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Chapter 1 
Introduction 

1.1 Resource constrained scheduling problem (RCSP) 
Today, the rapid changes coming from technology and social culture have forced 

manufacturing to achieve the improvement on the responsiveness and reactiveness of the 

manufacturing systems to increase the competition ability for one company. Production 

scheduling for manufacturing systems, is very important in production management and planning, 

which becomes increasingly impact on the productivity and profitability in a globally competitive 

market [1]. Meanwhile, most of scheduling problems are very famous as the complicated 

combinatorial optimization problems and NP hard, especially for the problems including the 

constraints with both precedence relations and resource capacity. 

For manufacturing system, there are many typical problems and applications: Flow Shop 

Scheduling Problem (FSSP) [2], [Flexible] Job Shop Scheduling Problem (JSP/FJSP) [3][4], 

scheduling for Cellular Manufacturing System (CM) [5], and Project Scheduling Problem (PSP) 

[6], etc. 

Scheduling problem could be view as one complex multi-dimensional discrete optimization 

procedure, which includes operations sequencing and resource allocation. Usually, the scheduling 

problems are described as some jobs have to be executed on various kinds of different resources. 

The final outputs are choosing the best sequence and amount of resource for each job, based on 

some kind of scheduling criteria. 
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In general, scheduling problems can be modelled as 3-filed problem classification α|β|γ, 

which represents machine environment, job characteristics and scheduling characteristics 

respectively [7]. As shown in Fig. 1.1, in left side, α is machine environment. For example, the 

machine configuration, the characteristics of tools, workers or other types of resources are 

described here. β means job, task or activity in different production systems. Each one has its own 

information, such as operation time, resource requirement, release date, due data, and some 

precedence relations among them, which could be represented as linear, tree or network structure. 

In the right side, γ is the scheduling characteristics, typically, it includes some specific constraints 

for types of manufacturing systems and objective functions of scheduling. Most of the objectives 

depend on the completion time, typically, the tardiness or makespan minimization. 

For overviewing the scheduling problems, generally we can divided them into three groups 

hieratically in Fig. 1.2: Master Production Schedule (MPS), Resource Constrained Scheduling 

Problem (RCSP) and Flow Shop Scheduling Problem (FSSP). For MPS, it belongs to planning 

level without considering of capacity. The decision makers always consider the requirements from 

the sales and try to decide the total output. For RCSP, it belongs to medium level of operational 

level with capacity planning. From the view of budget management, the schedule by RCSP should 

decide the suitable required amount of capacity for each different kinds of resources. For FSSP, 

 

Fig. 1.1 Three-filed problem classification α|β|γ for scheduling problem 
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it’s one kind of control level scheduling with capacitated resources given. Under the limitation of 

resource, the scheduler tries to optimize the makespan or to achieve other schedule criteria. 

Therefore, RCSP is an important and realistic scheduling problem in manufacturing 

scheduling to make feasible operational schedule which not only minimizes the makespan but 

also makes resource allocation load balancing with satisfying resource constraints [8]. It provides 

the connection from high-level planning to low-level controlling in manufacturing system, which 

is the reason we taking RCSP as our research’s main target application. 

For RCSP, many researches have been conducted in recent years. The methods can be 

divided into three parts: exact methods, heuristic methods and meta-heuristic methods. Here we 

briefly introduce them. 

a) Exact methods: Johnson firstly developed an exact method by using branch-and-bound 

algorithms to solve RCSP [9]. After that, more and more researchers proposed approaches based 

on B&B. The main contributions of these methods are mainly depend on the searching technology 

on tree structure, for example, by using dominance rules [15], [16], lower bounds [12], [13], and 

immediate selection [14], [15]. 

 

Fig. 1.2 Hierarchical structure of scheduling 
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The advantage and disadvantage of B&B methods are both apparent. B&B methods can 

provide optimal solutions, but the calculation times are very long for big-size problems. Though 

some technique on tree searching improve the solving ability, B&B still can not be a suitable and 

practical way to solve complex large scale problems. 

b) Heuristic methods: Kelley proposed the first heuristic methods to solve the RCSP by using 

the priority-rule [16]. Except priority-based heuristics, there are some other researches, such as 

truncated B&B [17], integer programming based heuristics [18], local constraint based analysis 

[19], disjunctive arc concept [20] and so on. 

Compared with exact methods based on B&B, heuristic methods can not provide the optimal 

solutions, but they can solve large problems in acceptable times. Moreover, some good heuristic 

methods can provide the initial solutions for meta-heuristic methods. However, designing a good 

heuristics method is one very difficult job, and the current approaches are very problem specific 

methods. It becomes one popular potential research direction on extending them to more general 

scheduling problems. 

c) Meta-heuristic methods: For RCSP, the meta-heuristic methods mainly belong to 

Evolutionary Algorithms (EAs) we have discussed, such as Genetic Algorithm (GA) [21], 

Simulated Annealing (SA) [22], Tabu Search (TS) [23], Ant Colony Optimization (ACO) [24], 

Particle Swarm Optimization (PSO) [25], Estimation of Distribution Algorithm (EDA) [26], and 

Differential Evolution (DE) [27]. 

Compared with B&B methods and heuristic methods, meta-heuristic methods have better 

performance on calculation efficiency, which can generate optimal solutions with shorter times, 

especially for large-size and complex problems. Meanwhile, due to the generic evolving 

procedure, the adoption of meta-heuristic methods are much easier than other methods. In other 

words, they have more widely availability and flexibility to solve the scheduling problems based 

on meta-heuristic methods. 
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Estimation of Distribution Algorithms (EDAs), as a class of population-to-population meta-

heuristic optimization algorithms, provide higher optimality than conventional Evolutionary 

Algorithms (EAs). In EDA, the core issue is the probability model estimating by promising data. 

Instead of crossover in GA, through sampling candidate solutions with the distribution of 

probability model, EDA can lead to further search in a convincing way. And, conventional EDA 

could be enhanced by probabilistic graphical models (PGMs) [28], which could be used for 

modelling the interaction relationship among the variables. Various experiments have illustrated 

that PGMs can improve the searching ability of EDAs [29]. As one kind of PGMs, Markov 

network (MN) was adopted to enhance the conventional EDA (MEDA) [30], by which the 

network structure is to model the interrelation among variables with the assumption of 

neighborhood relation, not in parenthood. 

However, there are very seldom research of the current PGMs based EDA considering the 

application to solve the more complicated real-world problem with multi-objective or under 

uncertainty environment in RCSP. 

Firstly, PGMs based EDA can provide more convincing solutions but very time-consuming. 

For solving the multi-objective problems based on Markov network based EDA, although the key 

issue for the multi-objective evolutionary algorithms is fitness assignment mechanism, it would 

become low performance or even impractical to take MEDA as searching engine independently 

with multi-island model. Therefore, the optimality and computing efficiency of these methods are 

insufficient and need to be improved, which is one changeling job to combine fitness assignment 

functions within the evolutionary procedure of EDA. 

Secondly, in order to deal with uncertainties, a robust schedule is needed to against some 

disruptions occurred during the schedule executing. No matter to use stochastic optimization or 

chance constraint programming, in order to make the final solution of schedule more convincing, 

usually the enough number of scenarios are required to be sampled for evaluation. In other words, 
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it’s also a very time-consuming task to solve the uncertainty problems. PGMs based EDA can 

provide more convincing solutions but require longer time due to the structure learning and 

sampling, no matter by which kind of graphic model. Seldom researches conducted on the 

uncertainty resource constrained scheduling problems. As a result, it is another motivation for us 

to make the enhancement for PGMs based EDA. 

 

1.1.1 Multi-objective optimization of RCSP 
In RCSP, it contains two groups of decisions: how to sequence the tasks to avoid the 

precedence constraints and how to allocate the resources to each task. 

In Fig. 1.3, it shows one feasible solutions containing sequencing and resource allocation. 

For example, there are three types of resources r1, r2, r3, and 7 tasks (from t1 to t7). This is one 

simple example, but for the complex problems, some tasks require several types of resources 

simultaneously to complete. In that case, the constraints of resource allocation become more 

complicated to solve. 

As one scheduling problem with resource constrained, the considering of resource utilization, 

makespan or budget management are always taken into account. All these criteria have to be well 

 

Fig. 1.3 One illustrative solution of RCSP 
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organized and simultaneously optimized to improve the competitiveness. Therefore, a great 

number of RCSPs are multi-objective optimization problems naturally. 

For RCSPs, the objectives are classified as three groups in general: Regular objectives, 

Resource Leveling (RL), and Net Present Value (NPV) [31]. 

The regular objective for RCSP is mainly depend on the completion times, such as the most 

popular one that minimizing makespan. Besides, there are several other targets, for example, 

minimizing the delay for due date of project, or min-max the completion time of each sub-project. 

All these objectives are time-based criteria, which is similar to other types of production 

scheduling problems. 

Second types are resource leveling problems [32]. In this domain, we try to minimize or 

maximize the variation of resource usage. All these problems are stated as follows: 

min   { ( ( ))}k k
k K

c f r SS
∈

×∑                             (1.1) 

where SS represents solution of schedules, rk and ck are the amount of consumptions and unit cost 

for resource k respectively. 

Here we list three typical types of objective functions: 

1,2...
( ( )) max ( )k kt

f r SS r SS
=

=                             (1.2) 

1,2...
( ( )) ( )k k k

t
f r SS r SS G

=

= −∑                           (1.3) 

1,2...
( ( )) ( ) ( )k k k

t
f r SS r SS r SS

=

= −∑                         (1.4) 

where Gk represents the goal value of resource usage. 

In equation (1.2), it belongs to resource investment problem with minimizing the total 

consumption of resources. In equation (1.3), it calculates the deviation between actual usage of 
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resource k for schedule SS and a goal value Gk. In equation (1.4), it means the variation with 

averaged utilization for resource k. 

The third type NPV is depend on the concepts of cash flows: 

max   ( )j j
j J

cβ
∈

×∑                              (1.5) 

where βj is the discount rate for activity j, and cj is the cash flow, which could be positive (benefit 

achieved) or negative (cost incurred). 

Therefore, only considering single objective is not suitable way to handle the RCSPs, a great 

number of RCSPs are multiply objectives optimization problems naturally. One simple way is 

that, we take these multiple objectives as one with weighting and normalization methods. 

However, in real-world problem, it is very impractical to set one suitable weights for each 

objective [33]. Firstly, even for problem experts, it is hard for them to decide the weighting value 

to characterize their own preferences. Secondly, different decision makers have different 

preferences, so that one single optimal solution maybe not the best answer for other project 

managers. Thirdly, a set of good solutions are always better than one single solution, because it 

provides more chances to select, making the results much more reasonable and easy to make 

trade-off decision. 

 

1.1.2 Robust scheduling of RCSP 

In real-world problems of RCSP, parameters such as activity durations of completion time 

can not be known exactly in advanced. For example, the duration of each activity is not a 

deterministic value. Other possible conditions for the project scheduling are, the resources may 

breakdown (for machine) or unavailable (for manpower), due dates may change and rush order 

may come [34]. 
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These uncertainties could disrupt the original schedule and incur high costs by resource 

idleness, high inventory, and missing deadlines. Meanwhile, the uncertainties involved make the 

problems complex to address. Therefore, dealing with uncertainty in a scheduling environment 

becomes another critical problem in RCSP, which has significant impacts on productivity, 

customer satisfaction and profitability. 

Based on different level of uncertainty, there will be different manner of schedule to cover 

them. As shown in Fig. 1.4, it describes three different kinds of schedules to manage different 

uncertainty levels. 

From left to right, the level of uncertainty becomes higher. For low uncertainty or without 

uncertainty, we usually take all the parameters statically and make one optimal schedule with 

deterministic manner. 

However, with the uncertainty increases, the deterministic schedule cannot afford any more. 

Then the proactive schedules are required, which are also called baseline schedules or robust 

schedules. For dealing with medium uncertainty, a satisfied schedule is made with considering 

uncertain conditions to avoid their effect on the schedule and to make its performance to be more 

 

Fig. 1.4 Three types of schedule for different uncertainty level 
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predictable. Usually, one schedule is preferred that minimizing variance of performance from the 

expected or averaged one. 

When the uncertainty is high or acted as some unexpected disruptions, including the 

emergency jobs, machine breakdown, or manpower unavailable [35], the baseline schedules 

cannot protect so well against the disruptions we discussed above. One revised or re-optimized 

schedule is generated, madding by some rules, policies or optimization approaches, to update a 

baseline schedule dealing with some disruptions. 

Meanwhile, there is another type of hybrid scheduling manner to deal with uncertainty is 

called predictive-reactive scheduling, which could be viewed as the integration of proactive 

schedule and reactive schedule. It has three steps usually. In step 1, one predictive schedule is 

produced as one proactive baseline considering the uncertainty of disruptions. In step 2, after 

some disruptions occurred, if the predictive schedule can well absorb, the schedule is executed 

continue. In step 3, if the initial schedule cannot be executed any more, one reactive schedule is 

generated then. 

 

1.2 Objective of research 
As mentioned above, the optimality and computing efficiency of conventional methods are 

insufficient and need to be improved and also study of robust scheduling for RCSP has not been 

studied enough. In this study, we make two major contributions to solve RCSP based on EDA, 

developing efficient multi-objective scheduling method and robust scheduling method. In Fig. 

1.5, it shows the bird view of proposed contents. 

(1) We enhance MEDA for multi-objective optimization to solve RCSP as multi-objective 

scheduling problems and propose multi-objective Markov network based EDA (MMEDA) to find 

Pareto optimal solution set by introducing new fitness assignment functions. Two-stage 
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architecture of hybridizing GA and MMEDA (hGMEDA) is also proposed to improve the 

calculation efficiency of MMEDA. 

(a) Multi-objective Markov network based EDA (MMEDA): Firstly, fitness assignment 

functions are developed to achieve diversity in distribution and low calculation cost 

simultaneously. Two kinds of simple but effective fitness assignment functions are proposed to 

cover both edge region and central region, that guarantee the solutions have better diversity in the 

Pareto set. Thereafter, inspired by the idea of point system of decathlon, we design a novel 

function to combine different functions. It can realize not only normalization of differences of 

scale size, but also normalize differences of increasing rate of scale with adjustable exponential 

parameter. 

Secondly, in order to increase the searching performance, one PGM based EDA, Markov 

network based EDA is applied in this study, in which the network structure is very suitable way 

to model and solve the resource allocation problem in RCSP. 

 

Fig. 1.5 Bird view of proposed contents 
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Thirdly, in order to improve the quality of each candidate solution, a problem-specific local 

search based on Variable Neighborhood Search (VNS) [36] is developed. For bi-objective 

problems, two types of local search are proposed, for time-based objective and resource-based 

objective. 

(b) Two-stage hybrid GA and MMEDA (hGMEDA): Both algorithm of PGM based EDAs 

and MOEAs are very time consuming, in order to increase the calculation efficiency of proposed 

MMEDA, the algorithm hybrid GA and MMEDA (hGMEDA) is developed to solve resource 

capacitated scheduling problems. Inspired by the cooperative co-evolutionary, in hGMEDA, a 

two-stage architecture based on sequential co-evolutionary paradigm is proposed. 

In the first stage, GA is employed to find feasible solution for sequencing sub-problem 

without resource capacitated, because GA can provide more “random” solutions and higher 

diversity of solutions. In the second stage, based on the partial solutions given by stage-1, 

MMEDA is adopted to model the interrelation for resource allocation and calculate the Pareto 

optimal solution set. 

(2) In order to deal with these uncertainties, a multi-phase robust scheduling method based 

on hGMEDA is proposed for robust scheduling. Two measures of time-based robustness and 

capacity-based robustness are introduced and a robust multi-objective optimization method by 

using scenario-based simulation is also proposed. 

(a) Robust scheduling method based on hGMEDA (robust hGMEDA) 

Based on the algorithm of hGMEDA we proposed, a robust scheduling method based on 

hGMEDA was developed, to increase applicability and flexibility of EDA for more widely 

applications. 

Firstly, two kinds of robust measures on time-based-robust and capacity-based-robust are 

well defined to evaluate the solutions, and we treat them as chance constraint and objective to 

make the problem more practical to solve. 
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Secondly, a multi-phase scheduling method of stochastic optimization combined hGMEDA 

with scenario based simulation is proposed. In the first phase, with the averaged duration, the 

problem is solved as the deterministic multi-objective manner and some solutions are collected 

by using hGMEDA. In the second phase, all the alternative solutions are checked by potential 

chance constraints, some unsatisfied solutions are cleaned out. In the third phase, the remaining 

solutions are evaluated with robustness measures, by using the scenario-based simulation, finally 

the one with the highest robustness is selected. 

Thirdly, one problem-specific local search with considering both makespan and robustness 

under uncertainty environment is designed to increase the solution quality. 

 

1.3 Organization of dissertation 
The chapters in this dissertation are structured as follows (shown in Fig. 1.6). In Chapter 2, 

we give a literature review of meta-heuristic algorithms for solving RCSP, especially focus on 

EDA and PGM based EDA. Then some conventional multi-objective evolutionary algorithms and 

robust optimization approaches are presented briefly. Chapter 3 describes our proposal MMEDA 

and hGMEDA to enhance Markov network based EDA, with multi-objective optimization and 

GA hybridization. Next, in order to confirm the effectiveness of our methods, some experiments 

are performed on benchmark problems with comparisons with two famous MOEAs in Chapter 4. 

In Chapter 5, a multi-phase robust scheduling method based on hGMEDA (robust hGMEDA) is 

presented. Chapter 6 presents the application of robust scheduling problems for RCPSP with 

duration uncertainty, which acting as the case study for evaluating the robustness performance of 
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our proposal. In Chapter 7, we conclude the thesis by reviewing results of our approaches and 

contributions. The potential topics for further research are also discussed. 

  

 

Fig. 1.6 Organization of dissertation 
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Chapter 2 
Literature Review 

2.1 Estimation of distribution algorithm 
In the research domain of combinatorial optimization, a significant amount of algorithms 

were developed. Evolutionary Algorithm (EA), based on the operations of selection and mutation, 

is one kind of population-to-population meta-heuristic optimization algorithms [37]. EAs almost 

can perform good enough solutions to all kinds of research field due to its problem-independent. 

The general processes of EAs are: 

a) Generate the initial population; 

b) Evaluate each individual with some criteria; 

c) Regenerate the population, and go to b) until termination. 

In the field of Evolutionary Algorithms (EAs) or Evolutionary Computation (EC), there are 

several kinds of meta-heuristic algorithms proposed to solve the practical applications, such as 

GA [38], SA [39], TS [40], and PSO [41]. 

As one typical EA, GAs [21] are perhaps the most popular and well-known algorithms. 

Various of EAs mainly differ from the scheme of regeneration. In GA, next generation of 

population is generated based on some better solutions coming from the last generation, with the 

genetic operation including crossover and mutation. 

In Fig. 2.1, it shows how a generic GA works. 
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However, for the conventional GAs, largely depend on the manner of crossover, mutation 

and the corresponding parameters. How to make parameter tuning becomes a critical task [42]. 

Different problems require different crossover probability. Unfortunately, there is no special rule 

to guide how to set up those appropriate parameters, which is a state-of-the-art problem to 

researchers. Furthermore, for some complex problems, operators of crossover and mutation 

cannot ensure to get an optimal solution and how to deeply utilize the current promising data 

towards the final optimal solution is always one critical issue in the population-based optimization 

algorithms. Then, one probability model based algorithm without crossover was developed, called 

Estimation of Distribution Algorithm (EDA) [43], trying to overcome the drawback of 

conventional EAs. 

Compared with the conventional methods, the key point of EDA is using the probabilistic 

model to describe the distribution of value selection for each decision variable. The probability is 

extracted from some promising date coming from all candidate solutions. From lots of previous 

literatures, EDAs can achieve better optimality on some benchmark problems, especially when 

the decision variables are dependent due to a high level of interaction [44]. 

Generic Genetic Algorithm 

begin 
  Initialization: 

 Step 1 Set t = 0; 
 Step 2 Initialize the first generation population pop(0) randomly; 
 Step 3 Evaluate each individual in pop(0); 
while terminating criteria is not met do 
  Step 4 Select pop(t) from pop(t-1) based on some criteria; 

Step 5 Perform GA operations on the population selected; 
Step 6 Evaluate the individual after performing the operations; 
Step 7 Set t = t+1; 

end 
end 

Fig. 2.1 Pseudo-code for generic genetic algorithm 
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Flowchart of generic EDA is shown in Fig. 2.2, which is used as the basic searching engine 

in this study. 

 

2.1.1 Generic EDA 

Same with other EAs, EDAs are also population-based approaches. The core issue of EDAs 

is the probability model involving. Through estimating the distribution and sampling candidate 

solutions, leading to further search until the termination achieved. 

In the recent years, many literatures on the algorithm of EDAs have been proposed. It is 

impractical to give an exhaustive list of all developed EDAs. A common way to categorize EDAs 

is according to the variable dependency types and probabilistic models to model interdependence 

relationship between variables. 

In Table 2.1, it lists some typical and representative EDAs. 

  

 

Fig. 2.2 Flowchart of generic EDA 

Generate candidate solutions by 
sampling P(t)

Select the promising solutions D(t)

START

Initialize probability model P(0)

Estimate probability model and 
update P(t+1) = adjust (P(t), D(t))

Termination
Criteria?

END

YES

NO
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In the domain of EDAs, univariate EDAs were firstly developed for independent or 

univariate, such as PBIL [45], UMDA [46] and cGA [47]. This kind of EDAs make assumes that 

the joint probability for each variable is calculated as the marginal probability and each variable 

is independent from others. These algorithms, ignoring feature dependencies, are the simplest and 

fastest EDAs but still suit for some particular problems with high cardinality, meanwhile they are 

suitable to make theoretical analysis of EDA behavior [48]. 

To extend the univariate EDAs, bivariate models are evolved into the EDAs, which represent 

the pairwise dependencies between variables. Several kinds of probability model to address the 

dependence: forest and tree structure are adopted in BMDA [49] and COMIT [50], while MIMIC 

[51] uses the probability models of chain structure. The bivariate models are applicable to more 

widely problems. Compared with univariate EDAs, bivariate ones need longer calculation time. 

 

2.1.2 Graphical models and PGM based EDA 

The most popular and effective approaches are now multivariate EDAs, where the 

dependencies between variables are multi-dependent, and some probability graphical models 

(PGMs) evolved. FDA [52] is the first algorithm of multivariate EDA. Later more literatures on 

multivariate EDAs are published. Two important probability graphical models are adopted to 

enhance the EDAs: Bayesian networks and Markov networks. Based on Bayesian networks, 

EBNA [53] and BOA [54] are proposed and use BIC metric and BDe metric to learn the network 

structure respectively. Based on Markov networks, some approaches as Markov network based 

EDA [55] and DEUM [56] are proposed. 

For multivariate EDAs or PGMs based EDA, there are different types of PGMs proposed, 

including Bayesian network (BN) [57], Markov network (MN) [58], dependency networks (DN) 

[59], chain graphs (CP) [60] and so on.  
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Based on conventional EDAs, PGMs can bring out high ability to solve problems widely, 

but need higher memory requirement and cost longer computation time. Especially for a complex 

problem without prior knowledge, it requires very long time to learn the structure. Consequently 

they are usually applied to applications where the network structure is known by experts [61]. 

 

2.1.3 Markov network based EDA (MEDA) 

This subsection mainly discusses Markov network empowered EDA, which part related to 

our study. 

a) Markov network 

In Markov network, it consists of graph structure G and parameter Ψ. An example of Markov 

network containing five variables is shown in Fig. 2.3. In graph structure, each node represents 

one decision or stochastic variable and the edge represents relationship existing among these 

nodes based on its undirected structure. In Fig. 2.3, variable X1 has two neighbors of variable X2 

and X3. And the variable X2 has three neighbors of variable X1, X3 and X4. 

A solution x = (x1, …, xn) containing the values of variable X, which are generated by 

calculating the joint distribution of decision variable X = (X1, …, Xn). D(Xi) = {xi
1, …, xi

ni} 

represent the domain of Xi. 

For each node, the conditional probability is calculated by its neighbors (which nodes have 

edge connecting to it). The equation of conditional probability is: 

 

Fig. 2.3 An example of Markov network structure 

x2 x4 x5

x1 x3
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( | { }) ( | )i i i ip x x x p x N− =                        (2.1) 

where Ni is the set of neighborhood of node Xi. 

In Table 2.2, it shows an example of the parameter table for factor {X1, X2, X3}. It is difficult 

to establish the Markov properties, so that the concept of Markov random fields is adopted, which 

is factorized based on the cliques in network structure. The probability is calculated by 

1

1(x) ( )
m

i i
i

p c
Z

ψ
=

= ∏                            (2.2) 

where m is the total amount of cliques, ψi(ci) is a potential function on each clique, and Z is a 

normalizing constant. 

b) Structure learning 

PGMs based on EDAs are extension to conventional EDAs. The basic evolutionary 

procedures are kept in remains, but there are two main differences: learning or estimating graphic 

structure, and using the structure to sample new candidate solutions [62]. 

In conventional EDA, estimation is performed and represented by a probability matrix, and 

each position in the matrix denotes a certain meaning with probability. However, in Markov 

network based EDA, this probability is represented by both probability matrix and a structure of 

network. The network structure represents the relationship among different variables, while 

Table 2.2 Parameter table for factor {X1, X2, X3} in Fig. 2.3 

X1 1 1 1 1 1 1 2 2 2 2 2 2 

X2 1 2 1 2 1 2 1 2 1 2 1 2 

X3 1 2 3 1 2 3 1 2 3 1 2 3 

ψ(X1,X2,X3) ψ123,1 ψ123,2 ψ123,3 ψ123,4 ψ123,5 ψ123,6 ψ123,7 ψ123,8 ψ123,9 ψ123,10 ψ123,11 ψ123,12 
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estimating the probability denotes how important the relationship based on the connection of 

network. 

One way to construct the network structure is made by domain experts. However, it is hard 

to find experts and very time consuming. We can also perform conditional independence test to 

decide. Here we use mutual information (MI) [63] to estimate the structure, which can be easily 

adopted in low computation costs and avoid high complexity. In equation (2.3), we can calculate 

MI between two random variables Xi and Yj. 

MI( ; )= p( , | )

( , | )
                 log

( | ) ( | )

i ji j

i
x X

i j
Y

j
y

i j

i j

X Y x y D

p x y D
p x D p y D

∈ ∈

 
×   

 

∑ ∑
                     (2.3) 

where p(xi|D) and p(yj|D) are probability of variables Xi = xi and Yj = yj based on the promising 

solutions set D, p(xi, yj|D) is the joint probability of Xi = xi and Yj = yj. 

If the MI value of two variables is higher than a threshold, we treat them as neighbors and 

create an edge between them, which means that they have strong relationship in Markov network. 

The value of threshold could be given as one fixed number or we can update the value by the 

information of MI values we already got, which is shown in equation (2.4). 

-1

1 1

( )

2 ( ; )
              

( -1)

N N
i ji j i

threshold avg MI

MI X X

N N

α

α = = +

= ×

×
= ×

×
∑ ∑                   (2.4) 

where the parameter α is used to control the complexity of structure. 

If we take α as a high value, so that Markov network has fewer edges and requires less 

computation time. Otherwise, smaller value α can generate more edges but cost longer time to 

construct the structure. As a result, optimality and calculation time, partially can be controlled by 

parameter α. 
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c) Sampling 

New candidate solutions have to be sampled, after the structure of Markov network and 

parameters of probability model have been learned. Markov network is different from the 

ancestral ordering in Bayesian network (BN) [64]. As a result, in order to sample new solutions, 

one Gibbs sampler is proposed, which is one kind of Monte Carlo methods for Markov chain, to 

act as the sampling method. The pseudo code of Gibbs sampling is given in Fig. 2.4. 

In order to make the convergence smooth, the conditional probability p(xj|Nj) is estimated by 

Gibbs probability with temperature control: 

( )
( , ) /

( , ) /'

' ( )

|
j

j

j

j

j

j

p x

j j

x

N T

p x N T

D X

ep x N
e

∈

=
∑                         (2.5) 

1~T
gen

β ×                                  (2.6) 

where p(xj, Nj) represents the joint probability of a variable Xj = xj and its neighbors Nj. T is the 

temperature function, determined by cooling rate parameter β. Higher value of β makes the update 

Gibbs sampling for Markov network based EDA 

begin 
 for i := 1 to popSize do 

 Step 1 Randomly generate a solution x = (x1, x2,…, xn) according to variable 
X; 

for j := 1 to n do 
 Step 2 Choose a variable xj from each solution; 

   Step 3 Using the promising data set D, estimate the conditional probability 
p(xj|Nj) for each value xj of the variable Xj as Gibbs probability; 

   Step 4 Sample conditional probability distribution p(xj|Nj) to new xj; 
  end 
 end 
end 

Fig. 2.4 Gibbs sampling for Markov network based EDA 
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mainly depend on old promising solutions, while smaller value represents that the present 

promising date affect the results a lot. 

 

2.2 Multi-objective evolutionary algorithm (MOEA) 
 

2.2.1 Overview of MOEA 

It is always a challenging job to researchers that how to provide good solutions to the 

problems with multiply objectives. Evolutionary algorithms (EAs) have two important 

characterizes: multi-directional and population-based, which make them as suitable approaches 

to solve the multi-objective problems. This kind of population to population approach can search 

for good solutions in different regions of the searching space simultaneously, which makes it 

possible to find a set of good solutions, even for the non-convex or discrete problems [65]. 

For solving multi-objective optimization problems (MOOPs), one simple way is we can take 

these multiple objectives as one. For example, by using weighted average and transforming the 

problem as one single combined objective to optimize. Second way is that, we can propose goal 

programming for example, and give each objective a goal to achieve, and convert the multiply 

objectives to the deviation from the goal value, and try to minimize or maximize the total 

deviations. But all these methods still belong to single-objective methods, and can only provide 

one single solution [66]. 

However, it is not a suitable way to transform as single objective problem. Firstly, it’s still a 

difficult job for problem experts to decide the weighting value to characterize their own 

preferences, some technology such as AHP or ANP should be involved to increase the complexity 

of problems. Secondly, different decision makers have different preferences, so that one 

weighting value is not fit for other project managers. Thirdly, a set of good solutions provide more 
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chances to select, and easy to make trade-off among different objectives. All these reasons are the 

fundamental motivation of designing MOEAs. 

In Fig. 2.5, it shows the Pseudo code for generic MOEAs. 

For MOEAs, the key issues to make different algorithms are operators, fitness assignment 

mechanism, and schematic of selection and update. Based on these aspects, we list some typical 

MOEAs in Table 2.3. Most of them takes the GA as the optimization algorithm. However, we can 

use other stochastic search and optimization approaches, such as TS [67], SA [68], PSO [69] and 

other evolutionary algorithms [70], however, how to apply a suitable meta-heuristic solver to 

different types of scheduling problems is another critical problem and need to be well designed. 

 

2.2.2 Typical MOEAs 

In this subsection, we focus on several MOEAs, which related to our research. Through the 

explanations of three typical MOEAs, we try to make the brief understanding of evolution process 

of MOEAs. 

Generic Multi-objective Evolutionary Algorithms 

begin 
  Initialization: 

 Step 1 Initialize population P(0); 
 Step 2 Evaluate objective value; 
 Step 3 Ranking based on Pareto Dominance; 
while terminating criteria is not met do 
  Step 4 Select P(t) from P(t-1) based on Pareto Dominance; 

Step 5 Do recombination and mutation to P(t+1); 
Step 6 Evaluate each individual in P(t+1); 
Step 7 Ranking P(t+1) union P(t), based on Pareto Dominance; 
Step 8 Set t = t+1; 

end 
end 

Fig. 2.5 Pseudo-code of generic MOEAs 
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a) Vector evaluated genetic algorithm (VEGA) 

Schaffer proposed first MOEA based on simple GA named vector evaluated genetic 

algorithm (VEGA) with vector-valued fitness measures. 

In the algorithm of VEGA, k equal sized subpopulations are generated by dividing the 

population randomly, and each solution is evaluated only by one corresponding objective function. 

The major disadvantage of VEGA is poor diversity, because it attempts to find solution which is 

outstanding in one objective. And usually, the solutions in the central area of Pareto front are 

more important, because they achieve the balance among multiply objectives. 

In Fig. 2.6, it shows the evolving process of VEGA. The merit of VEGA is the low 

complexity and towards the edge region of searching space. 

b) Nondominated sorting genetic algorithm-II (NSGA-II) 

The key issues of NSGA-II are nondominated ranking and crowding distance calculation. In 

Fig. 2.7, it shows the evolving process of NSGA-II. All individuals in population have been sorted 

into different ranking by non-dominated sorting. Next step is updating the new population. 

Starting from ranking 1, until the number of one ranking is more than the amount of left size of 

  

Fig. 2.6 The evolving process of VEGA 
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population. Then we calculate the crowding distance, to decide which ones update into the next 

generation. 

c) Strength Pareto evolutionary algorithm 2 (SPEA2) 

In SPEA2, three key issues have to be illustrated. 

Strength(i): the number of individuals that individual i dominates. 

Raw_fitness(i): sum of the strengths of individual i’s dominators. 

 

Fig. 2.7 The evolving process of NSGA-II 
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Fig. 2.8 The evolving process of SPEA2 
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Density(i): the k-th shortest distance of individual i to all other individuals. 

From the Fig. 2.8 we can know that, an enhanced archive is added into the evolving process. 

The archive is updated by raw fitness and density value of each individual. 

The SPEA2 and NSGA-II has been proved as two of the most outstanding MOEAs [71]. As 

a result, they are very convincing methods to compare, in order to demonstrate a newly designed 

MOEA. 

 

2.3 Robust optimization and robust scheduling 
 

2.3.1 Robust optimization 

In order to deal with uncertainty, Robust Optimization (RO) was proposed to solve the 

optimization problems with some kind robustness measures [72]. At the beginning, the most 

famous issue of RO is worst case [73] and maximin model [74]. With the manner of worst case, 

it is very easy to solve but extremely conservative. The decision only focus on the worst case, to 

minimize the expected cost. Ignoring other conditions may occurred in future, will lost lots of 

information of uncertainty, so that cannot afford the uncertainty sufficiently. 

Based on worst case, minimax regret approach is proposed to minimize the worst-case regret 

[75]. For a particular scenario, “regret” measures the difference between the averaged/expected 

value and the actual value gotten with that scenario [76]. The target of minimax regret is to execute 

as closely as possible to the optimal one. Similar with worst case, the advantage of minimax regret 

is independent of the probability, but still cannot estimate the expected outcomes. 

Another more general and applicable scheme is made by chance constraint. For example, 

there is one uncertain linear constraint in equation (2.7): 

ax b≤                                     (2.7) 
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where x are vector of decision variables, a and b are parameters with uncertainty. 

We can convert the constraint as: 

Prob( )ax b β> ≤                              (2.8) 

where β is the confidence level of constraint. 

After transforming, we can obtain feasible solutions that satisfy the chance constraint, and 

the solutions are not as conservative as worst case. 

 

2.3.2 Robust scheduling 

To deal with medium uncertainty, a proactive or called robust scheduling is required. In 

recent years, various of researches on robust scheduling have been developed [77]. 

a) Resource-redundancy based 

When there is some uncertainty on resource itself, for example, machines have the 

probability to breakdown, it is reasonable to prepare extra resource standby, which is called 

resource-redundancy [78]. The ability of fault tolerance can guarantee the overall system failure 

can be avoided, but the cost is very high [79]. As a result, pure resource redundancy is rather 

unrealistic in real-world problems. 

b) Time-redundancy based 

Compared with resource-redundancy, time-redundancy is a much more practical way for 

resource constrained scheduling problems. 

One popular way is to inset additional idle time or buffer time to absorb the possible 

disruptions, which may come from dynamic job arrival [80] and machine breakdown [81]. 

Second way is slack-based approach [82]. Here we focus on typical one: total slack time. 

Total slack time is the difference between the possible earliest starting time of one activity and its 
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possible latest starting time. Existing of slack time can be viewed as temporal protection for small 

disruptions. Actually this kind of protection not only for the certain activity, but also for every 

activities starting before the slack time. 

c) Robust machine scheduling 

In this domain, for example, in problem of FJSP, the criteria always related to makespan 

minimization. 

Take the paper by Leon [83] for example, they defined the robustness measure of schedule 

is the difference between the expected makespan and actual makespan with the following equation. 

0( ) ( ) (1 ) ( ( ) ( ))R S M S M S M Sα α= × + − × −                  (2.9) 

where α is a weighting value between 0.0 and 1.0, M(S) and M0(S) are actual makespan of 

schedule S and the pre-schedule makespan under deterministic manner. 

Except the makespan, some papers consider the total flow time as the objective [84], and try 

to minimize the averaged difference between the flow time calculated by all operations choosing 

the shortest process time and the total flow time calculated with each scenario. 

Another one belonging to robust machine scheduling is worst-case based. As explained in 

previous subsection, it contains minimax and minimax regret [85]. The output solutions made by 

worst-case are too conservative in most cases. 

d) Robust project scheduling 

In project environment, starting time of each activity is very important, because it related to 

the resource prepare. If the starting time delayed, the inventory cost will be very high. So lots of 

papers use the difference on starting time of activity as the objective [86]. 

Here we list one common objectives for generating stable robust schedules for project 

scheduling problems. 
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× −∑                 (2.10) 

where E(sj) and sj(S) represent the actual starting time of activity j, for one scenario and baseline 

S. 

We have to mention that, four types of robust scheduling techniques cannot cover all kinds 

of robustness, and furthermore, some improvements based on existing measures have to be 

proposed, especially for RCSP with complex configurations. 
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Chapter 3 
Multi-objective Scheduling Method 
based on MMEDA for RCSP 

The previous chapters studied the literature on the optimization technique based on EDAs. 

This chapter gives a detailed description of our proposals, multi-objective Markov network based 

EDA (MMEDA) and hybridized GA and MMEDA (hGMEDA). In order to illustrate our 

approaches clearly, firstly we have to make introduction of problem of multi-objective RCSP. 

Secondly, some key components of multi-objective optimization related are presented, and the 

algorithm of MMEDA is developed. Thirdly, inspired by the cooperative co-evolutionary, 

hGMEDA is developed to improve calculation efficiency of MMEDA, in which a two-stage 

architecture based on sequential co-evolutionary paradigm is proposed. 

 

3.1 Problem formulation of multi-objective RCSP 
In chapter 1, we have introduced that RCSPs are naturally and always multi-objective 

problems. In this subsection, we mainly discuss the problem description of generic multi-

objective RCSP, which is the target application of our proposed scheduling methods. 

In RCSP, there are two main topics have to be illustrated, precedence relations and resource 

constraints. 

(a) Precedence relations: In RCSP, it provides more complicated precedence relations than 

flow shop or job shop manufacturing systems. Take JSP for example, the tasks are classified into 

jobs and operations. In each job, there are several operations with precedence relations. But there 

has no special constraints among jobs. In other words, the precedence relations are given inside 
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each job locally, not globally. Secondly, the relations between each operations are linear in FJSP. 

However, in RCSP, the precedence relations could be more complex. For example, in project 

scheduling problem, the precedence relationships among operations are in network structure. 

(b) Renewable and nonrenewable resources: Usually, in the practical and complicated real-

world problems, such as large building construction project, there are very various kinds of 

resources. Often, the utilization of resources is one of the key issue for decision maker in the 

budget management of one company. The renewable resources (k = 1,2,…,Kρ) are available with 

amount of ak
ρ in each time period of the whole project. For example, the availability of the 

machines or work force is one typical renewable resource. The non-renewable resources (k = 

1,2,…,Kς) are finite resources, not depend on time. For example, the total budget for one power 

plant project is one kind of non-renewable resource, each activity will cost some money and the 

amount would not renew during the whole scheduling. 

Usually, makespan is taken as one optimization criterion, besides, there are several other 

kinds of criteria, such as net present value or cost minimization. For RCSP with manpower 

involved, there are so many workers with different skill levels and professions, which could be 

viewed as different types of resources. In the viewpoint of manufacturing planning, human 

resource management and profit optimization, the project manager attempts to make full use of 

each worker employed in this project. If the decision maker can find some resources have lower 

workload, they could decrease the amount of this resource. The knowledge could be used for 

employing workers and purchasing equipment in future. 

As a result, in this study, we try to enhance the load balancing together with minimizing 

makespan with equations (3.1) and (3.2). 

{ }1,...,min  max ( )j N jc=
                              (3.1) 
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where cj is the completion time of operation j, K is the total amount of resources, rjk is the usage 

of resource k for operation j, and xjq is the decision variable that whether operation j executed at 

time q. 

The typical application of multi-objective RCSP: multi-mode resource constrained project 

scheduling problem (MRCPSP) is taken as the application in our study. 

Compared with conventional RCSP, the most difference is the multi-mode configuration. In 

MRCPSP, similar to one operation could be performed on several candidate machines in FJSP, 

one activity j is processed in one of the Mj possible modes, in which defines different requirements 

and completion time [22]. Thus, when activity j processed in a mode mj, it will have a duration 

time of djm with the requirement of rjm
r units of the renewable resource r and rjm

n units of the non-

renewable resource n. It has assumption that all activities can not change its mode during project 

executing and non-preemptive. 

Another reason to take MRCPSP as our application is, there are always manpower involved 

in the project and the budget management is very important issue compared with job shop 

scheduling problems or flow shop problems. 

In FJSP, the flexibility is that we can use another machine to complete one operation. 

Similarly, in RCPSP with multi-mode configuration, we can utilize different types and different 

amount of resources to perform the same activity, which increase the calculation complexity a lot. 

In Fig. 3.1, it shows an illustrative example of project scheduling problem, in which consists 

of 9 nodes, and each node represents one activity (including two dummy activities as activity S 
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and T). Take activity 5 (A5) for example, the antecessors are A2 and A3, which means we could 

perform A5 unless the A2 and A3 are completed. But for activity A5 and A1, there are no special 

precedence relations, without considering the limitation of resource capacity, it is possible to 

execute these two activates simultaneously. 

For each activity, one mode must be selected from multiple mode candidates. Each mode 

requires different resource and durations, which are listed in Table 3.1. 

MRCPSP can be solved with two decision making processes: 

a) Activity sequencing (a-seq): to decide the sequence of activities that satisfying the 

constraint of precedence relationships. 

 

Fig. 3.1 One example of project network in RCPSP 

S T

A1

A2

A3

A4

A5

A6

A7

Table 3.1 One example of two-mode project scheduling problem 

Activity 
Mode 1 Mode 2 

rj,k1,m1 rj,k2,m1 dj1 rj,k1,m2 rj,k2,m2 dj2 

1 2 5 2 4 2 1 
2 3 5 3 1 2 6 
3 1 2 1 3 1 1 
4 2 5 2 3 3 3 
5 2 4 1 1 3 3 
6 3 3 2 5 2 1 
7 2 3 3 1 2 5 

rj,k,m: requirements of activity j, which is for resource k with mode m 
djm: the duration time of activity j with mode m 
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b) Mode selection (m-select): to decide the mode for each activity from the candidate modes. 

Here we mainly discuss the manner of multi-mode involved and its effect to bi-objective of 

makespan and load balance for one schedule. 

In Fig. 3.2, the activity j has three modes could be selected shown in Fig. 3.2(a). In Fig. 

3.2(b), is shows we could use mode 2 instead of mode 1 to perform activity j, to decrease the 

makespan with higher resource usage. In Fig. 3.2(c), it is possible to use mode 3 to replace mode 

1 with a different type of resource, to realize the load balance. 

From the above illustrative example, in MRCPSP, the mode selection is a very important 

way to make resource allocation to realize makespan minimization and load balancing. 

The mathematical model of MRCPSP with bi-objectives is illustrated as following: 

            

(a)                                 (b) 

 

(c) 

Fig. 3.2 Mode selection for makespan and load balance 
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- Index: 
i activity index, i = 1,…, N 
m mode index, m = 1,…, Mj 
k resources index, k = 1,…, K 

- Parameter: 
N total amount of activities 
Mj total amount of modes of activity j 
K total amount of resources 
Nk capacity of resource k 
djm duration time of activity j with mode m 
sj starting time of activity j 
cj completion time of activity j 
rjkm usage of resource k for activity j selecting mode m 
pj predecessors set of activity j 

- Decision Variables: 
1    activity  is executed at time  with mode ;
0    otherwise.jmt

j t m
x


= 
  

- Objectives: 
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1

1,..., 1 1
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0,  0, 1,....,j js c j N≥ ≥ =                           (3.11) 

Inequality (3.6) presents the constraints of precedence relation among activities. Equation 

(3.7) guarantees that one activity has to choose one mode to perform. Inequality (3.8) shows the 

capacity constraint of resources. Equation (3.9) calculates averaged utilization rate of each 

resource. Equation (3.10) and (3.11) represent the nonnegative restrictions. 

 

3.2 Multi-objective Markov network based EDA (MMEDA) 
In order to solve the multi-objective RCSPs, one scheduling method based on multi-objective 

Markov network based EDA (MMEDA) is developed. 

Three key issues for the multi-objective evolutionary algorithms are meta-heuristic 

combinatorial solver, fitness assignment mechanism of Pareto optimization and local search, 

which are discussed in next subsections respectively. 

 

3.2.1 Markov network based EDA (MEDA) 

In chapter 2, we have reviewed the conventional EDAs and PGMs related. For the most 

conventional EDA, the relationships among variables are interdepended. However, it will lose 

some information during the process. In order to make the solution more convincing, some 

structures are added to model the relationships. In recent decades, one of the most popular way is 

Bayesian network (BN) based EDA [64]. As one typical probabilistic graphical model, Bayesian 

network could model two variables in cause-effect relationship. However, not all the problems 
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belong to parenthood relationship, and some problems are difficult to address which kind of 

relationship. 

Different from cause-effect relationship in Bayesian network, the relationship between two 

nodes in Markov network is neighborhood. In other words, Bayesian network could be viewed as 

one special case of Markov network, because undirected graph is two-way directed while directed 

graph is only one-way directed. Therefore, Markov network can be used to model the relationship 

among variables for widely applications. 

In RCSP, for the decisions of machine assignment or resource allocation, it is very difficult 

to find which variable’s decision would affects others, but these variables obviously have some 

kind of relationship due to seizing the same resource. Because of resource constraints existing, 

we can model the interaction among variables, and find the knowledge of this kind of relationship 

would lead to more convincing solutions. 

Markov network based EDA, takes the assumption that the relation among decision variables 

are in neighborhood, not parenthood. That’s the very fundamental reason of choosing Markov 

network as the graphic model for resource constrained scheduling problems and take it as the 

meta-heuristic searching engine. 

Furthermore, based on conventional Markov network based EDA, we proposed the one 

enhanced EDA with mutation operation to avoid trapping into local optimal. 

In EDAs, the solutions with better objective values are taken as promising data, by which 

we estimate the marginal probability distribution: 

1( )
( )

1( )t

N X x X
P X x

N D X

∗

= +
= =

+
                       (3.12) 

where N(X = x) represents the number of solutions with variable X choosing the value x in 

promising set, and N(D) denotes the total number of solutions in set D. 
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The probability model is learned from the current promising data, but it may make the 

transition probability unstable, so we calculate the probability by: 

1( ) (1 ) ( ) ( )t t tP X x P X x P X xλ λ ∗
−= = − × = + × =               (3.13) 

where λ is the learning rate for the current generation, specially, the distribution is completely 

learned from the current one if λ = 1. 

For diversity, after learning the probability, a mutation operation is adopted with mutation 

probability pm: 

( ) min( ( ) ,1 )t tP X x P X x θ ε= = = + −                     (3.14) 

where θ denotes the mutation shift value, ε is a very small positive number to keep the value of 

probability always smaller than 100%. 

For activity sequencing, we employ the conventional EDA with the assumption that all the 

decision variables are independent. From the previous literatures, they demonstrated that for 

sequencing problems, the knowledge can be extracted is very few, so that conventional EDA is 

better than Markov network based EDA on calculation speed. 

We adopt the probability model Pseq(t) which is used to estimate the marginal probability 

that activity’s priority or degree of importance in sequence in generation t. The priority is 

represented as the probability of the activity j scheduled before or at lth position in the activities 

sequence. This kind of probability mode can increase the stability of updating and is widely used 

in recent years [87]. The probability matrix is: 

11 1

1

P ( )
J

seq lj

J JJ

p p
t p

p p

 
 =  
  

……

…… ……

……

                            (3.15) 

where plj in matrix means the priority value of activity j for the position l in activities sequence. 

Initially we set each value as 1/J. 
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Furthermore, the initial population of activity sequence is repeatedly applying the following 

steps to generate a feasible sequence: selecting next activity randomly from the set of activities 

whose predecessors have already been picked up. 

For resource allocation, from previous literatures, finding the interrelation among decision 

variables would lead to more convincing solutions, and that’s the reason we adopt the MEDA. 

In the MRCPSP, this step is to decide the activity mode. The decisions of the mode selection 

for each activity have interdependence relation due to seizing the same resources. Because of 

some activities seizing the same resource, under the resource capacity constraints, if one mode is 

selected for activity j and there is high possibility that other strong related activities will select the 

mode with different resource requirement. Finding this kind of interrelation among different 

activities' mode selection will lead to convincing solutions. 

Markov network based EDA is adopted to find and model the interrelation of resource 

allocation for which activities seizing the same resource. In Markov network, it consists of both 

structure of Markov network and probability parameters. Similar to the structure shown in Fig. 

2.3, each node in Markov network represents the decision variable Xj of mode selection of activity 

j. In Markov network, one edge between two variables denotes two activities have strong 

interrelation on resource seizing, which is calculated by mutual information. After the structure 

of Markov network is generated, how to select the mode for activity j is determined by the states 

of the nodes connecting to it or called its neighbors. 

Estimation and sampling methods for Markov network based EDA have been illustrated in 

previous chapter. The parameters are represented by probability matrix of marginal probability. 

11 1

mod

1

P ( )
J

ij

J JJ

p p
t p

p p

 
 =  
  

……

…… ……

……

                            (3.16) 

where pij represents the marginal probability of activity j choosing mode i. 
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The conditional probability and mutual information are both calculated based on marginal 

probability in matrix Pmod(t). 

 

3.2.2 Fitness assignment function 

In the research domain of multi-objective optimization, the most important issue is fitness 

assignment mechanism. It has been illustrated that fitness functions scheme is the main difference 

between various MOEAs [36]. 

In the algorithm of VEGA [89], k equal sized subpopulations are generated by dividing the 

population randomly, and the solution is evaluated only by one objective function. 

( ) _ ( )i iEdgeFitness obj valueX X=                      (3.17) 

As shown in Fig. 2.6 and Fig. 3.3, the major disadvantage of VEGA is poor diversity, because 

it attempt to find solutions outstanding only in one objective. In other words, it prefers the edge 

area than central area of Pareto front (the red circle area). For diversity performance, in order to 

cover the central region (the green circle area), a new fitness assignment function is proposed: 

( )
(

1
1/ 1( ) ) ( )

X
p

CentralFitness
X q X

=
++

                  (3.18) 

 

Fig. 3.3 Edge region and central region of Pareto front (Minimization problem) 

Objective i

Objective j
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where p(X) and q(X) are the number of individuals which are dominated by and dominate 

individual X. 

For equation (3.18), as shown in Fig. 3.4, the fitness values of dominated ones are always 

smaller than 1 but larger than 0. The fitness value of individual is 1, if it is not dominated by any 

others and does not dominate others. With the fitness value larger than 1, the individual is non-

dominated one, and the more individuals it dominates, the larger fitness value is. As a result, the 

fitness value is larger or equal than 1 denotes the individual is non-dominated, by which we can 

separate dominated and non-dominated ones. 

In general cases, the nodes in central region can dominate more nodes than nodes in edge 

region, so that the CentralFitness prefers the central region. Meanwhile, similar to the sampling 

strategy from VEGA, the time complexity of calculating CentralFitness is very small. 

One way to handle two fitness assignment functions is multi-island parallel optimization, 

which means that for each sub-population, we use one optimizer to train each. However, it will 

cost a lot of calculation time, especially for the PGM based EDA. 

 

Fig. 3.4 CentralFitness value 
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As a result, in order to keep the enough information given from each fitness while decrease 

the number of meta-heuristics optimizers, in this study, we use one exponential function to 

combine two sampling strategies. 

More specifically, for a problem with m objectives, it is naturally to divide the population 

into m+1 subpopulations, and each part adopts one sampling strategy. However, simple partition 

like VEGA is not an appropriate way. Firstly, we need extra structure of subpopulations, and how 

to handle the solutions from different subpopulations is a difficult task. Secondly, because the 

population size is with limited, if there are so many solutions of Pareto front belong to one certain 

region, the size of this subpopulation is not enough. In other words, we may lose information of 

promising data or Pareto set due to fixed sized subpopulations. Thirdly, if there are so few Pareto 

optimal solutions coming from one part, in order to increase the searching performance, we have 

to make greater effort for this part by allowing more individuals belonging to this part into mating 

pool. 

In the point system of decathlon in sports, the scoring is computed by the performance on 

each event by athletes and the event-dependent parameters listed in scoring table [90]. It can 

combine all the events results and finally give one score fairly with equation (3.19). 

 

Fig. 3.5 Long jump scoring in decathlon system 



46 
 

( )CScore A P B= × −                              (3.19) 

where A is normalization parameter, P is performance, B is threshold, and C is exponential 

parameter to determine the performances are rated through a slightly progressive curve. 

Especially, in order to distinguish the difference between improvement at low performance 

levels and high levels, the exponential parameter was proposed to determine the performances are 

rated through a slightly progressive curve. In Fig. 3.5, it shows one example of long jump scoring. 

For example, one player wants to improve his own performance from 4.00m to 5.00m, while 

another one tries to increase from 7.00m to 8.00m. The increments are same as 1.00 meter, but 

the difficulties are totally different, from 7m to 8m is much more difficult than from 4m to 5m. 

So that the scoring increments given to them should be also different. 

For the traditional normalization methods, they try to normalize the differences of scale size. 

For our proposed normalization method, similar to idea of decathlon scoring system, we not only 

to normalize the differences of scale size, but also to normalize the differences of increasing rate 

of scale. 

As a result, inspired by the idea of point system of decathlon, we design a novel fitness 

assignment function to combine different sampling strategies: 

1

1
- ( ( ) 1)
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EdgeFitnessi
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D Fitness X N Ranking X

N Ranking X

ω

ω +

=
= − +

+ − +

∑
               (3.20) 

where m is the total number of objectives, N is the population size, RankingEdgeFitnessi(X) is the 

ranking of individual X based on ith objective, and RankingCentralFitness(X) denotes the ranking 

based on the CentralFitness value. ωi is the exponential parameters with two purposes: expanding 

the difference of fitness values based on ranking number, and controlling the contribution to 

realize dynamic adjustment. 
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As shown in Fig. 3.6, it shows one illustrated example of fitness value by linear and 

exponential parameters. In Fig. 3.4(a), there are two nodes of black and white color, obviously 

the black one is preferred due to it’s outstanding in objective f2 (for minimal problem), while the 

white one is normal good. In Fig. 3.4(b), if we use the conventional way of linear function to 

combine them, the difference between fitness values of black one and while one is smaller than 

the exponential one. 

Therefore, based on fitness assignment function of D-Fitness, we can realize that: 

a) A solution is good, if and only if this solution is outstanding by one sampling strategy, 

which is highly controlled by exponential parameters ωi; 

b) We take the ranking by each sampling strategy to evaluate the final fitness value, which 

can overcome the different scale problem on original objective values or raw fitness values; 

c) In order to keep the searching flexibility and diversity, the fitness value could be easily 

changed by parameter ωi, which means that we can dynamically decide the contribution of 

different sampling strategies. 

 

  

(a)                                 (b) 

Fig. 3.6 Linear and exponential parameters 
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3.2.3 Local search 

After solutions are sampled by Markov network and probability model of EDA, a problem-

specific local search is proposed to improve the quality for each candidate solution [91]. Variable 

neighborhood search (VNS) is one popular way to do a possibly randomized local search [92]. In 

this study, we adopt the scheme of VNS, including two types of local search for makespan and 

load balancing. 

If the critical path is kept, the makespan cannot be shorten. As a result, we try to make a new 

schedule with smaller makespan by breaking the existing critical path. Different to JSP or FJSP, 

in project scheduling problem, it has a high probability that there existing several different critical 

paths on different resources. Here we randomly select only one critical path among all the critical 

paths, to reduce the computation cost. 

In MRCPSP, we decide both activity sequence and mode selection. In the local search, we 

can also change the mode for several activities. As a result, we have two types of local search 

with different target, one is for makespan by moving activity and second one is for load balancing 

by changing modes. 

Local search of sequence changing for makespan 

begin 
 Step L1-1 Identify a critical path P for a given solution S; 
 Step L1-2 Set q as the first activity in path P; 
 Repeat  
  Step L1-3 Delete q from Gantt chart; 
  Step L1-4 Searching assignable time intervals for q; 
  Step L1-5 If there is no assignment time interval, set q as the next activity 

in path P. Otherwise, insert q into the earliest assignable time 
interval with probability 50%, else insert it randomly; 

 until (q is the last activity in path P and no assignment time interval found, 
take S as local optimal;) 

end 

Fig. 3.7 Local search of sequence changing for makespan 
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a) Local search for makespan: Fig. 3.7 shows the pseudo code of local search of sequence 

changing to reduce makespan. The purpose of sequence changing is to move one activity to 

another assignable position based on existing position of all other activities. For project 

scheduling problem, a new feasible position should satisfy all kinds of resource and without any 

precedence constraint violations. Since new schedule is obtained by deleting one activity and 

moving it to another position, it is obviously that the new makespan is no larger than original ones. 

In Fig. 3.8, it shows one example of sequence changing on critical path to decrease makespan. 

b) Local search for balancing: Fig. 3.9 shows the pseudo code of local search of mode 

changing for balancing. In this local search progress, ignoring the makespan, we only focus on 

Local search of mode changing for balancing 

begin 
 Step L2-1 For a given solution S; 
 Repeat  
  Step L2-2 Randomly select k activities and choose the activity q with the 

highest load resource requirement among them; 
  Step L2-3 Delete q from Gantt chart; 
  Step L2-4 Select another mode of q based on load of resource; 
  Step L2-5 Insert q into the schedule with the new mode selection; 
 until Number of iterations is achieved; 
end 

Fig. 3.9 Local search of mode changing for balancing 

 
Fig. 3.8 Example of sequence changing 
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resource allocation. In our application, better balancing requires smaller difference of utilization 

of various resources. Changing the sequence of activity is useless for resource balancing, while 

the mode changeover is required. 

In Fig. 3.10, it shows one example of mode changing to improve load balance. 

Local search for makespan can be only conducted on the activities in the critical paths. 

However, in local search for balancing, every activity could affect the load balancing by changing 

its mode. One simple way is exhaustive approach, and we check every activity, but the 

computation cost is very high and becomes impractical for large problems. It is reasonably to 

check certain number of activities. In order to avoid too greedy searching, we take k-tournament 

strategy. For a given solution, k activities are randomly picked up, and the one which requires the 

highest load resource is selected. We change the mode of that activity to a new mode. Two kinds 

of mode can be changeover to enhance the load balancing. One is the mode with less requirements 

on the same resources, another one is the mode without requirement the same resources. In this 

study, if two kinds of modes existing at the same time, we choose the mode with different type 

resources to changeover. 

 

 
Fig. 3.10 Example of mode changing 
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3.2.4 Algorithm of MMEDA 

In this subsection, two main topics are discussed. First one is how to integrate the new fitness 

assignment function D-Fitness into the evolutionary process of Markov Network based EDA. 

Second one is the evolving process of multi-objective optimization. 

In Fig. 3.11, it shows the flow chart of Markov Network based EDA. Different with the 

conventional EDA, there is one more network structure of Markov network involved. During the 

evolution process, the structure need to be learned and by using that to sample the new candidate 

solutions. 

For multi-objective Markov Network based EDA, we could have two types of manner to 

integrate fitness assignment mechanism. One way is taking the fitness assignment functions inside 

the evaluation of EDA. The output solutions by EDA have already ranking by multi-objective 

functions, in the later evolving process, only update for Pareto set is needed. Another way is 

taking EDA as only searching engine, after the solutions given by EDA, we use the functions to 

rank, and then update. 

 

Fig. 3.11 Flow chart of Markov Network based EDA 
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Fig. 3.12(a) represents the outline of the first way, and Fig. 3.12(b) represents independent 

way. The second way similar with the idea of VEGA, based on the searching ability of GA, by 

ranking the population from GA on each objective value, some candidate Pareto solutions are 

generated. In (a), we only have to evaluate one time to decide which are good solutions. However, 

in (b), we have two times of evaluation: selecting which are good solutions and ranking which 

are candidate Pareto solutions. As a result, in our proposal MMEDA, we take the manner (a), 

aiming to decrease the calculation time. 

Fig. 3.13 shows the evolving process of multi-objective optimization of MMEDA. Here we 

focus on the updating searching space, others will be discussed in next section with the application 

of RCPSP. 

With the fitness values by D-Fitness, we sort all individuals. For the elitist sampling strategy, 

the best individuals in P’(t) are updated into new archive A(t+1) by replacing worst individuals 

in archive A(t). In this study, we do not simply select the best individuals from the joint set of 

P’(t) and A(t), but select the best Q individuals (in this research, we take Q = 0.3*|A(t)|) from P’(t), 

and replace the worst Q individuals in A(t). On the one hand, it makes the convergence smooth. 

If we update the new archive by the best from joint set P’(t) and A(t) directly, sometimes the 

    

(a)                                      (b) 

Fig. 3.12 Integrating fitness assignment functions with Markov network based EDA 
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individuals in archive change so much and so does the probability model. On the other hand, it 

can avoid premature of EDA. When all the individuals in P’(t) is worse than A(t), in order to keep 

the diversity, we still take some individuals of P’(t) into A(t+1). 

Furthermore, we provide a scheme of dynamic adjustment based on D-Fitness by tracking 

the candidate solutions. In each generation, if we find too few individuals (for bi-objective 

problems, the percentage of threshold is set as 0.15) belonging to one part are selected into the 

archive, the parameter ωi corresponding to that part will increase in next generation. By which, 

we can increase the opportunity to be selected into archive for the individuals belonging to the 

“weak” division. Through increasing the chance of non-dominated solutions appearance in weak 

area, and distribution performance could be enhanced. The dynamic adjustment of D-Fitness is 

inspired by the point system of decathlon, in where the scoring becomes higher when the 

improvement on the performance is difficult. Similarity, for D-Fitness, the value becomes higher 

when the improvement on that sampling strategy becomes difficult. As we said, the normalization 

of D-Fitness not only for the differences of scale size, but also for the differences of increasing 

rate of scale. 

As shown in Fig. 3.14, MMEDA firstly generates the solutions randomly and probability 

models are initialized. Good solutions are selected by combined fitness assignment function D-

 
Fig. 3.13 The evolving process of multi-objective optimization 
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Fitness from the population. The structure of Markov network and its corresponding parameters 

are estimated by the promising date. Next, the conditional probabilities are learned. The new 

candidate solutions are sampled by the Gibbs sampling method based on Markov network 

structure and the probability parameters. Then, for each solution, two kinds of local search are 

applied to improve the quality. Finally, the new solutions with high fitness values are updated 

into the archive. The iteration will not stop unless the termination criteria are achieved. 

 

3.3 Two-stage architecture hybrid GA and MMEDA (hGMEDA) 
Furthermore, in order to improve the calculation efficiency of proposed MMEDA, two-stage 

architecture of hybridizing GA and MMEDA (hGMEDA) is developed. 

Multi-objective Markov network based EDA 

begin 
 Initialization: 

 Step 1 Initialize Markov network and probability model P(0) of EDA; 
Step 2 Initialize the population Pop(0) randomly; 
Step 3 Find promising set D(0) by fitness assignment function and update 

Archive(0); 
Optimization: 
while terminating criteria not achieved do 
 Step 4 Estimate the structure of Markov Network based on Archive(t-1); 

Step 5 Estimate Markov conditional probability p(xik|Nik) for each variable 
Xi, and sample candidates solutions by Gibbs sampling; 

Step 6 Update probability model P(t) of EDA, perform mutation operation, 
and sample solutions based on P(t); 

Step 7 Perform a problem-specific local search; 
Step 8 Calculate fitness value by fitness assignment function and update 

Archive(t) with the best solutions; 
end 

end 

Fig. 3.14 Pseudo code of algorithm of MMEDA 
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The decision processes can be divided into two parts in RCSP: sequencing and resource 

allocation. We have already generated two parts by its own probability model and combine them 

together into one evolving process [93]. However, similar to some meta-heuristic method, with 

the searching space dimension increased, the searching performance would decrease a lot due to 

the curse of dimensionality. One popular way to overcome the disadvantages caused by high 

dimension complex problems is the cooperative co-evolutionary paradigm [94]. In co-

evolutionary algorithm, the basic idea is to split the solution containing all of decision variables 

into many subcomponents. Each subcomponent is represented by a corresponding model and each 

model evolves sequentially or concurrently. The fitness function is evaluated by combining all 

the subcomponents together. 

For RCSPs, the decision variables are naturally divided into two groups, so that we can take 

them as subcomponents. The sub-problem of sequencing is much easier than resource allocation, 

no matter on number of decision variables or the dependence relationships among them. So that 

the sequencing problem can be solved by GA with short time. The resource allocation problem 

requires Markov network leading to more convincing solutions. As a result, inspired by the idea 

of cooperative co-evolutionary, we proposed a two-stage architecture hybrid GA and MMEDA 

(hGMEDA) for solving RCSP. 

 
Fig. 3.15 Outline of two-stage algorithm hybrid GA and MMEDA 
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In Fig. 3.15, it shows the outline of two-stage algorithm hybrid GA and MMEDA. In stage-

1, we solve the sequencing problem. Based on the selected representative resource allocation 

solutions, we search the sequencing solutions by GA. In stage-2, based on the results of stage-1, 

MMEDA are adopted and to find the relationship among variables leading to convincing solutions. 

All promising solutions are kept in the archive, and the iteration will go on until the predefined 

termination criteria are met. 

 

3.3.1 Cooperative co-evolutionary 

Cooperative co-evolutionary paradigm was developed to overcome the disadvantages caused 

by high dimension complex problems. As shown in Fig. 3.16, in cooperative co-evolution, first 

step is to split all decision variables into many subcomponents, which is called species. Each 

subcomponent is represented by a corresponding model in the manner of sequentially or 

concurrently. Different species can have different probability model. The fitness value is 

 
Fig. 3.16 Outline of cooperative co-evolutionary paradigm 
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evaluated by combining the representative solutions (or called partnership) from other species 

[95]. 

This approach can significantly reduce the complexity on exploiting the search space, so that 

it can decrease the calculation time a lot and increase the searching performance [1]. However, 

the cooperative co-evolutionary still has its own disadvantage. For complex problems, it is hard 

to divide the solution into small sub-problems without considering the characteristics of the 

problem. Fortunately, for our target RCSP, it consists of multiple sub-problems: sequencing and 

resource allocation. That’s the reason why we propose two-stage architecture in cooperative co-

evolutionary manner. 

 

3.3.2 Stage-1 GA 

In Fig. 3.17, it shows the pseudo code of GA for solving sequencing. 

In this stage, the target is to find some candidate solutions of sequencing without resource 

capacitated, which will be used for next stage. 

Inspired by the idea of cooperative co-evolutionary paradigm with sequential evolving 

process, in first three steps, we firstly try to find the representative solution of resource allocation 

(create partnership in co-evolutionary). In step 1-1, we randomly generate solutions of sequencing 

and resource allocation initially. In step 1-2, we evaluate the resource allocation solutions 

generated in step 1-1, by combining every solutions of sequencing. We evaluate the candidate 

solutions with the objective of makespan minimization. In step 1-3, in order to avoid too greedy 

search, we select top solutions and randomly select one of them to act as representative solution 

of resource allocation. 

Next steps are GA-based sequencing searching processes. Based on the representative 

solution of resource allocation given from step 1-3, with the same problem setting and objective, 

we search the optimal solutions of sequencing based on GA optimization. 
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Finally, in step 1-7, similar to step 1-3, in order to avoid too greedy search, we select the top 

T2 sequencing solutions for stage 2. 

Instead of EDA employment in MMEDA, here GA is adopted, because a) the sequencing 

problem is not so complex, compared with resource allocation problem. The searching speed of 

GA is better than PSO, ACO and EDA; b) GA can provide more “random” solutions and higher 

diversity of solutions for next stage, compared with other meta-heuristic algorithms. 

In Fig. 3.18, it shows the problem coding of GA representation to decide activity sequence. 

We use random key (RK) to represent the priority value for each activity. Based on the vector λ 

of priority values attributed to each activity and the precedence relation, the activity with higher 

priority value will be execute before the smaller one. 

Stage-1: GA for sequencing 

Problem setting 
 Objective: Minimize makespan 

begin 
 Initialization: 

 Step 1-1 Randomly generate solutions of sequencing and resource allocation; 
Step 1-2 Evaluate each resource allocation solution, by combining every 

solutions of sequencing, on the objective of minimizing makespan; 
Step 1-3 Randomly selected one of the top T1 resource allocation solutions 

with highest averaged fitness values; 
GA: 
while terminating criteria not achieved do 
 Step 1-4 Based on the selected resource allocation solution, search the 

sequencing solutions; 
Step 1-5 Perform GA operations; 

 Step 1-6 Evaluate candidate solutions with the objective; 
end 

  Step 1-7 Top T2 sequencing solutions are selected; 
end 

Fig. 3.17 GA for sequencing 
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The initial representation is made by binary coding. The next step is transfer to real number 

for priority values. The merit of taking the manner of binary coding is easy to perform crossover 

and mutation, to avoid illegal solutions. 

 

3.3.3 Stage-2 MMEDA 

The pseudo code of MMEDA in stage 2 for solving resource allocation is listed in Fig. 3.19 

In this stage, based on the solutions given by the stage-1, firstly we initially generate some 

solutions of resource allocation randomly, and evaluate by combining sub-solution given by 

stage-1, based on bi-objective with D-fitness. 

In next steps, we apply the MMEDA to search the resource allocation solutions with multi-

objectives. With the help of MMEDA, we can get some candidate solutions. Then the problem- 

specific local search and evaluation are performed, some promising data are generated and 

updated into the archive. 

The illustrated procedure of two stages are illustrated in Fig. 3.20. 

 

 
Fig. 3.18 GA representation of activity sequence 
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Stage-2: MMEDA for resource allocation 

Problem setting 
 Objective: Minimize makespan 
  Maximize load balancing 

begin 
 Initialization: 

 Step 2-1 Randomly select one of the top T2 sequencing solutions; 
 Step 2-2 Randomly generate solutions of resource allocation; 
 Step 2-3 Evaluate resource allocation by combining with the selected 

sequencing solution, based on bi-objectives with D-Fitness; 
MMEDA Optimization: 
while terminating criteria not achieved do 
 Step 2-4 Do problem-specific local search; 

Step 2-5 Find top M solutions as promising set to make Markov 
network structure and parameters learning; 

Step 2-6 Sampling candidate solutions by Gibbs sampler; 
Step 2-7 Evaluate the candidate solutions, on bi-objectives by D-

fitness; 
end 

  Step 2-8 Update the archive with the new promising solutions; 
end 

Fig. 3.19 MMEDA for resource allocation 

 

Fig. 3.20 The evolving process of two-stage hGMEDA 
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3.3.4 Algorithm of hGMEDA 

The main difference between MMEDA and hGMEDA is the two-stage solving procedure. 

In other words, hGMEDA is one approach to enhance MMEDA to improve the calculation 

efficiency, due to cooperative co-evolutionary manner and GA replacing EDA to solve 

sequencing problem. The pseudo code of algorithm of hGMEDA is shown in Fig. 3.21. 

Two-stage hybridizing GA and MMEDA 

begin 
 Initialization: 

 Step 1 Initialize the population Pop1(0) for sequencing randomly; 
Step 2 Initialize the population Pop2(0) for resource allocation; 

 Step 3 Initialize Markov network and probability model P2(0) for 
MMEDA; 

 Step 4 Initialize Archive(0); 
Stage-1: 
while terminating criteria not achieved do 
 Step 5-1 Generate representative solutions Pop2(t) from mode selection 

every X generations; 
Step 5-2 Combined with Pop2(t), and evaluate the fitness values; 
Step 5-3 Perform crossover and mutation to generate new solutions 

Pop1(t); 
end 

 Stage-2: 
 while terminating criteria not achieved do 
  Step 6-1 Perform a problem-specific local search; 
  Step 6-2 Calculate fitness value by fitness assignment function combing 

with solution gotten from stage-1, and update Archive(t); 
  Step 6-3 Update probability model P2(t) of MMEDA; 
  Step 6-4 Estimate the structure of Markov Network; 
  Step 6-5 Sample solutions based on P2(t) and Markov network structure; 
 end 
end        

Fig. 3.21 Pseudo code of algorithm of hGMEDA 
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Generally, to combine two stage of GA for sequencing and MMEDA for resource allocation, 

one cooperative co-evolutionary paradigm with sequential evolving process is adopted. After 

MMEDA, some complete candidate solutions are generated. 
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Chapter 4 
Experimental Evaluation on 
Resource Constrained Project 
Scheduling 

4.1 Introduction 
In this chapter, the typical application of multi-objective RCSP: multi-mode resource 

constrained project scheduling problem (MRCPSP) is taken as the study case and used for 

illustrative the performance of our proposed algorithm MMEDA and hGMEDA, with the 

comparisons on the optimality and the distribution performance. 

It is extremely hard to find real data for application of MRCPSP. Fortunately, there has been 

a significant amount of research conducted on the project scheduling problem and one popular 

benchmark problem data set PSPLIB [96] can be used to compare different methods. In PSPLIB, 

the duration of each activity is integer, which is a well design for conventional optimization 

problems. However, for multi-objective problems with Pareto set, the possible values of 

makespan in front set are very few. In order to make the results more convincing to compare, we 

randomly add 0.0 ~ 0.9 to duration of each activity, which will not break the structure of 

benchmarks. 

Here we make an explanation of the benchmark problem briefly. Take the benchmark 

problem #n041_1 for instance, in Fig. 4.1, it is one problem in multi-mode data sets of PSPLIB. 

There are totally 22 activities (including 2 dummy activities) and 2 kinds of renewable resources. 

Three modes could be chosen for each activity, and for each mode, one corresponding duration 

and resource requirements are assigned. The network structure of project scheduling problem is 
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represented as the successors of each activity. The network structure of problem #n041_1 is 

shown in Fig. 4.2. 

The other benchmark problems adopted in our experiments all belong to multi-mode data 

sets, but with different structure of project network, different duration and resource requirements. 

   
(a)                                      (b) 

Fig. 4.1 The text file of problem #n041_1 in date set PSPLIB (part) 

   
Fig. 4.2 Project network of benchmark problem #n041_1 
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4.2 Experiment and discussion 
To demonstrate the efficiency performance of our proposal, some numerical experiments are 

conducted to compare hGMEDA and MMEDA with other popular methods. A significant amount 

of MOEAs have been proposed to solve the multi-objective problems. Typically, Schaffer 

proposed first MOEA based on simple GA named vector evaluated genetic algorithm (VEGA) 

with vector-valued fitness measures. Deb introduced an algorithm called non-dominated sorting 

genetic algorithm II (NSGA-II) with the use of crowding distance mechanism and Pareto ranking 

method. Zitzler developed strength Pareto evolutionary algorithm II (SPEA2) by a novel raw 

fitness assignment function and density mechanism. All these methods have been proved very 

effective and applicable to different kinds of applications, and can be acted as possible comparing 

methods to evaluated new design approach. 

Comparing with single VEGA is an intuitive way, but the diversity of VEGA has been 

proved very poor because of the selection bias. To make the comparison results more convincing, 

in our experiments, NSGA-II and SPEA2 are selected. To make the comparisons fairly (EDAs 

have been proved having better efficacy than GAs), we use the sampling strategies and update 

mechanism of two algorithms, and hybrid with conventional EDA as the searching engine for 

optimization. 

All algorithms were implemented by JAVA language and conducted on Intel Core i3 with 

4G memory. For each algorithm and each benchmark problem, we evaluate the mean result with 

30 trials. To make the same environment and fairly comparisons, the major parameters of methods 

are listed in Table 4.1. 

In this study, we adopt coverage [98] and generational distance [99] to evaluate the 

optimality, and spacing [100] to evaluate the distribution performance, which are very popular 

performance measures for MOEAs. 
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4.2.1 Coverage 

To evaluate the optimality of Pareto solutions, comparisons on coverage are illustrated. Let 

Si be a solution set for each algorithm. Coverage C(S1, S2) is defined as the percentage of the 

individuals in solution S2 which are dominated by S1. 

2 2 1 1 1 2
1 2

2

{ ; : }
( , )

s S s S s s
C S S

S

β α α β∈ ∃ ∈ ≥
=                   (4.1) 

In equation (4.1), if C(S1, S2) = 0 means that no individual in S2 is dominated by S1. If the 

value C(S1, S2) equals to 1 represents that all individuals in Pareto set S2 are dominated by some 

individuals in Pareto set S1. The larger value of C(S1, S2) is, the better S1 is for coverage. 

In Table 4.2, it shows the comparison on coverage of NSGA-II, SPEA2, MMEDA and 

hGMEDA on the results of mean value with 30 runs of three algorithms. Mean value represents 

optimality of solutions in Pareto set, and hGMEDA, MMEDA outperforms NSGA-II and SPEA2 

with three benchmark problems. Compared with NSGA-II, SPEA2 and MMEDA, hGMEDA can 

improve about 17%, 22% and 4.16% on average respectively. 

  

Table 4.1 The parameters of compared algorithms 
 NSGA-II, SPEA2 MMEDA, hGMEDA 

Generations 1000 1000 
Population 100 100 

Operators Sampling 
Tournament(k) 

Gibbs-Sampling 
Local search 

Parameters promisingRate = 0.7 promisingRate = 0.7 
  α = 1.5, β = 0.5 
  elimRate = 0.1 
  k = 2 
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In Fig. 4.3, it shows the boxplot of coverage by hGMEDA with other three methods on 

problem #n041_1. The boxplot figure shows the mean value, largest value, smallest value and 

first and third quartiles (to represent standard deviations). From the results of boxplot, compared 

with NSGA-II and SPEA2, hGMEDA have better averaged value and smaller deviation. For 

MMEDA, the deviation of hGMEDA is larger, probability coming from GA involved. 

 

4.2.2 Generational distance 

GD(Si) represents an averaged minimum distance of the solutions in Si from reference Pareto 

set PF*, which comes from the Pareto set gotten from all the algorithms. The smaller GD of Si 

represents better optimality with considering of approaching PF*. 

*

*
*,1

(min( ), )
( )

i

i

S

s s
i

i

d s PF
GD S

S
α β

β
α =

∀ ∈
=
∑                    (4.2) 

From the result in Table 4.3, it indicates that MMEDA and hGMEDA has smaller GD values 

than NSGA-II and SPEA2. Our proposals outperform other two algorithms, with the improvement 

of 7.59% and 10.28% on average of five benchmark problems. hGMEDA adopts Markov network 

to solve the constraint problems by representing the relationship among activities for mode 

selection. With the knowledge getting from Markov network and the strong convergence 

   

Fig. 4.3 Boxplot of coverage by hGMEDA, NSGA-II, SPEA2 and MMEDA on #n041_1 
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performance of simple fitness assignment function, our proposal outperforms other two 

algorithms with more convincing solutions. 

In Fig. 4.4, it shows the boxplot of generational distance by hGMEDA with other three 

methods on benchmark problem #n041_1. 

 

4.2.3 Spacing 

SP(S), usually used to represent the distribution performance, which is the standard deviation 

value of the nearest distances between any two individuals in the solution S. Smaller SP(S) means 

that solution S is in better diversity. 

Table 4.3 Comparison on generational distance of NSGA-II, SPEA2, MMEDA and hGMEDA 

Problem 
Mean Value [capacity ·time] (30 trials) Improvement of hGMEDA 

GD(hGMEDA) GD(NSGA-II) GD(SPEA2) GD(MMEDA) 
Improved 

(with NSGA-II) 

Improved 

(with SPEA2) 

Improved 

(with MMEDA) 

#n041_1 75.14 82.39 82.98 76.75 8.80% 9.45% 2.10% 
#n042_1 92.48 96.51 98.34 94.04 4.18% 5.96% 1.66% 
#n043_1 76.39 80.07 85.53 76.01 4.60% 10.69% -0.50% 
#n044_1 82.34 92.16 95.63 88.97 10.66% 13.90% 7.45% 
#n045_1 69.33 76.81 78.25 72.47 9.74% 11.40% 4.33% 

Avg. 79.13 85.58 88.14 81.64 7.59% 10.28% 3.01% 

 

   
Fig. 4.4 Boxplot of generational distance by hGMEDA, NSGA-II, SPEA2 and MMEDA on 

#n041_1 

GD value GD value
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where di is the nearest distance of individual i in solution set S. 

The result of SP values are shown in Table 4.4. It shows that hGMEDA has smaller SP than 

other two methods, which demonstrates that our proposal is better on distribution performance. 

With the combined sampling strategies, for both the edge region and the central region, hGMEDA 

can keep the solution with diversity. Meanwhile, a simple mechanism to preserve the diversity 

evenly through dynamic adjustment on D-Fitness is adopted, so that hGMEDA can achieve 

satisfactory dispersion performance. In algorithm of MMEDA, the solutions are always sampled 

by the probability model, which is more stable one. Compared with MMEDA, hGMEDA employs 

GA in the first stage, which can provide more “random” solutions. That’s the reason why 

hGMEDA has better distribution performance. 

In Fig. 4.5, it shows the boxplot of spacing by hGMEDA with other three methods on two 

benchmark problems #n041_1 and #n042_2. 

Table 4.4 Comparison on spacing of NSGA-II, SPEA2, MMEDA and hGMEDA 

Problem 
Mean Value [capacity·time] (30 trials) Improvement 

SP(hGMEDA) SP(NSGA-II) SP(SPEA2) SP(MMEDA) 
Improved 

(with NSGA-II) 

Improved 

(with SPEA2) 

Improved 

(with MMEDA) 

#n041_1 34.78 37.98 37.21 36.75 8.43% 6.53% 5.36% 

#n042_1 30.27 37.11 36.54 33.74 18.43% 17.16% 10.28% 

#n043_1 29.75 35.47 34.18 31.82 16.13% 12.96% 6.51% 

#n044_1 27.91 30.17 29.98 28.76 7.49% 6.90% 2.96% 

#n045_1 31.12 34.78 33.29 32.94 10.52% 6.52% 5.53% 

Average 30.76 35.10 34.24 32.80 12.20% 10.01% 6.13% 
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4.2.4 Computation time 

The computation costs of the multi-objective optimization algorithms mainly depend on the 

fitness evaluations, ranking and distance calculation. We need to compare four methods with the 

same termination criterion that reaches 1000 generations. As shown in Fig. 4.6, the mean 

computation time of NSGA-II, SPEA2, MMEDA and hGMEDA are 215.7s, 236.3s, 197.6s, and 

176.1s respectively. 

We take m as the number of objectives, N as the population size. In the algorithm of NSGA-

II, it needs mN2 times comparisons to find the relationship of domination, and the time complexity 

of NSGA-II is O(mN2). In SPEA2, for each individual, the kth nearest distance is calculated, so 

   
#n041_1 

   
#n042_1 

Fig. 4.5 Boxplot of spacing by hGMEDA, NSGA-II, SPEA2 and MMEDA on #n041_1 and 
#n042_1 
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that the time complexity is O(mN2logN). Without calculation for crowded distance, the time 

spending for fitness calculation in MMEDA is slightly small. We have to spend extra time to 

estimate the Markov structure for partial decision variables. However, in the evolving process of 

Markov network based EDA, we do not need to update the structure in every generation. As a 

result, although the Markov network cost longer time, the fitness functions of hGMEDA can save 

time a lot, totally our proposal has smaller computation time. Take hGMEDA and MMEDA for 

comparison, hGMEDA can reduce CPU time about 10.9% due to co-evolutionary paradigm. 

 

4.3 Summary 
In chapter 3 and 4, two types of empowered Markov network based EDA are developed for 

solving the multi-objective RCSPs. First proposal is multi-objective Markov network based EDA 

(MMEDA), in which the framework of multi-objective optimization algorithm with a combined 

fitness assignment function. Second one is two-stage hybrid GA and MMEDA (hGMEDA) to 

enhance the computational efficiency, which is inspired by the idea of cooperative co-

evolutionary paradigm with sequential evolving process. Furthermore, two kinds of problem-

specific local search for makespan and load balancing are proposed to increase solutions quality. 

The experiment results demonstrate that, compared with NSGA-II and SPEA2, our proposal 

 
Fig. 4.6 Comparison on calculation time 
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hGMEDA can improve 17.00%, 22.48% on coverage, 7.59%, 10.28% on generational distance 

and 12.20%, 10.01% on spacing averagely. Furthermore, hGMEDA can reduce CPU time about 

10.9% than MMEDA, about 18.4% and 25.5% faster than NSGA-II and SPEA2 respectively. 
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Chapter 5 
Multi-objective Robust Scheduling 
Method based on MMEDA for 
RCSP 

This chapter gives a detailed description of our proposal, one robust scheduling method 

based on hGMEDA. In this chapter, we discussed the manner of robust schedule and two kinds 

of robust measures on time-based-robust and capacity-based-robust are defined. Next, a multi-

phase scheduling method to make robust scheduling is developed and explained in detail. 

 

5.1 Robustness measure 
To deal with different level of uncertainties in production scheduling problems, different 

manner of schedules are produced. In this study, we focus on the medium uncertainty, and try to 

develop a proactive or robust schedule, which is a more practical and common situation in real-

world problems. 

For deterministic RCSP, we have not only to consider the makespan with precedence 

relations, but also the resource constraints should be well satisfied. When some kind of 

uncertainty involved into the problems, the robustness has to be considered at the same time. In 

general, RCSP with uncertainty can be viewed as three group objectives: time-based, resource-

based and robust-based. 

In job shop environment, the robustness is often defined as the difference between expected 

value objective (e.g., makespan) and actual ones [85]. In RCSP, except the duration of project, 



75 
 

the resource usage is also need to take into consider. For example, the deviation of the actual 

starting time of each operation and the expected one is to be minimized, or minimize the resource 

flow network for the problems with unrestricted resource availability [86]. 

In order to well and fully describe the robustness of RCSP, we proposed two kinds of robust 

measures for RCSP: time-based-robust and capacity-based-robust. 

 

5.1.1 Time-based-robust measure (TRM) 

In order to measure the robustness based on time criterion, one popular way is slack-based. 

There are two kind slack time in previous studies: total slack time and free slack time [101]. In 

this study, we use the concept of total slack time, which represents the ability of keeping expected 

makespan, defining as the difference between the possible earliest starting time of one activity 

and its corresponding possible latest starting time. 

In Fig. 5.1, it shows one example of total slack time in project scheduling environment. There 

are 5 activities, and the yellow area is the slack time period for activity A2 while the red area is 

for activity A3. In previous studies, most of them thought the slack time for A2 and A3 are equal, 

because the lengths of time period are same. However, from the view of resource allocation in 

RCSP, A3 requires more amount of resource than A2, in other words, if A3 delayed, more 

resources should be held by it and impact to the system is larger than delay of A2. Meanwhile, 

 
Fig. 5.1 An illustrative example of slack time 
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from the view of successors, activity A2 has more successors than A3, and the impact of delay of 

A2 is larger than A3. 

As a result, conventional slack-based approach only focus on the length of slack time period 

to evaluate the robustness of one schedule, but ignoring considering the affect by different amount 

of resource. As shown in Fig. 5.2, it shows two typical conditions of slack time. In Fig. 5.2(a), 

two activities with red colour and blue colour have the same time periods of slack time, but for 

red one, it has more successors than blue one, in other words, if the red one delayed, more 

operations will be affected. So the amount of successors should be taken into consider together 

with slack time. 

In Fig. 5.2(b), the red one and blue one have the same slack time, but red one requires more 

resources than the blue one, if red one delayed, more resources are required and hold by it. In 

other words, the higher amount of conflict with a shared resource, the bigger impact to the 

 
(a) 

 
(b) 

Fig. 5.2 Amount of successors and conflict resource 
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schedule system. As a result, the required resource of each operation has to be well considered 

also. 

In this study, for RCSP, we proposed one new slack-based robust measure which includes 

amount of successors and resource requirement of activity. These together show the ability to 

absorb the uncertainty, while keeping the expected makespan. 

1 1
:   N K

j j jkj k
TRM s NSucc r

= =∑ ∑                          (5.1) 

where sj is the total slack time, NSuccj represents the number of immediate successors of activity 

j and rjk is the resource requirements for activity j. 

 

5.1.2 Capacity-based-robust measure (CRM) 

For RCSP, one of the key issues is how to allocate the resources, so that the robust measure 

for resource capacity need to be well studied. From the previous literatures, the uncertainty of 

duration time is modelled as following the normal distribution, which has been proved effective. 

For RCSPs, the budget management on manpower is one critical issue to be considered for 

decision makers. In this study, we consider another kind of uncertainty of time-adjusted resource 

capacity: Time-adjusted resource capacity represents the total resource capacity which enforced 

by time. Take one project for example, we will employ some skilled workers and the total working 

time of workers could be known in advance (for example, we employ one skilled worker with 8 

hours per day and 5 days per week), which is the capacity of time-adjusted resource. 

In real world, there will be some uncertainties in time-adjusted resource capacity. For 

example, the total working time has a standard level for each worker, which is the original 

capacity. But sometimes one worker can work overtime. For health of workers or budget 



78 
 

management, usually a company will have policy for overtime, which could be viewed as 

recommendation level, a goal we try to achieve as much as possible. 

For example, in Fig. 5.3, there is one schedule which containing 3 activities (A1, A2 and A3) 

and the resource are working time with capacity. The red line represents the total working time 

(including standard working time and overtime) recommendation level for this kind skilled-

workers. Because the duration of each activity is uncertainty, so that the total working time is also 

uncertainty but follows normal distribution. One target of the schedule is try to satisfy the 

recommendation level (red line) under the uncertainty environment. 

In order to deal with uncertainty of time-adjusted resource capacity, one way is to take it as 

objective as maximizing the probability of realized total working hour does not exceed the 

recommendation level, another way is to make it as one chance/soft constraint, which is adopted 

in our study. 

The reasons we taking it as chance constraint are: a) in real-life problem, one company 

always have the standard working hour and policy for overtime, so that we can easily get one 

recommendation level/goal reasonably; b) making it as chance constraint with one threshold can 

provide some feasible solutions based on project manager’s perspective, which has great 

significance on budget management; c) from the view of problem modelling, both objective on 

 
Fig. 5.3 Resource capacity exceeding with uncertainty 
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time-based-robust and chance constraint on capacity-based-robust are considered, making our 

model more generic and becoming more easy to calculate. 

Here we propose one capacity-based-robust for uncertainty of time-adjusted resource 

capacity: 

1,..., ; 1,...,
:   ( ( ) ) thresholdj jt k

t horizon j N
CRM prob d x Gξ

ξ∈Ξ
= =

× ≤ ≥∑               (5.2) 

where Gk is the goal value for resource k, threshold is the confidence level, such as 80%. 

 

5.2 Problem formulation of robust RCSP 
The deterministic RCSP has been explained in previous chapter, here we focus on the 

uncertainty of duration time. 

From the previous literatures, there are some probability distribution used in robust 

optimization algorithms [102], such as normal distribution, Poisson distribution, and uniform 

distribution [103]. 

In this study, we take normal distribution as the probability model for duration uncertainty, 

which is the most popular and has been widely used in recent researches. As shown in Fig. 5.4, it 

shows the curve of an illustrated example of normal distribution. Usually, the normal distribution 

is represented as: 

 
Fig. 5.4 An illustrated example of normal distribution 

density
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2( , )f N µ σ=                              (5.3) 

where μ and σ2 represent mean value and variance (squared scale) respectively, μ is used to decide 

the averaged value and σ can control the uncertainty level high or low. 

For RCSP with duration time uncertainty, we model the problem with bi-objective of 

makespan minimization and time based robustness (TRM) maximization, together with the 

chance constraint of capacity based robustness (CRM), which is a very generic model applicable 

to different kinds of applications: 

- Objective: 

1,...,max ( )
min   

| |
j N jcξ

ξ =∈Ξ
  
 

Ξ  

∑                           (5.4) 

{ }1 1
max  N K

j j jkj k
s NSucc r

= =∑ ∑                        (5.5) 

- Subject to: 

1,..., ; 1,...,
( ( ) ) threshold

 1,..., ;

j jt k
t horizon j N

prob d x G

k K

ξ
ξ

ξ

∈Ξ
= =

× ≤ ≥

= ∈Ξ

∑
              (5.6) 

where cjξ is the completion time of operation j on scenario ξ. 

The complete mathematical model will be given in next chapter, including nations, decision 

variables, objectives and constraints. 

The complete mathematical model for MRCPSP with duration uncertainty is given as 

following: 

- Index 
i activity index, i =1, …, N 
m mode index, m =1, …, Mj 
k resource index, k =1, …, K 
ξ scenario set, ξ = 1,…, Ξ 

- Parameter 
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N the total amount of activities 
Mj the total amount of modes for activity j 
K the total amount of resources 
Nk capacity of resource k 
Ξ the total amount of scenarios 
Gk the recommendation level of resource k 

jmd ξ

 for scenario ξ, the duration time of activity j with mode m 

jmsξ  for scenario ξ, the starting time of activity j 

jcξ  for scenario ξ, the completion time of activity j 
rjkm usage of resource k for activity j selecting mode m 
pj predecessors set of activity j 
NSuccj the total amount of successors of activity j 
sj slack time of activity j 

- Decision Variable 
1    activity  is executed at time  with mode ;
0    otherwise.jmt

j t m
x


= 
  

- Objective: 

1,...,max ( )
min   

| |
j N jcξ

ξ =∈Ξ
  
 

Ξ  

∑                            (5.7) 

{ }1 1 1
max  jN K M

j j jkmj k m
s NSucc r

= = =∑ ∑ ∑                      (5.8) 

- Subject to: 

'1 1 '
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1,..., ; ;

i ji i

i i

M c M c
imt jm jmti t s j t s

j

t x t d x

j N i p

ξ ξ

ξ ξ

ξ
= = = =

⋅ ≤ − ⋅

= ∈ ∈Ξ
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ξ
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0,  0, 1,...., ;j js c j Nξ ξ ξ≥ ≥ = ∈Ξ                         (5.13) 

Inequality (6.3) presents the constraints of precedence relation among activities. Equation 

(6.4) guarantees that one activity has to choose one of its corresponding modes to execute. 

Inequality (6.5) states the chance constraint of the capacity-based robustness. Equation (6.6) and 

(6.7) represent the nonnegative restrictions. 

 

5.3 Two-phased robust scheduling method based on hGMEDA (robust 
hGMEDA) 

When we try to solve one RCSP with uncertainty, there are several points have to be 

concerned: 

a) Resource capacitated constraint & resource allocation; 

b) Precedence relation constraint & sequencing; 

c) Robust optimization & robustness measures; 

d) Uncertainty evaluation & simulation on scenario-based; 

e) Chance constraint (optional); 

f) Multi-objective optimization (optional); 

g) So on. 

Therefore, it is a very difficult and complex combinational optimization problem to produce 

one robust schedule for RCSP under uncertainty. How to handle them together or separately in 

an effective manner is one critical problem to solve. In this study, a two-phased scheduling 

method of stochastic optimization combined hGMEDA with scenario based simulation (robust 

hGMEDA) is developed. 

The strategy of robust hGMEDA is shown in Fig. 5.5. 
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5.3.1 Phase-1: solve the deterministic problem by hGMEDA 

In the first phase, we try to solve the uncertainty RCSP as the deterministic one, taking the 

duration as the averaged value for each activity. Meanwhile, do not consider any chance 

constraints. In other words, we take the problem as multi-objective of makespan minimizing and 

time based robustness maximizing. 

Same to the deterministic multi-objective RCSP solved in chapter 3 and 4, in phase-1, we 

take hGMEDA to calculate some candidate solutions. 

Here we have to mention that, in chapter 3 we have discussed that, there are some non-Pareto 

solutions in the archive. One reason is, it’s used for learning the structure and sampling new 

candidate solutions with diversity. More importantly, it can provide more alternative solutions for 

next phase in robust scheduling problems. 

Meanwhile, after solutions are sampled, a problem-specific local search is applied to increase 

the quality of each candidate solution. 

If the critical path is kept, the makespan cannot be shorten. As a result, we try to make a new 

schedule with smaller makespan by breaking the existing critical path. Different to JSP or FJSP, 

 
Fig. 5.5 Strategy of robust hGMEDA 
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in project scheduling, it has a high probability that there are many critical paths on different 

resources. Here we randomly select only one critical path among all the critical paths, to reduce 

the computation workload. The target is minimizing makespan while maximizing time based 

robustness. So that our local search is based on critical path with considering slack time. 

Usually, variable neighborhood search could only increase one objective and cannot 

guarantee others, especially when the objectives are very complex. Different to the conventional 

local search, for our problems, the solutions before and after the local search are both kept. One 

reason is for multi-objective problems, local search maybe improve one objective while decrease 

another one, but both solutions could be good or Pareto ones. Second reason is that, for robust 

scheduling problems, more optimal solutions may be not robust ones or cannot satisfy the chance 

constraints, in other words, we have to keep more candidate solutions. 

Fig. 5.6 shows the pseudo code of local search by moving activity for reducing makespan. 

The purpose of moving activity is to change the position of one activity to other assignable 

position with the constraints of other activities existing. Since new schedule is obtained by 

Local search by moving activity 

begin 
 Step L1 For a given solution S, identify a critical path P; 
 Step L2 Set q as the first activity in path P; 
 repeat  
  Step L3 Delete q from Gantt chart; 
  Step L4 Searching assignable time intervals for q; 
  Step L5 If there is no assignment time interval, set q as the next 

activity in path P. Otherwise, calculate each 
assignable time, and inset q into the highest time 
interval; 

 until (q is the last activity in path P and no assignment time 
interval found, take S as local optimal;) 

end 

Fig. 5.6 Local search by moving activity 
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deleting one activity and moving it to another position, the new makespan must be not larger than 

original ones. For project scheduling problem, a new feasible position should satisfy all kinds of 

resource and without any precedence constraint violations. 

When we decide moving one activity, sometimes we can find more than one feasible time 

interval for it. Then we have to calculate each time interval with the equation (5.14): 

_
i

i j j jkm
j TI

Time Interval s NSucc r
∈

= × ×∑                        (5.14) 

where TIi represent the set of the activities which take the time interval i as their slack time period. 

Finally, we select some promising solutions based on multi-objective, and update the archive. 

After generations, the solutions in the archive will be used as the candidate solutions for next 

phase. 

 

5.3.2 Phase-2: solve the uncertainty problem by scenario based simulation 

In phase-2, it contains 2 main steps. In step 1, some scenarios are generated. As shown in 

Fig. 5.7, for each activity, based on its probability model of duration time, sampling N conditions 

of possible time. Then pick one condition of duration time for each activity, and join them together 

to generate one scenario. 

 
Fig. 5.7 Scenario generation 

S_ID Activity 1 Activity 2 Activity 3 …… ……

1 …… ……

2 …… ……

…… …… …… …… …… ……

Activity 1 Activity 2 Activity 3
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In step 2, firstly, by scenario based simulation, we evaluate each candidate solution whether 

to satisfy chance constraint, and reject one which fails to satisfy. Next, based on the robustness 

measure, finally the robust schedule is selected. 

The flowchart of simulation is shown in Fig. 5.8. 

Here we briefly discuss how to generate the final robust schedules. Depending on the 

problem setting or decision made by project manager, there could be three possible ways. 

a) Pareto optimization solutions of schedule: 

We have already received some alternative solutions in archive, and some unsatisfied 

solutions are cleaned out by checking on chance constraint. The simple way is, we collect all the 

remaining solutions by Pareto dominated checking, and finally the solutions belong to Pareto set 

are all kept as the solutions. That means every solution remaining could be the optimal one in 

some conditions in future. Because in phase-1, multiply objectives contain both makespan and 

robustness measures, so that the Pareto optimization solutions have the potential to be the most 

robust schedule. 

b) One single robust schedule by weighted average: 

 

Fig. 5.8 Flowchart of simulation 
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Another way is making multiply objectives as one objective, with the weighting given to 

each objective by decision makers or problem experts. It is a difficult way to give suitable 

weighting to each objective. However, it is still one possible way to get one final solution. 

c) One single robust schedule by robust measure: 

The third way is, for the alternative solutions checked by chance constraints, we evaluate 

them by scenario-based again (it could be with the same scenarios or different scenarios re-

sampled), with the objective of new robustness measure or original one in phase-1. For example, 

after some solutions are eliminated for violating some chance constraints, one robust measure is 

employed to all the remaining solutions (the robust measure could be same with one objective in 

phase-1, or another one), and the final robust solution is selected based on the objective value of 

robust measure. 

In this study, we choose second way to decide our robust solution, which is the most 

reasonable way. Tolerant of uncertainty is very important issue for robust scheduling problems, 

however, for any scheduling problems, makespan should be consider in high priority. Because it 

is not the key topic, in this study, we do not discuss how to decide the weights. 

 

5.4 Evolving procedure of proposed scheduling method 
In Fig. 5.9, it illustrates the general evolving procedure of proposed robust scheduling 

method based on hGMEDA. 

To solve the RCSP under uncertainty, there are three steps in phase-1. In step-1, based on 

objective of makespan, some sequencing solutions are generated by GA. In step-2, by using 

MMEDA, the solutions of resource allocation are produced. In step-3, to combine these two sub-

solutions and evaluate them by D-Fitness to get Pareto solutions. All these 3 steps are performed 
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with the deterministic manner. Based on the information of multiply objectives and capacitated 

constraints, by using hGMEDA, the alternative solutions are achieved (shown as blue nodes). 

In phase-2, it contains 2 steps. In step-4, some solutions are eliminated by checking chance 

constraints, which represented as the open circle. In step-5, based on the robustness measure, the 

solution colored red has the highest objective value, so that being selected as the final robust 

schedule. 

Here we pay more attentions to the definition and difference between objective of time based 

robustness (TRM) in phase-1 and robustness measure in phase-2. 

In phase-1, we treat the problem as bi-objective: minimizing makespan and maximizing 

TRM. If the scheduling system has longer slack time, the ability of absorb the disruption will be 

increased, especially to protect the expected makespan. 

In phase-2, we try to decide which one is the robust schedule based on the robustness measure. 

One possible way is to use the regret of makespan, which means the difference between expected 

makespan and actual ones. After one schedule produced, the expected makespan can be calculated 

as the makespan for every activity choose its averaged duration. With the duration changing, the 

 
Fig. 5.9 The evolving process of robust scheduling method for RCSP 
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actual makespan may be increase or decrease. If the difference between these two makespan is 

smaller, the schedule is more robust for keeping makespan. 

From the above example, we can clearly found that, objective and robust measure are in 

different definitions, but these two aiming to make the same contribution. The maximization of 

slack time has a high probability leading to small difference between expected makespan and 

actual one. 

However, if we set the regret of makespan as one objective in phase-1, it becomes very 

difficult to solve the problem as the deterministic manner and without simulation by scenarios. 

Therefore, that’s one reason why it is possible for us to use two criteria in two phases. 

In this study, because this is not the key point of the research, we use the same measure of 

time based robustness TRM in both phase-1 and phase-2. 
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Chapter 6 
Experimental Evaluation on 
Resource Constrained Robust 
Project Scheduling 

6.1 Introduction 
In this chapter, we take the application of MRCPSP with duration uncertainty for case study, 

and to evaluate the solutions given by our proposal to demonstrate the searching ability of robust 

hGMEDA and tolerant of uncertainty of the robust solution. 

We still take the same case study in chapter 4, making experiments on benchmark problem 

data set PSPLIB [96]. In the benchmark PSPLIB, for each activity, the duration of completion 

time is one constant value. To create the problems as MRCPSP with duration uncertainty, we 

revised the duration time as the normal probability N(μ, σ2), where μ is the original duration time 

in benchmark problems, and we set σ as 10% of μ. 

For solving project scheduling problems with uncertainty, some algorithms are developed, 

however, most of them belong to heuristic methods. Igelmund et al. [104] developed a method 

based on selection policy named pre-selective to minimize the cost for the total project. For PERT 

project, Golenko developed a novel resource constrained scheduling model [105], where the 

activities have random durations. Fawzan developed a newly designed robust measure to slove 

RCPSP with two objective of maximizing robustness and minimizing makespan [106], by 

generating an approximate set with using Tabu search. Roel Leus developed a heuristic method 

by using the algorithms of relaxation on scenarios [107], which enables the decision maker to 

produce a schedule with acceptable value of objective with each scenario. 
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To demonstrate the efficiency performance of our proposal fairly, some experiments are 

performed to compare robust hGMEDA with two meta-heuristic methods, including our proposed 

algorithm deterministic hGMEDA and one typical MOEA SPEA2. 

For SPEA2, we model the scheduling problem by GA-based representation with two sub-

chromosome including (1) priority value of each activity for deciding sequencing and (2) mode 

id for each activity for deciding mode selection. The detail coding manner for SPEA2 is coming 

from a method proposed by Wang [26]. 

 

6.2 Experiment and discussion 
We design three experiments to demonstrate, first one is conducted to make comparisons on 

the optimality of expected makespan. Secondly, we evaluate the variance of makespan of our 

schedule compared with deterministic ones to evaluate time based robustness. Thirdly, we 

evaluate the capacity based robustness by comparing the percentage of satisfaction of chance 

constraint. 

All algorithms were implemented by JAVA language and conducted on Intel Core i3 with 

4G memory. For each algorithm and each benchmark problem, we evaluate the mean result with 

30 trials. To make the same environment and fairly comparisons, the major parameters of methods 

are shown in Table 6.1. 

 

Table 6.1 The parameters of compared algorithms for robust scheduling 
 Gen. Pop. Operator Parameter 

SPEA2 1000 100 
Crossover(Pc) 
Mutation(Pm) 

Pc = 0.80 
Pm = 0.20 

k = 2 

MMEDA 
hGMEDA 

1000 100 
Tournament(k) 
Gibbs sampling 

Local search 

promisingRate = 0.7 
elimRate = 0.1 

k = 2 
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6.2.1 Expected makespan 

In this experiment, we evaluate the optimality of the schedule on makespan minimization. 

The schedule made by deterministic methods of hGMEDA and SPEA2 only consider bi-objective , 

and do not consider the chance constraint and without scenario based simulation. In this 

experiment, the expected makespan generated by robust hGMEDA and other two deterministic 

ones are compared. 

The expected makespan represents the optimality of makespan minimization, which is 

calculated by equation (6.1): 

1,...,
max

max ( )
( )

| |
j N jc

E C
ξ

ξ =∈Ξ=
Ξ

∑                        (6.1) 

In the Table 6.2, there is the results of comparison on makespan of robust hGMEDA, 

deterministic hGMEDA and SPEA2. Robust hGMEDA achieved expected makespan about 

3.71%, 3.61% larger than deterministic hGMEDA and SPEA2 respectively. 

Fig. 6.1 shows the results of expected makespan for problem #n041_1. Based on the 

scenario-based simulation, our proposal finally choose the robust one instead of the solutions with 

the highest time based robustness objective value under deterministic environment. In other words, 

Table 6.2 Comparison on expected makespan of robust hGMEDA, hGMEDA and SPEA2 

Problem 

Mean value of makespan [time unit] (30 trials) Improvement 

Robust 

hGMEDA 
hGMEDA SPEA2 

Decreased 

(with hGMEDA) 

Decreased 

(with SPEA2) 

#n041_1 29.9 29.1 28.7 -2.75% -4.18% 
#n042_1 35.1 34.2 34.6 -2.63% -1.45% 
#n043_1 39.3 37.9 38.3 -3.69% -2.61% 
#n044_1 32.2 31.3 30.7 -2.88% -4.89% 
#n045_1 42.7 41.1 40.7 -3.89% -4.91% 

Avg. 35.84 34.72 34.6 -3.17% -3.61% 
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our solution pays more attention on robust under uncertainty, and would sacrifice some optimality 

of makespan. 

 

6.2.2 Variance of makespan 

The research goal of this study is to produce one robust schedule for uncertainty project 

scheduling problem. In this experiment, we demonstrate the time based robustness of our proposal 

compared with deterministic ones. 

In this experiment, three solutions are compared. First one is the single robust solution by 

our proposal robust hGMEDA; second ones are, under the deterministic manner with the duration 

taking the averaged value μ, some Pareto solutions are generated with two objectives as makespan 

and time based robustness, but ignoring the chance constraint of capacity based robustness. One 

robust solution is selected only based on the duration time choosing its averaged value. 

In order to fairly compare the solutions given by different method: Firstly, 30 scenarios are 

randomly generated. Then, we apply randomly generated 30 scenarios to the solutions given by 

 

Fig. 6.1 Boxplot of expected makespan by robust hGMEDA, hGMEDA and SPEA2 on 
#n041_1 

makespan
(time unit)
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each method, and calculate the difference between averaged makespan and actual makespan with 

equation (6.2), and we evaluate the mean result with 30 trials. 

*

Variance
MK MKξ

ξ∈Ξ

−
=

Ξ

∑                             (6.2) 

where Ξ is the amount of the sampled scenarios, MKξ and MK* are actual and averaged makespan 

under the scenario ξ. 

Variance represents the tolerant ability for uncertainty of each solution. The smaller 

difference is, the higher time based robustness is. 

In Table 6.3, it shows the results of robustness comparisons. On average, our method 

improved time based robustness about 9.39% and 12.37%, compared with the approach for 

deterministic scheduling methods based on deterministic hGMEDA and SPEA2 under the same 

condition of duration uncertainty respectively. 

In Fig. 6.2, it shows the boxplot figure of variance of makespan by three different methods. 

From the figure of results on benchmark problem #n041_1, with 30 trials, not only the mean value 

of variance of robust hGMEDA is smaller, but also the standard deviation is smaller. In other 

words, the solutions given by robust hGMEDA have high ability of tolerant ability for uncertainty. 

Table 6.3 Comparison on variance of makespan of robust hGMEDA, hGMEDA and SPEA2 

Problem 

Mean value of Variance [time unit] (30 trials) Decrease of Variance 

Robust 

hGMEDA 
hGMEDA SPEA2 

Decreased 

(with hGMEDA) 

Decreased 

(with SPEA2) 

#n041_1 2.1 2.4 2.5 14.29% 19.05% 
#n042_1 2.5 2.7 2.9 8.00% 16.00% 
#n043_1 3.2 3.5 3.4 9.37% 6.25% 
#n044_1 2.7 2.9 2.9 7.41% 7.41% 
#n045_1 3.8 4.1 4.3 7.89% 13.16% 

Avg. 2.86 3.12 3.2 9.39% 12.37% 
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We summary the two objectives of makespan and time-based-robustness together in Fig. 6.3. 

From the figure, averagely, compared with deterministic hGMEDA, our proposal can increase 

the robustness 9.39% with the cost of 3.71% increase of makespan. For scheduling method based 

on SPEA2, our proposal can increase the robustness 12.37% with the cost of 3.61% increase of 

makespan.  

 

6.2.3 Percentage of satisfying chance constraint 

In this experiment, we compare the capacity based robustness by using the percentage of 

satisfaction of chance constraint. For the solutions given by each method, based on the 30 

 
Fig. 6.2 Boxplot of variance of makespan by robust hGMEDA, hGMEDA and SPEA2 on 

#n041_1 

variance of
makespan
(time unit)

  

Fig. 6.3 Expected makespan and variance of makespan 
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scenarios, we check how many percentage of solutions satisfying the chance constraint of capacity 

based robustness measure (CRM).  

The higher percentage is, the higher robustness on capacity based robustness. The results are 

shown in Table 6.4. Our proposal robust hGMEDA can increase the percentage of satisfaction of 

chance constraint about 11.5% and 10.2% for deterministic hGMEDA and SPEA2 averagely. 

Table 6.4 Comparison on percentage of satisfying chance constraint of robust hGMEDA, 
hGMEDA and SPEA2 

Problem 

Mean value of Percentage (30 trials) Improvement 

Robust 

hGMEDA 
hGMEDA SPEA2 

Increased 

(with hGMEDA) 

Increased 

(with SPEA2) 

#n041_1 85.4% 74.5% 75.1% 10.9% 10.3% 
#n042_1 86.2% 77.3% 76.8% 8.9% 9.4% 
#n043_1 85.8% 72.1% 73.9% 13.7% 11.9% 
#n044_1 83.7% 70.1% 72.7% 13.6% 11.0% 
#n045_1 82.1% 71.7% 73.5% 10.4% 8.6% 

Avg. 84.6% 73.1% 74.4% 11.5% 10.2% 

 

 

Fig. 6.4 Boxplot of percentage of satisfying chance constraint by robust hGMEDA, 
hGMEDA and SPEA2 on #n041_1 

percentage of
satisfaction

(%) 
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From the Fig. 6.4, it shows the results for problem #n041_1, due to the checking on the chance 

constraint, our robust method can achieve the percentage always higher than 80%, while other 

two methods only focus on two objectives without considering satisfying chance constraint, the 

percentage is lower than our proposal. 

 

6.2.4 Discussion 

From a viewpoint of modelling, a great number of real-life problems such as railway and 

airline scheduling problems, or course scheduling problems, can be modelled as variations of 

RCSPs. In the project of large building construction or chemical plant manufacturing, the most 

important feature is different skilled workers involved and acted as main resource which could 

affect the duration of completion time for each activity. One activity can be finished by several 

workers, and its completion time could be shorten with more workers engaged. As a result, this 

kind of flexibility of configuration for human power could be modeled as multi-mode. Meanwhile, 

the company policy on overtime could be viewed as recommendation level considering the health 

of workers, which is one goal to satisfy. 

The effect of our system could be classified into two aspects: a) The solutions given by our 

algorithm can fully utilize the workers employed for this project, with a high reliability under the 

uncertainty environment. b) Based on the final results we received, some analysis could be further 

conducted. With the knowledge, we could know whether we have to employ or fire some workers 

for budget management. For example, if the project manager finds out the overtime threshold 

cannot be satisfied, then he/she can understand that more workers are needed to complete this 

project, else the project manager has to relax the threshold. The project manager notices that, in 

the satisfied solution, some kind of skilled-workers have lots of spare time, someone has to be 

fired to reduce payments. It’s a kind of trade-off between expend of resources and robustness we 

try to achieve. 
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The output of our proposal can provide feasible and satisfied schedules, giving the 

opportunity for the project manager to select one based on his own perspective, meanwhile, the 

solutions can also be analyzed to understand the situation of this project more clearly, especially 

on the utilization of resource for the budget management. 

 

6.3 Summary 
One robust scheduling method of robust hGMEDA is presented to deal with the uncertainties 

of activities in RCSP. The new robustness measures of time-based robustness and capacity-based 

robustness are introduced and a stochastic multi-objective optimization method based on 

scenario-based simulation is also proposed. The numerical experiment results demonstrated that 

our proposal can improve the time based robustness and capacity based robustness of RCSP 

solutions. 
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Chapter 7 
Conclusion 

7.1 Conclusion 
It is well known that Resource Constrained Scheduling Problem (RCSP) with considering of 

resource utilization, makespan or budget management is important practically, however, to get an 

executable feasible scheduling solution is usually a complex NP-hard multi-objective 

combinatorial optimization, because, to find optimal scheduling of RCSP, it should be considered 

not only to minimize the makespan but also need to make capacity load balancing among the 

resources with satisfying the resource constraints. 

Furthermore, in real-world resource constrained scheduling problems, parameters such as 

activity durations and resource requirements, originated from a great number of potential sources, 

and disruption of the original schedule, are seldom precisely known. These uncertainties incur 

high costs by resource idleness, high inventory, and missing deadlines. Therefore, dealing with 

uncertainty in a scheduling environment becomes another critical problem, which has significant 

impacts on productivity, customer satisfaction and profitability. 

Conventionally, multi-objective evolutionary algorithms were developed based on GA with 

fitness assignment function of Pareto selection, however optimality and calculation efficiency of 

the conventional methods are not satisfiable because of complexity of RCSP and the method 

cannot handle the uncertainties mentioned above. 

Estimation of Distribution Algorithm (EDA), as a class of population-based optimization 

algorithm, has been proved to get higher optimality than conventional Evolutionary Algorithm 

(EA), such as Genetic Algorithm (GA). The key idea of EDA is to build a constructed 
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probabilistic model of the distribution of good solutions and guides further search behavior based 

on the model. Furthermore, probabilistic graphical models (PGMs) are used to represent the 

interaction behavior among the discrete decision variables, to improve the learning ability of the 

probabilistic model and to improve performance of EDA. Markov network based EDA (MEDA) 

was proposed where the Markov network is used as a PGM to model the stochastic interrelation 

among decision variables with the assumption of neighborhood relations. 

Firstly, in this study, we enhance MEDA for multi-objective optimization to solve RCSP of 

multi-objective scheduling problems and propose multi-objective Markov network based EDA 

(MMEDA) to find Pareto optimal solution set by introducing new fitness assignment functions. 

Two-stage architecture of hybridizing GA and MMEDA (hGMEDA) is also proposed to improve 

the calculation efficiency of MMEDA. 

Secondly, in order to deal with these uncertainties, a multi-phase robust scheduling method 

(robust hGMEDA) based on hGMEDA is proposed for robust scheduling. The two measures of 

time-based robustness and capacity-based robustness are introduced and a stochastic robust multi-

objective optimization method by using scenario-based simulation is proposed. Applicability and 

effectiveness of the proposed methods are demonstrated through applications of resource 

constrained project scheduling problems. 

Chapter 1 introduces the background, objective of our research and outline of the dissertation. 

Chapter 2 gives a review of the conventional meta-heuristic algorithms proposed for solving 

RCSP, especially Estimation of Distribution Algorithm and its extension of PGMs based on EDA. 

Furthermore, some conventional multi-objective evolutionary algorithms and robust scheduling 

approaches are presented briefly. 

Chapter 3 makes the illustrations on the idea and method that enhance MEDA for multi-

objective optimization and also can improve its calculation efficiency for searching Pareto 

solution set. 
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Firstly, multi-objective MEDA (MMEDA) is proposed where novel fitness function is 

introduced on MEDA to find Pareto solution set. Two kinds of fitness assignment functions are 

combined to improve calculation time and diversity of Pareto solutions compared with 

conventional multi-objective evolutionary algorithms. And the heuristic method including two 

type local search are proposed to empower the conventional MEDA by improving the quality of 

candidate solutions. 

Secondly, in order to further improve the calculation efficiency of proposed MMEDA, the 

algorithm hybrid GA and MMEDA (hGMEDA) is developed to solve resource constrained 

scheduling problems. Inspired by the cooperative co-evolutionary, in hGMEDA, a two-stage 

architecture based on sequential co-evolutionary paradigm is proposed. In the first stage, GA is 

employed to find feasible solutions for sequencing sub-problem without resource capacitated, 

because GA can provide more “random” solutions and higher diversity of solutions. In the second 

stage, based on the partial solutions given by stage-1, MMEDA is adopted to find optimal resource 

allocation and calculate the Pareto optimal solution set by using Markov network model of the 

stochastic interrelation between resources and activities. 

Chapter 4 demonstrates our proposal of MMEDA and hGMEDA with the application of 

RCSP. In this chapter, a multi-mode resource constrained project scheduling problem (MRCPSP), 

which is a typical application of multi-objective RCSP, is solved by the scheduling method based 

on our proposed algorithm of hGMEDA, and the performance of our proposal is demonstrated 

with comparative results on the optimality and diversity of Pareto scheduling solutions by 

comparing with two typical and popular multi-objective evolutionary methods of NSGA-II and 

SPEA2. Five cases of MRCPSP which have different activity network structures with 22 activities 

and 3-mode constraints are solved by the proposed method and the experimental results 

demonstrate that our proposal can improve about 17.00%, 22.48% on coverage, 7.59%, 10.28% 

on generational distance and 12.20%, 10.01% on spacing averagely, compared with NSGA-II and 
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SPEA2, respectively. Calculation time of proposed method of hGMEDA is also compared with 

the conventional methods and MMEDA, and hGMEDA reduces calculation time about 18.4%, 

25.5% and 10.9% for NSGA-II, SPEA2 and MMEDA respectively. 

Chapter 5 descries a robust scheduling method based on hGMEDA, dealing with scheduling 

problems with uncertainty of activity completion time durations. Firstly, two kinds of robust 

measures on time-based-robust and capacity-based-robust are introduced to evaluate the 

robustness of scheduling solutions, and we formulate the robust scheduling problem as two 

objectives of minimizing makespan and maximizing time based robustness under a chance 

constraint of satisfying the threshold of capacity based robustness. Thereafter, by using scenario-

based simulation, a stochastic robust multi-objective optimization method named robust 

hGMEDA is proposed. In the first phase, with the averaged duration, the problem is solved as the 

deterministic multi-objective scheduling problem without considering duration uncertainty and 

chance constraints, and some candidate solutions are collected by using hGMEDA. In the second 

phase, the alternative solutions are checked by the chance constraints of capacity-based-robust 

measure and then, time based robustness measure is evaluated by using scenario-based simulation. 

Chapter 6 demonstrates our proposal of robust hGMEDA with the application of one 

scheduling problem under uncertainty. In this chapter, a typical application of MRCPSP under 

duration uncertainty is studied. Several experiments are conducted on the benchmark problems 

of MRCPSP with duration uncertainty, and advantage of proposed robust hGMEDA is 

demonstrated by comparing robust measures between schedule solutions generated by robust 

hGMEDA and other two deterministic scheduling methods of hGMEDA and SPEA2 under the 

same condition. The numerical results show that our proposal robust hGMEDA provides the 

expected makespan larger than other two methods of 3.17% and 3.61%, but decreases the variance 

of makespan about 9.39% and 12.37% averagely, compared with deterministic hGMEDA and 

SPEA2. And robust hGMEDA improves the percentage of satisfying the threshold on capacity 
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based robustness about 11.5%, 10.2%, compared with the solutions given by the scheduling 

methods based on hGMEDA and SPEA2, respectively. 

 

7.2 Future work 
For algorithm of MMEDA and hGMEDA, there are many parameters to set: EDA related, 

Markov-network-related, multi-objective-related, robust-optimization-related. In our future work, 

some researches on parameter tuning could be conducted to increase the accuracy of our 

approaches. 

Secondly, it is one research direction to improve the performance by using other types of 

structure estimating algorithms or sampling methods. For example, if we can find the cause-effect 

relationship among variables in scheduling problems, Bayesian network based approach may 

become more convincing due to its directed structure, which is stronger relation than 

neighborhood. 

Thirdly, decision support system by analyzing the Pareto solutions could be another research 

direction in future. 
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