1 that has a probability mass function
defined by

pXn(xn) =

{
1/2n (n is odd),

θtn(1− θ)n−tn (n is even).
(2.6)

That is, {Xi}∞i=1 is distributed according to the uniform distribution if n is odd and
the Bernoulli distribution if n is even.
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2.4 Mathematical models of a source coding prob-

lem

2.4.1 Fixed-length source coding

情報源符号化の数理モデル（3/3）

source

情報源符号化の数理モデル（情報源符号化の数理モデル（3/3）

encoder decoder

Figure 2.1: Fixed-length source coding

This section explains fixed-length source coding2 depicted in Fig. 2.1.
A fixed-length source code is a pair of (fFF

n , gFFn ) defined as follows. An encoder fFF
n

is defined by

fFF
n : X n → {1, 2, · · · ,Mn}, (2.7)

where Mn is a positive integer. A decoder is defied by

gFFn : {1, 2, · · · ,Mn} → X n. (2.8)

A fixed-length source coding allows a decoding error probability. An analysis is
usually carried out under the condition that the decoding error probability does not
exceed ε ∈ [0, 1) for all n = 1, 2, . . ., i.e.,

P[Xn �= gFFn (fFF
n (Xn))] ≤ ε (2.9)

or under the condition that the decoding error probability does not exceed ε ∈ [0, 1)
asymptotically, i.e.,

lim sup
n→∞

P[Xn �= gFFn (fFF
n (Xn))] ≤ ε. (2.10)

Remark 2.4.1 Since a codeword i ∈ {1, 2, · · · ,Mn} is an integer, it is transformed
into a sequence when it is transmitted to a receiver. For example, to transform i ∈
{1, 2, · · · ,Mn} into a binary sequence, we transform it into a binary sequence with
length �logMn�, where �a� denotes the smallest integer that is larger than or equal to
a. Thus, the codeword length is fixed. This is the reason why the above setup is called
the fixed-length source coding.

2It is also said to be almost-lossless fixed-to-fixed compression.
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2.4.2 Variable-length lossless source coding

source encoder decoder

Figure 2.2: Variable-length lossless source coding

In Section 2.4.1, we have described fixed-length source coding, where the codeword
length is fixed. However, we can consider the setup for which the codeword length
is variable. In Sections 2.4.2, 2.4.3, and 2.4.4, we describe such a setup. First, this
section explains variable-length lossless source coding3 depicted in Fig. 2.2.

A variable-length lossless source code is a pair of (fLL
n , gLLn ) defined as follows. An

encoder fLL
n : X n → {0, 1}� is an injective function, where {0, 1}� denotes the set of

all binary strings and the empty string Λ, i.e.,

{0, 1}� := {Λ, 0, 1, 00, 01, 10, 11, 000, 001, · · · }. (2.11)

Further, fLL
n (xn) ∈ {0, 1}� is said to be a codeword and its length is said to be a

codeword length. A decoder gLLn : {0, 1}� → X n is a function such that

gLLn (fLL
n (xn)) = xn (2.12)

for all xn ∈ X n.
The above definition ensures that

P[Xn �= gLLn (fLL
n (Xn))] = 0 (2.13)

for any n = 1, 2, . . ..

2.4.3 Variable-length source coding allowing errors

In Section 2.4.2, we have defined variable-length lossless source coding in which a
decoding error probability is zero, i.e., (2.13) holds. In this section, we describe a
source coding problem in which a decoding error probability is allowed.

As depicted in Fig. 2.3, a variable-length source code allowing errors is a pair of
(fAE

n , gAE
n ) defined as follows. An encoder fAE

n is defined by

fAE
n : X n → {0, 1}�, (2.14)

3It is also said to be lossless fixed-to-variable compression.
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情報源符号化の数理モデル（3/3）情報源符号化の数理モデル（3/3）

source encoder decoder

Figure 2.3: Variable-length source coding allowing errors

where the encoder fAE
n needs not to be an injective mapping. That is, the following

situation is allowed:

xn �= (xn)′ ⇒ fAE
n (xn) = fAE

n ((xn)′). (2.15)

A decoder is defied by

gAE
n : {0, 1}� → X n. (2.16)

Since we do not assume that an encoder fAE
n is injective, a decoding error can be

occurred. Therefore, in some cases, analysis is carried out under the condition that a
decoding error probability does not exceed ε ∈ [0, 1) for all n = 1, 2, . . ., i.e.,

P[Xn �= gAE
n (fAE

n (Xn))] ≤ ε, (2.17)

or under the condition that a decoding error probability does not exceed ε ∈ [0, 1)
asymptotically, i.e.,

lim sup
n→∞

P[Xn �= gAE
n (fAE

n (Xn))] ≤ ε. (2.18)

2.4.4 Variable-length lossy source coding

In Section 2.4.3, we have stated variable-length source code allowing errors. In this
case, we consider the event that a source sequence equals a decoded sequence or
not. One way to generalize this setting is to introduce a function that measures the
difference between a source sequence and a decoded sequence. This kind of source
coding problem is said to be a variable-length lossy source coding problem. In this
section, we describe a variable-length lossy source coding depicted in Fig. 2.4.

A variable-length lossy source code is a pair of (fLS
n , gLSn ) defined as follows. An

encoder fLS
n is defined by

fLS
n : X n → {0, 1}�, (2.19)
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情報源符号化の数理モデル（3/3）情報源符号化の数理モデル（3/3）

source encoder decoder

Figure 2.4: Variable-length lossy source coding

where the encoder fLS
n needs not to be an injective mapping. A decoder is defied by

gLSn : {0, 1}� → Yn, (2.20)

where a set Y is said to be a reproduction alphabet. This dissertation assumes that X
and Y are both finite sets unless otherwise noted.

A function dn : X n × Yn → [0,+∞) measures the difference between an original
source sequence xn ∈ X n and the decoded sequence yn ∈ Yn. This function is called
a distortion measure.

There are two major criteria on distortion measure. The one is the average distor-
tion and the other is the excess distortion probability.

The average distortion is defined as

E
[
dn(X

n, gLSn (fLS
n (Xn)))

]
(2.21)

and in some cases, analysis is carried out under the condition that the average distor-
tion does not exceed ε ∈ [0, 1) for all n = 1, 2, . . ., i.e.,

E
[
dn(X

n, gLSn (fLS
n (Xn)))

]
≤ ε (2.22)

or under the condition that the average distortion does not exceed ε ∈ [0, 1) asymp-
totically, i.e.,

lim sup
n→∞

E
[
dn(X

n, gLSn (fLS
n (Xn)))

]
≤ ε. (2.23)

On the other hand, the excess distortion probability is defined as

P
[
dn(X

n, gLSn (fLS
n (Xn))) > D

]
(2.24)

for D ≥ 0, and in some cases, analysis is carried out under the condition that the
excess distortion probability does not exceed ε ∈ [0, 1) for all n = 1, 2, . . ., i.e.,

P
[
dn(X

n, gLSn (fLS
n (Xn))) > D

]
≤ ε (2.25)

or under the condition that the excess distortion probability does not exceed ε ∈ [0, 1)
asymptotically, i.e.,

lim sup
n→∞

P
[
dn(X

n, gLSn (fLS
n (Xn))) > D

]
≤ ε. (2.26)
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Remark 2.4.2 The error probability, which is considered in Section 2.4.3, can be seen
as a special case of the excess distortion probability. To see this, we consider the excess
distortion probability

P[dn(Xn, Y n) > D]. (2.27)

In (2.27), let Xn and Y n be random variables taking values in X n, set D = 0, and let
the distortion measure be

dn(x
n, yn) = I{xn ̸= yn}, (2.28)

for xn, yn ∈ X n, where I{·} denotes an indicator function. Then, it is easily verified
that (2.27) reduces to the error probability

P[Xn ̸= Y n]. (2.29)

2.5 Performance criteria on codeword length

The typical criterion on codeword length in fixed-length source coding defined in Sec-
tion 2.4.1 is the coding rate defined by

logMn

n
. (2.30)

On the other hand, there are two major performance criteria on codeword length
for variable-length coding defined in Sections 2.4.2, 2.4.3, and 2.4.4. They are the
mean codeword length and the overflow probability. For a variable-length code (fn, gn),
the mean codeword length is defined by

E

[
1

n
ℓ(fn(X

n))

]
, (2.31)

where ℓ(fn(x
n)) denotes a codeword length of xn ∈ X n; the overflow probability is

defined by

P
[
1

n
ℓ(fn(X

n)) > R

]
(2.32)

for R ≥ 0. The constant R is said to be a threshold of the overflow probability or a
rate of the overflow probability.
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Chapter 3

Non-asymptotic and asymptotic
analyses of variable-length lossless
source coding

3.1 Introduction

This chapter deals with the problem of variable-length lossless source coding for a
general source. For this problem, studies such as [18] and [30] have derived the funda-
mental limit on the minimum threshold of the overflow probability. They have char-
acterized the fundamental limit by focusing on the distribution of the self-information
1
n
log 1

pXn (Xn)
.

This chapter considers the derivation of the fundamental limit on the minimum
threshold of the overflow probability as in [18] and [30]. However, this study focuses
on the distribution of source symbol X ordered in decreasing probability. As we will
discuss in Section 3.8, this viewpoint is compatible with the definition of the smooth
max entropy, and we derive the non-asymptotic characterizations on the minimum
threshold of the overflow probability by using the smooth max entropy. To show
the achievability results, we use the explicit code construction instead of using the
random coding argument. This technique is an important and basic one that is used
throughout Chapters 3–5. Moreover, the proof of our achievability result clarifies

• the similarity of variable-length lossless code under the overflow probability and
fixed-length code,

and

• the difference between a prefix code and a non-prefix code.

Further, using the results obtained in the non-asymptotic regime, we establish the
asymptotic coding theorems. It is worth noticing that this chapter is positioned as a
starting point of Chapters 4 and 5.

18



The organization of this chapter is as follows. Section 3.2 sets up the problem
formulation. Section 3.3 introduces the smooth max entropy, which plays a significant
role in the main results. Section 3.4 describes the prior works. Non-asymptotic coding
theorems for prefix codes and non-prefix codes are derived in Section 3.5 and Section
3.6, respectively. Using these theorems, we show asymptotic coding theorem in Section
3.7. Finally, Section 3.8 discusses the main results and concludes this chapter.

3.2 Problem formulation

Let X be a source alphabet, which is a finite set. Let X be a random variable taking
a value in X and x be a realization of X. The probability distribution of X is denoted
as PX and the probability mass function of X is denoted as pX(x).

This chapter analyzes the variable-length lossless prefix codes and non-prefix codes
defined as follows. First, an encoder of a prefix code fp : X → {0, 1}⋆ is defined as an
injective function satisfying Kraft’s inequality∑

x∈X

2−ℓ(fp(x)) ≤ 1, (3.1)

where ℓ(fp(x)) denotes the codeword length of codeword fp(x) for x ∈ X . A decoder
gp : {0, 1}⋆ → X is a function such that

gp(fp(x)) = x (3.2)

for all x ∈ X . Next, an encoder of a non-prefix code f is defined as an injective
function such that f : X → {0, 1}⋆. A decoder g : {0, 1}⋆ → X is a function such that

g(f(x)) = x (3.3)

for all x ∈ X . For example, in [18] and [41], removing the prefix condition for variable-
length lossless source coding is discussed.

Using the overflow probability, we define an (R, δ)p code and (R, δ) code.

Definition 3.2.1 Given R ≥ 0 and δ ∈ [0, 1), an (R, δ)p code is a prefix code satisfy-
ing

P[ℓ(fp(X)) > R] ≤ δ. (3.4)

Further, an (R, δ) code is a non-prefix code satisfying

P[ℓ(f(X)) > R] ≤ δ. (3.5)

The purpose of this chapter is to analyze the infimum of the threshold of the
overflow probability:

R∗
p(δ) := inf{R : ∃ an (R, δ)p code}, (3.6)

R∗(δ) := inf{R : ∃ an (R, δ) code}. (3.7)
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We consider the following problem formulation in the asymptotic analysis. Let X n

be the n-th Cartesian product of X . Let Xn be a random variable taking a value in
X n and xn be a realization of Xn. Furthermore, let X = {Xn}∞n=1 denote a general
source. The joint probability distribution of Xn is denoted as PXn and the joint
probability mass function of Xn is denoted as pXn(xn). An encoder of a prefix code
fp
n : X n → {0, 1}⋆ is defined as an injective function satisfying Kraft’s inequality∑

xn∈Xn

2−ℓ(fp(xn)) ≤ 1. (3.8)

A decoder gpn : {0, 1}⋆ → X n is a function such that

gpn(f
p
n(x

n)) = xn (3.9)

for all xn ∈ X n. Next, an encoder of a non-prefix code fn is defined as an injective
function such that fn : X n → {0, 1}⋆. A decoder gn : {0, 1}⋆ → X n is a function such
that

gn(fn(x
n)) = xn (3.10)

for all xn ∈ X n.
We define an (n,R, δ)p code and an (n,R, δ) code as follows.

Definition 3.2.2 Given R ≥ 0 and δ ∈ [0, 1), a prefix code (fp
n , g

p
n) satisfying

P
[
1

n
ℓ(fp

n(X
n)) > R

]
≤ δ (3.11)

is said to be an (n,R, δ)p code. Moreover, a non-prefix code (fn, gn) satisfying

P
[
1

n
ℓ(fn(X

n)) > R

]
≤ δ (3.12)

is said to be an (n,R, δ) code.

The asymptotic fundamental limit is the following minimum threshold.

Definition 3.2.3 Given δ ∈ [0, 1), Rp(δ|X) is the infimum of the threshold R such
that there exists an (n,R, δ)p code for all n ≥ n0 with some n0 > 0. Further, R(δ|X)
is the infimum of the threshold R such that there exists an (n,R, δ) code for all n ≥ n0

with some n0 > 0.

Moreover, another asymptotic fundamental limit is defined as follows.
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Definition 3.2.4 Given δ ∈ [0, 1), R̂p(δ|X) is the infimum of the threshold R such
that there exists a code (fp

n , g
p
n) satisfying

lim sup
n→∞

P
[
1

n
ℓ(fp

n(X
n)) > R

]
≤ δ. (3.13)

Further, R̂(δ|X) is the infimum of the threshold R such that there exists a code (fn, gn)
satisfying

lim sup
n→∞

P
[
1

n
ℓ(fn(X

n)) > R

]
≤ δ. (3.14)

The main results of this chapter are to analyze the fundamental theoretical limita-
tions by using the smooth max entropy. In the next section, we describe the definition
of the smooth max entropy.

3.3 Smooth max entropy

The smooth max entropy is defined as follows.

Definition 3.3.1 Given γ ∈ [0, 1), the smooth max entropy Hγ(X) is defined as

Hγ(X) = min
Z⊂X :

P[X∈Z]≥1−γ

log |Z|, (3.15)

where | · | represents the cardinality of the set.

From the definition, it is easy to see that the smooth max entropy Hγ(X) is a
monotonically non-increasing function of γ.

Remark 3.3.1 For γ ≥ 0 and α ∈ (0, 1)∪ (1,∞), the smooth Rényi entropy of order
α1 has first introduced by Renner and Wolf [34] and has redefined in [35] as follows:

Hγ
α(X

n) =
1

1− α
log

(
inf

q∈Bγ(PXn )

∑
xn∈Xn

(q(xn))α

)
, (3.16)

where Bγ(PXn) is a set of functions q : X n → [0, 1] such that

q(xn) ≤ pXn(xn) (3.17)

for all xn ∈ X n and ∑
xn∈Xn

q(xn) ≥ 1− γ. (3.18)

1Strictly speaking, this should be called γ-smooth Rényi entropy of order α.

21



It is known that Hγ
α(X

n) is a monotonically non-increasing function of α ∈ (0, 1) ∪
(1,∞). Therefore, Hγ

α(X
n) takes the maximum value when α ↓ 0. Based on this fact,

the smooth Rényi entropy of order zero, i.e., the quantitiy limα↓0H
γ
α(X

n), is said to
be the smooth max entropy in [13]. Uyematsu [43] has shown that the smooth max
entropy can be defined as the form in Definition 3.3.1.

The smooth Rényi entropy is a generalization of the Shannon entropy [39] and
Rényi entropy [37]. This quantity is used in cryptography (see, e.g., [34], [35], [36]),
source coding (see, e.g., [34], [43], [46], [47], [48]), and random number generation
(see, e.g., [44], [45]).

3.4 Related previous works

Kontoyiannis and Verdú [18] have derived the non-asymptotic fundamental limit R∗(δ)
as in the following theorem.

Theorem 3.4.1 ([18]) For any a ≥ 0, define δ by

δ = P
[
log

1

pX(X)
≥ a

]
. (3.19)

Then, R∗(δ) is given by

R∗(δ) = ⌈log(1 +M(2a))⌉ − 1, (3.20)

where M(β) is defined by

M(β) = P
[
log

1

pX(X)
< log β

]
. (3.21)

Remark 3.4.1 Theorem 3.4.1 treats the restricted δ such that (3.19). On the other
hand, our study deals with any δ ∈ [0, 1).

Nomura et al. [30] have derived the next result on R̂p(δ|X).

Theorem 3.4.2 ([30]) For any δ ∈ [0, 1), R̂p(δ|X) is given by

R̂p(δ|X) = inf

{
R : lim sup

n→∞
P
[
1

n
log

1

pXn(Xn)
≥ R

]
≤ δ

}
. (3.22)

Remark 3.4.2 The previous study [30] has only considered the asymptotic setting.
On the other hand, our study considers the non-asymptotic setting as well as the
asymptotic setting.

22



3.5 Non-asymptotic coding theorem for prefix codes

The next lemma shows the achievability result.

Lemma 3.5.1 For any δ ∈ [0, 1), there exists an (R, δ)p code such that

R = ⌊Hδ(X) + 1⌋. (3.23)

（Proof）Let xi be the element of X that has the i-th largest probability. That is, it
holds that

pX(x1) ≥ pX(x2) ≥ pX(x3) ≥ · · · . (3.24)

Next, let k∗ ≥ 1 be the integer satisfying

k∗−1∑
i=1

pX(xi) < 1− δ, (3.25)

k∗∑
i=1

pX(xi) ≥ 1− δ. (3.26)

Using k∗, we define a set A ⊂ X as

A = {x1, x2, . . . , xk∗}. (3.27)

From the definition of A, we have

P[X ∈ A] ≥ 1− δ. (3.28)

Further, the definition of the smooth max entropy and A establish the relationship

Hδ(X) = log |A|, (3.29)

which yields

|A| ≤ 2⌊H
δ(X)+1⌋ − 1. (3.30)

Now, the encoder and decoder are constructed as follows.

[Encoder]

• For the most probable 2⌊H
δ(X)+1⌋ − 1 source symbols (i.e., x1, . . . , x2⌊Hδ(X)+1⌋−1

),
the encoder fp assigns codeword whose codeword length is ⌊Hϵ(X) + 1⌋ bits,

and

• for the rest of the source symbols, the encoder fp assigns codeword whose code-
word length satisfies Kraft’s inequality (3.1).
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[Decoder] The decoder is the inverse function of the encoder fp.

Then, from (3.28), (3.30), and the prefix code defined above, it holds that

P[ℓ(fp(X)) > ⌊Hδ(X) + 1⌋] ≤ P[X /∈ A] ≤ δ. (3.31)

This completes the proof. □
The next lemma shows the converse result.

Lemma 3.5.2 For any δ ∈ [0, 1), any (R, δ)p code satisfies

R ≥ Hδ(X). (3.32)

（Proof）Fix an (R, δ)p code arbitrarily. Then, it holds that

P[ℓ(fp(X)) > R] ≤ δ (3.33)

from the definition of an (R, δ)p code. Next, let Sp(R) be defined as

Sp(R) = {x ∈ X : ℓ(fp(x)) ≤ R} . (3.34)

Then, (3.33) is rewritten as

P[X ∈ Sp(R)] ≥ 1− δ. (3.35)

Therefore, the definition of the smooth max-entropy and (3.35) establish

Hδ(X) ≤ log |Sp(R)|. (3.36)

On the other hand, we have

1
(a)

≥
∑
x∈X

2−ℓ(fp(x)) ≥
∑

x∈Sp(R)

2−ℓ(fp(x))
(b)

≥ |Sp(R)|2−R. (3.37)

where (a) follows from (3.1); (b) follows from (3.34). Hence, (3.37) gives

log |Sp(R)| ≤ R. (3.38)

Therefore, (3.32) is obtained from (3.36) and (3.38). □
By Lemmas 3.5.1 and 3.5.2, the next result is obtained.

Theorem 3.5.1 For any δ ∈ [0, 1), it holds that

Hδ(X) ≤ R∗
p(δ) ≤ ⌊Hδ(X) + 1⌋. (3.39)
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Remark 3.5.1 The upper and lower bounds in Theorem 3.5.1 are tight in the follow-
ing sense: (i) There exists a source for which the lower bound holds in equality. (ii)
For any γ > 0, there exists a source for which R∗

p(δ) is larger than ⌊Hϵ(X) + 1⌋ − γ.
To verify (i), one example, for which the lower bound holds in equality, is given.

Given δ ∈ [0, 1) and R ∈ N satisfying δ < 1/2R, suppose that

X = {x1, x2, . . . , x2R} (3.40)

and

pX(xi) =
1

2R
(i = 1, 2, . . . , 2R). (3.41)

For this source, we shall show that the lower bound in Theorem 3.5.1 holds in equality.
For any (R, δ)p code, Lemma 3.5.2 guarantees that

R ≥ Hδ(X). (3.42)

Since (3.41) and δ < 1/2R, the definition of the smooth max entropy yields

Hδ(X) = log |X | = R. (3.43)

Therefore, it is proved that the equality in (3.42) holds.
To verify (ii), let A be the set defined as in (3.27), and suppose that the source

satisfies |A| = 2K for some K ∈ N (in this case, Hδ(X) = K because of (3.29)). For
any γ > 0, we calculate the overflow probability for the threshold ⌊Hδ(X)+1⌋−γ. For
the threshold ⌊Hδ(X)⌋+ 1− γ, the code that has the minimum overflow probability is
constructed as follows:

• for the most probable 2H
δ(X)−1 source symbols, the encoder fp assigns codeword

whose codeword length is Hδ(X) bits,

and

• for the rest of the source symbols, the encoder fp assigns codeword whose code-
word length satisfies Kraft’s inequality (3.1).

Then, from the construction of the code and the relationship

2H
ϵ(X) − 1 = 2log |A| − 1 = |A| − 1, (3.44)

it is verified that one element in A (define this element as x∗) has codeword length
that is larger than Hδ(X) bits. Thus, it holds that

P[ℓ(fp(X)) > ⌊Hδ(X) + 1⌋ − γ] = P[X /∈ A] + P[X = x∗] > δ, (3.45)

where the last inequality is due to the definition of A. Because (3.45) holds for the
prefix code with the minimum overflow probability for the threshold ⌊Hδ(X) + 1⌋ − γ,
(3.45) also holds for any prefix code for the threshold ⌊Hδ(X) + 1⌋− γ. Hence, (3.45)
and the definition of R∗

p(δ) establish

R∗
p(δ) > ⌊Hδ(X) + 1⌋ − γ. (3.46)

This concludes that there exists a source for which R∗
p(δ) is larger than ⌊Hδ(X)+1⌋−γ

for any γ > 0.
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3.6 Non-asymptotic coding theorem for non-prefix

codes

This section analyzes the fundamental limit on the overflow probability for non-prefix
codes. We emphasize that this section contains basic ideas used throughout Chapters
4 and 5 (for details, see the discussion in Section 3.8).

The the next lemma shows the achievability result.

Lemma 3.6.1 For any δ ∈ [0, 1), there exists an (R, δ) code such that

R = �Hδ(X)�. (3.47)

（Proof）

・・・

・・・

・
・
・

・・・

・
・

・
・

・・・

・・・

・・・

・
・
・

Figure 3.1: Relationship between the interior nodes and leaf nodes of a code tree

First, as shown in Fig. 3.1, the following fact is easily verified:
(♠) In a code tree, the following quantities are equivalent:

• the number of leaf nodes whose depth is �Hδ(X) + 1�,

• the number of interior nodes within the depth of �Hδ(X)�.

Next, the encoder f is defined. Let xi be the element of X which has the i-th
largest probability. That is, it holds that pX(x1) ≥ pX(x2) ≥ pX(x3) ≥ · · · . Then, the
encoder f maps a source symbol x in the order of decreasing probability to

{0, 1}� = {Λ, 0, 1, 00, 01, 10, 11, 000, 001, · · · }
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in the lexicographic order, i.e.,

f(x1) = Λ, (3.48)

f(x2) = 0, (3.49)

f(x3) = 1, (3.50)

f(x4) = 00, (3.51)

f(x5) = 01, (3.52)

f(x6) = 10, (3.53)

f(x7) = 11, (3.54)

f(x8) = 000, . . . . (3.55)

Further, the decoder is defined as the inverse function of the encoder.
Then, from the non-prefix code defined above, the fact (♠), and (3.30), it holds

that

P[ℓ(f(X)) > ⌊Hδ(X)⌋] ≤ P[X /∈ A] ≤ δ, (3.56)

where A is the set defined as in (3.27). □
The next lemma shows the converse bound.

Lemma 3.6.2 For any δ ∈ [0, 1), any (R, δ) code satisfies

R > Hδ(X)− 1. (3.57)

（Proof）Fix an (R, δ) code arbitrarily. Then, we have

P[ℓ(f(X)) > R] ≤ δ (3.58)

from the definition of an (R, δ) code. Next, let S(R) be defined as

S(R) = {x ∈ X : ℓ(f(x)) ≤ R} . (3.59)

Then, (3.58) leads to

P[X ∈ S(R)] ≥ 1− δ. (3.60)

Hence, the definition of the smooth max entropy and (3.60) yields

Hδ(X) ≤ log |S(R)|. (3.61)

On the other hand, it follows that

|S(R)|
(a)

≤ 1 + 2 + 22 + · · ·+ 2⌊R⌋ = 2⌊R⌋+1 − 1 < 2R+1 (3.62)

where (a) is due to the definition of f and S(R). Thus, (3.62) gives

log |S(R)| < R + 1 (3.63)

Therefore, (3.57) is obtained from (3.61) and (3.63). □
Combination of Lemmas 3.6.1 and 3.6.2 establishes the next result.
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Theorem 3.6.1 For any δ ∈ [0, 1), it holds that

Hδ(X)− 1 < R∗(δ) ≤ ⌊Hδ(X)⌋. (3.64)

Remark 3.6.1 The upper bound in Theorem 3.6.1 is tight in the sense that for any
γ > 0, there exists a source for which R∗(δ) is larger than Hδ(X) − γ. To verify the
tightness of the upper bound in Theorem 3.6.1, let A be the set defined as in (3.27),
and suppose that the source satisfies |A| = 2K for some K ∈ N. For this source, the
tightness of the upper bound is proved by using the same argument as in Remark 3.5.1.

On the other hand, since the lower bound in Theorem 3.6.1 does not hold in equality,
it is not possible to discuss the tightness on the lower bound as in Theorem 3.5.1.

3.7 Asymptotic coding theorem

The next theorem characterizes Rp(δ|X) by the smooth max entropy.

Theorem 3.7.1 For any δ ∈ [0, 1), it holds that

Rp(δ|X) = lim sup
n→∞

1

n
Hδ(Xn). (3.65)

（Proof）First,

Rp(δ|X) ≤ lim sup
n→∞

1

n
Hδ(Xn) (3.66)

is proved. From Lemma 3.5.1, there exists a code (fp
n , g

p
n) satisfying

P
[
1

n
ℓ(fp

n(X
n)) >

1

n
Hδ(Xn) +

1

n

]
≤ δ. (3.67)

Fix γ > 0 arbitrarily. Then, it holds that

1

n
Hδ(Xn) ≤ lim sup

n→∞

1

n
Hδ(Xn) + γ (3.68)

and

1

n
≤ γ (3.69)

for all n ≥ n0 with some n0 > 0. Then, from (3.67), we have

P
[
1

n
ℓ(fp

n(X
n)) > lim sup

n→∞

1

n
Hδ(Xn) + 2γ

]
≤ δ (3.70)
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for all n ≥ n0. Thus, from (3.70), (fp
n , g

p
n) is an (n,R, δ)p code with

R = lim sup
n→∞

1

n
Hδ(Xn) + 2γ (3.71)

for all n ≥ n0. Since γ > 0 is arbitrary, this indicates the desired inequality (3.66).

Next,

Rp(δ|X) ≥ lim sup
n→∞

1

n
Hδ(Xn) (3.72)

is shown. For any (n,R, δ)p code, Lemma 3.5.2 gives

nR > Hδ(Xn). (3.73)

Therefore, it holds that

R ≥ lim sup
n→∞

1

n
Hδ(Xn) (3.74)

for any (n,R, δ)p code. Hence, we have (3.72). □
The same discussion as that in Theorem 3.7.1 yields the next result on R(δ|X).

Theorem 3.7.2 For any δ ∈ [0, 1), it holds that

R(δ|X) = lim sup
n→∞

1

n
Hδ(Xn). (3.75)

Furthermore, by almost the same proof of Theorems 3.7.1 and 3.7.2, we have the
next result on R̂p(δ|X) and R̂(δ|X).

Corollary 3.7.1 For any δ ∈ [0, 1), it holds that

R̂p(δ|X) = lim
τ↓0

lim sup
n→∞

1

n
Hδ+τ (Xn) (3.76)

R̂(δ|X) = lim
τ↓0

lim sup
n→∞

1

n
Hδ+τ (Xn). (3.77)

Remark 3.7.1 The difference between (3.65) and (3.76) comes from the difference
of the asymptotic constraint, i.e., (3.65) is the result under the constraint of (3.11)
for all n ≥ n0 with some n0, while (3.76) is the result under the constraint of (3.13).
Similarly, the same remark holds between (3.75) and (3.77).

Remark 3.7.2 The result (3.76) can be proved by combining the results in [29] and
[43]. This is because the study [29] has established the “equivalence theorem” between
the overflow probability in variable-length lossless source coding and the error proba-
bility in fixed-length source coding. However, this chapter has shown that (3.76) can
be verified by different approach from the combination of the results in [29] and [43].
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3.8 Discussion and conclusion of this chapter

Some discussions on the main results are stated as follows.

1) Variable-length lossless source coding under the overflow probability vs. fixed-
length source coding: Suppose that there exists an (R, δ)p code. Further, let xi
denote the element of X that has the i-th largest probability. That is, we have

pX(x1) ≥ pX(x2) ≥ pX(x3) ≥ · · · . (3.78)

Now, we consider the following fixed-length encoder φ:

– For the most probable 2R − 1 source symbols (i.e., x1, . . . , x2R−1), the en-
coder φ assigns a unique codeword whose codeword length is R bits,

and

– for the rest of the source symbols, the encoder φ assigns the remaining
codeword whose codeword length is R bits.

The decoder ψ is defined as the inverse function of the encoder φ. Then, the
above construction and the existence of an (R, δ)p code guarantee that the coding
rate of (φ, ψ) is R and the error probability of (φ, ψ) is less than or equal to δ.
Therefore, R∗

p(δ) (the minimum threshold of the overflow probability) represents
the minimum coding rate in fixed-length source coding. Further, the above
argument shows that optimal variable-length lossless source coding under the
overflow probability and the optimal fixed-length source coding are essentially
the same. The only difference is the treatment of least likely source symbols:
fixed-length source coding treats least likely source symbols as decoding error
while variable-length lossless source coding treats them as overflow.

2) Non-prefix code vs. prefix code: Comparing Theorem 3.5.1 and Theorem 3.6.1,
it is observed that the results for the optimal non-prefix code and the optimal
prefix code differ 1 bit. This is because we have the relationship between leaf
nodes and interior nodes of a code tree which is shown in Fig. 3.1. In view of this
relationship, results for a non-prefix code can be easily converted to results for a
prefix code and vice versa. Since descriptions for a non-prefix code are simpler
than that of a prefix code, we only consider a non-prefix code in the following
Chapters 4 and 5.

3) Asymptotic distribution of the self-information vs. non-asymptotic distribution
of source symbols: As shown in Section 3.4, Nomura et al. [30] have derived the
fundamental limit on the overflow probability by focusing on the tail probability
of the asymptotic distribution of the self-information 1

n
log 1

pXn (Xn)
(see the left

picture of Fig. 3.2). On the other hand, this study derives the fundamental limit
on the overflow probability by focusing on the tail probability of the distribution
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of X ordered in decreasing probability such that pX(x1) ≥ pX(x2) ≥ pX(x3) ≥
· · · (see the right picture of Fig. 3.2). Therefore, both Nomura et al. [30] and this
study focus on least likely source symbols. However, it is worth noticing that our
viewpoint of the tail probability (i.e., the tail probability of the distribution of X
ordered in decreasing probability) is compatible with the definition of the smooth
max entropy. This is one reason why we succeeded in the characterization of the
fundamental limit on the overflow probability by using the smooth max entropy.

ProbabilityProbability

Figure 3.2: The distribution of the self-information (left) and the distribution of source
symbols ordered in decreasing probability (right)

To summarize this chapter, we considered the problem of variable-length lossless
source coding for a general source. The non-asymptotic coding theorems were obtained
for both prefix codes and non-prefix codes, and the difference between these codes
were shown. The smooth max entropy was an important quantity to characterize
the fundamental limits. To show the achievability results, we used the explicit code
construction instead of using the random coding argument. Further, this chapter
showed the asymptotic coding theorems, which were easily derived from the non-
asymptotic results. Note that this chapter contains fundamental and basic ideas used
throughout Chapters 4 and 5, and is the gateway to Chapters 4 and 5.
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Chapter 4

Non-asymptotic and asymptotic
analyses of variable-length source
coding allowing errors

4.1 Introduction

In Chapter 3, we have considered variable-length lossless source coding, i.e., variable-
length source coding in which the error probability is zero. On the other hand, this
chapter allows a positive error probability and deals with the problem of variable-
length source coding allowing errors for a general source.

For this problem, Nomura and Yagi [33] have treated the case where both the
overflow probability and the error probability may be positive. They have focused
on the asymptotic distribution of the self-information 1

n
log 1

pXn (Xn)
and derived the

asymptotic characterization on the minimum threshold of the overflow probability.
On the other hand, as we have explained in Chapter 3, we consider the distribution

of X ordered in decreasing probability, and evaluate the minimum threshold of the
overflow probability by using the smooth max entropy. As shown in Chapter 3, we use
the explicit code construction, instead of using the random coding argument, to show
the achievability results. It is clarified that the proof of the achievability result in this
chapter is a generalization of that in Chapter 3. Our proof of achievability results
clarifies the difference between the deterministic encoder and the stochastic encoder.
Further, our achievability results show that the overflow probability and the error
probability are trade-off. Moreover, the obtained results clarify the benefit of allowing
a positive error probability instead of zero error case. Using the results obtained in
the non-asymptotic regime, we establish the asymptotic coding theorems.

This chapter is organized as follows. Section 4.2 describes the problem formulation.
Section 4.3 shows the related prior work. Section 4.4 derives the non-asymptotic coding
theorem for stochastic codes. Section 4.5 shows the non-asymptotic coding theorem
for deterministic codes. Based on the results obtained in the non-asymptotic setting,
Section 4.6 derives the asymptotic coding theorem. Finally, Section 4.7 discusses the
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main results and concludes this chapter.

4.2 Problem formulation

Let X be a source alphabet, which is a finite set. Let X be a random variable taking
a value in X and x be a realization of X. The probability distribution of X is denoted
as PX and the probability mass function of X is denoted as pX(x).

As we have seen in Chapter 3, results between a prefix code and a non-prefix code
differ at most one bit. Thus, we discuss only non-prefix codes in the following. The
pair of an encoder and a decoder (f, g) is defined as follows. An encoder f is defined
as f : X → {0, 1}⋆. An encoder f can be a stochastic code and produces a non-prefix
code. Further, we allow f(x) = f(x′) for x ̸= x′. For x ∈ X , the codeword length of
f(x) is denoted as ℓ(f(x)). A deterministic decoder g is defined as g : {0, 1}⋆ → X .

Using the error probability and the overflow probability, we define an (R, ϵ, δ) code.

Definition 4.2.1 Given R ≥ 0 and ϵ, δ ∈ [0, 1), a code (f, g) satisfying

P[X ̸= g(f(X))] ≤ ϵ, (4.1)

P[ℓ(f(X)) > R] ≤ δ (4.2)

is called an (R, ϵ, δ) code.

The fundamental limits are the minimum thresholds R∗(D, ϵ, δ) and R̃(D, ϵ, δ) for
given ϵ and δ.

Definition 4.2.2 Given ϵ, δ ∈ [0, 1), we define

R∗(ϵ, δ) := inf{R : ∃ an (R, ϵ, δ) code}, (4.3)

R̃(ϵ, δ) := inf{R : ∃ a deterministic (R, ϵ, δ) code}. (4.4)

We consider the following problem formulation in the asymptotic analysis. Let X n

be the n-th Cartesian product of X . Let Xn be a random variable taking a value in X n

and xn be a realization of Xn. Moreover, let X = {Xn}∞n=1 denote a general source.
The joint probability distribution of Xn is denoted as PXn and the joint probability
mass function of Xn is denoted as pXn(xn). An encoder fn : X n → {0, 1}⋆ is a
possibly stochastic code and produces a non-prefix code. A decoder gn : {0, 1}⋆ → X n

is a deterministic code.
We define an (n,R, ϵ, δ) code as follows.

Definition 4.2.3 Given R ≥ 0 and ϵ, δ ∈ [0, 1), a code (fn, gn) satisfying

P[Xn ̸= gn(fn(X
n))] ≤ ϵ, (4.5)

P
[
1

n
ℓ(fn(X

n)) > R

]
≤ δ (4.6)

is called an (n,R, ϵ, δ) code.
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The asymptotic fundamental limit is the following minimum threshold.

Definition 4.2.4 Given ϵ, δ ∈ [0, 1), R(ϵ, δ|X) is the infimum of the threshold R such
that there exists an (n,R, ϵ, δ) code for all n ≥ n0 with some n0 > 0.

Furthermore, another asymptotic fundamental limit is defined as follows.

Definition 4.2.5 Given ϵ, δ ∈ [0, 1), R̂(ϵ, δ|X) is the infimum of the threshold R such
that there exists a code (fn, gn) satisfying

lim sup
n→∞

P[Xn ̸= gn(fn(X
n))] ≤ ϵ, (4.7)

lim sup
n→∞

P
[
1

n
ℓ(fn(X

n)) > R

]
≤ δ. (4.8)

4.3 Related work

Nomura and Yagi [33] have derived the next result on R̂(ϵ, δ|X).

Theorem 4.3.1 ([33]) For any ϵ, δ ∈ [0, 1) satisfying ϵ+ δ < 1, it holds that

R̂(ϵ, δ|X) = Gϵ,δ(X), (4.9)

where Gϵ,δ(X) is defined by

Gϵ,δ(X) = inf

{
R : lim

ν↓0
lim sup
n→∞

inf
P[Xn∈An]≥1−ϵ−ν

P
[
− 1

n
log

pXn(Xn)

P[Xn ∈ An]
≥ R,Xn ∈ An

]}
.

(4.10)

Furthermore, the study [33] has shown the next result, which is another character-
ization of R̂(ϵ, δ|X).

Theorem 4.3.2 ([33]) For any ϵ, δ ∈ [0, 1) satisfying ϵ+ δ < 1, it holds that

Gϵ,δ(X) = H̃ϵ,δ(X) = Hϵ+δ(X), (4.11)

where H̃ϵ,δ(X) is defined by

H̃ϵ,δ(X) = inf

{
R : lim

ν↓0
F (ϵ+ ν,R) ≤ δ

}
, (4.12)

F (τ, R) = lim sup
n→∞

inf
P[Xn∈An]≥1−τ

P
[
1

n
log

1

pXn(Xn)
≥ R,Xn ∈ An

]
, (4.13)

and Hϵ+δ(X) is defined by

Hϵ+δ(X) = inf

{
R : lim sup

n→∞
P
[
1

n
log

1

pXn(Xn)
> R

]
≤ ϵ+ δ

}
. (4.14)

Note that the study by Nomura and Yagi [33] has considered the asymptotic analy-
sis, whereas this study deals with the non-asymptotic analysis as well as the asymptotic
analysis.
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4.4 Non-asymptotic coding theorem for stochastic

codes

The next lemma shows the achievability result on R of an (R, ϵ, δ) code.

Lemma 4.4.1 For any ϵ, δ ∈ [0, 1) satisfying ϵ + δ < 1, there exists an (R, ϵ, δ) code
such that

R = ⌊Hϵ+δ(X)⌋. (4.15)

（Proof）Before the construction of the encoder and decoder is described, some no-
tations are introduced.

• Let xi be the element of X which has the i-th largest probability. That is, it
holds that pX(x1) ≥ pX(x2) ≥ pX(x3) ≥ · · · .

• Let i∗ ≥ 1 be the integer satisfying

i∗−1∑
i=1

pX(xi) < 1− ϵ− δ, (4.16)

i∗∑
i=1

pX(xi) ≥ 1− ϵ− δ. (4.17)

• Let k∗ ≥ 1 be the integer satisfying

k∗−1∑
i=1

pX(xi) < 1− ϵ, (4.18)

k∗∑
i=1

pX(xi) ≥ 1− ϵ. (4.19)

This definition yields k∗ ≥ i∗.

• Let α and β be defined as

α :=
k∗−1∑
i=1

pX(xi), (4.20)

β := 1− ϵ− α. (4.21)

• Let wi be the i-th binary string in {0, 1}⋆ in the increasing order of the length
and ties are arbitrarily broken. For example, w1 = Λ, w2 = 0, w3 = 1, w4 =
00, w5 = 01, etc.
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・・・
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Figure 4.1: Construction of the encoder and the decoder in variable-length compression
allowing errors

The encoder f : X → {0, 1}� and decoder g : {0, 1}� → X are constructed as
follows (see Fig. 4.1).

[Encoder]

1) For i = 1, . . . , k∗ − 1, set f(xi) = wi.

2) For xk∗ , set
1

f(xk∗) =

{
wk∗ with prob. β

pX(xk∗ )
,

w1 with prob. 1− β
pX(xk∗ )

.
(4.22)

3) For x ∈ {xk∗+1, xk∗+2, . . .}, set f(x) = w1.

[Decoder] Set g(wi) = xi (i = 1, . . . , k∗).

Now, the error probability is evaluated. The construction of the encoder and the
decoder yields

g(f(xi)) = xi (4.23)

1Note that we have pX(xk∗) ≥ β from (4.19).
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for i = 1, . . . , k∗ − 1. Furthermore, g(f(xk∗)) = xk∗ holds with probability β/pX(xk∗)
for xk∗ . Thus, it holds that

P[g(f(X)) = X] =
k∗−1∑
i=1

pX(xi) + P[f(X) = wk∗ , X = xk∗ ] (4.24)

= α + β (4.25)

= 1− ϵ. (4.26)

This leads to

P[g(f(X)) ̸= X] = ϵ. (4.27)

Next, the overflow probability is evaluated. The construction of the encoder verifies
that ℓ(wi) = ⌊log i⌋ (i = 1, . . . , k∗). Moreover, the definition of the smooth max
entropy gives Hϵ+δ(X) = log i∗. Hence, setting R = ⌊log i∗⌋ = ⌊Hϵ+δ(X)⌋, we have

P[ℓ(f(X)) > R] ≤
k∗−1∑
i=i∗+1

P[X = xi] + P[f(X) = wk∗ , X = xk∗ ] (4.28)

=
k∗−1∑
i=1

P[X = xi]−
i∗∑
i=1

P[X = xi] + β (4.29)

≤ α− (1− ϵ− δ) + β (4.30)

= δ, (4.31)

where the last inequality follows from the definition of α and (4.17); the last equality
is due to the definition of β. □

The next lemma shows the converse bound on R of an (R, ϵ, δ) code.

Lemma 4.4.2 For any ϵ, δ ∈ [0, 1) satisfying ϵ+ δ < 1, any (R, ϵ, δ) code satisfies

R > Hϵ+δ(X)− 1. (4.32)

（Proof）Fix (R, ϵ, δ) code (f, g) arbitrarily. The definition of an (R, ϵ, δ) code gives

P[X ̸= g(f(X))] ≤ ϵ, (4.33)

P[ℓ(f(X)) > R] ≤ δ. (4.34)

Let S and T be defined as

S := {x ∈ X : x ̸= g(f(x))} , (4.35)

T := {x ∈ X : ℓ(f(x)) > R} . (4.36)

Furthermore, let

V := Sc ∩ T c. (4.37)
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Then, it holds that

P[X ∈ V ] = P[X ∈ Sc ∩ T c] (4.38)

(a)
= P[X ∈ (S ∪ T )c] (4.39)

= 1− P[X ∈ S ∪ T ]

(b)

≥ 1− (P[X ∈ S] + P[X ∈ T ]) (4.40)

(c)

≥ 1− (ϵ+ δ), (4.41)

where

• (a) follows from De Morgan’s laws,

• (b) is due to union bound,

• (c) follows from (4.33)–(4.36).

Hence, the definition of the smooth max entropy and (4.41) yield

Hϵ+δ(X) ≤ log |V|. (4.42)

On the other hand, it holds that

|V|
(a)

≤ 1 + 2 + 22 + · · ·+ 2⌊R⌋ = 2⌊R⌋+1 − 1 < 2R+1, (4.43)

where (a) follows from (4.37), i.e., we have ℓ(f(x)) ≤ R and x = g(f(x)) for any x ∈ V
and this yields (a). Finally, (4.32) is obtained from (4.42) and (4.43). □

Combination of Lemmas 4.4.1 and 4.4.2 gives the following result on R∗(ϵ, δ).

Theorem 4.4.1 For any ϵ, δ ∈ [0, 1) satisfying ϵ+ δ < 1, it holds that

Hϵ+δ(X)− 1 < R∗(ϵ, δ) ≤ ⌊Hϵ+δ(X)⌋. (4.44)

Theorem 4.4.1 shows that R∗(ϵ, δ) can be specified within one bit in the interval
not exceeding Hϵ+δ(X) regardless of the values of ϵ and δ.

Remark 4.4.1 In Theorem 4.4.1, consider the special case of ϵ = 0. In this case,
(4.44) coinsides with (3.64). Furthermore, Theorem 4.4.1 shows the merit of allowing
the positive error probability. Because the smooth max entropy Hγ(X) is a monoton-
ically non-increasing function of γ, Hϵ+δ(X) ≤ Hδ(X) holds. Therefore, comparing
(3.64) with (4.44), it is observed that the upper and lower bounds of the minimum
threshold of the overflow probability can be smaller than the zero error (lossless) case
by allowing the non-zero error probability.
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4.5 Non-asymptotic coding theorem for determin-

istic codes

The next lemma shows the achievability result on R of a deterministic (D,R, ϵ, δ)
code.

Lemma 4.5.1 For any ϵ, δ ∈ [0, 1) satisfying ϵ + δ < 1, there exists a deterministic
(R, ϵ, δ) code such that

R =

⌊
Hϵ+δ(X) +

2 log e

2Hϵ+δ(X)

⌋
. (4.45)

（Proof）First, some notations are defined.

• Let k∗ ≥ 1 be the integer satisfying (4.18) and (4.19).

• Define γ as

γ = 1−
k∗∑
i=1

pX(xi). (4.46)

Then, it holds that γ ≤ ϵ.

• Let j∗ ≥ 1 be the integer satisfying

j∗−1∑
i=1

pX(xi) < 1− γ − δ, (4.47)

j∗∑
i=1

pX(xi) ≥ 1− γ − δ. (4.48)

The deterministic encoder f : X → {0, 1}⋆ and decoder g : {0, 1}⋆ → X are
constructed as follows.

[Encoder]

1) For i = 1, . . . , k∗, set f(xi) = wi.

2) For x ∈ {xk∗+1, xk∗+2, . . .}, set f(x) = w1.

[Decoder] Set g(wi) = xi (i = 1, . . . , k∗).

Now, we evaluate the error probability. From the definition of the encoder and
decoder, we have

P[X = g(f(X))] =
k∗∑
i=1

pX(xi) (4.49)

≥ 1− ϵ. (4.50)

39



Thus, it holds that

P[X ̸= g(f(X))] ≤ ϵ. (4.51)

Next, the overflow probability is evaluated. The definition of the encoder estab-
lishes

P[f(X) = w1] = pX(x1) + γ, (4.52)

P[f(X) = wi] = pX(xi) (i = 2, . . . , k∗). (4.53)

Setting R = ⌊logmin(j∗, k∗)⌋, it holds that2

P [ℓ(f(X)) > R] ≤ 1−
j∗∑
i=1

P[f(X) = wi] (4.54)

= 1−

(
j∗∑
i=1

pX(xi) + γ

)
(4.55)

≤ 1− ((1− γ − δ) + γ) (4.56)

= δ, (4.57)

where the last inequality follows from (4.48).
Therefore, the code (f, g) is a deterministic (R, ϵ, δ) code withR = ⌊logmin(j∗, k∗)⌋.

Let i∗ be the integer satisfying (4.16) and (4.17). Then, the proof of Lemma 4.4.1
gives

log i∗ = Hϵ+δ(X). (4.58)

The fact that γ ≤ ϵ yields the inequality i∗ ≤ j∗ and i∗ ≤ k∗. This means that
i∗ ≤ min(j∗, k∗). If i∗ = min(j∗, k∗), min(j∗, k∗) ≤ i∗ + 2 obviously holds. Then,
assuming that i∗ < min(j∗, k∗), if

min(j∗, k∗) ≤ i∗ + 2 (4.59)

holds, then

logmin(j∗, k∗) ≤ log(i∗ + 2) ≤ log i∗ +
2 log e

i∗
(4.60)

is derived3, and we obtain (4.45).

2If R = ⌊log k∗⌋, then P[ℓ(f(X)) > R] = 0.
3The rightmost inequality follows from Taylor’s expansion.
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In the following, the inequality min(j∗, k∗) ≤ i∗ +2 is proved. The first step of the
proof is the following inequality:

j∗∑
i=1

pX(xi)−
i∗∑
i=1

pX(xi)
(a)

≤ 1− γ − δ + pX(xj∗)− (1− ϵ− δ) (4.61)

= pX(xj∗) + ϵ− γ (4.62)

(b)

≤ pX(xj∗) + pX(xi∗+1), (4.63)

where (a) follows from (4.17) and (4.47); (b) follows from

ϵ− γ ≤

(
1−

k∗−1∑
i=1

pX(xi)

)
−

(
1−

k∗∑
i=1

pX(xi)

)
(4.64)

= pX(xk∗) (4.65)

≤ pX(xi∗+1). (4.66)

Inequality (4.63) is equivalent to

j∗−1∑
i=1

pX(xi) ≤
i∗+1∑
i=1

pX(xi). (4.67)

Thus, j∗ − 1 ≤ i∗ + 1 is obtained, which implies that min(j∗, k∗) ≤ i∗ + 2. □
Combination of Lemma 4.5.1 and the fact that R∗(ϵ, δ) ≤ R̃(ϵ, δ) gives the following

result on R̃(ϵ, δ).

Theorem 4.5.1 For any ϵ, δ ∈ [0, 1) satisfying ϵ+ δ < 1, it holds that

Hϵ+δ(X)− 1 < R̃(ϵ, δ) ≤
⌊
Hϵ+δ(X) +

2 log e

2Hϵ+δ(X)

⌋
. (4.68)

By Theorem 4.5.1, R̃(ϵ, δ) can be specified in the interval within four bits. Thus, it
is observed that this result is slightly weaker than that for stochastic codes (Theorem
4.4.1).

4.6 Asymptotic coding theorem

The next theorem characterizes R(ϵ, δ|X) by the smooth max entropy.

Theorem 4.6.1 For any ϵ, δ ∈ [0, 1),

R(ϵ, δ|X) = lim sup
n→∞

1

n
Hϵ+δ(Xn). (4.69)
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（Proof）First,

R(ϵ, δ|X) ≤ lim sup
n→∞

1

n
Hϵ+δ(Xn) (4.70)

is proved. From Lemma 4.5.1, there exists a code (fn, gn) satisfying

P[Xn ̸= gn(fn(X
n))] ≤ ϵ, (4.71)

P
[
1

n
ℓ(fn(X

n)) >
1

n
Hϵ+δ(Xn) +

2 log e

n2Hϵ+δ(Xn)

]
≤ δ. (4.72)

Fix γ > 0 arbitrarily. Then, it holds that

1

n
Hϵ+δ(Xn) ≤ lim sup

n→∞

1

n
Hϵ+δ(Xn) + γ (4.73)

and

2 log e

n2Hϵ+δ(Xn)
≤ γ (4.74)

for all n ≥ n0 with some n0 > 0. Hence, from (4.72), we have

P
[
1

n
ℓ(fn(X

n)) > lim sup
n→∞

1

n
Hϵ+δ(Xn) + 2γ

]
≤ δ (4.75)

for all n ≥ n0. Thus, from (4.71) and (4.75), (fn, gn) is an (n,R, ϵ, δ) code with

R = lim sup
n→∞

1

n
Hϵ+δ(Xn) + 2γ (4.76)

for all n ≥ n0. Since γ > 0 is arbitrary, this indicates the desired inequality (4.70).

Next,

R(ϵ, δ|X) ≥ lim sup
n→∞

1

n
Hϵ+δ(Xn) (4.77)

is shown. For any (n,R, ϵ, δ) code, Lemma 4.4.2 gives

nR > Hϵ+δ(Xn)− 1. (4.78)

Therefore, it holds that

R ≥ lim sup
n→∞

1

n
Hϵ+δ(Xn) (4.79)

for any (n,R, ϵ, δ) code. Hence, (4.77) is obtained. □
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Remark 4.6.1 Theorems 4.4.1 and 4.5.1 show that, in the non-asymptotic regime,
the results on the minimum threshold are different for stochastic and deterministic
encoders. However, Theorem 4.6.1 indicates that, in the asymptotic regime, the re-
striction to deterministic encoders does not affect the minimum threshold.

The next result on R̂(ϵ, δ|X) is derived by almost the same proof of Theorem 4.6.1.

Corollary 4.6.1 For any ϵ, δ ∈ [0, 1), it holds that

R̂(ϵ, δ|X) = lim
τ↓0

lim sup
n→∞

1

n
Hϵ+δ+τ (Xn). (4.80)

Remark 4.6.2 Similar to Remark 3.7.1, the difference between (4.69) and (4.80) is
due to the difference of the asymptotic constraint, i.e., (4.69) is the result under the
constraint of (4.5) and (4.6) for all n ≥ n0 with some n0, while (4.80) is the result
under the constraint of (4.7) and (4.8).

4.7 Discussion and conclusion of this chapter

We state some discussions regarding the main results in this chapter.

1) Generalization of the proof of the achievability result: The proof of Lemma 4.4.1
can be viewed as a generalization of the proof of Lemma 3.6.1. Indeed, setting
ϵ = 0 in the proof of Lemma 4.4.1, the construction of the encoder in the proof
of Lemma 4.4.1 coincides with that in the proof of Lemma 3.6.1.

2) Trade-off relationship between the error probability and the overflow probability:
In Lemma 4.4.1, Eq. (4.15) indicates that the threshold R is determined by the
sum of ϵ (the tolerated error probability) and δ (the tolerated overflow probabil-
ity). Suppose that ϵ+ δ = C for some constant C. Then, ϵ and δ has a trade-off
relationship, i.e., if ϵ is high, then δ is low and vice versa. Therefore, we see that
the overflow probability and the error probability has a trade-off relationship in
the case that the sum of ϵ and δ is a constant.

3) Stochastic code vs. deterministic code: Comparing the stochastic code in the
proof of Lemma 4.4.1 and the deterministic code in the proof of Lemma 4.5.1, it
is observed that the only difference between these codes is the treatment of the
source symbol xk∗ . That is, for the stochastic code in the proof of Lemma 4.4.1,
randomization is implemented at the source symbol xk∗ .

To summarize this chapter, we considered the problem of variable-length source
coding allowing errors for a general source. Based on the smooth max entropy, the non-
asymptotic coding theorems were derived for both stochastic codes and deterministic
codes. To prove the achievability results, the explicit code construction was used. The
asymptotic coding theorems were obtained based on the non-asymptotic fundamental
limits. Note that basic ideas of the proofs in this chapter are based on those in Chapter
3.
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Chapter 5

Non-asymptotic and asymptotic
analyses of variable-length lossy
source coding

5.1 Introduction

In Chapter 4, we have considered variable-length source coding allowing errors. This
chapter generalizes this setting and deals with the problem of variable-length lossy
source coding under the excess distortion probability.

For this problem, Yagi and Nomura [49] have considered the case where either the
overflow probability or the excess distortion probability does not exceed a positive
constant asymptotically. Nomura and Yagi [32] have treated the case where the prob-
ability of union of events that the excess distortion occurs and the overflow occurs
does not exceed a positive constant asymptotically. Both of these results have focused

on the asymptotic distribution of the self-mutual information 1
n
log

pY n|Xn (Y n|Xn)

pY n (Y n)
and

derived the asymptotic characterization on the minimum threshold of the overflow
probability.

We evaluate the fundamental limit on the overflow probability as in [32] and [49].
The superficial differences between these previous works and this study are

1. this study considers the case where both the excess distortion probability and
the overflow probability may be positive,

2. this study investigates both non-asymptotic and asymptotic cases.

However, we emphasize that the essential difference is that we focus on the distribution
of X ordered in decreasing probability. This viewpoint enables us to evaluate the
minimum threshold of the overflow probability by using a new smooth max entropy-
based quantity. To show the achievability results, we use the explicit code construction,
which can be viewed as a generalization of that in Chapter 4. Similar to Chapter
4, our proof of achievability results clarifies the difference between the deterministic
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encoder and the stochastic encoder. Further, our achievability results show that the
overflow probability and the excess distortion probability are trade-off. Using the
non-asymptotic results, asymptotic coding theorem is established.

This chapter is organized as follows. Section 5.2 sets up the problem formulation.
Section 5.3 describes the related previous work. Section 5.4 introduces the notion of
majorization and Schur concavity. Then, this section defines the smooth max entropy-
based quantity, which plays a significant role in the main results. Section 5.5 derives
the non-asymptotic coding theorems for stochastic codes. The non-asymptotic coding
theorems for deterministic codes are shown in Section 5.6. Section 5.7 derives the
asymptotic coding theorem. Section 5.8 discusses and concludes this chapter. Finally,
Section 5.9 summarizes some properties that the achievability part and the converse
part have in common throughout Chapters 3–5.

5.2 Problem formulation

Let X be a source alphabet and Y be a reproduction alphabet, where both are finite
sets. Let X be a random variable taking a value in X and x be a realization of X.
The probability distribution of X is denoted as PX and the probability mass function
of X is denoted as pX(x). A distortion measure d is defined as d : X × Y → [0,+∞).

As we have seen in Chapter 3, results between a prefix code and a non-prefix code
differ at most one bit. Thus, we discuss only non-prefix code in the following. The
pair of an encoder and a decoder (f, g) is defined as follows. An encoder f is defined
as f : X → {0, 1}⋆. An encoder f may be a stochastic code and produces a non-prefix
code. For x ∈ X , the codeword length of f(x) is denoted as ℓ(f(x)). A deterministic
decoder g is defined as g : {0, 1}⋆ → Y .

Using the excess distortion and the overflow probabilities, we define a (D,R, ϵ, δ)
code.

Definition 5.2.1 Given D,R ≥ 0 and ϵ, δ ∈ [0, 1), a code (f, g) satisfying

P[d(X, g(f(X))) > D] ≤ ϵ, (5.1)

P[ℓ(f(X)) > R] ≤ δ (5.2)

is called a (D,R, ϵ, δ) code.

The fundamental limits that are analyzed in this chapter are the minimum thresh-
olds R∗(D, ϵ, δ) and R̃(D, ϵ, δ) for given D, ϵ, and δ.

Definition 5.2.2 Given D ≥ 0 and ϵ, δ ∈ [0, 1), we define

R∗(D, ϵ, δ) := inf{R : ∃ a (D,R, ϵ, δ) code}, (5.3)

R̃(D, ϵ, δ) := inf{R : ∃ a deterministic (D,R, ϵ, δ) code}. (5.4)
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Remark 5.2.1 Consider the special case δ = 0. A (D,R, ϵ, 0) code gives a fixed-length
code achieving rate R and the excess distortion probability ≤ ϵ. Hence, R∗(D, ϵ, 0) or
R̃(D, ϵ, 0) represents the fundamental limit in fixed-length lossy source coding: the
minimum coding rate of a fixed-length code under the excess distortion criterion.

We consider the following problem setting in the asymptotic analysis. Let X n and
Yn be the n-th Cartesian product of X and Y , respectively. Let Xn be a random
variable taking a value in X n and xn be a realization of Xn. Also, let X = {Xn}∞n=1

denote a general source. The joint probability distribution of Xn is denoted as PXn and
the joint probability mass function of Xn is denoted as pXn(xn). A distortion measure
dn is defined as dn : X n × Yn → [0,+∞). An encoder fn : X n → {0, 1}⋆ is produces
a non-prefix code and possibly a stochastic code. A decoder gn : {0, 1}⋆ → Yn is a
deterministic code.

An (n,D,R, ϵ, δ) code is defined as follows.

Definition 5.2.3 Given D,R ≥ 0 and ϵ, δ ∈ [0, 1), a code (fn, gn) satisfying

P
[
1

n
dn(X

n, gn(fn(X
n))) > D

]
≤ ϵ, (5.5)

P
[
1

n
ℓ(fn(X

n)) > R

]
≤ δ (5.6)

is called an (n,D,R, ϵ, δ) code.

The asymptotic fundamental limit is the following minimum threshold.

Definition 5.2.4 Given D ≥ 0 and ϵ, δ ∈ [0, 1), R(D, ϵ, δ|X) is the infimum of the
threshold R such that there exists an (n,D,R, ϵ, δ) code for all n ≥ n0 with some
n0 > 0.

Furthermore, another asymptotic fundamental limit is defined as follows.

Definition 5.2.5 Given D ≥ 0 and ϵ, δ ∈ [0, 1), R̂(D, ϵ, δ|X) is the infimum of the
threshold R such that there exists a code (fn, gn) satisfying

lim sup
n→∞

P
[
1

n
dn(X

n, gn(fn(X
n))) > D

]
≤ ϵ, (5.7)

lim sup
n→∞

P
[
1

n
ℓ(fn(X

n)) > R

]
≤ δ. (5.8)

5.3 Related previous work

Yagi and Nomura [49] have derived the results about R̂(D, 0, δ|X) and R̂(D, ϵ, 0|X).
Before showing their results, we define some notations and the quantities Iγ(X;Y)
and Dγ(X;Y).
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First, let a general source X = {Xn}∞n=1. Let another general source be Y =
{Y n}∞n=1 taking values in {Yn}∞n=1. A joint probability mass function of Y n is denoted
as pY n(xn). Further, pY n|Xn(yn|xn) denotes a conditional probability mass function of
Y n given Xn. Then, the quantities Iγ(X;Y) and Dγ(X;Y) are defined as follows.

Definition 5.3.1 For any γ ∈ [0, 1),

Iγ(X;Y) := inf{a : F (a | X,Y) ≤ γ}, (5.9)

where

F (a | X,Y) := lim sup
n→∞

P
[
1

n
log

pY n|Xn(Y n|Xn)

pY n(Y n)
> a

]
. (5.10)

Moreover, for any γ ∈ [0, 1),

Dγ(X;Y) := inf{a : J(a | X,Y) ≤ γ}, (5.11)

where

J(a | X,Y) := lim sup
n→∞

P
[
1

n
dn(X

n, Y n) > a

]
. (5.12)

Further,

I(X;Y) := I0(X;Y) (5.13)

D(X;Y) := D0(X;Y). (5.14)

The result in [49] is stated in the next theorem.

Theorem 5.3.1 ([49]) For any D ≥ 0 and δ ∈ [0, 1), R̂(D, 0, δ|X) is given by

R̂(D, 0, δ|X) = inf
Y:D(X,Y)≤D

Iδ(X;Y). (5.15)

Further, for any D ≥ 0 and ϵ ∈ [0, 1), R̂(D, ϵ, 0|X) is given by

R̂(D, ϵ, 0|X) = inf
Y:Dϵ(X,Y)≤D

I(X;Y). (5.16)

5.4 Smooth max entropy-based quantity

One of the useful properties of the smooth max entropy1 is Schur concavity. This
property is used in the proof of the achievability result in the main theorem. The notion
of majorization is first reviewed before the definition of a Schur concave function.

1The smooth max entropy is defined as in (3.15).
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Definition 5.4.1 Let R+ be the set of non-negative real numbers. Further, let m
be a positive integer and Rm

+ be the m-th Cartesian product of R+. Suppose that
x = (x1, . . . , xm) ∈ Rm

+ and y = (y1, . . . , ym) ∈ Rm
+ satisfy

xi ≥ xi+1, yi ≥ yi+1 (i = 1, 2, . . . ,m− 1). (5.17)

For k = 1, . . . ,m− 1, if x ∈ Rm
+ and y ∈ Rm

+ satisfy

k∑
i=1

xi ≤
k∑

i=1

yi and
m∑
i=1

xi =
m∑
i=1

yi, (5.18)

then we say that y majorizes x (it is denoted as x ≺ y in this dissertation).

Figure 5.1: The illustration of x ≺ y

Setting 1, . . . ,m as the horizontal axis and
∑k

i=1 xi,
∑k

i=1 yi as the vertical axis, we
can draw x ≺ y as in Fig. 5.1.

Schur concave functions are defined as the following definition.

Definition 5.4.2 A function h(·) : Rm
+ → R is said to be a Schur concave function if

h(y) ≤ h(x) (5.19)

for any x,y ∈ Rm
+ satisfying x ≺ y.
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The definitions of the smooth max entropy and Schur concave functions indicate
that the smooth max entropy is a Schur concave function2.

Next, a new quantity is introduced based on the smooth max entropy. This quan-
tity plays a significant role in producing the main results.

Definition 5.4.3 Given D ≥ 0 and ϵ, δ ∈ [0, 1), Gδ
D,ϵ(X) is defined as

Gδ
D,ϵ(X) := min

PY |X :

P[d(X,Y )>D]≤ϵ

Hδ(Y ) (5.20)

= min
PY |X :

P[d(X,Y )>D]≤ϵ

min
W⊂Y:

P[Y ∈W]≥1−δ

log |W| (5.21)

where PY |X denotes a conditional probability distribution of Y given X.

Remark 5.4.1 For a given D ≥ 0 and ϵ ∈ [0, 1), suppose that the following inequality
holds:

P
[
inf
y∈Y

d(X, y) > D

]
> ϵ (5.22)

In this case, there are no codes whose excess distortion probability is less than or equal
to ϵ. Conversely, (5.22) holds if such codes do not exist for given D and ϵ. In such a
case, R∗(D, ϵ, δ) and R̃(D, ϵ, δ) are defined as R∗(D, ϵ, δ) = +∞ and R̃(D, ϵ, δ) = +∞.
Further, if (5.22) holds, Gδ

D,ϵ(X) is defined as Gδ
D,ϵ(X) = +∞. This is because there

is no conditional probability distribution PY |X on Y satisfying P[d(X, Y ) > D] ≤ ϵ.

5.5 Non-asymptotic coding theorem for stochastic

codes

The next lemma shows the achievability result on R of a (D,R, ϵ, δ) code. Note that
the proof of this lemma is parallel with that of Lemma 4.4.1 (see the discussion in
Section 5.8 for details).

Lemma 5.5.1 Assume that Gδ
D,ϵ(X) < +∞. For any D ≥ 0 and ϵ, δ ∈ [0, 1), there

exists a (D,R, ϵ, δ) code such that

R = ⌊Gδ
D,ϵ(X)⌋. (5.23)

（Proof）First, some notations are defined.

• For y ∈ Y and D ≥ 0, the D-ball BD(y) is defined as

BD(y) := {x ∈ X : d(x, y) ≤ D}. (5.24)

The illustration of this D-ball BD(y) is in Fig. 5.2.
2By using the notion of majorization, the previous study [16] has shown that the smooth Rényi

entropy of order α is a Schur concave function for 0 ≤ α < 1 and a Schur convex function for α > 1.
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Figure 5.2: The D-ball BD(y)

• The following procedure3 defines yi (i = 1, 2, · · · ). Let y1 be defined as

y1 := arg max
y∈Y

P[X ∈ BD(y)], (5.25)

and for i = 2, 3, · · · , let yi be defined as

yi := arg max
y∈Y

P

[
X ∈ BD(y) \

i−1⋃
j=1

BD(yj)

]
. (5.26)

• For i = 1, 2, . . .,

AD(yi) := BD(yi) \
i−1⋃
j=1

BD(yj). (5.27)

From the definition, it holds that

i⋃
j=1

AD(yj) =
i⋃

j=1

BD(yj) (i ≥ 1), (5.28)

AD(yi) ∩ AD(yj) = ∅ (∀i �= j), (5.29)

P[X ∈ AD(y1)] ≥ P[X ∈ AD(y2)] ≥ · · · . (5.30)

3In this paper, we assume that X and Y are finite sets. However, we can assume countably infinite
X and Y if this operation is admitted for countably infinite X and Y.
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• If ϵ+ δ < 1, let i∗ ≥ 1 be the integer satisfying

i∗−1∑
i=1

P[X ∈ AD(yi)] < 1− ϵ− δ, (5.31)

i∗∑
i=1

P[X ∈ AD(yi)] ≥ 1− ϵ− δ. (5.32)

If ϵ+ δ ≥ 1, then i∗ := 1.

• Let k∗ ≥ 1 be the integer satisfying

k∗−1∑
i=1

P[X ∈ AD(yi)] < 1− ϵ, (5.33)

k∗∑
i=1

P[X ∈ AD(yi)] ≥ 1− ϵ. (5.34)

From this definition, it holds that k∗ ≥ i∗.

• Let α and β be defined as

α :=
k∗−1∑
i=1

P[X ∈ AD(yi)], (5.35)

β := 1− ϵ− α. (5.36)

• Let wi be the i-th binary string in {0, 1}⋆ in the increasing order of the length
and ties are arbitrarily broken. For example, w1 = λ,w2 = 0, w3 = 1, w4 =
00, w5 = 01, etc.

The encoder f : X → {0, 1}⋆ and the decoder g : {0, 1}⋆ → Y are constructed as
follows (see Fig. 5.3).

[Encoder]

1) For x ∈ AD(yi) (i = 1, . . . , k∗ − 1), set f(x) = wi.

2) For x ∈ AD(yk∗), set
4

f(x) =

{
wk∗ with prob. β

P[X∈AD(yk∗ )]
,

w1 with prob. 1− β
P[X∈AD(yk∗ )]

.
(5.37)

3) For x /∈
∪k∗

i=1 AD(yi), set f(x) = w1.

4Note that we have Pr{X ∈ AD(yk∗)} ≥ β from (5.34).
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・・・

・・・

・・・

Figure 5.3: Construction of the encoder and the decoder in lossy compression

[Decoder] Set g(wi) = yi (i = 1, . . . , k∗).

Now, the excess distortion probability is evaluated. It holds that d(x, g(f(x))) ≤ D
for x ∈ AD(yi) (i = 1, . . . , k∗ − 1) since g(f(x)) = yi. Furthermore, d(x, g(f(x))) ≤ D
holds with probability β/P[X ∈ AD(yk∗)] for x ∈ AD(yk∗). Thus,

P[d(X, g(f(X))) ≤ D] =
k∗−1∑
i=1

P[X ∈ AD(yi)] + P[f(X) = wk∗ , X ∈ AD(yk∗)] (5.38)

= α + β = 1− ε. (5.39)

Therefore, we have

P[d(X, g(f(X))) > D] = ε. (5.40)

Next, the overflow probability is evaluated. The construction of the encoder verifies
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that ℓ(wi) = ⌊log i⌋ (i = 1, . . . , k∗). Hence, setting R = ⌊log i∗⌋, we have

P[ℓ(f(X)) > R] ≤
k∗∑

i=i∗+1

P[f(X) = wi] (5.41)

=
k∗−1∑
i=i∗+1

P[X ∈ AD(yi)] + P[f(X) = wk∗ , X ∈ AD(yk∗)] (5.42)

=
k∗−1∑
i=1

P[X ∈ AD(yi)]−
i∗∑
i=1

P[X ∈ AD(yi)] + β (5.43)

≤ α− (1− ϵ− δ) + β (5.44)

= δ, (5.45)

where the last inequality follows from the definition of α and (5.32); the last equality
is due to the definition of β.

The foregoing result shows that the code (f, g) is a (D,R, ϵ, δ) code with R =
⌊log i∗⌋. Thus, if

log i∗ = Gδ
D,ϵ(X) (5.46)

is shown, the proof of the theorem is completed. First, Y := g(f(X)). Notice that

pY (y1)
(a)
= P[X ∈ AD(y1)] + P

[
X ∈

∪
i≥k∗+1

AD(yi)

]
+ P[f(X) = w1, X ∈ AD(yk∗)] (5.47)

(b)
= P[X ∈ AD(y1)] + P[d(X, g(f(X))) > D] (5.48)

(c)
= P[X ∈ AD(y1)] + ϵ, (5.49)

pY (yi) = P[X ∈ AD(yi)] (i = 2, . . . , k∗ − 1). (5.50)

where (a) and (b) follow from the definition of the encoder and decoder; (c) is due to
(5.40). Then5,

i∗−1∑
i=1

pY (yi) =
i∗−1∑
i=1

P[X ∈ AD(yi)] + ϵ < 1− δ, (5.51)

i∗∑
i=1

pY (yi) =
i∗∑
i=1

P[X ∈ AD(yi)] + ϵ ≥ 1− δ, (5.52)

pY (y1) ≥ pY (y2) ≥ · · · ≥ pY (yk∗). (5.53)

5If i∗ = k∗, the equality in (5.52) does not hold. However,
∑i∗

i=1 pY (yi) ≥ 1 − δ is true because∑i∗

i=1 pY (yi) = 1.
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This implies that log i∗ = Hδ(Y ). Hence, if

Hδ(Y ) = Gδ
D,ϵ(X) (5.54)

is shown, the desired equation log i∗ = Gδ
D,ϵ(X) is obtained.

The following lemma is useful to show (5.54).

Lemma 5.5.2 If PY ∗ which is induced by PY ∗|X satisfying P[d(X,Y ∗) > D] ≤ ϵ

majorizes any PỸ which is induced by PỸ |X satisfying P[d(X, Ỹ ) > D] ≤ ϵ, then

Hδ(Y ∗) = Gδ
D,ϵ(X) holds.

（Proof）This lemma is obtained by combining the definition of Gδ
D,ϵ(X) and the fact

that the smooth max entropy is a Schur concave function. □
In view of the above lemma, we prove that PY majorizes any PỸ induced by PỸ |X

satisfying P[d(X, Ỹ ) > D] ≤ ϵ. To show this fact, we assume the following condition
(♠) and show a contradiction.

(♠) There is a PỸ satisfying P[d(X, Ỹ ) > D] ≤ ϵ but not being majorized by PY .

Let yπ(1) give the largest pỸ (y) in Y , yπ(2) give the largest pỸ (y) in Y \ {yπ(1)},
yπ(3) give the largest pỸ (y) in Y \ {yπ(1), yπ(2)}, etc. That is, pỸ (yπ(1)) ≥ pỸ (yπ(2)) ≥
· · · ≥ pỸ (yπ(k∗)) and pỸ (yπ(k∗)) ≥ pỸ (yπ(i)) for all i = k∗ + 1, k∗ + 2, . . . . The fact that
the support of pY is {1, 2, . . . , k∗} and the assumption (♠) show that there exists a
1 ≤ j0 ≤ k∗ − 1 satisfying

j0∑
i=1

(pỸ (yπ(i))− pY (yi)) > 0. (5.55)

On the other hand, the excess distortion probability under PXPỸ |X is evaluated as

P[d(X, Ỹ ) > D]

≥
∑
x∈X

j0∑
i=1

pX(x)pỸ |X(yπ(i)|x)I{d(x, yπ(i)) > D} (5.56)

=
∑
x∈X

j0∑
i=1

pX(x)pỸ |X(yπ(i)|x)−
∑
x∈X

j0∑
i=1

pX(x)pỸ |X(yπ(i)|x)I{x ∈ BD(yπ(i))} (5.57)

=

j0∑
i=1

pỸ (yπ(i))−
∑
x∈X

pX(x)

j0∑
i=1

pỸ |X(yπ(i)|x)I{x ∈ BD(yπ(i))} (5.58)

≥
j0∑
i=1

pỸ (yπ(i))− P

[
X ∈

j0∪
i=1

BD(yπ(i))

]
(5.59)
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where I{·} denotes the indicator function and the last inequality is due to

j0∑
i=1

pỸ |X(yπ(i)|x)I{x ∈ BD(yπ(i))} ≤ I

{
x ∈

j0∪
i=1

BD(yπ(i))

}
(5.60)

for all x ∈ X . For the second term in (5.59), it holds that

P

[
X ∈

j0∪
i=1

BD(yπ(i))

]
(a)

≤ P

[
X ∈

j0∪
i=1

BD(yi)

]
(5.61)

(b)
=

j0∑
i=1

P[X ∈ AD(yi)] (5.62)

(c)
=

j0∑
i=1

pY (yi)− ϵ. (5.63)

where

• (a) follows from the definition of yi,

• (b) follows from (5.28) and (5.29),

• (c) follows from (5.49) and (5.50).

Plugging (5.63) into (5.59) establishes

P[d(X, Ỹ ) > D] ≥
j0∑
i=1

(pỸ (yπ(i))− pY (yi)) + ϵ > ϵ, (5.64)

where the last inequality is due to (5.55). This is a contradiction to the fact that
P[d(X, Ỹ ) > D] ≤ ϵ. □

Remark 5.5.1 The random coding argument is not used to prove the achievability
result. Instead, an explicit code construction is given. This is similar to Feinstein’s
cookie-cutting argument [6]. The constructed code satisfies the properties6 of the opti-
mal code discussed in [20].

The next lemma shows the converse bound on R of a (D,R, ϵ, δ) code.

Lemma 5.5.3 For any D ≥ 0 and ϵ, δ ∈ [0, 1), any (D,R, ϵ, δ) code satisfies

R > Gδ
D,ϵ(X)− 1. (5.65)

6Kostina et al. [20] have studied the optimal variable-length code that achieves the minimum mean
codeword length under the constraint of the excess distortion probability. In [20], several properties
of the optimal code are shown.
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（Proof）Fix arbitrary (D,R, ϵ, δ) code (f, g), and set Y := g(f(X)). The definition
of a (D,R, ϵ, δ) code gives

P[ℓ(f(X)) > R] ≤ δ, (5.66)

P[d(X,Y ) > D] ≤ ϵ. (5.67)

Let T be defined as

T := {g(f(x)) ∈ Y : x satisfies ℓ(f(x)) > R} . (5.68)

Then, (5.66) is rewritten as

P[Y ∈ T ] ≤ δ (5.69)

Hence, it holds that

P[Y ∈ T c] ≥ 1− δ, (5.70)

where the superscript “c” represents the complement. Inequality (5.70) and the defi-
nition of the smooth max entropy establish

Hδ(Y ) ≤ log |T c|. (5.71)

On the other hand, since ℓ(g−1(y)) ≤ ⌊R⌋ for y ∈ T c,

|T c| ≤ 1 + 2 + · · ·+ 2⌊R⌋ = 2⌊R⌋+1 − 1 < 2R+1. (5.72)

Combining (5.71) and (5.72) yields

Hδ(Y ) < R + 1. (5.73)

Thus, the second inequality in (5.67) gives

Gδ
D,ϵ(X) < R + 1. (5.74)

This completes the proof. □
Combination of Lemmas 5.5.1 and 5.5.3 immediately yields the following result on

R∗(D, ϵ, δ).

Theorem 5.5.1 For any D ≥ 0 and ϵ, δ ∈ [0, 1), it holds that

Gδ
D,ϵ(X)− 1 < R∗(D, ϵ, δ) ≤ ⌊Gδ

D,ϵ(X)⌋. (5.75)

Theorem 5.5.1 shows that the minimum threshold R∗(D, ϵ, δ) can be specified
within one bit in the interval not greater than Gδ

D,ϵ(X), regardless of the values D, ϵ,
and δ. Because we use an explicit construction of good codes rather than the random
coding argument in the proof of Lemma 5.5.1, such a result is obtained.
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5.6 Non-asymptotic coding theorem for determin-

istic codes

The next lemma shows the achievability result on R of a deterministic (D,R, ϵ, δ)
code. Note that the proof of this lemma is parallel with that of Lemma 4.5.1 (see the
discussion in Section 5.8 for details).

Lemma 5.6.1 Assume that Gδ
D,ϵ(X) < +∞. For any D ≥ 0 and ϵ, δ ∈ [0, 1), there

exists a deterministic (D,R, ϵ, δ) code such that

R =

⌊
Gδ

D,ϵ(X) +
2 log e

2G
δ
D,ϵ(X)

⌋
. (5.76)

（Proof）
First, some notations are defined.

• Let k∗ ≥ 1 be the integer satisfying (5.33) and (5.34).

• Define γ as

γ = 1−
k∗∑
i=1

P[X ∈ AD(yi)]. (5.77)

Then, it holds that γ ≤ ϵ.

• Let j∗ ≥ 1 be the integer satisfying

j∗−1∑
i=1

P[X ∈ AD(yi)] < 1− γ − δ, (5.78)

j∗∑
i=1

P[X ∈ AD(yi)] ≥ 1− γ − δ. (5.79)

The deterministic encoder f : X → {0, 1}⋆ and decoder g : {0, 1}⋆ → Y are
constructed as follows.
[Encoder]

1) For x ∈ AD(yi) (i = 1, . . . , k∗), set f(x) = wi.

2) For x /∈
∪k∗

i=1 AD(yi), set f(x) = w1.

[Decoder] Set g(wi) = yi (i = 1, . . . , k∗).
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Now, the excess distortion probability is evaluated. The definition of the encoder
and decoder gives

P[d(X, g(f(X))) ≤ D] =
k∗∑
i=1

P[X ∈ AD(yi)] (5.80)

≥ 1− ϵ. (5.81)

Therefore, it holds that

P[d(X, g(f(X))) > D] ≤ ϵ. (5.82)

Next, the overflow probability is evaluated. The definition of the encoder yields

P[f(X) = w1] = P[X ∈ AD(y1)] + γ, (5.83)

P[f(X) = wi] = P[X ∈ AD(yi)] (i = 2, . . . , k∗). (5.84)

Setting R = ⌊logmin(j∗, k∗)⌋, it holds that7

P [ℓ(f(X)) > R] ≤ 1−
j∗∑
i=1

P[f(X) = wi] (5.85)

= 1−

(
j∗∑
i=1

P[X ∈ AD(yi)] + γ

)
(5.86)

≤ 1− ((1− γ − δ) + γ) (5.87)

= δ, (5.88)

where the last inequality is due to (5.79).
Thus, the code (f, g) is a deterministic (D,R, ϵ, δ) code with R = ⌊logmin(j∗, k∗)⌋.

Let i∗ be the integer satisfying (5.31) and (5.32). Then, the proof of Lemma 5.5.1
gives

log i∗ = Gδ
D,ϵ(X). (5.89)

Since γ ≤ ϵ, it is easily verified that i∗ ≤ j∗ and i∗ ≤ k∗. This means that i∗ ≤
min(j∗, k∗). If i∗ = min(j∗, k∗), it is obvious that min(j∗, k∗) ≤ i∗+2. Thus, assuming
that i∗ < min(j∗, k∗), we shall show that

min(j∗, k∗) ≤ i∗ + 2. (5.90)

This inequality leads to

logmin(j∗, k∗) ≤ log(i∗ + 2) ≤ log i∗ +
2 log e

i∗
, (5.91)

7If R = ⌊log k∗⌋, then P[ℓ(f(X)) > R] = 0.
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where the rightmost inequality is due to Taylor’s expansion. This yields the desired
result (5.76).

In the following, min(j∗, k∗) ≤ i∗ +2 is shown. The first step to show this result is
the following inequality:

j∗∑
i=1

P[X ∈ AD(yi)]−
i∗∑
i=1

P[X ∈ AD(yi)] (5.92)

(a)

≤ 1− γ − δ + P[X ∈ AD(yj∗)]− (1− ϵ− δ) (5.93)

= P[X ∈ AD(yj∗)] + ϵ− γ (5.94)

(b)

≤ P[X ∈ AD(yj∗)] + P[X ∈ AD(yi∗+1)]. (5.95)

where (a) follows from (5.32) and (5.78); (b) follows from

ϵ− γ ≤

(
1−

k∗−1∑
i=1

P[X ∈ AD(yi)]

)
−

(
1−

k∗∑
i=1

P[X ∈ AD(yi)]

)
(5.96)

= P[X ∈ AD(yk∗)] (5.97)

≤ P[X ∈ AD(yi∗+1)]. (5.98)

Inequality (5.95) is equivalent to

j∗−1∑
i=1

P[X ∈ AD(yi)] ≤
i∗+1∑
i=1

P[X ∈ AD(yi)]. (5.99)

Thus, j∗ − 1 ≤ i∗ + 1 is obtained. This implies that min(j∗, k∗) ≤ i∗ + 2. □
From Lemma 5.6.1 and the fact that R∗(D, ϵ, δ) ≤ R̃(D, ϵ, δ), the following result

on R̃(D, ϵ, δ) is obtained.

Theorem 5.6.1 For any D ≥ 0 and ϵ, δ ∈ [0, 1), it holds that

Gδ
D,ϵ(X)− 1 < R̃(D, ϵ, δ) ≤

⌊
Gδ

D,ϵ(X) +
2 log e

2G
δ
D,ϵ(X)

⌋
. (5.100)

Theorem 5.6.1 indicates that R̃(D, ϵ, δ) can be specified in the interval within four
bits. This is the slightly weaker result than that for stochastic codes (Theorem 5.5.1).

5.7 Asymptotic coding theorem

The next theorem gives the characterization of R(D, ϵ, δ|X) by the smooth max
entropy-based quantity Gδ

D,ϵ(X
n).
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Theorem 5.7.1 For any D ≥ 0 and ϵ, δ ∈ [0, 1), it holds that

R(D, ϵ, δ|X) = lim sup
n→∞

1

n
Gδ

D,ϵ(X
n), (5.101)

where Gδ
D,ϵ(X

n) is defined as

Gδ
D,ϵ(X

n) := min
PY n|Xn :

P[dn(Xn,Y n)>nD]≤ϵ

Hδ(Y n). (5.102)

（Proof）First,

R(D, ϵ, δ|X) ≤ lim sup
n→∞

1

n
Gδ

D,ϵ(X
n) (5.103)

is shown. From Lemma 5.6.1, there exists a code (fn, gn) satisfying

P
[
1

n
dn(X

n, gn(fn(X
n))) > D

]
≤ ϵ, (5.104)

P
[
1

n
ℓ(fn(X

n)) >
1

n
Gδ

D,ϵ(X
n) +

2 log e

n2G
δ
D,ϵ(X

n)

]
≤ δ. (5.105)

Fix γ > 0 arbitrarily. Then, it holds that

1

n
Gδ

D,ϵ(X
n) ≤ lim sup

n→∞

1

n
Gδ

D,ϵ(X
n) + γ (5.106)

and

2 log e

n2G
δ
D,ϵ(X

n)
≤ γ (5.107)

for all n ≥ n0 with some n0 > 0. Then, from (5.105), we have

P
[
1

n
ℓ(fn(X

n)) > lim sup
n→∞

1

n
Gδ

D,ϵ(X
n) + 2γ

]
≤ δ (5.108)

for all n ≥ n0. Thus, from (5.104) and (5.108), (fn, gn) is an (n,D,R, ϵ, δ) code with

R = lim sup
n→∞

1

n
Gδ

D,ϵ(X
n) + 2γ (5.109)

for all n ≥ n0. Since γ > 0 is arbitrary, this indicates the desired inequality (5.103).

Next,

R(D, ϵ, δ|X) ≥ lim sup
n→∞

1

n
Gδ

D,ϵ(X
n) (5.110)
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is shown. For any (n,D,R, ϵ, δ) code, Lemma 5.5.3 gives

nR > Gδ
D,ϵ(X

n)− 1. (5.111)

Therefore, it holds that

R ≥ lim sup
n→∞

1

n
Gδ

D,ϵ(X
n) (5.112)

for any (n,D,R, ϵ, δ) code. Hence, we have (5.110). □
Theorem 5.7.1 characterizes the minimum threshold on the overflow probability by

the quantity related to the entropy. On the other hand, previous works such as [32]
and [49] have characterized it by the quantity related to the mutual information.

Remark 5.7.1 Theorem 5.7.1 shows that, in the asymptotic regime, the restriction
to deterministic encoders does not affect the minimum threshold of the overflow proba-
bility. On the other hand, Theorems 5.5.1 and 5.6.1 show that, in the non-asymptotic
regime, the results on the minimum threshold are different for stochastic and deter-
ministic encoders.

The next result on R̂(D, ϵ, δ|X) is obtained by almost the same proof of Theorem
5.7.1.

Corollary 5.7.1 For any D ≥ 0 and ϵ, δ ∈ [0, 1), it holds that

R̂(D, ϵ, δ|X) = lim
τ↓0

lim sup
n→∞

1

n
Gδ+τ

D,ϵ+τ (X
n). (5.113)

Remark 5.7.2 Similar to Remark 3.7.1, the difference between (5.101) and (5.113)
is due to the difference of the asymptotic constraint, i.e., (5.101) is the result under
the constraint of (5.5) and (5.6) for all n ≥ n0 with some n0, while (5.113) is the
result under the constraint of (5.7) and (5.8).

5.8 Discussion and conclusion of this chapter

Some discussions on the main results are described as follows.

1) Generalization of the proof of the achievability result: The proof of Lemma 5.5.1
can be viewed as a generalization of the proof of Lemma 4.4.1. To see this, we
set D = 0, X = Y , and

d(x, y) = I{x ̸= y} (5.114)

for any x, y ∈ X , where I{·} denotes an indicator function. Then, the con-
struction of the encoder in the proof of Lemma 5.5.1 coincides with that in the
proof of Lemma 4.4.1. Similarly, the proof of Lemma 5.6.1 can be viewed as a
generalization of the proof of Lemma 4.5.1.
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2) Trade-off relationship between the excess distortion probability and the overflow
probability: In Lemma 5.5.1, Eq. (5.23) and (5.46) show that the threshold R is
determined by the sum of ϵ (the tolerated excess distortion probability) and δ
(the tolerated overflow probability). Suppose that ϵ + δ = C for some constant
C. Then, ϵ and δ has a trade-off relationship, i.e., if ϵ is high, then δ is low
and vice versa. Therefore, we see that the overflow probability and the excess
distortion probability has a trade-off relationship in the case that the sum of ϵ
and δ is a constant.

3) Stochastic code vs. deterministic code: Comparing the stochastic code in the
proof of Lemma 5.5.1 and the deterministic code in the proof of Lemma 5.6.1,
it is observed that the only difference between these codes is the treatment of
the source symbols in AD(yk∗). That is, for the stochastic code in the proof of
Lemma 5.5.1, randomization is implemented at the source symbols x ∈ AD(yk∗).

To summarize this chapter, we considered the problem of variable-length lossy
source coding for a general source. First, the smooth max entropy-based quantity
was defined. Then, using this quantity, novel non-asymptotic coding theorems were
obtained for both stochastic codes and deterministic codes. The explicit code construc-
tion was used to prove the achievability results. Finally, asymptotic coding theorems
were shown based on the non-asymptotic results. Notice that basic ideas of the proofs
in this chapter are based on those in Chapters 3 and 4.

5.9 Discussion of Chapters 3–5

To summarize Chapters 3–5, we discuss some properties that the achievability part
and the converse part have in common throughout Chapters 3–5.

5.9.1 Discussion on the achievability part in Chapters 3–5

In the following, we discuss some properties of the codes in the proofs of the achiev-
ability results in Chapters 3–5.

1) Basic strategy on the construction of the encoder: The basic strategy to construct
the encoder is as follows:

– For most likely source symbols, we encode these symbols so as not to suffer
overflow or error (excess distortion).

– For least likely source symbols, we allow these symbols to suffer overflow or
error (excess distortion).

2) Difference between stochastic codes and deterministic codes: In Chapters 4 and
5, we considered the stochastic codes and deterministic codes. As pointed out
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in Section 4.7 and Section 5.8, the only difference between stochastic and de-
terministic codes is the treatment of the source symbol xk∗ (in Chapter 4) and
source symbols in AD(yk∗) (in Chapter 5). If we implement the randomization
for xk∗ (or elements in AD(yk∗)),

– we can make the error probability (or the excess distortion probability)
exactly ϵ,

– we can make the overflow probability exceeding the threshold ⌊Hϵ+δ(X)⌋
(or ⌊Gδ

D,ϵ(X)⌋) less than or equal to δ.

On the other hand, if the randomization is not used for xk∗ (or elements in
AD(yk∗)), the error probability (or the excess distortion probability) is less than
or equal to ϵ, not exactly ϵ. In this case, to make the overflow probability smaller
than δ, we must set the threshold⌊

Hϵ+δ(X) +
2 log e

2Hϵ+δ(X)

⌋
(5.115)

(or

⌊
Gδ

D,ϵ(X) + 2 log e

2
Gδ
D,ϵ

(X)

⌋
), which is slightly greater than ⌊Hϵ+δ(X)⌋ (or ⌊Gδ

D,ϵ(X)⌋).

3) Relationship between the overflow probability and the error probability (excess
distortion probability) and another construction of the encoder: In Chapters 4
and 5, the fundamental limit on the overflow probability is determined by the
sum of ϵ (the tolerated error or excess distortion probability) and δ (the tolerated
overflow probability). In the proof of the achievability results in Chapters 4 and
5, the encoder was constructed as shown in Fig. 5.4 (see also Fig. 4.1 and Fig.
5.3). In this construction,

– the least likely source symbols (which correspond the part painted in gray
in Fig. 5.4) are coded so as to have error (excess distortion),

– the source symbols whose indices are greater than i∗ and less than k∗ (which
correspond the part painted in black in Fig. 5.4) are coded so as to overflow.

However, the fact that the fundamental limit is determined by the sum of ϵ
and δ indicates that we can construct another encoder as shown in Fig. 5.5.
That is, we define k̃ appropriately, and we can construct the encoder whose
error probability (or excess distortion probability) is less than or equal to ϵ and
overflow probability is less than or equal to δ as follows:

– the source symbols whose indices are greater than i∗ and less than k̃ (which
correspond the part painted in gray in Fig. 5.5) are coded so as to have
error (excess distortion),

– the least likely source symbols (which correspond the part painted in black
in Fig. 5.5) are coded so as to overflow.
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・・・

・・・

・・・

Probability error probability 
(excess distortion 
probability)

overflow
probability

Figure 5.4: Construction of the encoder in Chapters 4 and 5 with error probability
(excess distortion probability) ε and overflow probability δ

・・・

・・・

・・・

Probability
error probability 
(excess distortion 
probability)

overflow
probability

Figure 5.5: Another construction of the encoder with error probability (excess distor-
tion probability) ε and overflow probability δ
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5.9.2 Discussion on the converse part in Chapters 3–5

In the proofs of the converse results in Chapters 3–5, we evaluated the cardinality of
“good” sets by using the smooth max entropy (or the quantity defined by the smooth
max entropy). That is,

• in Chapter 3, we evaluated the cardinality of the set of source symbols whose
codeword length does not overflow by using the smooth max entropy (see (3.36)
and (3.61));

• in Chapter 4, we analyzed the cardinality of the set of source symbols which
neither overflow nor have error by using the smooth max entropy (see (4.42));

• in Chapter 5, we examined the cardinality of the set of source symbols which
neither overflow nor have excess distortion by using the quantity defined by the
smooth max entropy (see (5.74)).
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Chapter 6

Second-order achievable rate region
of Slepian-Wolf coding problem

6.1 Introduction

Through Chapters 3–5, we have considered variable-length source coding problems and
characterized the minimum threshold by using the smooth max entropy. As stated in
Section 1.2, the variable-length source coding problem with the overflow probability
and the fixed-length source coding problem are closely related. Thus, this fact raises
the following question: can we characterize the fundamental limit in fixed-length source
coding based on the smooth max entropy? Chapter 6 gives one of the answers for this
question.

This chapter deals with the fixed-length Slepian-Wolf coding problem [40]: for two
correlated sources, one decoder jointly decodes two codewords encoded by separate
encoders. Slepian and Wolf [40] have first clarified the achievable rate region for this
problem. After this work, studies have been done to clarify the achievable rate region
in various problem settings.

This chapter focuses the achievable rate region of Slepian-Wolf coding problem for
a general source. For this problem, based on the information spectrum methods [10],
Miyake and Kanaya [25] have derived the achievable rate region under the condition
that the error probability vanishes. Further, Han [10] has treated the case where a
positive error probability is allowed and derived the achievable rate region. These
achievable rate regions are said to be the first-order achievable rate region. Recently,
the second-order achievable rate region, a finer evaluation of the achievable rate region
than the first-order case, has been analyzed by Nomura and Han [31] based on the
information spectrum methods.

Instead of using the information spectrum methods, Uyematsu and Matsuta [46]
have analyzed the first-order achievable rate region based on the quantity related to
the smooth max entropy [34] and the conditional smooth max entropy [35]. However,
this work has not derived the second-order achievable rate region.

This chapter extends the results of [46] to the second-order case. Further, this
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chapter shows the relationship between the derived achievable rate region and the rate
region defined by the smooth max entropy and the conditional smooth max entropy.
Moreover, the relationship is clarified between the two functions: the function which
characterizes the second-order achievable rate region in [31] and that in our study.

A map of this chapter and previous studies are shown in Table 6.1.

Table 6.1: The map of Chapter 6 and previous studies
information spectrum smooth max entropy

first-order achievable
rate region

Miyake and Kanaya [25]
Han [10] Uyematsu and Matsuta [46]

second-order achievable
rate region Nomura and Han [31] Chapter 6

The organization of this chapter is as follows. Section 6.2 explains the problem
formulation. First, an (n,M

(1)
n ,M

(2)
n , ϵn) code is introduced. Second, first-order achiev-

able rate region is defined. Then, second-order achievable rate region is defined. Sec-
tion 6.3 describes the prior works. Section 6.4 shows the non-asymptotic key lemmas,
which play a fundamental role in producing the main results. Section 6.5 derives the
main results in this chapter. The proofs of the main results are shown in Section 6.6.
Finally, Section 6.7 concludes this chapter.

6.2 Problem formulation

6.2.1 (n,M
(1)
n ,M

(2)
n , ϵn) code

Let X1,X2 be source alphabets of two correlated sources, where X1,X2 are finite or
countably infinite sets. Let (X1,X2) = {(Xn

1 , X
n
2 )}∞n=1 denote a general correlated

source [10], where (Xn
1 , X

n
2 ) is a random variable taking a value in X n

1 × X n
2 . Let

(x1,x2) be a realization of a random variable (Xn
1 , X

n
2 ). The probability distribution

of (Xn
1 , X

n
2 ) is denoted as PXn

1 X
n
2
and the probability mass function of (Xn

1 , X
n
2 ) is

denoted as pXn
1 X

n
2
(x1,x2). Further, the conditional probability distribution ofXn

i given
Xn

j is denoted as PXn
i |Xn

j
for (i, j) = (1, 2) and (2, 1). The conditional probability mass

function of Xn
i given Xn

j is denoted as pXn
i |Xn

j
(xi|xj) for (i, j) = (1, 2) and (2, 1).

Two encoders and a decoder of the Slepian-Wolf coding problem, which are shown
in Fig. 6.1, are defined as follows. Encoders ϕ

(1)
n and ϕ

(2)
n are defined as

ϕ(1)
n : X n

1 → M(1)
n := {1, 2, . . . ,M (1)

n }, (6.1)

ϕ(2)
n : X n

2 → M(2)
n := {1, 2, . . . ,M (2)

n }, (6.2)

where M
(1)
n and M

(2)
n are positive integers. A decoder ψn is defined as

ψn : M(1)
n ×M(2)

n → X n
1 ×X n

2 . (6.3)
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source decoder
encoder 1

encoder 2

Figure 6.1: Slepian-Wolf source coding

Furthermore, the probability of error εn is defined as

εn = P[(Xn
1 , X

n
2 ) �= ψn(φ

(1)
n (Xn

1 ), φ
(2)
n (Xn

2 ))]. (6.4)

Then, a pair of encoders and a decoder (φ
(1)
n , φ

(2)
n , ψn) with M(1)

n ,M(2)
n and εn is called

an (n,M
(1)
n ,M

(2)
n , εn) code.

6.2.2 First-order achievable rate region

Let R1, R2 be non-negative real numbers. The notion of ε-achievability is defined as
follows.

Definition 6.2.1 ([10]) Let ε ∈ [0, 1). A rate pair (R1, R2) is ε-achievable if there

exists a sequence of (n,M
(1)
n ,M

(2)
n , εn) codes satisfying

lim sup
n→∞

1

n
logM (1)

n ≤ R1, (6.5)

lim sup
n→∞

1

n
logM (2)

n ≤ R2, (6.6)

lim sup
n→∞

εn ≤ ε. (6.7)

Then, the ε-achievable rate region is defined as follows.

Definition 6.2.2 ([10]) The ε-achievable rate region is defined as

R(ε|X1,X2) = {(R1, R2) : (R1, R2) is ε-achievable}. (6.8)

The ε-achievable rate region is also said to be the first-order achievable rate region.
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6.2.3 Second-order achievable rate region

Let L1, L2 be non-negative real numbers. The notion of (a1, a2, ϵ)-achievability is
defined as follows.

Definition 6.2.3 ([31]) Let (a1, a2) ∈ R2 and ϵ ∈ [0, 1). A rate pair (L1, L2) is

(a1, a2, ϵ)-achievable if there exists a sequence of (n,M
(1)
n ,M

(2)
n , ϵn) codes satisfying

lim sup
n→∞

1√
n
log

M
(1)
n

ena1
≤ L1, (6.9)

lim sup
n→∞

1√
n
log

M
(2)
n

ena2
≤ L2, (6.10)

lim sup
n→∞

ϵn ≤ ϵ. (6.11)

Then, the (a1, a2, ϵ)-achievable rate region is defined as follows.

Definition 6.2.4 ([31]) The (a1, a2, ϵ)-achievable rate region is defined as

L(a1, a2, ϵ|X1,X2) = {(L1, L2) : (L1, L2) is (a1, a2, ϵ)-achievable}. (6.12)

The (a1, a2, ϵ)-achievable rate region is also said to be the second-order achievable
rate region.

6.3 Previous works

6.3.1 First-order achievable rate region based on the infor-
mation spectrum methods

The functions Fn(R1, R2) and F (R1, R2) are defined as follows [10].

Fn(R1, R2) := P
[
1

n
log

1

pXn
1 |Xn

2
(Xn

1 |Xn
2 )

≥ R1

or
1

n
log

1

pXn
2 |Xn

1
(Xn

2 |Xn
1 )

≥ R2

or
1

n
log

1

pXn
1 X

n
2
(Xn

1 , X
n
2 )

≥ R1 +R2

]
, (6.13)

F (R1, R2) := lim sup
n→∞

Fn(R1, R2). (6.14)

The ϵ-achievable rate region is characterized by F (R1, R2).

Theorem 6.3.1 ([10]) For any ϵ ∈ [0, 1), the ϵ-achievable rate region is given by

R(ϵ|X1,X2) = Cl ({(R1, R2) : F (R1, R2) ≤ ϵ}) , (6.15)

where Cl(·) denotes the closure operation.
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6.3.2 Second-order achievable rate region based on the infor-
mation spectrum methods

For (a1, a2) ∈ R2, the functions Fn(L1, L2|a1, a2) and F (L1, L2|a1, a2) are defined as
follows [31].

Fn(L1, L2|a1, a2)

= P
[− log pXn

1 |Xn
2
(Xn

1 |Xn
2 )− na1√

n
≥ L1

or
− log pXn

2 |Xn
1
(Xn

2 |Xn
1 )− na2√

n
≥ L2

or
− log pXn

1 X
n
2
(Xn

1 , X
n
2 )− n(a1 + a2)√
n

≥ L1 + L2

]
, (6.16)

F (L1, L2|a1, a2) := lim sup
n→∞

Fn(L1, L2|a1, a2). (6.17)

The (a1, a2, ϵ)-achievable rate region is characterized by F (L1, L2|a1, a2).

Theorem 6.3.2 ([31]) For any (a1, a2) ∈ R2 and ϵ ∈ [0, 1), the (a1, a2, ϵ)-achievable
rate region is given by

L(a1, a2, ϵ|X1,X2) = Cl ({(L1, L2) : F (L1, L2|a1, a2) ≤ ϵ}) .

6.3.3 First-order achievable rate region based on the smooth
max entropy

First, some definitions in [46] are introduced. Let S(M (1)
n ,M

(2)
n ) be defined as

S(M (1)
n ,M (2)

n ) = {Tn ⊂ X n
1 ×X n

2 : |Tn| ≤M (1)
n M (2)

n

and max
x2∈Xn

2

|{x1 ∈ X n
1 : (x1,x2) ∈ Tn}| ≤M (1)

n

and max
x1∈Xn

1

|{x2 ∈ X n
2 : (x1,x2) ∈ Tn}| ≤M (2)

n }, (6.18)

where |·| represents the cardinality of a set. By using S(·, ·), Gn(R1, R2) and G(R1, R2)
are defined as

Gn(R1, R2) := 1− max
Tn∈S(enR1 ,enR2 )

P[(Xn
1 , X

n
2 ) ∈ Tn], (6.19)

G(R1, R2) := lim sup
n→∞

Gn(R1, R2). (6.20)

The previous study [46] has shown that the ϵ-achievable rate region is characterized
by G(R1, R2).

70



Theorem 6.3.3 ([46]) For any ϵ ∈ [0, 1), the ϵ-achievable rate region is given by

R(ϵ|X1,X2) = Cl({(R1, R2) : G(R1, R2) ≤ ϵ}). (6.21)

The previous study [46] has also investigated the relationship between the ϵ-
achievable rate region R(ϵ|X1,X2) and the rate region defined by the smooth max
entropy and the conditional smooth max entropy. Before stating this result, we review
the definitions of the smooth max entropy and the conditional smooth max entropy.

The smooth max entropy has first introduced by Renner and Wolf [34] and the
conditional smooth max entropy by Renner and Wolf [35]. Later, Uyematsu [43] has
shown that the smooth max entropy can be defined as the following definition.

Definition 6.3.1 ([34], [35], [43]) For ϵ ∈ [0, 1), the smooth max entropy Hϵ(Xn
1 , X

n
2 )

is defined as

Hϵ(Xn
1 , X

n
2 ) = min

An⊂Xn
1 ×Xn

2 :
P[(Xn

1 ,X
n
2 )∈An]≥1−ϵ

log |An|. (6.22)

The conditional smooth max entropy Hϵ(Xn
i |Xn

j ) for (i, j) = (1,2) and (2,1) is defined
as

Hϵ(Xn
i |Xn

j ) = min
An⊂Xn

1 ×Xn
2 :

P[(Xn
1 ,Xn

2 )∈An]≥1−ϵ

log max
xj∈Xn

j

|{xi ∈ X n
i : (x1,x2) ∈ An}|. (6.23)

Then, for any ϵ ∈ [0, 1), the rate region defined by the smooth max entropy and
the conditional smooth max entropy is given by

R̃(ϵ|X1,X2) =

{
(R1, R2) : R1 ≥ lim sup

n→∞

1

n
Hϵ(Xn

1 |Xn
2 )

and R2 ≥ lim sup
n→∞

1

n
Hϵ(Xn

2 |Xn
1 )

and R1 +R2 ≥ lim sup
n→∞

1

n
Hϵ(Xn

1 , X
n
2 )

}
. (6.24)

The relationship between R̃(ϵ|X1,X2) and R(ϵ|X1,X2) is given as follows.

Theorem 6.3.4 ([46]) For any ϵ ∈ (0, 1), it holds that

R̃(ϵ/3|X1,X2) ⊂ R(ϵ|X1,X2) ⊂ lim
δ↓0

R̃(ϵ+ δ|X1,X2). (6.25)

The study [10] has characterized the ϵ-achievable rate region by the function
Fn(R1, R2). On the other hand, the study [46] has characterized the ϵ-achievable
rate region by the function Gn(R1, R2). The relationship between Fn(R1, R2) and
Gn(R1, R2) is given as follows.

Theorem 6.3.5 ([46]) For any γ > 0 and n = 1, 2, . . ., we have

Fn(R1 + γ,R2 + γ)− 3e−nγ ≤ Gn(R1, R2) ≤ Fn(R1, R2). (6.26)
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6.4 Non-asymptotic key lemmas

The following lemmas, which are valid for finite blocklength n, play a significant role
to prove main theorems in this chapter.

Lemma 6.4.1 Let M
(1)
n ,M

(2)
n be arbitrary positive integers. Then, for any γ > 0 and

n = 1, 2, . . ., there exists an (n,M
(1)
n ,M

(2)
n , ϵn) code such that

ϵn ≤ 1− max
Tn∈S(M(1)

n e−
√

nγ ,M
(2)
n e−

√
nγ)

P[(Xn
1 , X

n
2 ) ∈ Tn] + 3e−

√
nγ . (6.27)

（Proof）The proof of this lemma is similar to that of [46, Lemma 3]. First, let Tn

be any element in S(M (1)
n e−

√
nγ ,M

(2)
n e−

√
nγ). Then, the random coding argument is

used.

1. Random coding: For x1 ∈ X n
1 , i ∈ M(1)

n is generated according to the uniform

distribution over M(1)
n and set ϕ

(1)
n (x1) = i. For x2 ∈ X n

2 , j ∈ M(2)
n is generated

according to the uniform distribution over M(2)
n and set ϕ

(2)
n (x2) = j.

2. Construction of the decoder: A decoder receives (i, j) ∈ M(1)
n ×M(2)

n . Then,
we construct the decoder as follows. If there exists a unique (x1,x2) ∈ Tn

satisfying

ϕ(1)
n (x1) = i (6.28)

and

ϕ(2)
n (x2) = j, (6.29)

set ψn as

ψn(i, j) = (x1,x2). (6.30)

If there exists no such pair or if there exist more than one such pair, set ψn as
an any specified element in X n

1 ×X n
2 .

3. Evaluation of the error probability: The analysis of the error probability is
the same as that of [10], and it holds that

E[ϵn] ≤ 1− P[(Xn
1 , X

n
2 ) ∈ Tn] + 3e−

√
nγ , (6.31)

where E[·] is the average over the above random coding. This means that there

exists at least one (n,M
(1)
n ,M

(2)
n , ϵn) code satisfying

ϵn ≤ 1− P[(Xn
1 , X

n
2 ) ∈ Tn] + 3e−

√
nγ . (6.32)

Therefore, taking the maximum of P[(Xn
1 , X

n
2 ) ∈ Tn] over Tn, we conclude that

there exists an (n,M
(1)
n ,M

(2)
n , ϵn) code satisfying

ϵn ≤ 1− max
Tn∈S(M(1)

n e−
√

nγ ,M
(2)
n e−

√
nγ)

P[(Xn
1 , X

n
2 ) ∈ Tn] + 3e−

√
nγ . (6.33)
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Hence, we complete the proof. □
The next lemma is Lemma 2 in [46].

Lemma 6.4.2 ([46]) For any (n,M
(1)
n ,M

(2)
n , ϵn) code, we have

ϵn ≥ 1− max
Tn∈S(M(1)

n ,M
(2)
n )

P[(Xn
1 , X

n
2 ) ∈ Tn]. (6.34)

6.5 Main results

First, the functions Gn(L1, L2|a1, a2) and G(L1, L2|a1, a2) are defined. To characterize
the second-order achievable rate region, these functions play a fundamental role.

Definition 6.5.1 For (a1, a2) ∈ R2, the functions Gn(L1, L2|a1, a2) and G(L1, L2|a1, a2)
are defined as

Gn(L1, L2|a1, a2) := 1− max
Tn∈S(ena1+

√
nL1 ,ena2+

√
nL2 )

P[(Xn
1 , X

n
2 ) ∈ Tn], (6.35)

G(L1, L2|a1, a2) := lim sup
n→∞

Gn(L1, L2|a1, a2). (6.36)

The following characterization of the (a1, a2, ϵ)-achievable rate region is one of the
main results.

Theorem 6.5.1 For any ϵ ∈ [0, 1) and (a1, a2) ∈ R2, the (a1, a2, ϵ)-achievable rate
region is given by

L(a1, a2, ϵ|X1,X2) = Cl({(L1, L2) : G(L1, L2|a1, a2) ≤ ϵ}). (6.37)

The rate region by the smooth max entropy and the conditional smooth max
entropy is defined as follows.

Definition 6.5.2 For any ϵ ∈ [0, 1) and (a1, a2) ∈ R2, let L̃(a1, a2, ϵ|X1,X2) be

L̃(a1, a2, ϵ|X1,X2) =

{
(L1, L2) : L1 ≥ lim sup

n→∞

Hϵ(Xn
1 |Xn

2 )− na1√
n

and L2 ≥ lim sup
n→∞

Hϵ(Xn
2 |Xn

1 )− na2√
n

and L1 + L2 ≥ lim sup
n→∞

Hϵ(Xn
1 , X

n
2 )− n(a1 + a2)√

n

}
.

(6.38)

Then, we have the following relationship between the second-order achievable rate
region L(a1, a2, ϵ|X1,X2) and L̃(a1, a2, ϵ|X1,X2). This result is similar to Theorem
6.3.4.
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Theorem 6.5.2 For any ϵ ∈ (0, 1) and (a1, a2) ∈ R2, we have

L̃(a1, a2, ϵ/3|X1,X2) ⊂ L(a1, a2, ϵ|X1,X2) ⊂ lim
δ↓0

L̃(a1, a2, ϵ+ δ|X1,X2). (6.39)

Theorem 6.5.2 does not cover the case of ϵ = 0. The next theorem treats the case of
ϵ = 0. This result clarifies that the outer bound of Theorem 6.5.2 holds with equality
in the case of ϵ = 0.

Theorem 6.5.3 Any pair (L1, L2) ∈ limδ↓0 L̃(a1, a2, δ|X1,X2) is (a1, a2, 0)-achievable.
That is, it holds that

L(a1, a2, 0|X1,X2) = lim
δ↓0

L̃(a1, a2, δ|X1,X2). (6.40)

The prior work [31] has characterized the second-order achievable rate region by
Fn(L1, L2|a1, a2). On the other hand, this study characterizes the second-order achiev-
able rate region by Gn(L1, L2|a1, a2). If (R1, R2) is chosen so that Ri = ai + (Li/

√
n)

for i = 1, 2 in Theorem 6.3.5, the following relationship is immediately obtained.

Theorem 6.5.4 For any γ > 0, (a1, a2) ∈ R2, and n = 1, 2, . . ., it holds that

Fn(L1 + γ, L2 + γ|a1, a2)− 3e−
√
nγ ≤ Gn(L1, L2|a1, a2) ≤ Fn(L1, L2|a1, a2). (6.41)

6.6 Proofs of main results

6.6.1 Proof of Theorem 6.5.1

Direct part:

For any (L1, L2) ∈ Cl({(L1, L2) : G(L1, L2|a1, a2) ≤ ϵ}) and any γ > 0, let

M (1)
n = ena1+

√
n(L1+2γ), (6.42)

M (2)
n = ena2+

√
n(L2+2γ). (6.43)

Then, from Lemma 6.4.1, there exists an (n,M
(1)
n ,M

(2)
n , ϵn) code such that

ϵn ≤ 1− max
Tn∈S(ena1+

√
n(L1+γ),ena2+

√
n(L2+γ))

P[(Xn
1 , X

n
2 ) ∈ Tn] + 3e−

√
nγ (6.44)

= Gn(L1 + γ, L2 + γ|a1, a2) + 3e−
√
nγ . (6.45)

From (6.45) and the assumption on (L1, L2), it holds that

lim sup
n→∞

ϵn ≤ lim sup
n→∞

Gn(L1 + γ, L2 + γ|a1, a2) (6.46)

= G(L1 + γ, L2 + γ|a1, a2) (6.47)

≤ ϵ. (6.48)

Since γ > 0 is arbitrary, (6.48) indicates that any

(L1, L2) ∈ Cl ({(L1, L2) : G(L1, L2|a1, a2) ≤ ϵ})
is (a1, a2, ϵ)-achievable.
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Converse part:

Let (L1, L2) is (a1, a2, ϵ)-achievable. Then, there exists a sequence of (n,M
(1)
n ,M

(2)
n , ϵn)

codes satisfying

lim sup
n→∞

1√
n
log

M
(1)
n

ena1
≤ L1, (6.49)

lim sup
n→∞

1√
n
log

M
(2)
n

ena2
≤ L2, (6.50)

lim sup
n→∞

ϵn ≤ ϵ. (6.51)

From (6.49) and (6.50), it holds that

M (1)
n ≤ ena1+

√
n(L1+γ), (6.52)

M (2)
n ≤ ena2+

√
n(L2+γ), (6.53)

for any γ > 0 and sufficiently large n.
Then, (6.52), (6.53), and Lemma 6.4.2 establish the following inequality for suffi-

ciently large n.

ϵn ≥ 1− max
Tn∈S(ena1+

√
n(L1+γ),ena2+

√
n(L2+γ)

P[(Xn
1 , X

n
2 ) ∈ Tn]

= Gn(L1 + γ, L2 + γ|a1, a2). (6.54)

From (6.51) and (6.54), it follows that

ϵ ≥ lim sup
n→∞

ϵn ≥ lim sup
n→∞

Gn(L1 + γ, L2 + γ|a1, a2) (6.55)

= G(L1 + γ, L2 + γ|a1, a2). (6.56)

Since γ > 0 is arbitrary,

(L1, L2) ∈ Cl ({(L1, L2) : G(L1, L2|a1, a2) ≤ ϵ}) (6.57)

is concluded.

6.6.2 Proof of Theorem 6.5.2

Proof of the inner bound:

For any γ > 0 and any ϵ > 0, let M
(1)
n and M

(2)
n be any positive integers satisfying

Hϵ(Xn
1 |Xn

2 ) +
√
nγ ≤ logM (1)

n ≤ Hϵ(Xn
1 |Xn

2 ) + 2
√
nγ, (6.58)

Hϵ(Xn
2 |Xn

1 ) +
√
nγ ≤ logM (2)

n ≤ Hϵ(Xn
2 |Xn

1 ) + 2
√
nγ, (6.59)

Hϵ(Xn
1 , X

n
2 ) + 2

√
nγ ≤ logM (1)

n M (2)
n ≤ Hϵ(Xn

1 , X
n
2 ) + 4

√
nγ. (6.60)
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For the M
(1)
n ,M

(2)
n , Lemma 6.4.1 guarantees that there exists an (n,M

(1)
n ,M

(2)
n , ϵn)

code satisfying

ϵn ≤ 1− max
Tn∈S(M(1)

n e−
√

nγ ,M
(2)
n e−

√
nγ)

P[(Xn
1 , X

n
2 ) ∈ Tn] + 3e−

√
nγ . (6.61)

On the other hand, let T (12)
n , T (1)

n , and T (2)
n be subsets of X n

1 ×X n
2 satisfying{

log |T (12)
n | = Hϵ(Xn

1 , X
n
2 ), (6.62)

P[(Xn
1 , X

n
2 ) ∈ T (12)

n ] ≥ 1− ϵ, (6.63) log max
x2∈Xn

2

|{x1 ∈ X n
1 : (x1,x2) ∈ T (1)

n }| = Hϵ(Xn
1 |Xn

2 ), (6.64)

P[(Xn
1 , X

n
2 ) ∈ T (1)

n ] ≥ 1− ϵ, (6.65) log max
x1∈Xn

1

|{x2 ∈ X n
2 : (x1,x2) ∈ T (2)

n }| = Hϵ(Xn
2 |Xn

1 ), (6.66)

P[(Xn
1 , X

n
2 ) ∈ T (2)

n ] ≥ 1− ϵ, (6.67)

and let T ∗
n be T ∗

n := T (12)
n ∩ T (1)

n ∩ T (2)
n . Then, (6.63), (6.65), (6.67), and the union

bound yield

1− P[(Xn
1 , X

n
2 ) ∈ T ∗

n ] ≤ 3ϵ. (6.68)

Further, from (6.62), (6.64), (6.66), and the left inequalities of (6.58), (6.59), (6.60),
it holds that

T ∗
n ∈ S(M (1)

n e−
√
nγ ,M (2)

n e−
√
nγ). (6.69)

Thus, (6.61), (6.68), and (6.69) establish

ϵn ≤ 1− P[(Xn
1 , X

n
2 ) ∈ T ∗

n ] + 3e−
√
nγ (6.70)

≤ 3ϵ+ 3e−
√
nγ . (6.71)

From the right inequalities of (6.58), (6.59), (6.60) and the inequality (6.71), it is

possible to construct a sequence of (n,M
(1)
n ,M

(2)
n , ϵn) codes satisfying

1√
n
log

M
(1)
n

ena1
≤ Hϵ(Xn

1 |Xn
2 )− na1√
n

+ 2γ, (6.72)

1√
n
log

M
(2)
n

ena2
≤ Hϵ(Xn

2 |Xn
1 )− na2√
n

+ 2γ, (6.73)

1√
n
log

M
(1)
n

ena1
+

1√
n
log

M
(2)
n

ena2
≤ Hϵ(Xn

1 , X
n
2 )− n(a1 + a2)√

n
+ 4γ, (6.74)

ϵn ≤ 3ϵ+ 3e−
√
nγ . (6.75)
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Taking lim supn→∞ of the above inequalities, we have

lim sup
n→∞

1√
n
log

M
(1)
n

ena1
≤ lim sup

n→∞

Hϵ(Xn
1 |Xn

2 )− na1√
n

+ 2γ, (6.76)

lim sup
n→∞

1√
n
log

M
(2)
n

ena2
≤ lim sup

n→∞

Hϵ(Xn
2 |Xn

1 )− na2√
n

+ 2γ, (6.77)

lim sup
n→∞

(
1√
n
log

M
(1)
n

ena1
+

1√
n
log

M
(2)
n

ena2

)
≤ lim sup

n→∞

Hϵ(Xn
1 , X

n
2 )− n(a1 + a2)√

n
+ 4γ,

(6.78)

lim sup
n→∞

ϵn ≤ 3ϵ. (6.79)

Since γ > 0 is arbitrary, L̃(a1, a2, ϵ/3|X1,X2) ⊂ L(a1, a2, ϵ|X1,X2) is obtained.

Proof of the outer bound:

For any sequence of codes that satisfies lim supn→∞ ϵn ≤ ϵ, we have ϵn ≤ ϵ+ δ for any
δ > 0 and sufficiently large n. Thus, Lemma 6.4.2 yields

1− max
Tn∈S(M(1)

n ,M
(2)
n )

P[(Xn
1 , X

n
2 ) ∈ Tn] ≤ ϵn ≤ ϵ+ δ (6.80)

for any δ > 0 and sufficiently large n.
Next, let T ∗

n ∈ S(M (1)
n ,M

(2)
n ) be defined as the set that maximizes P[(Xn

1 , X
n
2 ) ∈ Tn]

in (6.80). Then, the definitions of the smooth max entropy and the conditional smooth
max entropy establish

Hϵ+δ(Xn
1 , X

n
2 ) ≤ log |T ∗

n | ≤ logM (1)
n M (2)

n , (6.81)

Hϵ+δ(Xn
1 |Xn

2 ) ≤ log max
x2∈Xn

2

|{x1 : (x1,x2) ∈ T ∗
n }| ≤ logM (1)

n , (6.82)

Hϵ+δ(Xn
2 |Xn

1 ) ≤ log max
x1∈Xn

2

|{x2 : (x1,x2) ∈ T ∗
n }| ≤ logM (2)

n . (6.83)

Therefore, for any (a1, a2, ϵ)-achievable rate pair (L1, L2),

lim sup
n→∞

Hϵ+δ(Xn
1 , X

n
2 )− n(a1 + a2)√
n

≤ L1 + L2, (6.84)

lim sup
n→∞

Hϵ+δ(Xn
1 |Xn

2 )− na1√
n

≤ L1, (6.85)

lim sup
n→∞

Hϵ+δ(Xn
2 |Xn

1 )− na2√
n

≤ L2. (6.86)

Since δ > 0 is arbitrary, L(a1, a2, ϵ|X1,X2) ⊂ limδ↓0 L̃(a1, a2, ϵ+ δ|X1,X2) is obtained.
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6.6.3 Proof of Theorem 6.5.3

First, fix arbitrary sequence {δi} satisfying 1 > δ1 > δ2 > · · · → 0. For each i =
1, 2, . . ., by letting ϵ = δi in the proof of the inner bound of Theorem 6.5.2, we can
prove that any (L1, L2) ∈ L̃(a1, a2, δi|X1,X2) is (a1, a2, 3δi)-achievable. That is, for

each i = 1, 2, . . ., there exists a sequence of (n,M
(1)
n ,M

(2)
n , ϵn) codes satisfying

lim sup
n→∞

1√
n
log

M
(1)
n

ena1
≤ L1, (6.87)

lim sup
n→∞

1√
n
log

M
(2)
n

ena2
≤ L2, (6.88)

lim sup
n→∞

ϵn ≤ 3δi. (6.89)

From (6.89), it is observed that for an arbitrary γ > 0, there exists a sequence of
positive integers {ni} satisfying

ϵn ≤ 3δi + γ (∀i = 1, 2, . . . ;∀n ≥ ni) (6.90)

and n1 < n2 < · · · → +∞. For each n = 1, 2, . . ., let in be the integer i satisfying
ni ≤ n < ni+1. Then, it holds that

ϵn ≤ 3δin + γ (n = 1, 2, . . .). (6.91)

Therefore, by noticing that δi1 ≥ δi2 ≥ δi3 ≥ · · · → 0 (n→ ∞) and γ > 0 is arbitrary,
it holds that

lim
n→∞

ϵn = 0. (6.92)

This result shows that any pair (L1, L2) in

lim
i→∞

L̃(a1, a2, δi|X1,X2) = lim
δ↓0

L̃(a1, a2, δ|X1,X2)

is (a1, a2, 0)-achievable.

6.7 Conclusion of this chapter

This chapter considered the fixed-length Slepian-Wolf coding problem for a general
source. The second-order (a1, a2, ϵ)-achievable rate region L(a1, a2, ϵ|X1,X2) was char-
acterized by the function G(L1, L2|a1, a2). The rate region L̃(a1, a2, ϵ|X1,X2) was de-
fined based on the smooth max entropy and the conditional smooth max entropy. The
relationship between L(a1, a2, ϵ|X1,X2) and L̃(a1, a2, ϵ|X1,X2) was shown. Further,
the relationship between Gn(L1, L2|a1, a2) and Fn(L1, L2|a1, a2) was clarified.
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Chapter 7

Asymptotic analysis of the Bayes
code allowing positive overflow
probability

7.1 Introduction

This chapter allows a positive overflow probability up to ϵ and evaluates the ϵ-coding
rate1 of the Bayes code for a stationary ergodic finite order Markov source. The results
show the advantage of the Bayes code and give the new insight of the Bayes code under
the overflow probability. Related previous studies are stated as follows.

In the non-universal setting (i.e., a probability distribution of a source is known),
Nomura et al. [28] have analyzed the ϵ-coding rate of the Shannon code for a stationary
memoryless source. Further, Kontoyiannis and Verdú [18] have evaluated the ϵ-coding
rate of the optimal non-prefix code defined in [18] for a stationary memoryless source
and a stationary ergodic finite order Markov source.

On the other hand, in the universal setting (i.e., a probability distribution of a
source is unknown), Kosut and Sankar [21] have shown the ϵ-coding rate of the Type
Size code for a stationary memoryless source. In [22], they also have derived the ϵ-
coding rate of the code based on the two-stage description for a stationary memoryless
source. For a stationary ergodic first order Markov source, Iri and Kosut [15] have
derived the ϵ-coding rate of the Type Size code.

A map of this chapter and previous studies are shown in Table 7.1.
This chapter is organized as follows. Section 7.2 shows the problem formulation.

Section 7.3 explains the related previous works. Section 7.4 describes the Bayes code.
Section 7.5 derives the main results. Finally, Section 7.6 discusses the main results
and concludes this chapter.

1The ϵ-coding rate is the same as the minimum threshold of the overflow probability discussed in
Chapters 3–5. However, following the related previous works such as [15], [21], and [22], we use this
terminology in this chapter.
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Table 7.1: The map of Chapter 7 and previous studies

stationary memoryless source Markov source

non-universal setting
Nomura et al. [28]

Kontoyiannis and Verdú [18] Kontoyiannis and Verdú [18]

universal setting
Kosut and Sankar [21]
Kosut and Sankar [22]

Iri and Kosut [15]
Chapter 7

7.2 Problem formulation

Let X = {0, 1, . . . , K} be a finite source alphabet and X be a random variable taking
a value in X . In this chapter, we treat a stationary ergodic finite order Markov source.
Let S be a set of states (state space) of a stationary ergodic finite order Markov source
and let θi,sj be a probability of occurrence of the symbol i ∈ X under the state sj ∈ S
(j = 0, 1, . . . , |S| − 1). Then, define θKsj by

θKsj = (θ0,sj , θ1,sj , . . . , θK−1,sj)
T , (7.1)

where we assume that θi,sj > 0 for i ∈ X，j = 0, 1, . . . , |S| − 1 and
∑K

i=0 θi,sj = 1 for
j = 0, 1, . . . , |S| − 1. Further, let θk be

θk = (θKs0 , θ
K
s1
, . . . , θKs|S|−1

)T , (7.2)

where k = K|S|. Moreover, pθk denotes a probability mass function of a stationary
ergodic finite order Markov source defined by θk. The parameter space of θk is denoted
as Θk = (0, 1)k.

Let w(θk) be the prior probability density function of θk. We assume that w(θk) > 0
for any θk ∈ Θk and w(θk) is three times continuously differentiable. Further, we
assume that w(θk) and a class of parameterized distribution of a source {pθk : θk ∈
Θk = (0, 1)k} are known, but the true parameter θk∗ ∈ Θk is unknown.

The k × k Fisher information matrix I(θk) is defined as

I(θk) = lim
n→∞

1

n
Ep

θk∗

[
−∂

2 ln pθk(X
n)

∂θk(∂θk)T

]
, (7.3)

where Ep
θk∗
[·] denotes the expectation by pθk∗ . As shown in Goto et al. [9, Example 5],

the determinant of the Fisher information matrix, det I(θk), is continuous with respect
to θk under a stationary ergodic finite order Markov source. Further, Goto et al. [9,
Example 5] have shown that for a stationary ergodic finite order Markov source, it
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holds that2

− 1

n

∂2 ln pθk(X
n)

∂θk(∂θk)T
→ I(θk) a.s. (7.4)

Let θ̂k denote the maximum likelihood estimator. Regarding θ̂k, it holds that

θ̂k = θk∗ +O

((
ln lnn

n

)1/2
)

a.s. (7.5)

for a stationary ergodic finite order Markov source [8].
The following quantities play a crucial role in the main results of this chapter.

Definition 7.2.1 We define Hθk(X
n), Hθk(X), σ2

θk
(Xn), σ2

θk
(X), σθk(X

n), and σθk(X)
as follows.

Hθk(X
n) := Ep

θk∗

[
ln

1

pθk(Xn)

]
, (7.6)

Hθk(X) := lim
n→∞

1

n
Hθk(X

n), (7.7)

σ2
θk(X

n) := Vp
θk∗

[
ln

1

pθk(Xn)

]
, (7.8)

σ2
θk(X) := lim

n→∞

1

n
σ2
θk(X

n), (7.9)

σθk(X
n) :=

√
σ2
θk
(Xn), (7.10)

σθk(X) :=
√
σ2
θk
(X), (7.11)

where Vp
θk∗
[·] denotes the variance by pθk∗ . Further, Hθk∗

(Xn) is defined as

Hθk∗
(Xn) := Ep

θk∗

[
ln

1

pθk∗ (X
n)

]
. (7.12)

We define Hθk∗
(X), σ2

θk∗
(Xn), σ2

θk∗
(X), σθk∗ (X

n), and σθk∗ (X) in the same way.

The quantity Hθk∗
(Xn) is said to be entropy and Hθk∗

(X) is said to be entropy rate.
Also, σ2

θk∗
(Xn) is said to be varentropy and σ2

θk∗
(X) is said to be varentropy rate3. Since

we assume a stationary ergodic finite order Markov source, the varentropy rate exists
[18] as well as the entropy rate does. Further, σ2

θk∗
(X) < ∞ holds for a stationary

ergodic finite order Markov source [18]．In this dissertation, we assume σ2
θk∗
(X) > 0.

This chapter analyzes the ϵ-coding rate defined as follows.
2In this dissertation, “Pθk

∗
-almost surely” is abbreviated as “a.s.” Thus, (7.4) is equivalent to

Pθk
∗

[
− 1

n

∂2 ln pθk(Xn)

∂θk(∂θk)T
→ I(θk)

]
= 1.

3The quantity σ2
θk
∗
(X) is also said to be the minimal coding variance in [17]．
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Definition 7.2.2 Let ℓ(Xn) denote a codeword length of a code for a source sequence
Xn. Then, for ϵ ∈ [0, 1), the ϵ-coding rate for the code is defined as

R∗
ℓ (n, ϵ, θ

k
∗) = inf

{
R : Pθk∗

[ℓ(Xn) > nR] ≤ ϵ
}
. (7.13)

7.3 Related previous works

7.3.1 Previous works: distribution of a source is known

This subsection describes previous studies under the setup that the probability distri-
bution of a source is known.

Let ℓS(·) denote a codeword length of the Shannon code, i.e.,

ℓS(x
n) =

⌈
ln

1

pθk∗ (x
n)

⌉
(7.14)

for xn ∈ X n. Then, the ϵ-coding rate of the Shannon code, R∗
ℓS
(n, ϵ, θk∗), is calculated

as follows from the result of [29] for a stationary memoryless source:

R∗
ℓS
(n, ϵ, θk∗) = Hθk∗

(X) +
σθk∗ (X)
√
n

Q−1(ϵ) + o

(
1

n

)
, (7.15)

where Q(z) is defined as

Q(z) =

∫ ∞

z

1√
2π

exp

(
−t

2

2

)
dt (7.16)

and Q−1(z) denotes its inverse function for z ∈ R.
Let ℓO(·) denote a codeword length of the optimal variable-length code defined

in [18], where “optimal” means that the overflow probability of the code is smallest
among all variable-length code without prefix constraint. The upper and lower bounds
of the ϵ-coding rate of this code are evaluated as follows in [18] for a stationary ergodic
finite order Markov source:

R∗
ℓO
(n, ϵ, θk∗) ≤Hθk∗

(X) +
σθk∗ (X)
√
n

Q−1(ϵ) +
C1

n
, (7.17)

R∗
ℓO
(n, ϵ, θk∗) ≥Hθk∗

(X) +
σθk∗ (X)
√
n

Q−1(ϵ)− 1

2n
lnn− C2

n
, (7.18)

where ϵ ∈ (0, 1/2) and C1 and C2 are positive constants.

7.3.2 Previous works: distribution of a source is unknown

This subsection describes previous studies under the setup that the probability distri-
bution of a source is unknown.
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Let ℓTS(·) denote a codeword length of the prefix code based on the two-stage
description4. The ϵ-coding rate of this code is given as follows in [22] for a stationary
memoryless source:

R∗
ℓTS

(n, ϵ, θk∗) = Hθk∗
(X) +

σθk∗ (X)
√
n

Q−1(ϵ) +
k

2n
lnn+O

(
1

n

)
. (7.19)

The non-prefix code based on the type class size, which is said to be the Type Size
code, has been proposed in [21]. Let ℓType(·) denote a codeword length of the Type
Size code. The upper bound on the ϵ-coding rate of this code is evaluated as follows
in [21] for a stationary memoryless source:

R∗
ℓType

(n, ϵ, θk∗) ≤ Hθk∗
(X) +

σθk∗ (X)
√
n

Q−1(ϵ) +
k − 2

2n
lnn+O

(
1

n

)
. (7.20)

Let ℓnp(·) denote a codeword length of a non-prefix code. It is proved in [22]
that the ϵ-coding rate for any non-prefix code satisfies the following inequality for a
stationary memoryless source:

sup
θk∈Θk

[
R∗

ℓnp(n, ϵ, θ
k)−Hθk(X)− σθk(X)√

n
Q−1(ϵ)

]
≥ k − 2

2n
lnn+O

(
1

n

)
. (7.21)

Lastly, it is shown in [15] that the Type Size code satisfies the following inequality
for a stationary ergodic first-order Markov source:

sup
θk∈Θk

[
R∗

ℓType
(n, ϵ, θk)−Hθk(X)− σθk(X)√

n
Q−1(ϵ)

]
=
k − 2

2n
lnn+O

(
1

n

)
. (7.22)

7.4 Bayes code

The Bayes code is one of universal variable-length prefix codes (see, e.g., [5], [2], [24]).
For a source sequence xn, the Bayes code utilizes the arithmetic coding probability
PB(x

n), where PB(·) is the probability that minimizes the Bayes risk function defined
as ∫

Θk

w(θk)

{
Ep

θk

[
ln

1

PB(Xn)

]
−Hθk(X

n)

}
dθk. (7.23)

In other words, the Bayes code is the optimal code in the sense that it minimizes the
mean codeword length averaged with the prior probability density function w(θk). The
arithmetic coding probability of the Bayes code PB(x

n) is given by
∫
Θk w(θ

k)pθk(x
n)dθk

(see, e.g., [24]), and the codeword length of the Bayes code ℓB(x
n) is

ℓB(x
n) = − ln

∫
Θk

w(θk)pθk(x
n)dθk. (7.24)

4This means that the first stage encodes the type of a sequence and the second stage encodes the
index of the sequence within the type class (see, e.g., [3, Chap. 13])
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For a stationary memoryless source and a stationary ergodic finite order Markov
source, the mean codeword length of the Bayes code has been analyzed up to constant
terms (see, e.g., [2], [8]). Furthermore, the codeword length of the Bayes code for a
source sequence Xn has been evaluated as follows for a stationary ergodic finite order
Markov source [8]:

ℓB(X
n) = ln

1

pθ̂k(X
n)

+
k

2
ln

n

2π
+ ln

√
det I(θ̂k)

w(θ̂k)
+ o(1) a.s. (7.25)

7.5 Main results

Before showing the main results in this chapter, we show some lemmas.

Lemma 7.5.1 For a stationary ergodic finite order Markov source, the codeword
length of the Bayes code ℓB(X

n) for a source sequence Xn is given by

ℓB(X
n) = ln

1

pθk∗ (X
n)

+
k

2
ln

n

2π
+O(ln lnn) a.s. (7.26)

（Proof）Taylor’s expansion of ln(1/pθk∗ (X
n)) around θ̂k yields

ln
1

pθk∗ (X
n)

= ln
1

pθ̂k(X
n)

+
1

2
(θk∗ − θ̂k)T

∂2 ln pθk(X
n)

∂θk(∂θk)T

∣∣∣∣
θk=θ̂k

(θk∗ − θ̂k)

+ o

(
(θk∗ − θ̂k)T

∂2 ln p(Xn|θk)
∂θk(∂θk)T

∣∣∣∣
θk=θ̂k

(θk∗ − θ̂k)

)
. (7.27)

Therefore, it holds that

ln
1

pθ̂k(X
n)

= ln
1

pθk∗ (X
n)

− 1

2
(θk∗ − θ̂k)T

∂2 ln p(Xn|θk)
∂θk(∂θk)T

∣∣∣∣
θk=θ̂k

(θk∗ − θ̂k)

+ o

(
(θk∗ − θ̂k)T

∂2 ln pθk(X
n)

∂θk(∂θk)T

∣∣∣∣
θk=θ̂k

(θk∗ − θ̂k)

)
. (7.28)

Combination of (7.4) and (7.5) gives

(θk∗ − θ̂k)T
∂2 ln pθk(X

n)

∂θk(∂θk)T

∣∣∣∣
θk=θ̂k

(θk∗ − θ̂k)

= −n(θk∗ − θ̂k)T
(
− 1

n

∂2 ln pθk(X
n)

∂θk(∂θk)T

∣∣∣∣
θk=θ̂k

)
(θk∗ − θ̂k)

= O(ln lnn) a.s. (7.29)

Thus, from (7.25), (7.28), and (7.29), we obtain (7.26). □
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Lemma 7.5.2 Let ϕ(z) be the probability density function of the standard normal
distribution for z ∈ R. Then, we have the following inequality for a, b ≥ 0:

Q(a) ≥ Q(b)− ϕ(b)(a− b). (7.30)

（Proof）Taylor’s expansion leads to

Q(a) = Q(b) +Q
′
(b)(a− b) +

Q
′′
(ξ)

2
(a− b)2, (7.31)

where ξ lies between a and b. Because Q
′′
(z) ≥ 0 for z ≥ 0 and Q

′
(z) = −ϕ(z), the

inequality (7.30) holds. □
Using the result in [27], Kontoyiannis and Verdú [18] have derived the next in-

equality.

Lemma 7.5.3 ([18]) For a stationary ergodic finite order Markov source, there exists
a finite positive constant A such that for all n ≥ 1, it holds that

sup
z∈R

∣∣∣∣∣∣Pθk∗

 ln 1
p
θk∗

(Xn)
− nHθk∗

(X)
√
nσθk∗ (X)

> z

−Q(z)

∣∣∣∣∣∣ ≤ A√
n
. (7.32)

The inequality (7.32) is said to be the Berry-Esséen bound. To bound the overflow
probability in the proof of the main results, inequalities (7.30) and (7.32) are used.

The ϵ-coding rate of the Bayes code, R∗
ℓB
(n, ϵ, θk∗), is upper and lower bounded as

shown in the following theorems.

Theorem 7.5.1 For ϵ ∈ (0, 1/2) and all n large enough, the ϵ-coding rate of the Bayes
code for a stationary ergodic finite order Markov source is bounded as

R∗
ℓB
(n, ϵ, θk∗) ≤ Hθk∗

(X) +
σθk∗ (X)
√
n

Q−1(ϵ) +
k

2n
lnn+O

(
1

n

)
, (7.33)

R∗
ℓB
(n, ϵ, θk∗) ≥ Hθk∗

(X) +
σθk∗ (X)
√
n

Q−1(ϵ) +
k

2n
lnn+

Cl(n)

n
+O

(
1

n

)
, (7.34)

where Cl(n) is a negative term such that o(lnn) and satisfies the following condition:

1√
n
{Cl(n) +O(ln lnn)} → −0. (7.35)

（Proof）First, (7.33) is shown. For simplicity, we abbreviate H = Hθk∗
(X) and

σ = σθk∗ (X). Let U(n) be defined as

U(n) = nH +
√
nσQ−1

(
ϵ− A√

n

)
+
k

2
ln

n

2π
+ ln

√
det I(θk∗)

w(θk∗)
+ C, (7.36)
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where C is a positive constant and A is the constant in (7.32). Then, it holds that

Pθk∗
[ℓB(X

n) > U(n)]

(a)
= Pθk∗

[
ln 1

p
θ̂k

(Xn)
− nH

√
nσ

> Q−1

(
ϵ− A√

n

)
+
C + o(1)√

nσ

]
(7.37)

(b)

≤ Pθk∗

 ln 1
p
θk∗

(Xn)
− nH

√
nσ

> Q−1

(
ϵ− A√

n

)
+
C + o(1)√

nσ

 (7.38)

(c)

≤ Q

(
Q−1

(
ϵ− A√

n

)
+
C + o(1)√

nσ

)
+

A√
n

(7.39)

(d)

≤ Q

(
Q−1

(
ϵ− A√

n

))
− C + o(1)√

nσ
ϕ

(
Q−1

(
ϵ− A√

n

)
+
C + o(1)√

nσ

)
+

A√
n

(7.40)

= ϵ− C + o(1)√
nσ

ϕ

(
Q−1

(
ϵ− A√

n

)
+
C + o(1)√

nσ

)
(7.41)

≤ ϵ, (7.42)

where

• (a) follows from (7.25), (7.36), and the fact that

ln
w(θ̂k)

√
det I(θk∗)

w(θk∗)

√
det I(θ̂k)

= o(1) a.s. (7.43)

holds from (7.5) and the continuity of w(θk) and det I(θk),

• (b) follows from the fact that θ̂k is the maximum likelihood estimator,

• (c) follows from the Berry-Esséen bound (7.32),

• (d) follows from the following reason: because Q−1(ϵ−A/
√
n) > 0 and Q−1(ϵ−

A/
√
n) + (C + o(1))/

√
nσ > 0 for all n large enough and ϵ ∈ (0, 1/2), we

substitute Q−1(ϵ − A/
√
n) and Q−1(ϵ − A/

√
n) + (C + o(1))/

√
nσ for a and b

respectively in (7.30).

Thus, (7.42) and the definition of R∗
ℓB
(n, ϵ, θk∗) yield

nR∗
ℓB
(n, ϵ, θk∗) ≤ U(n). (7.44)

Hence, (7.44) and some calculation establish (7.33).

Next, (7.34) is shown. Let L(n) be defined as

L(n) = nH +
√
nσQ−1

(
ϵ+

A√
n

)
+
k

2
ln

n

2π
+ Cl(n). (7.45)
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Further, let o−(1) be a term such that limn→∞ o−(1) = −0. Then, it holds that

Pθk∗
[ℓB(X

n) > L(n)]

(a)
= Pθk∗

 ln 1
p
θk∗

(Xn)
− nH

√
nσ

> Q−1

(
ϵ+

A√
n

)
+ o−(1)

 (7.46)

(b)

≥ Q

(
Q−1

(
ϵ+

A√
n

)
+ o−(1)

)
− A√

n
(7.47)

(c)

≥ Q

(
Q−1

(
ϵ+

A√
n

))
− ϕ

(
Q−1

(
ϵ+

A√
n

))
o−(1)− A√

n
(7.48)

= ϵ− ϕ

(
Q−1

(
ϵ+

A√
n

))
o−(1) (7.49)

≥ ϵ, (7.50)

where

• (a) follows from (7.26), (7.35), and (7.45),

• (b) follows from the Berry-Esséen bound (7.32), and

• (c) follows from the following reason: because Q−1(ϵ + A/
√
n) + o−(1) > 0 for

all n large enough and ϵ ∈ (0, 1/2), we substitute Q−1(ϵ + A/
√
n) + o−(1) and

Q−1(ϵ+ A/
√
n) for a and b respectively in (7.30).

Thus, (7.50) and the definition of R∗
ℓB
(n, ϵ, θk∗) yield

nR∗
ℓB
(n, ϵ, θk∗) ≥ L(n). (7.51)

Therefore, (7.51) and some calculation give the desired result (7.34). □

Remark 7.5.1 The concrete expression of the term Cl(n) in (7.34) has not been ob-
tained yet. The more precise evaluation of this term is one of the future works.

7.6 Discussion and conclusion of this chapter

Comparing (7.33), (7.34) with (7.17), (7.18), a new insight of the Bayes code is ob-
tained. The upper and lower bounds (7.17), (7.18) are the results for non-universal
optimal code, where optimal means that the code has the smallest overflow probabil-
ity. On the other hand, the upper and lower bounds (7.33), (7.34) are the results for
the Bayes code. As explained in Section 7.4, the Bayes code is designed to minimize
the mean codeword length averaged with the prior probability density function w(θk).
Thus, it is not designed to minimize the overflow probability. However, the Bayes code
behaves similarly to the optimal code; the first and second terms of the upper bound
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(7.33) and the lower bound (7.34) are the same as those of (7.17) and (7.18); the first

term is Hθk∗
(X), and the second term is

σ
θk∗

(X)
√
n
Q−1(ϵ).

To summarize this chapter, we analyzed the ϵ-coding rate of the Bayes code for
a stationary ergodic finite order Markov source. The upper and lower bounds on the
ϵ-coding rate were obtained. The main ingredients of the proof of the main result
were the asymptotic evaluation of the codeword length of the Bayes code and the
Berry-Esséen bound.
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Chapter 8

Asymptotic analysis of the Bayes
code under vanishing overflow
probability

8.1 Introduction

Chapter 7 has treated the case where the overflow probability is allowed up to ϵ. In
contrast to this setting, this chapter considers the case where the overflow probabil-
ity vanishes asymptotically. This problem setting is closely related to the moderate
deviation regime in information theory. In the following, we describe the moderate
deviation regime.

In information theory, asymptotic studies with the criterion of the overflow prob-
ability can be divided into three regimes1:

1) The large deviation regime in which the overflow probability goes to zero asymp-
totically and behaves like exp{−nr} for some r > 0 (e.g., [42]).2

2) The central limit theorem regime (it is also said to be the normal approximation
regime or second order regime) in which a positive overflow probability is allowed
(this is the setting considered in Chapter 7).

3) The moderate deviation regime in which the overflow probability goes to zero
asymptotically and behaves like exp{−ntr} for some r > 0 and t ∈ (0, 1) (e.g.,
[1]).

The overflow probability and its rate3 have the trade-off relationship. That is, if the
rate is large, the overflow probability is small and vice versa. The relationship between

1Regarding this classification, see, e.g., [11].
2The notation n denotes a length of a source sequence.
3As mentioned in Section 2.5, a rate of the overflow probability is the same as a threshold of the

overflow probability.
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the overflow probability and its rate in the above regimes 1) – 3) is summarized as
follows:

i) In the large deviation regime, the overflow probability goes to zero, but the rate
is away from the ideal asymptotic limit (i.e., the entropy).

ii) In the central limit theorem regime, the rate goes to the entropy with the speed
of O(1/

√
n), but the overflow probability is away from zero4.

iii) In the moderate deviation regime, the overflow probability goes to zero and the
rate goes to the ideal asymptotic limit (entropy) with the speed slower than
O(1/

√
n), that is, slower than in the central limit theorem regime.

As the previous study [1] has pointed out, the moderate deviation regime combines
the desired features of the central limit theorem regime and the large deviation regime.
That is to say, the moderate deviation regime deals with the case where the rate goes to
the ideal asymptotic limit (entropy) and the overflow probability goes to zero, whereas
the overflow probability is away from zero in the central limit theorem regime and the
rate is away from the ideal asymptotic limit (entropy) in the large deviation regime.
In the viewpoint of practical applications, it is desirable that the rate is close to the
ideal asymptotic limit (entropy) and the overflow probability is close to zero.

For a stationary memoryless source, Altuğ et al. [1] have evaluated the behavior of
the optimal code; here, optimal means that the overflow probability is smallest among
all variable-length codes. However, the study [1] has only treated the non-universal
setting. Hence, the evaluation for a universal code in the moderate deviation regime
is a problem to work with.

In the framework of the moderate deviation regime, this chapter analyzes the be-
havior of the Bayes code for a stationary memoryless source. Although the Bayes
code is not designed to minimize the overflow probability, our result shows that the
behavior of the overflow probability of the Bayes code is similar to that of the optimal
non-universal code investigated in [1]. Furthermore, this chapter derives a necessary
and sufficient condition of the overflow probability of the Bayes code vanishing asymp-
totically.

This chapter is organized as follows. Section 8.2 derives the necessary and sufficient
condition of the overflow probability of the Bayes code vanishing asymptotically. Sec-
tion 8.3 analyzes the overflow probability of the Bayes code in the moderate deviation
regime. First, a problem formulation is described. Then, the previous study is shown.
Next, the main result is derived. Section 8.4 discusses the main results and concludes
this chapter.

4For example, see the previous results and the main results stated in Chapter 7 in this thesis.
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8.2 Necessary and sufficient condition of the over-

flow probability of the Bayes code vanishing

asymptotically

In this section, we treat a stationary ergodic finite order Markov source and use the
same notations as in Chapter 7. First, the prior works are described. Then, we derive
the necessary and sufficient condition that the overflow probability of the Bayes code
approaches zero asymptotically.

8.2.1 Previous works

For a source sequence Xn, let the codeword length of the Shannon code be ℓS(X
n).

Further, let the codeword length of the optimal code defined in [18] be ℓ⋆(Xn).
Kontoyiannis and Verdú [18] have shown that ℓS(X

n) and ℓ⋆(Xn) satisfy the asymp-
totic normality for a stationary ergodic finite order Markov source:

ℓS(X
n)−Hθk∗

(Xn)√
σ2
θk∗
(Xn)

d−→ N (0, 1), (8.1)

ℓ⋆(Xn)−Hθk∗
(Xn)√

σ2
θk∗
(Xn)

d−→ N (0, 1). (8.2)

where “
d−→” denotes the convergence in distribution.

Combining this result with the result in [28], the next theorem is obtained. This
theorem gives the necessary and sufficient condition that the overflow probability of
the Shannon code and the optimal code approach zero asymptotically.

Theorem 8.2.1 Let {ηn}∞n=1 be a sequence such that ηn > 0 for n = 1, 2, . . .. Then,
for a stationary ergodic finite order Markov source,

lim
n→∞

Pθk∗
[ℓS(X

n) > ηn] = 0 (8.3)

and

lim
n→∞

Pθk∗
[ℓ⋆(Xn) > ηn] = 0 (8.4)

hold if and only if the sequence {ηn}∞n=1 satisfies, for all T ∈ (1,∞),

lim
n→∞

{
ηn −

(
Hθk∗

(Xn) + T
√
σ2
θk∗
(Xn)

)}
= ∞. (8.5)
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8.2.2 Results of this study

The next theorem shows that the codeword length of the Bayes code satisfies the
asymptotic normality for a stationary ergodic finite order Markov source.

Theorem 8.2.2 For a stationary ergodic finite order Markov source, it holds that

ℓB(X
n)−Hθk∗

(Xn)√
σ2
θk∗
(Xn)

d−→ N (0, 1). (8.6)

（Proof）Since σ2
θk∗
(Xn) = O(n) holds for a stationary ergodic finite order Markov

source (see, e.g., [18]), (7.26) yields

ℓB(X
n)− ln 1

p
θk∗

(Xn)√
σ2
θk∗
(Xn)

−→ 0 a.s. (8.7)

This gives

ℓB(X
n)− ln 1

p
θk∗

(Xn)√
σ2
θk∗
(Xn)

→ 0 in probability, (8.8)

where “in probability” denotes the convergence in probability.
Further, it holds that

ln 1
p
θk∗

(Xn)
−Hθk∗

(Xn)√
σ2
θk∗
(Xn)

d→ N (0, 1) (8.9)

for a stationary ergodic finite order Markov source [18]．
Therefore, combination of (8.8), (8.9), and Slutsky’s theorem (e.g., [12]) yield

ℓB(X
n)−Hθk∗

(Xn)√
σ2
θk∗
(Xn)

=
ℓB(X

n)− ln 1
p
θk∗

(Xn)√
σ2
θk∗
(Xn)

+
ln 1

p
θk∗

(Xn)
−Hθk∗

(Xn)√
σ2
θk∗
(Xn)

(8.10)

d−→ N (0, 1). (8.11)

This is the desired result. □
Prior works such as (8.1) and (8.2) are results for non-universal codes. On the

other hand, Theorem 8.2.2 is the result for the Bayes code (universal code). Theorem
8.2.2 and some calculations as in [28] establish the necessary and sufficient condition
that the overflow probability of the Bayes code approaches zero asymptotically.
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Theorem 8.2.3 Let {ηn}∞n=1 be a sequence such that ηn > 0 for n = 1, 2, . . .. Then,
for a stationary ergodic finite order Markov source,

lim
n→∞

Pθk∗
[ℓB(X

n) > ηn] = 0 (8.12)

holds if and only if the sequence {ηn}∞n=1 satisfies, for all T ∈ (1,∞),

lim
n→∞

{
ηn −

(
Hθk∗

(Xn) + T
√
σ2
θk∗
(Xn)

)}
= ∞. (8.13)

8.3 Overflow probability of the Bayes code in the

moderate deviation regime

8.3.1 Problem formulation

Let X be a finite source alphabet and X be a random variable taking a value in
X . A realization of X is denoted as x. Let X1, X2, · · · be i.i.d. random variables
with the probability distribution Pθk∗

, where θk∗ ∈ Θk = (0, 1)k is the k-dimensional
parameter. Further, let pθk∗ be a probability mass function corresponding to Pθk∗

, i.e.,
pθk∗ (x) := Pθk∗

({x}) for x ∈ X . A sequence of random variables X1, . . . , Xn is denoted
as Xn and the realization of Xn is denoted as xn.

The entropy Hθk∗
(X) and the varentropy σ2

θk∗
(X) are defined as

Hθk∗
(X) = Ep

θk∗

[
ln

1

pθk∗ (X)

]
(8.14)

and

σ2
θk∗
(X) = Vp

θk∗

[
ln

1

pθk∗ (X)

]
, (8.15)

where Ep
θk∗
[·] and Vp

θk∗
[·] denote the expectation and variance with respect to pθk∗ ,

respectively. We assume 0 < σ2
θk∗
(X) <∞.

A variable-length lossless source code is a pair of encoder and decoder (fn, gn)
defined as follows. An encoder fn : X n → {0, 1}⋆ is an injective function. A decoder
gn : {0, 1}⋆ → X n is a function such that gn(fn(x

n)) = xn for all xn ∈ X n.

8.3.2 Related previous work

In this subsection, we assume that the true parameter θk∗ is known. That is, the
probability distribution of a source is known. Let Pe(Pθk∗

, n, R) be defined as

Pe(Pθk∗
, n, R) = minPθk∗

[ℓ(fn(X
n)) > nR], (8.16)
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where the minimum is taken over all variable-length lossless source codes. In other
words, Pe(Pθk∗

, n, R) is the overflow probability of the optimal code in the sense that the
overflow probability is smallest among all variable-length codes. Regarding Pe(Pθk∗

, n, R),
the previous study [1] has proved the next result.

Theorem 8.3.1 ([1]) Let {Rn}∞n=1 be a sequence of rates such that

Rn =
1

n
Hθk∗

(Xn) + τn, (8.17)

where {τn}∞n=1 is a sequence satisfying

lim
n→∞

τn = +0, (8.18)

lim
n→∞

√
nτn = ∞. (8.19)

Then, it holds that

lim
n→∞

ln Pe(Pθk∗
, n, Rn)

nτ 2n
= − 1

2σ2
θk∗
(X)

. (8.20)

Remark 8.3.1 Theorem 8.3.1 clarifies the following fact: for a sequence of rates
{Rn}∞n=1 that goes to the entropy with the speed slower than O(1/

√
n),

Pe(Pθk∗
, n, Rn) ≈ exp

{
− 1

2σ2
θk∗
(X)

nτ 2n

}
(8.21)

for sufficiently large n. Equation (8.21) shows that

• the overflow probability of the optimal code approaches zero

• the overflow probability of the optimal code behaves like exp{−ntr} with r =
1/2σ2

θk∗
(X) > 0 and some t ∈ (0, 1).

This indicates that the study in [1] is divided into the moderate deviation regime (see
the case 3) in Section 8.1). Moreover, (8.21) shows that the slower τn goes to zero,
the faster the overflow probability Pe(Pθk∗

, n, Rn) goes to zero. That is to say, τn is the
parameter that controls the trade-off between the speed of the overflow probability going
to zero and the speed of the rate approaching the entropy.

8.3.3 Result of this study

The next theorem shows the behavior of the Bayes code in the moderate deviation
regime.
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Theorem 8.3.2 Let {Rn}∞n=1 be a sequence of rates such that

Rn =
1

n
Hθk∗

(Xn) + τn, (8.22)

where {τn}∞n=1 is a sequence satisfying

lim
n→∞

τn = +0, (8.23)

lim
n→∞

√
nτn = ∞. (8.24)

Then, it holds that

lim
n→∞

lnPθk∗
[ℓB(X

n) > nRn]

nτ 2n
= − 1

2σ2
θk∗
(X)

. (8.25)

（Proof）Equation (8.25) is proved by showing

lim sup
n→∞

lnPθk∗
[ℓB(X

n) > nRn]

nτ 2n
≤ − 1

2σ2
θk∗
(X)

, (8.26)

lim inf
n→∞

lnPθk∗
[ℓB(X

n) > nRn]

nτ 2n
≥ − 1

2σ2
θk∗
(X)

. (8.27)

From Theorem 8.3.1, it is easy to prove (8.27). Indeed, it holds that

Pθk∗
[ℓB(X

n) > nRn] ≥ Pe(Pθk∗
, n, R) (8.28)

from the definition of Pe(Pθk∗
, n, Rn), and (8.27) is obtained by combining (8.28) with

(8.20).
Next, (8.26) is shown. Let {tn}∞n=1 be a sequence such that tn ≥ 0 for n = 1, 2, . . ..

Then, we have

Pθk∗
[ℓB(X

n) > nRn]

(a)
= Pθk∗

[
ln

1

pθk∗ (X
n)

+
k

2
ln

n

2π
+O(ln lnn) > nRn

]
(8.29)

(b)
= Pθk∗

[
ln

1

pθk∗ (X
n)
> Hθk∗

(Xn) + nτn −
k

2
ln

n

2π
+O(ln lnn)

]
(8.30)

(c)

≤ exp

{
−tn

(
Hθk∗

(Xn) + nτn −
k

2
ln

n

2π
+O(ln lnn)

)}
· Ep

θk∗

[
exp

{
tn ln

1

pθk∗ (X
n)

}]
, (8.31)

where

• (a) follows from (7.26),
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• (b) follows from (8.22),

• (c) is due to the Chernoff bound.

On the other hand, the Taylor expansion around tn = 0 yields

lnEp
θk∗

[
exp

{
tn ln

1

pθk∗ (X
n)

}]
= Hθk∗

(Xn)tn +
1

2
σ2
θk∗
(Xn)t2n +

∞∑
m=3

ζm
θk∗
(Xn)

m!
tmn , (8.32)

where ζm
θk∗
(Xn) denotes the m-th cumulant of ln(1/pθk∗ (X

n)).

Taking the logarithm of both sides of (8.31) and plugging (8.32) establish

lnPθk∗
[ℓB(X

n) > nRn]

≤ −tn
(
Hθk∗

(Xn) + nτn −
k

2
ln

n

2π
+O(ln lnn)

)
+Hθk∗

(Xn)tn +
1

2
σ2
θk∗
(Xn)t2n +

∑
m=3

ζm
θk∗
(Xn)

m!
tmn (8.33)

= −nτntn +
1

2
σ2
θk∗
(Xn)t2n +

k

2
ln
( n
2π

)
tn +O(ln lnn)tn +

∑
m=3

ζm
θk∗
(Xn)

m!
tmn . (8.34)

Dividing both sides of (8.34) by nτ 2n, we have

lnPθk∗
[ℓB(X

n) > nRn]

nτ 2n
≤ − tn

τn
+

1

2nτ 2n
σ2
θk∗
(Xn)t2n +

k

2nτ 2n
ln
( n
2π

)
tn (8.35)

+
O(ln lnn)tn

nτ 2n
+

1

nτ 2n

∑
m=3

ζm
θk∗
(Xn)

m!
tmn . (8.36)

In the following, we analyze the terms in the right-hand side of (8.36) by setting
tn = τn/σ

2
θk∗
(X) and using the assumption of τn.

The first and second terms in the right-hand side of (8.36) are calculated as

− tn
τn

+
1

2nτ 2n
σ2
θk∗
(Xn)t2n = − 1

σ2
θk∗
(X)

+
1

2σ2
θk∗
(X)

= − 1

2σ2
θk∗
(X)

, (8.37)

where we use the fact that σ2
θk∗
(Xn) = nσ2

θk∗
(X) because a stationary memoryless source

is assumed (see, e.g., [4]).
Next, the third term in the right-hand side of (8.36) is evaluated as

k

2nτ 2n
ln
( n
2π

)
tn =

k

2nτnσ2
θk∗
(X)

ln
( n
2π

)
(8.38)

→ 0 (n→ ∞). (8.39)
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Then, the fourth term in the right-hand side of (8.36) is evaluated as

O(ln lnn)tn
nτ 2n

=
O(ln lnn)

nτnσ2
θk∗
(X)

(8.40)

→ 0 (n→ ∞). (8.41)

Finally, the fifth term in the right-hand side of (8.36) is calculated as

1

nτ 2n

∞∑
m=3

ζm
θk∗
(Xn)

m!
tmn =

1

n

∞∑
m=3

ζm
θk∗
(Xn)

m!

τm−2
n(

σ2
θk∗
(X)

)m (8.42)

→ 0 (n→ ∞), (8.43)

where we use the fact that ζm
θk∗
(Xn) = O(n) (see, e.g., [4]).

Thus, from (8.36)–(8.43), we obtain (8.26). □

8.4 Discussion and conclusion of this chapter

We compare the previous result (Theorem 8.3.1) and the main result (Theorem 8.3.2).
The Bayes code is designed to minimize the mean codeword length averaged with the
prior probability density function w(θk). Therefore, it is not designed to minimize
the overflow probability. However, a comparison of (8.25) with (8.20) shows that the
behavior of the overflow probability of the Bayes code is similar to that of the optimal
(optimal means that the overflow probability is smallest) non-universal code.

When the sequence {ηn}∞n=1 satisfies the condition (8.13), Theorem 8.2.3 does not
give the speed of convergence of the overflow probability. Hence, one of the research
questions is how is the speed of convergence when the sequence {ηn}∞n=1 meets the
condition (8.13). Theorem 8.3.2 gives one of the answers for this question. That is, if
ηn equals nRn = Hθk∗

(Xn) + nτn, then
5 the speed that the overflow probability of the

Bayes code goes to zero is about exp{−nτ 2n/2σ2
θk∗
(X)}.

The summary of this chapter is as follows. First, this chapter analyzed the neces-
sary and sufficient condition of the overflow probability of the Bayes code approaching
zero asymptotically. To derive the result, the asymptotic normality of the Bayes code
played an important role. Next, this chapter evaluated the overflow probability of
the Bayes code in the moderate deviation regime. The result showed that the be-
havior of the overflow probability of the Bayes code is similar to that of the optimal
non-universal code.

5Due to the condition of τn and the fact that σ2
θk
∗
(Xn) = nσ2

θk
∗
(X) because a stationary memoryless

source is assumed (see, e.g., [4]), it is easy to see that ηn = Hθk
∗
(Xn) + nτn satisfies (8.13).
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Chapter 9

Concluding remarks and future
works

9.1 Concluding remarks

This dissertation mainly consists of two parts. The first part of this dissertation dis-
cussed the non-asymptotic analysis as well as the asymptotic analysis of the theoreti-
cal fundamental limits on the overflow probability for several source coding problems.
Chapters 3, 4, 5, and 6 correspond to the first part.

In Chapter 3, we considered the variable-length lossless source coding problem
for a general source. The non-asymptotic and asymptotic fundamental limits were
characterized by using the smooth max entropy for both prefix codes and non-prefix
codes. To show the achievability results, the explicit code construction was used. This
technique was utilized throughout Chapters 3–5.

In Chapter 4, we considered the variable-length source coding allowing errors for
a general source. The non-asymptotic and asymptotic fundamental limits were char-
acterized by using the smooth max entropy. The obtained results indicated that the
overflow probability and the error probability are trade-off. Further, by comparing
the results in Chapter 3 with the results in this chapter, the benefit of allowing the
positive overflow probability was clarified.

In Chapter 5, we considered the variable-length lossy source coding problem for a
general source. The non-asymptotic and asymptotic fundamental limits were charac-
terized by using the smooth max entropy-based quantity. The results clarified that
the overflow probability and the excess distortion probability are trade-off.

In Chapter 6, we considered the fixed-length Slepian-Wolf coding problem for a
general source. The second-order achievable rate region was characterized by using
the function related to the smooth max entropy and the conditional smooth max
entropy.

The second part of this dissertation discussed the asymptotic analysis of the over-
flow probability of the Bayes code. Chapters 7 and 8 correspond to the second part.

Chapter 7 considered the case where a positive overflow probability is allowed.
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In this chapter, we evaluated the upper and lower bounds on the ϵ-coding rate of
the Bayes code for a stationary ergodic finite order Markov source. The main result
showed that the Bayes code behaves similarly to the optimal code; the first and second
terms of the upper bound and the lower bound are the same as those of the optimal

code; the first term is Hθk∗
(X), and the second term is

σ
θk∗

(X)
√
n
Q−1(ϵ).

Chapter 8 treated the case where the overflow probability of the Bayes codes ap-
proaches zero asymptotically. In this chapter, we analyzed the necessary and sufficient
condition of the overflow probability of the Bayes code approaching zero asymptoti-
cally. Further, we evaluated the overflow probability of the Bayes code in the moderate
deviation regime. Our result clarified that the behavior of the overflow probability of
the Bayes code is similar to that of the optimal non-universal code.

9.2 Future works

In Chapters 3–6, we have derived various general formulas. However, from such general
formulas, coding theorems for a source with a specific probabilistic structure have
not obtained yet. For example, previous works such as [19] and [20] have obtained
the fundamental limits for a stationary memoryless source after deriving the general
formulas. Therefore, one of the future works is the derivation of a theoretical limit
for a source with specific probabilistic structure (e.g., a stationary memoryless source
and a stationary ergodic Markov source).

Regarding the studies in Chapter 7, one research direction is analyzing the ϵ-coding
rate of the Bayes code for various sources. For example, previous study such as [26] has
analyzed the ϵ-coding rate of the Bayes code for a piecewise stationary memoryless
source. Another future work is the evaluation of the Bayes code in the moderate
deviation regime for various sources.
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