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Chapter 1

Introduction

The Thue-Morse sequence (t(n))∞n=0 (or Prouhet-Thue-Morse sequence) is the
following well-known binary sequence

(t(n))∞n=0 = 011010011001011010010110011010011001011001101001011 · · · .

The origin of this sequence is Prouhet’s investigation on the following problem,
known as Prouhet-Tarry-Escott problem [AlS2, BoPL, P]: For any integer k > 0,
find two distinct sets of integers A and B satisfying the equations,∑

x∈A

xj =
∑
y∈B

yj

for j ∈ {0, 1, · · · , k}. Prouhet [P] discovered the solutions to the above problem
by using the following identity,

Prouhet’s identity Set f1(x) := x − (x + 1) − (x + 2) + (x + 3) = 0. We
define the polynomial fk(x) recursively as

fk(x) :=
2k−1∑
n=0

ϵ(n)(x+ n)
k −

2k−1∑
n=0

ϵ(n)(x+ 2k + n)
k
= 0

where fk−1(x) =
∑2k−1

n=0 ϵ(n)(x+ n)
k−1

, ϵ(n) ∈ {1,−1}.

Letting k tend to infinity, we can define the sequence (ϵ(n))
∞
n=1. This sequence

is the origin of the Thue-Morse sequence. Fifty years later, Thue [Th], indepen-
dently of Prouhet, introduced the Thue-Morse sequence as the infinite binary
sequence that contains no cube, i.e, no three consecutive identical blocks. This
property of the Thue-Morse sequence made change the rule for infinite play
in chess. Moreover, independently of them, Morse [Mors] (famous for Morse
theory) rediscovered this sequence in 1921. Morse studied geodesics on a sur-
face of negative curvature by using this sequence. After pioneering works on
this sequence, the Thue-Morse sequence and its several generalizations have
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been investigated in the following areas [AlS2]; combinatorial number theory,
transcendental number theory, differential geometry, dynamical system, finite
automata, etc.
In this thesis, we study the Thue-Morse sequence and its generalizations which

is deeply related with number theory. This thesis consists of two chapters as
follows.

In Chapter 2, we investigate transcendental numbers related to the Thue-
Morse sequence and its generalizations. In 1929, Mahler [Ma] proved the tran-
scendence of the series

∑∞
n=0 t(n)β

−n−1, where β is an integer greater than 1.
Let per be the permutation 0 → 1, 1 → −1 and t(n) := per(t(n)). For the
proof of the transcendence of the series, Mahler used the following functional
equation of this sequence’s (t(n))∞n=0 generating function f(z) :=

∑∞
n=0 t(n)z

n,

f(z) = (1− z)f(z2).

Recently, this method is known as Mahler functions theory [N], which is ex-
tensively investigated by many researchers. On the other hand, Morton and
Mourant [MortM], Adamczewski, Bugeaud and Luca [AdBL] and Adamczewski
and Bugeaud [AdB] proved the transcendence of the series by the combinatorial
study on transcendental numbers: Let k be an integer greater than 1. We define
the k-adic expansion of non-negative integer n as follows

n =
finite∑
q=1

sn,qk
wn(q),

where 1 ≤ sn,q ≤ k−1, 0 ≤ wn(q) < wn(q+1). For any integer s in {1, . . . , k−1},
let es(n) denote the number of occurrences of s in the base k representation of
n. For an integer L greater than 1, we define a sequence (eLs (n))

∞
n=0 by

eLs (n) ≡ es(n) (mod L),

where 0 ≤ eLs (n) ≤ L − 1, es(0) = 0. Then (e21(n))
∞
n=0, where k = 2, is the

Thue-Morse sequence.
Morton and Mourant [MortM] introduced a new sequence as follows; Let K

be a map,
K : {1, . . . , k − 1} −→ {0, 1, . . . , L− 1}.

We define (a(n))∞n=0 as

a(n) ≡
k−1∑
s=1

K(s)eLs (n) (mod L), (1.1)

where 0 ≤ a(n) ≤ L− 1. Now we introduce a class of sequences as follows.

Definition 6 The sequence (a(n))∞n=0 is called a k-automatic sequence if the
set of sequences {(a(ken+ j))∞n=0| where e ≥ 0 and 0 ≤ j ≤ ke − 1} is the finite
set.
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Morton and Mourant proved that these sequences are k-automatic sequences.
Furthermore, the necessary-sufficient condition for the non-periodicity of these
sequences is given in [MortM]. Later, Adamczewski-Bugeaud-Luca [AdBL] dis-
covered the combinatorial transcendence criterion in 2004; Adamczewski, Bugeaud,
and Luca [AdBL] introduced a new class of sequences stammering sequence,
as follows. For any positive number y,⌊y⌋ and ⌈y⌉ are the floor and ceiling func-
tions. Let W be a finite word on {a0, a1, . . . , aL−1} and let |W | be the length
of W . For any positive number x, we let W x defined the word W ⌊x⌋W ‘, where
W ‘ is a prefix of W of length ⌈(x− ⌊x⌋)|W |⌉.

Definition 3 (a(n))∞n=0 is called a stammering sequence if (a(n))∞n=0 satisfies
the following conditions:

(1) The sequence (a(n))∞n=0 is a non-periodic sequence.
(2) There exist two sequences of finite words, (Um)m≥1 and (Vm)m≥1, such

that,
(A) there exists a real number w > 1 independent of n such that the word

UmVm
w is a prefix of the word (a(n))∞n=0,

(B) limm→∞ |Um|/|Vm| < +∞, and
(C) limm→∞ |Vm| = +∞.

Adamczewski, Bugeaud, Luca [AdBL] proved the following combinatorial tran-
scendence criterion that follows by the Schmidt subspace theorem.

Combinatorial transcendence criterion ([AdBL]) If β is an integer greater

than 1 and (a(n))∞n=0 is a stammering sequence on {0, 1, . . . , β−1}, then
∑∞

n=0
a(n)
βn+1

is a transcendental number.

By using this criterion, Adamczewski and Bugeaud [AdB] gives the following
affirmative answer to the Cobham conjecture [Co, W]

The Cobham conjecture (AdB) If β is an integer greater than 1 and (a(n))∞n=0

is a non-periodic k-automatic sequence on {0, 1, . . . , β − 1}, then
∑∞

n=0
a(n)
βn+1 is

a transcendental number.

Morton and Mourant [MortM] and Adamczewski and Bugeaud [AdB] have
proved the following result.

Theorem 1 ( [MortM, AdB]) Let β ≥ L be an integer. Then
∑∞

n=0
a(n)
βn+1

is a transcendental number unless

sK(1) ≡ K(s) (mod L) for all 1 ≤ s ≤ k − 1 and K(k − 1) ≡ 0 (mod L).

The investigations [AdBL, AdB, MortM] can suggest the combinatorial study
on transcendental numbers. In this way, Mahler functions theory and combi-
natorial transcendental number theory often give the analogous results of these
arguments.
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In Chapter 2, we give a generalization of Morton and Mourant’ investiga-
tion. Specifically, we generalize the Thue-Morse sequence by more detailed
digit counting; For any integer s in {1, . . . , k− 1} and any non-negative integer
y, letting d(n; sky) be 1 or 0, and d(n; sky) satisfies that d(n; sky) = 1 if and
only if there exists an integer q such that sn,qk

wn(q) = sky. Let µ be a map,

µ : {1, . . . , k − 1} × N −→ {0, 1, . . . , L− 1},

where N denotes the set of non-negative integers. We define (a(n))∞n=0 as

a(n) ≡
∞∑
y=0

k−1∑
s=1

µ(s, y)d(n; sky) (mod L), (1.2)

where 0 ≤ a(n) ≤ L − 1 and a(0) = 0. We call (a(n))∞n=0 a generalized Thue-
Morse sequence of type (L, k, µ), abbreviated as the (L, k, µ)-TM sequence.
Thus the Thue-Morse sequence is the generalized Thue-Morse sequence of type
(2, 2, µ) with µ(1, y) = 1 for all y ∈ N. Moreover, if a generalized Thue-Morse
sequence (a(n))∞n=0 is of type (L, k, µ) with

µ(s, y) = µ(s, y + 1)

for all s with 1 ≤ s ≤ k− 1 and for all y ∈ N, then (a(n))∞n=0 coincides with the
sequence defined by (1.1), which satisfies the conditions K(s) = µ(s, y) for all s
with 1 ≤ s ≤ k − 1. In Chapter 2, we generalize Theorem 1 as follows.

Theorem 2 Let (a(n))∞n=0 be an (L, k, µ)-TM sequence. Let β ≥ L be an
integer. If there is not an integer A such that

µ(s,A+ y) ≡ µ(1, A)sky (mod L)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then
∑∞

n=0
a(N+nl)
βn+1 ( for all

N ≥ 0 and for all l > 0 ) is a transcendental number.

We can find an uncountable quantity of new transcendental numbers in the series
generated by (L, k, µ)-TM sequences. Moreover, we show that any arithmeti-
cal subsequence of a non-periodic (L, k, µ)-TM sequence gives a transcendental
number. This theorem can be regarded as a combinatorial analogy of Tachiya’s
investigation [Ta] in Mahler functions.

Now we explain the outline of proof of Theorem 2. This proof consists of
the two parts, the irrationality of the series and the transcendence of the series.
For the analysis of the irrationality, we give the following key lemma about the
k-adic expansion of non-negative integers.

Lemma 4 If k > 1 and l > 0 be integers and t be a non-negative integer, then
there exists an integer x such that

xl =
finite∑
q=1

sxl,qk
wxl(q),
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where sxl,1 = 1, wxl(2)− wxl(1) > t,wxl(q + 1) > wxl(q) ≥ 0.
Furthermore, if t′ be other non-negative integer, then there exists an integer

X such that

Xl =
finite∑
q=1

sXl,qk
wX l(q),

where sXl,1 = 1, wXl(2) − wXl(1) > t′, wXl(q + 1) > wXl(q) ≥ 0, wxl(1) =
wXl(1).

We prove the following theorem by using this lemma.

Theorem 3 Let A∞ = (a(n))∞n=0 be an (L, k, µ)-TM sequence. The sequence
A∞ = (a(n))∞n=0 is ultimately periodic if and only if there exists an integer A
such that

µ(s,A+ y) ≡ µ(1, A)sky (mod L),

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N.
Moreover, if the (L, k, µ)-TM sequence is not ultimately periodic, then no

arithmetical subsequence of (L, k, µ)-TM sequence is ultimately periodic.

On the other hands, for the analysis of the transcendence, we give the recursively
word definition of (L, k, µ)-TM sequences as follows.

Definition 2 Let L be an integer greater than 1, and let a0, a1, . . . , aL−1 be
L distinct complex numbers. We let {a0, a1 . . . aL−1}∗ denote the free monoid
generated by {a0, a1 . . . aL−1}. We define a morphism f from {a0, a1 . . . aL−1}∗
to {a0, a1 . . . aL−1}∗ as follows:

f(ai) = ai+1,

where the index i is defined to be mod L. Let f j be the j times composed
mapping of f , and let f0 be an identity mapping. Let A and B be two finite
words on {a0, a1, . . . , aL−1}, and let AB denote the concatenation of A and B.

Let A0 = a0, k be an integer greater than 1, and let µ be a map µ:{1, . . . , k−
1} × N → {0, . . . , L − 1}. For a non-negative integer m, we define a space of
words Wm by

Wm := {ai1ai2 . . . aim |ai1 , ai2 , · · · , aim ∈ {a0, a1, . . . , aL−1}}.

We define An+1 ∈ Wkn+1 recursively as

An+1 := Anf
µ(1,n)(An) · · · · · · fµ(k−1,n)(An),

and we let

A∞ := lim
n→∞

An

denote the limit of An. The sequence (or infinite word) A∞ is called the
generalized Thue-Morse sequence of type (L, k, µ), abbreviated as the (L, k, µ)-
TM sequence.
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The following lemma shows that the (L, k, µ)-TM sequence defined by digit
counting corresponds to the (L, k, µ)-TM sequence defined by the recursively
word.

Lemma 3 Let A∞ = (b(n))∞n=0 be a (L, k, µ)-TM sequence with aj = exp 2π
√
−1j

L
( for all j with 0 ≤ j ≤ L − 1 ). Let GA∞(z) be the generating function of
(b(n))∞n=0,

GA∞(z) :=
∞∑

n=0

b(n)zn.

The generating function GA∞(z) will have the infinite product on |z| < 1,

GA∞(z) =
∞∏
y=0

(1 +
k−1∑
s=1

exp
2π

√
−1µ(s, y)

L
zsk

y

).

From the recursively word definition of (L, k, µ)-TM sequence (a(n))∞n=0, we
deduce that any arithmetical subsequence (a(N + ln))∞n=0 of a non-periodic
(L, k, µ)-TM sequence is a stammering sequence. Therefore, we complete the
proof by combing this fact with Theorem 3.

We also give the following necessary-sufficient condition that an (L, k, µ)-TM
sequence is a k-automatic sequence.

Proposition 3 An (L, k, µ)-TM sequence is a k-automatic sequence if and
only if there exist integers N and t such that

µ(s, y) = µ(s, y + t),

for all s with 1 ≤ s ≤ k − 1 and for all y ≥ N .

From this proposition, almost no (L, k, µ)-TM sequence is a k-automatic se-
quence.

In Chapter 3, we investigate the additive representation of integers related to
the Thue-Morse sequence (This representation of integers is not unique). The
results in Chapter 3 is the application of the special class of (L, k, µ)-TM se-
quences. Erdös-Surányi [ErS] and Prielipp [Bl] independently prove the follow-
ing result; For any integers n, there are an integer N and a map ϵ : {1, . . . , N} →
{−1, 1} such that

n =
N∑
j=1

ϵ(j)j2.

They deduce the above result from the identity

x2 − (x+ 1)
2 − (x+ 2)

2
+ (x+ 3)

2
= 4
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where x is a real variable. Erdös-Surányi and Prielipp suggested to study the
following problem: For any integers k > 0 and n, are there an integer N and a
map ϵ : {1, . . . , N} → {−1, 1} such that

n =
N∑
j=1

ϵ(j)jk ?

Mitek [Mi], Kaja [K] and Bleicher [Bl] independently give the positive answer
to this problem. The key point of this problem is the identity generated by
the 2k length prefix of the Thue-Morse sequence. The identity is related to
Prouhet-Tarry-Escott problem.
In Chapter 3, we give a generalization of the Erdös-Surányi problem Mitek

[Mi], Kaja [K] and Bleicher [Bl]. We study the case that the values of ϵ are L-th
roots of unity, where L is a positive integer. Since, by Mitek [Mi], Kaja [K]
and Bleicher [Bl], we already know that the answer is positive if L is even, we
restrict our attention to odd L. Let U be the set of L-th roots of unity. Then
we consider the following problem. For any integers k > 0 and n, are there an
integer N and a map ϵ : {1, . . . , N} → U such that

n =

N∑
j=1

ϵ(j)jk ?

We prove the following three results.

Theorem 10 Let L be a positive odd integer with L ≥ 2 which is not a prime
power and let U be the set of L-th roots of unity.
Then for any integers k > 0 and n, there are an integer N and a map ϵ :
{1, . . . , N} → U such that

n =
N∑
j=1

ϵ(j)jk.

The following result shows that the statement of Theorem 10 is valid if L is an
odd prime power pm and k is a multiple of p− 1.

Theorem 11 Let p be an odd prime number, m be a positive integer and let
U be the set of pm-th roots of unity. Then for any integers k > 0 with p− 1 | k
and n, there are an integer N and a map ϵ : {1, . . . , N} → U such that

n =
N∑
j=1

ϵ(j)jk.

Moreover, the following result shows that the statement of Theorem 10 is not
valid if L is an odd prime power pm and k is not a multiple of p− 1.
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Theorem 12 Let p be an odd prime number, m be a positive integer and let
U be the set of pm-th roots of unity. Then for any integer k > 0 with p− 1 ∤ k,
there are infinitely many integers n such that n cannot be represented as

n =

N∑
j=1

ϵ(j)jk, (1.3)

where N is a positive integer and ϵ : {1, . . . , N} → U .

Now we explain the outlines of proofs. For the proofs of Theorem 10 and 11,
we give the following identity as follows.

Lemma 5 Let L ≥ 2 be an integer and let U be the set of L-th roots of unity.
Let x be a real variable. Then for any integer k > 0 there exist an integer M , a
map ϵ : {0, . . . ,M − 1} → U and a non-zero integer P such that

M−1∑
j=0

ϵ(j)(x+ j)k = P.

Moreover for P , M as above and any integer m, there exist a multiple N of M
and a map ϵm : {0, . . . ,M − 1} → U such that

N−1∑
j=0

ϵm(j)(x+ j)k = mP.

We prove this lemma by induction on k. The key point of the proof is the facts∑L−1
j=0 ζjL = 0 and

∑L−1
j=1 ζjL = −1, where ζL := exp 2π

√
−1

L . Letting k tend to

infinity, we can define the sequence (ϵ(j))
∞
j=1. The sequence (ϵ(j))

∞
j=1 can be

regarded as the (L,L(L − 1), µ)-TM sequence where some µ. By the second
statement of Lemma 5, we prove that, for each l with 0 ≤ l ≤ P − 1, there exist
an integer N and a map ϵ : {1, . . . , N} → U such that

l ≡
N∑
j=1

ϵ(j)jk (mod P ).

This proves Theorem 10 and 11. For the proof of Theorem 12, we show the
following lemma.

Lemma 6 Let p be an odd prime number, m be a positive integer and k be a
positive integer with p − 1 ∤ k. Let U be the set of pm-th roots of unity. Put

Sk(M) :=
∑M

j=1 j
k. Assume an integer n is represented by

n =
N∑
j=1

ϵ(j)jk,
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where N is an integer and ϵ : {1, . . . , N} → U .
Then

Sk(N) ≡ n (mod p).

By Lemma 6, we prove that there is at least one residue class modulo p of
numbers n which cannot be represented as (1.3) for any positive integer N and
any map. This proves Theorem 12.
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Chapter 2

Transcendence of digital
expansions generated by a
generalized Thue-Morse
sequence

2.1 Introduction

First we introduce the Thue-Morse sequence, defined by digit counting. Let
k be an integer greater than 1. We define the k-adic expansion of non-negative
integer n as follows:

n =

finite∑
q=1

sn,qk
wn(q), (2.1)

where 1 ≤ sn,q ≤ k−1, 0 ≤ wn(q) < wn(q+1). For any integer s in {1, . . . , k−1},
let es(n) denote the number of occurrences of s in the base k representation of
n. For an integer L greater than 1, we define a sequence (eLs (n))

∞
n=0 by

eLs (n) ≡ es(n) (mod L), (2.2)

where 0 ≤ eLs (n) ≤ L − 1, es(0) = 0. Then (e21(n))
∞
n=0, where k = 2, is known

as the Thue-Morse sequence. The Thue-Morse sequence has several definitions.
See [AlS2, Em, BerR, Fo].

Now we introduce a new sequence. Let K be a map,

K : {1, . . . , k − 1} −→ {0, 1, . . . , L− 1}.
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We define (a(n))∞n=0 as

a(n) ≡
k−1∑
s=1

K(s)eLs (n) (mod L), (2.3)

where 0 ≤ a(n) ≤ L− 1. Morton and Mourant [MortM] and Adamczewski and
Bugeaud [AdB] have proved the following result.

Theorem 1 ( [MortM, AdB]) Let β ≥ L be an integer. Then
∑∞

n=0
a(n)
βn+1 is

a transcendental number unless

sK(1) ≡ K(s) (mod L) for all 1 ≤ s ≤ k − 1 and K(k − 1) ≡ 0 (mod L).
(2.4)

The proof of Theorem 1 rests on the periodicity of (a(n))∞n=0 [MortM] and
the Cobham conjecture [Co, W] that was settled by Adamczewski and Bugeaud
[AdB]. More precisely, Morton and Mourant [MortM] proved that (a(n))∞n=0

is a k-automatic sequence for any map K (see Definition 6 in Section 2.5 for
the full definition). Furthermore, they proved that (a(n))∞n=0 is periodic if and
only if (a(n))∞n=0 is purely periodic which enabled them to prove that (a(n))∞n=0

is periodic if and only if the map K satisfies (2.4). Later, Adamczewski and
Bugeaud [AdB] proved the Cobham conjecture by using the Schmidt subspace
theorem. Thus they deduced Theorem 1 by combining the results of Morton
and Mourant with the Cobham conjecture.

Let us define a generalized Thue-Morse sequence as follows: For any integer
s in {1, . . . , k − 1} and any non-negative integer y, letting d(n; sky) be 1 or 0,
and d(n; sky) satisfies that d(n; sky) = 1 if and only if there exists an integer q
such that sn,qk

wn(q) = sky. Let µ be a map,

µ : {1, . . . , k − 1} × N −→ {0, 1, . . . , L− 1},

where N denotes the set of non-negative integers. We define (a(n))∞n=0 as

a(n) ≡
∞∑
y=0

k−1∑
s=1

µ(s, y)d(n; sky) (mod L), (2.5)

where 0 ≤ a(n) ≤ L − 1 and a(0) = 0. We call (a(n))∞n=0 a generalized Thue-
Morse sequence of type (L, k, µ). Thus the Thue-Morse sequence is the gen-
eralized Thue-Morse sequence of type (2, 2, µ) with µ(1, y) = 1 for all y ∈ N.
Moreover, if a generalized Thue-Morse sequence (a(n))∞n=0 is of type (L, k, µ)
with

µ(s, y) = µ(s, y + 1) (2.6)

for all s with 1 ≤ s ≤ k− 1 and for all y ∈ N, then (a(n))∞n=0 coincides with the
sequence defined by (2.3), which satisfies the conditions K(s) = µ(s, y) for all s
with 1 ≤ s ≤ k − 1. In Chapter 2, we generalize Theorem 1 as follows.
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Theorem 2 Let (a(n))∞n=0 be a generalized Thue-Morse sequence of type (L, k, µ).
Let β ≥ L be an integer. If there is not an integer A such that

µ(s,A+ y) ≡ µ(1, A)sky (mod L) (2.7)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then
∑∞

n=0
a(N+nl)
βn+1 ( for all

N ≥ 0 and for all l > 0 ) is a transcendental number.

By Theorem 2, one can find an uncountable quantity of transcendental num-

bers. Moreover, if
∑∞

n=0
a(n)
βn+1 is a transcendental number, then

∑∞
n=0

a(N+nl)
βn+1

( for all N ≥ 0 and for all l > 0 ) is also a transcendental number. The proof of
Theorem 2 does not rest on pure periodicity of the periodic generalized Thue-
Morse sequence (a(n))∞n=0 and the Cobham conjecture. Here we study non-
periodicity of the subsequence (a(N +nl))∞n=0 ( for all N ≥ 0 and for all l > 0 )
of a generalized Thue-Morse sequence (a(n))∞n=0. See also Morgenbesser, Shallit,
and Stoll [MorgSS]. Almost no generalized Thue-Morse sequence (a(n))∞n=0 is
k-automatic (see Proposition 3 in Section 2.5). Therefore, the proof of Theorem
2 is different from the proof of Theorem 1. We prove Theorem 2 by combining
Theorem 3 in Section 3 with the combinatorial transcendence criterion estab-
lished by Adamczewski, Bugeaud, and Luca [AdBL].

This part is organized as follows. In Section 2.2, we review the basic concepts
of the periodicity of sequences, and give the formal definition of the generalized
Thue-Morse sequences. For a sequence (a(n))∞n=0, we set its generating function
g(z) ∈ C[[z]] to be

g(z) :=
∞∑

n=0

a(n)zn.

For a generalized Thue-Morse sequence, one can prove that the generating func-
tion is convergent on the open unit disk and that it has an infinite product
expansion. In Section 2.3, first we prove the key lemma on the k-adic expan-
sion of non-negative integers. Next, we use this lemma and the infinite product
expansion of the generating function of a generalized Thue-Morse sequence to
prove a necessary-sufficient condition for the non-periodicity of the generalized
Thue-Morse sequence. Furthermore, we prove that if the generalized Thue-
Morse sequence is not periodic then no subsequence (a(N + nl))∞n=0 ( for all
N ≥ 0 and for all l > 0) of the generalized Thue-Morse sequences is periodic.
In Section 2.4, we introduce the concept of the stammering sequence, intro-
duced by Adamczewski, Bugeaud, and Luca [AdBL], and the combinatorial
transcendence criterion, established by Adamczewski, Bugeaud, Luca [AdBL]
and Bugeaud [Bu1]. By applying this combinatorial transcendence criterion to
the generalized non-periodic Thue-Morse sequence (a(n))∞n=0, which takes its
values from {0, 1, . . . , β − 1}, we show that

∑∞
n=0 a(N + nl)β−n−1 is a tran-

scendental number. Furthermore by applying this combinatorial transcendence
criterion to the generalized non-periodic Thue-Morse sequence (a(n))∞n=0, which
takes its values in bounded positive integers, we show that the continued frac-
tion [0 : a(N), a(N + l), . . . , a(N + nl), . . .] is also transcendental number. This
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result includes Theorem 2. In Section 2.5, we consider the necessary-sufficient
condition that a generalized Thue-Morse sequence is a k-automatic sequence.
Then we find many transcendental numbers whose irrationality exponent is finite
in all arithmetical subsequences of the corresponding generalized Thue-Morse
sequence by applying the Adamczewski and Cassaigne result on k-automatic
irrational numbers [AdC]. Furthermore, we consider the transcendence of the
value at the algebraic point of the generating function

∑∞
n=0 a(N + nl)z−n−1

by applying Becker’s result on k-automatic power series.

2.2 Generalized Thue-Morse sequences and their
generating functions

Let (a(n))∞n=0 be a sequence with values in C. (a(n))∞n=0 is called ultimately
periodic if there exist non-negative integers N and l > 0 such that

a(n) = a(n+ l) (∀n ≥ N). (2.8)

An arithmetical subsequence of (a(n))∞n=0 is defined to be a subsequence such
as (a(N + tl))∞t=0, where N ≥ 0 and l > 0.

Definition 1 Let (a(n))∞n=0 be a sequence with values in C. The sequence
(a(n))∞n=0 is called everywhere non-periodic if no arithmetical subsequence of
(a(n))∞n=0 takes on only one value.

Now we present some lemmas about the everywhere non-periodic sequences.

Lemma 1 If (a(n))∞n=0 is everywhere non-periodic, then (a(n))∞n=0 is not ulti-
mately periodic.

Proof. We prove contraposition. Assume that (a(n))∞n=0 is ultimately peri-
odic. From the definition of everywhere non-periodic, there exist non-negative
integers N and l > 0 such that

a(n) = a(n+ l) (∀n ≥ N). (2.9)

It follows from (2.9) that the arithmetical subsequence (a(N + tl))∞t=0 takes on
only one value. □

Lemma 2 If (a(n))∞n=0 is everywhere non-periodic, then all arithmetical sub-
sequences of (a(n))∞n=0 are everywhere non-periodic.

Proof. We prove contraposition. If (a(N + tl))∞t=0 is not everywhere non-
periodic, then there exist non-negative integers k and J > 0 such that (a(N +
kl+mJl))∞m=0 takes on only one value. The subsequence (a(N +kl+mJl))∞m=0

is also an arithmetical subsequence of (a(n))∞n=0. Therefore, (a(n))∞n=0 is not
everywhere non-periodic. □
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Corollary 1 (a(n))∞n=0 is everywhere non-periodic if and only if no arithmetical
subsequence of (a(n))∞n=0 is ultimately periodic.

Proof. Assume (a(n))∞n=0 is everywhere non-periodic. By Lemma 1 and Lemma
2, no arithmetical subsequence of the sequence (a(n))∞n=0 is periodic.

We show the sufficient condition. Assume (a(n))∞n=0 is not everywhere non-
periodic. Then there exist non-negative integers N and l > 0 such that (a(N +
tl))∞t=0 takes on only one value. This sequence is ultimately periodic. □

Next, we generalize the Thue-Morse sequence of Emmanuel [Em].

Definition 2 Let L be an integer greater than 1, and let a0, a1, . . . , aL−1 be
L distinct complex numbers. We let {a0, a1 . . . aL−1}∗ denote the free monoid
generated by {a0, a1 . . . aL−1}. We define a morphism f from {a0, a1 . . . aL−1}∗
to {a0, a1 . . . aL−1}∗ as follows:

f(ai) = ai+1, (2.10)

where the index i is defined to be mod L. Let f j be the j times composed
mapping of f , and let f0 be an identity mapping. Let A and B be two finite
words on {a0, a1, . . . , aL−1}, and let AB denote the concatenation of A and B.

Let A0 = a0, k be an integer greater than 1, and let µ be a map µ:{1, . . . , k−
1} × N → {0, . . . , L − 1}. For a non-negative integer m, we define a space of
words Wm by

Wm := {ai1ai2 . . . aim |ai1 , ai2 , · · · , aim ∈ {a0, a1, . . . , aL−1}}. (2.11)

We define An+1 ∈ Wkn+1 recursively as

An+1 := Anf
µ(1,n)(An) · · · · · · fµ(k−1,n)(An), (2.12)

and we let

A∞ := lim
n→∞

An (2.13)

denote the limit of An. The sequence (or infinite word) A∞ is called the
generalized Thue-Morse sequence of type (L, k, µ), abbreviated as the (L, k, µ)-
TM sequence.

Example 1 ( [Em]) Let L = 2, a0 = 0, a1 = 1 and µ(1, y) = 1 for all y ∈ N.
The (2, 2, 1)-TM sequence will be as follows:

A0 = 0, A1 = 01, A2 = 0110, A3 = 01101001,

A∞ = 0110100110010110100101100110100110010110011010010110100110 · · · .

This example is the Thue-Morse sequence of Emmanuel [Em].
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Example 2 Let L = 2, a0 = 0, a1 = 1 and

µ(1, y) =

{
1, y is a prime number;

0, otherwise.

The (2, 2, µ)-TM sequence will be

A0 = 0, A1 = 00, A2 = 0000, A3 = 00001111,

A∞ = 00001111000011111111000011110000 · · · .

Example 3 Let L = 2, a0 = 0, a1 = 1 and

µ(1, y) =

{
1, y is a square number and s = 2;

0, otherwise.

The (2, 3, µ)-TM sequence will be

A0 = 0, A1 = 001, A2 = 001001001,

A∞ = 001001001001001001001001001001001001001001001001001001110110 · · · .

Let (a(n))∞n=0 be a sequence with values in C. The generating function of
(a(n))∞n=0 is the formal power series g(z) ∈ C[[z]], defined as

g(z) :=
∞∑

n=0

a(n)zn.

The following lemma clarifies the meaning of an (L, k, µ)-TM sequence.

Lemma 3 Let A∞ = (b(n))∞n=0 be a (L, k, µ)-TM sequence with aj = exp 2π
√
−1j

L
( for all j with 0 ≤ j ≤ L − 1 ). Let GA∞(z) be the generating function of
(b(n))∞n=0,

GA∞(z) :=

∞∑
n=0

b(n)zn.

The generating function GA∞(z) will have the infinite product on |z| < 1,

GA∞(z) =
∞∏
y=0

(1 +
k−1∑
s=1

exp
2π

√
−1µ(s, y)

L
zsk

y

). (2.14)

Proof. From the assumption aj = exp 2π
√
−1j

L for all j with 0 ≤ j ≤ L − 1,
we have

f(aj) = exp
2π

√
−1

L
aj (2.15)

for all j with 0 ≤ j ≤ L−1. The (L, k, µ)-TM sequence takes on only finite val-

ues and the Cauchy-Hadamard theorem, GA∞(z) and
∏∞

y=0(1+
∑k−1

s=1 exp
2π

√
−1µ(s,y)
L zsk

y

)
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converge absolutely on the unit disk. Let GAn(z) be the generating function of
An; We identify the infinite word An0 · · · 0 · · · =: An0

∞ with An.
We will show by induction that the following equality holds on n,

GAn(z) =
n−1∏
y=0

(1 +
k−1∑
s=1

exp
2π

√
−1µ(s, y)

L
zsk

y

). (2.16)

First, we check the case n = 1. From the definition of A1, we have

GA1(z) = 1 +
k−1∑
s=1

exp
2π

√
−1µ(s, 0)

L
zs. (2.17)

Thus, the n = 1 case is true. By the induction hypothesis we may assume that

GAj (z) =

j−1∏
y=0

(1 +
k−1∑
s=1

exp
2π

√
−1µ(s, y)

L
zsk

y

). (2.18)

Therefore, we have

GAj+1(z) = GAj (z) +

k−1∑
s=1

Gfµ(s,j)(Aj)(z)z
skj

. (2.19)

Alternatively,

Gfµ(s,j)(Aj)(z) = exp
2π

√
−1µ(s, j)

L
GAj (z). (2.20)

From (2.18)-(2.20), we get

GAj+1(z) = GAj (z)(1 +
k−1∑
s=1

exp
2π

√
−1µ(s, y)

L
zsk

j

)

=

j∏
y=0

(1 +
k−1∑
s=1

exp
2π

√
−1µ(s, y)

L
zsk

y

). (2.21)

Therefore (2.14) is true. Finally, we will compare the coefficients of zj on
both sides of (2.14). On the right-hand side of (2.14), the coefficient of zj are
determined by GAN

(z) for sufficiently large N . From the definition of A∞,
the prefix word, pN , of A∞ is AN . From the above argument and (2.16), the
coefficients of zj on both sides of (2.14) must coincide. □

Proposition 1 Let A∞ = (b(n))∞n=0 be a (L, k, µ)-TM sequence with aj =

exp 2π
√
−1j

L (for all j with 0 ≤ j ≤ L− 1 ). Let (a(n))∞n=0 be a sequence defined
by (2.5). Then

L

2π
√
−1

log b(n) ≡ a(n) (mod L). (2.22)
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Proof. Let the k-adic expansion of n be as follows:

n =

n(k)∑
q=1

sn,qk
wn(q), (2.23)

where 1 ≤ sn,q ≤ k − 1, 0 ≤ wn(q) < wn(q + 1). By uniqueness of the k-adic
expansion and Lemma 3, we have

b(n) =
∏n(k)

q=1 exp
2π

√
−1µ(sn,q,wn(q))

L

= exp
2π

√
−1(

∑n(k)
q=1 µ(sn,q,wn(q)))

L

= exp
2π

√
−1(

∑n(k)
q=1 µ(sn,q,wn(q)) (mod L))

L . (2.24)

By (2.23), (2.24) and the definition of a(n), the equality (2.22) is obtained. □

Now we give other representations of Example 2 and Example 3 by using
Proposition 1.

We begin Example 2. Let the 2-adic expansion of non-negative integer n be

n =

finite∑
q=1

2wn(q), (2.25)

where 0 ≤ wn(q) < wn(q + 1). We define the number A(n) to be

A(n) = #{ wn(q) | wn(q) is a prime number },

and we define (a(n))∞n=0 as

a(n) =

{
1, A(n) ≡ 1 (mod 2)

0, A(n) ≡ 0 (mod 2);
(2.26)

e.g., a(44) = a(22 + 23 + 25) = 1, a(12) = a(22 + 23) = 0). The sequence
(a(n))∞n=0 is the generalized Thue-Morse sequence of type (2, 2, µ) with

µ(1, y) =

{
1, y is a prime number;

0, otherwise.

Next, we give another representation of Example 3. Let the 3-adic expansion
of non-negative integer n be

n =
finite∑
q=1

sn,q3
wn(q), (2.27)

where 1 ≤ sn,q ≤ 2, 0 ≤ wn(q) < wn(q + 1). We define the number B(n) as

B(n) = #{ wn(q) | wn(q) is a square number and sn,q = 2 },
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and we define (a(n))∞n=0 as

a(n) =

{
1, B(n) ≡ 1 (mod 2)

0, B(n) ≡ 0 (mod 2);
(2.28)

e.g., a(169) = a(1+ 2× 3+ 2× 34) = 0, a(7) = a(1+ 2× 3) = 1). The sequence
(a(n))∞n=0 is the generalized Thue-Morse sequence of type (2, 3, µ) with

µ(s, y) =

{
1 y is a square number and s = 2;

0 otherwise.

2.3 Necessary-sufficient condition for the non-
periodicity of a generalized Thue-Morse se-
quence

We begin by presenting the following key lemma about the k-adic expansion
of non-negative integers.

Lemma 4 If k > 1 and l > 0 be integers and t be a non-negative integer, then
there exists an integer x such that

xl =
finite∑
q=1

sxl,qk
wxl(q), (2.29)

where sxl,1 = 1, wxl(2)− wxl(1) > t,wxl(q + 1) > wxl(q) ≥ 0.
Furthermore, if t′ be other non-negative integer, then there exists an integer

X such that

Xl =
finite∑
q=1

sXl,qk
wX l(q), (2.30)

where sXl,1 = 1, wXl(2) − wXl(1) > t′, wXl(q + 1) > wXl(q) ≥ 0, wxl(1) =
wXl(1).

Proof. Let us assume the factorization of k into prime factors is

k =
N∏
t=1

pt
yt , (2.31)

where p1, p2, · · · pN are N distinct prime numbers and yt for pt (1 ≤ t ≤ N )
are N positive integers. Let l be represented as

l = G

n∏
u=1

ptu
xu , (2.32)
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where G and k are coprime, ptu ∈ {pt|1 ≤ t ≤ N} and xu are n positive integers.
As G and k are coprime, there exist integers D and E such that

DG = 1− kt+1E. (2.33)

We set
F = max{A|xu = ytuA+H, 0 ≤ H < ytu , 1 ≤ u ≤ n}.

From the definition of F , kF+1
∏n

u=1 ptu
−xu is a non-negative integer. Thus we

have

lD2GkF+1
n∏

u=1

ptu
−xu = kF+1D2G2. (2.34)

On the other hand, by (2.33) we have

D2G2 = 1 + kt+1E(kt+1E − 2). (2.35)

Thus E(kt+1E − 2) is a non-negative integer. If E(kt+1E − 2) > 0, it follows
from the k-adic expansion of E(kt+1E−2) that kF+1D2G2 satisfies the Lemma.
If E(kt+1E − 2) = 0, then G = 1. The integer kF+1(1 + kt+1) also satisfies the
Lemma. As F + 1 is independent of t, the second claim is trivial. □

Now we will show the everywhere non-periodic result by the previous lemma.

Proposition 2 Let A∞ = (a(n))∞n=0 be a sequence with values in C, and let
GA∞(z) denote the generating function of (a(n))∞n=0. Assume that GA∞(z) has
the following infinite product expansion for an integer k greater than 1 and
ts,y ̸= 0 for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N,

GA∞(z) =

∞∏
y=0

(1 +

k−1∑
s=1

ts,yz
sky

). (2.36)

If there exists a periodic arithmetical subsequence of (a(n))∞n=0, then GA∞(z)
has the following infinite product expansion

GA∞(z) = (
kA−1∑
n=0

a(n)zn)
∞∏
y=0

(1 +
k−1∑
s=1

hsky

zsk
A+y

), (2.37)

where A is a non-negative integer and h is a complex number.

Proof. Let n and m be two non-negative integers and their respective k-adic
expansions are as follows:

n =
finite∑
q

sn,qk
wn(q), m =

finite∑
p

sm,pk
wm(p), (2.38)
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where 1 ≤ sn,q, sm,p ≤ k−1, 0 ≤ wn(q) < wn(q+1), and 0 ≤ wm(p) < wm(p+1).
If wn(q) ̸= wn(p) for all pairs (q, p), then

a(n+m) = a(n)a(m) (2.39)

by the assumption of GA∞(z) and the uniqueness of the k-adic expansion of
non-negative integers. If (a(n))∞n=0 has a periodic arithmetical subsequence,
then by Corollary 1 (a(n))∞n=0 is not everywhere non-periodic. Thus there exist
two non-negative integers, N and l > 0, such that

a(N) = a(N + tl) (∀t ∈ N). (2.40)

Let the k-adic expansion of N be

N =

N(k)∑
q=1

sN,qk
wN (q) where 1 ≤ sN,q ≤ k − 1, 0 ≤ wN (q) < wN (q + 1).

(2.41)

By the assumption of GA∞(z) and (2.39), we have

a(N) = a(N + krtl) = a(N)a(krtl) (∀r > wN (N(k))). (2.42)

a(N) ̸= 0. (2.43)

From (2.42) and (2.43), we get

a(krtl) = 1 (∀r > wN (N(k))). (2.44)

By Lemma 4, there exists an integer x greater than zero such that

xl =

xl(k)∑
q=1

sxl,qk
wxl(q), (2.45)

where sxl,1 = 1 and wxl(2)− wxl(1) > 1.

Moreover, there exists an integer X greater than zero such that

Xl =

Xl(k)∑
q=1

sXlqk
wXl(q), (2.46)

where sXl,1 = 1, wXl(2)− wXl(1) > wxl(xl(k)) and wXl(1) = wxl(1).

Let xlk−wxl(1) and Xlk−wxl(1) be replaced by xl and Xl, respectively. Let r
be an integer greater than w(N(k))+wxl(1) and s be an integer in {1, . . . , k−1}.

By the definition of Xl and (2.39), we have

a(krsXl) = a(skr)a(krsXl − skr). (2.47)
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From (2.43), we get

1 = a(krxl), (2.48)

1 = a(krsXl), (2.49)

1 = a(krxl + krsXl). (2.50)

By (2.39), (2.47)-(2.50) and the definitions of xl and Xl, we have

a(kr)a(krxl − kr) = 1, (2.51)

a(lskr)a(sXlkr − skr) = 1, (2.52)

a(kr(s+ 1))a(xlkr − kr)a(sXlkr − skr) = 1. (2.53)

From (2.51)-(2.53), we get

a(kr(s+ 1)) = a(kr)a(krs). (2.54)

Put h := a(kw(N(k))+wxl(1)+1).
By (2.39), we have

a(sky) = ts,y, (2.55)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N.
By (2.43), (2.54), (2.55) and inductive computation, we get the relations

ts,w(N(k))+wxl(1)+1+y = hsky

, (2.56)

for all s with 1 ≤ s ≤ k− 1 and for all y ∈ N. From the assumption of GA∞(z),
the proof is complete. □

Finally, we prove the main theorem in Section 3.

Theorem 3 Let A∞ = (a(n))∞n=0 be an (L, k, µ)-TM sequence. The sequence
A∞ = (a(n))∞n=0 is ultimately periodic if and only if there exists an integer A
such that

µ(s,A+ y) ≡ µ(1, A)sky (mod L), (2.57)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N.
Moreover, if the (L, k, µ)-TM sequence is not ultimately periodic, then no

arithmetical subsequence of (L, k, µ)-TM sequence is ultimately periodic.

Proof. We assume, without loss of generality, that A∞ = (a(n))∞n=0 is an

(L, k, µ)-TM sequence with aj = exp 2π
√
−1j

L (for all 0 ≤ j ≤ L− 1 ). From this
assumption and Lemma 3, (a(n))∞n=0 satisfies the assumption of Proposition 2.
Therefore, (2.57) is the necessary condition.

Now, we show the sufficient condition. Let GA∞(z) be the generating func-
tion of (a(n))∞n=0. Notation is the same as for Proposition 2. If we assume that
(a(n))∞n=0 satisfies (2.57), then there exists a non-negative integer A such that

ts,A+y = hsky

(∀y ∈ N). (2.58)
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Thus GA∞(z) has the infinite product expansion

GA∞(z) = (

kA−1∑
n=0

b(n)zn)

∞∏
y=0

(1 +

k−1∑
s=1

(hzk
A

)sk
y

). (2.59)

Let Z = hzk
A

. As h is the L-th root of 1 and µ is a zero map in Lemma 3, we
find

∞∏
y=0

(1 +
k−1∑
s=1

Zsky

) =
∞∑

n=0

Zn on |Z| < 1. (2.60)

We put G(z) =
∑kA−1

n=0 a(n)zn. From (2.59) and (2.60),

GA∞(z) = G(z)(

∞∑
n=0

(hzk
A

)n). (2.61)

As h is the L-th root of 1,

GA∞(z) = (G(z)(
L−1∑
n=0

(hzk
A

)n))(1 +
∞∑
s=1

zsLkA

) =
G(z)(

∑L−1
n=0(hz

kA

)n)

1− zLkA . (2.62)

As the degree of G(z) is kA − 1, and using (2.62), we find that the sequence
(a(n))∞n=0 that satisfies (2.57) has a period LkA. Moreover, if the (L, k, µ)-TM
sequence is not ultimately periodic, then no arithmetical sequence of (L, k, µ)-
TM sequence will be ultimately periodic by the above argument and by Propo-
sition 2. □

If an (L, k, µ)-TM sequence satisfies

µ(s, y) = µ(s, y + 1) (2.63)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then (µ(1), µ(2), . . . , µ(k − 1))-L
will denote the (L, k, µ)-TM sequence.

The weak version of the corollary that follows is given as Theorem 2 in
Morton and Mourant [MortM]. See also Allouche and Shallit [AlS3], Frid [Fr].

Corollary 2 The sequence (µ(1), µ(2), . . . , µ(k − 1))-L is periodic if and only
if µ(s) ( for all s with 1 ≤ s ≤ k − 1 ) satisfies

sµ(1) ≡ µ(s), µ(k − 1) ≡ 0 (mod L). (2.64)

Moreover, if (µ(1), µ(2), . . . , µ(k − 1))-L is not periodic, then no arithmetical
subsequence of (µ(1), µ(2), . . . , µ(k − 1))− L will be periodic.

Proof. By Theorem 3, the necessary-sufficient condition for the periodicity of
(µ(1), µ(2), . . . , µ(k − 1))-L comprises the following relations:

µ(1, A+ 1) ≡ µ(1, A)k (mod L), µ(k − 1) ≡ (k − 1)µ(1) ≡ 0 (mod L).
(2.65)

. □

– 26 –



2.4 Transcendence results of the generalized Thue-
Morse sequences

Adamczewski, Bugeaud, and Luca [AdBL] introduced a new class of se-
quences, as follows. For any positive number y,⌊y⌋ and ⌈y⌉ are the floor and
ceiling functions. Let W be a finite word on {a0, a1, . . . , aL−1} and let |W |
be the length of W . For any positive number x, we let W x defined the word
W ⌊x⌋W ‘, where W ‘ is a prefix of W of length ⌈(x− ⌊x⌋)|W |⌉.

Definition 3 (a(n))∞n=0 is called a stammering sequence if (a(n))∞n=0 satisfies
the following conditions:

(1) The sequence (a(n))∞n=0 is a non-periodic sequence.
(2) There exist two sequences of finite words, (Um)m≥1 and (Vm)m≥1, such

that,
(A) there exists a real number w > 1 independent of n such that the word

UmVm
w is a prefix of the word (a(n))∞n=0,

(B) limm→∞ |Um|/|Vm| < +∞, and
(C) limm→∞ |Vm| = +∞.

Let (a(n))∞n=0 be a sequence of positive integers. We define the continued
fraction of (a(n))∞n=0 as

[0 : a(0), a(1), . . . , a(n), . . .] := 0 +
1

a(0) +
1

a(1) +
1

· · ·+
1

a(n) +
1

· · ·

. (2.66)

Adamczewski, Bugeaud, Luca [AdBL] and Bugeaud [Bu1] proved the result that
follows by the Schmidt subspace theorem.

Theorem 4 ([AdBL, Bu1]) If β is an integer greater than 1 and (a(n))∞n=0

is a stammering sequence on {0, 1, . . . , β − 1}, then
∑∞

n=0
a(n)
βn+1 is a transcen-

dental number. Moreover, if (a(n))∞n=0 is a stammering sequence on bounded
positive integers, then the continued fraction [0 : a(0), a(1) . . . , a(n) . . .] is also
a transcendental number.

We will prove the next theorem using Theorem 3 and 4.

Theorem 5 Let A∞ = (a(n))∞n=0 be an (L, k, µ)-TM sequence and β be an inte-
ger greater than 1. We assume that (a(n))∞n=0 takes its input from {0, 1, . . . , β−
1}. If there is no integer A such that

µ(s,A+ y) ≡ µ(1, A)sky (mod L) (2.67)
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for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then
∑∞

n=0
a(N+nl)
βn+1 ( for all

N ≥ 0 and for all l > 0 ) is a transcendental number.
Moreover, if we assume that (a(n))∞n=0 takes its input from the positive in-

tegers, and if there is no integer A such that

µ(s,A+ y) ≡ µ(1, A)sky (mod L) (2.68)

for all s with 1 ≤ s ≤ k−1 and for all y ∈ N, then [0 : a(N), a(N+s), . . . , a(N+
nl) . . .] ( for all N ≥ 0 and for all l > 0 ) is a transcendental number.

Proof. Let N and l > 0 be positive integers. By Theorem 3, (a(N + nl))∞n=0

is non-periodic. Therefore, we only have to prove that (L, k, µ)-TM satisfies the
condition (2) of Definition 3.

We choose an integer M such that kM > 2(N + l), and assume that m > M .
As f is a cyclic permutation of order L and by Definition 2, the (Ll + 1)km

prefix word of (a(n))∞n=0 is as follows

A∞ = (a(n))∞n=0 = Amf i1(Am) · · · f iLl(Am) · · · , (2.69)

where Am is the km prefix word of (a(n))∞n=0, ij(1 ≤ j ≤ Ll) ∈ {0, . . . , L− 1}.
By (2.69), we have

f itl(a(n)) = a(n+ kmtl) (2.70)

for all 0 ≤ n ≤ km − 1 and for all 1 ≤ t ≤ L.
As f is a cyclic permutation of order L, by (2.69), (2.70) and the Dirichlet

Schubfachprinzip, we have

(a(N + nl))∞n=0 = W1,mW2,mW3,mW2,m · · · , (2.71)

where Wi,m (i ∈ {1, 2, 3}) are finite words such that

|W1,m| ≤ ((Ll + 1)km −N)/l + 1, (2.72)

|W2,m| ≥ (km −N)/l − 1, (2.73)

|W2,m|+ |W3,m| ≤ ((Ll + 1)km −N)/l + 1. (2.74)

We put Um := W1,m, Vm := W2,mW3,m and w := 1 + 1
2Ll+3 .

By (2.72)-(2.74) and the assumption of m, we obtain

⌈(w − 1)|Vm|⌉ = ⌈ 1
2Ll+3 (|W2,m|+ |W3,m|)⌉ ≤

1
2Ll+3 ((Ll + 1)km −N + l)/l ≤ km

2l < |W2,m|. (2.75)

From (2.75), (a(n))∞n=0 satisfies Condition (A).
Furthermore,

|Um|/|Vm| = |W1,m|/|W2,mW3,m| ≤
((Ll + 1)km −N + l)/l × l/(km −N − l) ≤ 2Ll + 3. (2.76)

From (2.76), (a(n))∞n=0 satisfies Condition (B).
It follows directly that (Vm)m≥1 satisfies Condition (C). □
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Corollary 3 Let (a(n))∞n=0 be an (L, k, µ)-TM sequence and β be an integer
greater than 1. If (a(n))∞n=0 takes its input from {0, 1, . . . , β − 1} and there is
no integer A such that

µ(s,A+ y) ≡ µ(1, A)sky (mod L) (2.77)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then the generating function

f(z) :=
∑∞

n=0
a(N+nl)
zn+1 ( for all N ≥ 0 and for all l > 0 ) is transcendental over

C(z).

Proof. We assume f(z) is algebraic over C(z). As f(z) is algebraic over Q(z)
if and only if f(z) is algebraic over C(z) (see the Remark in Theorem 1.2 in
Nishioka [N] ), then f(z) satisfies the equation

cn(z)f
n(z) + cn−1(z)f

n−1(z) + · · ·+ c0(z) = 0, (2.78)

where ci(z) ∈ Q[z] (0 ≤ i ≤ n), cn(z)c0(z) ̸= 0 and ci(z) (0 ≤ i ≤ n) are
coprime. From Theorem 5, f( 1β ) is a transcendental number. From the above

argument and by (2.78), ci(
1
β ) = 0 ( for all 0 ≤ i ≤ n). This contradicts the

assumption that ci(z) (0 ≤ i ≤ n) are coprime. □

2.5 k-Automatic generalized Thue-Morse sequences
and some results

First, we introduce some definitions.

Definition 4 ([Bu2]) Let α be an irrational real number. The irrationality
exponent µ(α) of α is the supremum of the real numbers µ such that the in-
equality ∣∣∣∣α− p

q

∣∣∣∣ < 1

qµ
(2.79)

has infinitely many solutions in non-zero integers p and q.

Definition 5 ([AlS1], [N]) The k-kernel of (a(n))∞n=0 is the set of all subse-
quences of the form (a(ken+ j))∞n=0, where e ≥ 0 and 0 ≤ j ≤ ke − 1.

Definition 6 ([AlS1]) The sequence(a(n))∞n=0 is called a k-automatic sequence
if the k-kernel of (a(n))∞n=0 is the finite set.

Definition 7 ([Bec]) The power series
∑∞

n=0 a(n)z
n ∈ C[[x]] is called a k-

automatic power series if (a(n))∞n=0 is a k-automatic sequence.
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Definition 8 An (L, k, µ)-TM sequence is called y-periodic if there exist non-
negative integers N and t(0 < t) such that

µ(s, y) = µ(s, y + t), (2.80)

for all s with 1 ≤ s ≤ k − 1 and for all y ≥ N .

Now we introduce two results.

Theorem 6 ([AdC]) If β is an integer greater than 1 and (a(n))∞n=0 is a non-

periodic k-automatic sequence on {0, 1, . . . , β−1}, then µ(
∑∞

n=0
a(n)
βn+1 ) is finite.

Theorem 7 ([Bec]) If f(z) ∈ Q[[z]] \Q(z) is a k-automatic power series and
0 < R < 1, then f(α) is transcendental for all but finitely many algebraic
numbers α with |α| ≤ R.

Now we consider the necessary-sufficient condition that an (L, k, µ)-TM se-
quence is a k-automatic sequence.

Proposition 3 An (L, k, µ)-TM sequence is y-periodic if and only if it is a
k-automatic sequence.

Proof. We assume, without loss of generality, that A∞ = (a(n))∞n=0 is an

(L, k, µ)-TM sequence with aj = exp 2π
√
−1j

L (for all 0 ≤ j ≤ L− 1 ).
Let us assume that (a(n))∞n=0 is a k-automatic sequence. As the k-kernel of

(a(n))∞n=0 is a finite set, there exist integers e for 0 < t such that

a(ken) = a(ke+tn) (∀n ≥ 0). (2.81)

Let s be any integer in {1, 2, . . . , k − 1}, and let y be any integer in N. By
Lemma 3 with (2.39) and (2.81), and substituting sky for n, we have

exp
2π

√
−1µ(s, e+ y)

L
= a(kesky) = a(ke+tsky) = exp

2π
√
−1µ(s, e+ y + t)

L
.

(2.82)

By the definition of the (L, k, µ)-TM sequence and (2.82), (a(n))∞n=0 is y-periodic.
Now we show the converse. If an (L, k, µ)-TM sequence A∞ = (a(n))∞n=0 is

y-periodic, then there exist non-negative integers e for 0 < t such that

µ(s, e+ y) = µ(s, e+ y + t), (2.83)

for all y being any integer in N and for all s with 1 ≤ s ≤ k − 1. Let l be any
integer greater than t− 1 and let (a(ke+ln + j))∞n=0 (where 0 ≤ j ≤ ke+l − 1 )
be any sequence in the k-kernel of (a(n))∞n=0.

Therefore, from Lemma 3 with (2.39), we get

a(ke+ln+ j) = a(ke+ln)a(j). (2.84)
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As (a(n))∞n=0 takes on only finitely many values, then a(j) also takes on only
finitely many values.

Let the k-adic expansion of n be

n =

N(n)∑
q=1

sn,qk
w(j) where 1 ≤ sn,q ≤ k − 1, w(q + 1) > w(q) ≥ 0. (2.85)

Let l(t) ≡ l (mod t), where 0 ≤ l(t) ≤ t− 1. By Lemma 3 with (2.39), we have

a(ke+ln) = a(

N(n)∑
q=1

sqk
w(q)+e+l) =

N(n)∏
q=1

a(sqk
w(q)+e+l). (2.86)

From (2.85), (2.86), and Lemma 3 with (2.39), we get

a(ke+ln) =

N(n)∏
q=1

a(sqk
w(q)+e+l) =

N(n)∏
q=1

a(sqk
w(q)+e+l(t))

= a(

N(n)∑
q=1

sqk
w(q)+e+l(t)) = a(ke+l(t)n). (2.87)

As a(j) takes on only finitely many values, and by (2.84) and (2.87), it follows
that the k-kernel of (a(n))∞n=0 is a finite set. □

Theorem 8 Let (a(n))∞n=0 be an (L, k, µ)-TM and β be an integer greater than
1. If (a(n))∞n=0 takes on the values {0, 1, . . . , β − 1}, is y-periodic and there is
no integer A such that

µ(s,A+ y) ≡ µ(1, A)sky (mod L) (2.88)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then µ(
∑∞

n=0
a(N+nl)
βn+1 ) ( for all

N ≥ 0 and for all l > 0 ) is finite.

Proof. By the previous proposition, (a(n))∞n=0 is a k-automatic sequence. As
the arithmetical subsequence of a k-automatic sequence is k-automatic, see The-
orem 2.3 and Theorem 2.6 in Allouche and Shallit [AlS1], and by Theorems 5

and 6, µ(
∑∞

n=0
a(N+nl)
βn+1 ) is finite. □

Theorem 9 Let (a(n))∞n=0 be an (L, k, µ)-TM, β be an integer greater than 1,

f(z) :=
∑∞

n=0
a(N+nl)
zn+1 ( for all N ≥ 0 and for all l > 0 ), and 0 < R < 1.

If (a(n))∞n=0 takes on the values {0, 1, . . . , β − 1}, is y-periodic and there is no
integer A such that

µ(s,A+ y) ≡ µ(1, A)sky (mod L) (2.89)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then f(α) is a transcendental
number for all but finitely many algebraic numbers α with |α| ≤ R.
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Proof. By Corollary 3, f(z) is transcendental over Q(z). From Proposition 3,
(a(N + nl))∞n=0 ( for all N ≥ 0 and for all l > 0 ) is a k-automatic sequence.
Therefore, f(z) is a k-automatic power series. Theorem 7 implies that f(α) is
transcendental for all but finitely many algebraic numbers α with |α| ≤ R. □
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Chapter 3

A generalization of the
Erdös-Surányi problem

3.1 Introduction

Erdös-Surányi [ErS] and Prielipp [Bl] suggested to study the following prob-
lem: For any integers k > 0 and n, are there an integer N and a map ϵ :
{1, . . . , N} → {−1, 1} such that

n =
N∑
j=1

ϵ(j)jk ? (3.1)

Mitek [Mi], Kaja[K] and Bleicher [Bl] independently solved this problem affir-
matively. Later many people investigated analogies and generalizations of this
problem (see [AnT, BaW, ChC1]). Some researchers replaced the function ϵ by
another function ([BoC, ChC1]).

We study the case that the values of ϵ are L-th roots of unity, where L is
a positive integer. Since, by [Bl] and [Mi], we already know that the answer is
positive if L is even, we restrict our attention to odd L. Let U be the set of
L-th roots of unity. Then we consider the following problem (cf. [BoC]). For
any integers k > 0 and n, are there an integer N and a map ϵ : {1, . . . , N} → U
such that

n =

N∑
j=1

ϵ(j)jk ? (3.2)

We prove the following result.

Theorem 10 Let L be a positive odd integer with L ≥ 2 which is not a prime
power and let U be the set of L-th roots of unity.
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Then for any integers k > 0 and n, there are an integer N and a map ϵ :
{1, . . . , N} → U such that

n =
N∑
j=1

ϵ(j)jk. (3.3)

The following result shows that the statement of Theorem 10 is valid if L is an
odd prime power pm and k is a multiple of p− 1.

Theorem 11 Let p be an odd prime number, m be a positive integer and let U
be the set of pm-th roots of unity. Then for any integers k > 0 with p − 1 | k
and n, there are an integer N and a map ϵ : {1, . . . , N} → U such that

n =
N∑
j=1

ϵ(j)jk. (3.4)

Moreover, the following result shows that the statement of Theorem 10 is not
valid if L is an odd prime power pm and k is not a multiple of p− 1.

Theorem 12 Let p be an odd prime number, m be a positive integer and let U
be the set of pm-th roots of unity. Then for any integer k > 0 with p − 1 ∤ k,
there are infinitely many integers n such that n cannot be represented as

n =
N∑
j=1

ϵ(j)jk, (3.5)

where N is a positive integer and ϵ : {1, . . . , N} → U .

Remark 1 Theorem 12 contradicts Theorem 5.3 in [BoC]. The proof of Propo-
sition 4.2 of [BoC] contains a serious error. Let µK , R, εDm[f ](l) and εDm[f ](l)
be defined as in [BoC]. Since µK need not contain −1, it may be that εDm[f ](l)
and εDm[f ](l) are not contained in R.

This part is organized as follows. In Section 3.2, we discover the key identity
generated by (L,L(L− 1), µ)-TM sequence. In Section 3.3, we give the proof of
Theorem 10. In Section 3.4, we give the proof of Theorem 11. In Section 3.5,
we give the proof of Theorem 12.

3.2 The identity generated by (L,L(L−1), µ)-TM
sequence

In this section we generalize Lemma 3 in [Bl] as follows:
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Lemma 5 Let L ≥ 2 be an integer and let U be the set of L-th roots of unity.
Let x be a real variable. Then for any integer k > 0 there exist an integer M , a
map ϵ : {0, . . . ,M − 1} → U and a non-zero integer P such that

M−1∑
j=0

ϵ(j)(x+ j)k = P. (3.6)

Moreover for P , M as above and any integer m, there exist a multiple N of M
and a map ϵm : {0, . . . ,M − 1} → U such that

N−1∑
j=0

ϵm(j)(x+ j)k = mP. (3.7)

Proof. We show the first statement of this lemma by induction on k. Set

ζL := exp 2π
√
−1

L . First, we check the case of k = 1. From
∑L−1

j=0 ζjL = 0, we
have that

L−1∑
j=0

ζjL(x+ j) = C1, (3.8)

x+
L−t∑
j=1

ζj+t−1
L (x+ j) +

L−1∑
j=L−t+1

ζj+t
L (x+ j) = Ct,

where C1 and Ct (2 ≤ t ≤ L−1) are complex numbers. By (3.8) and
∑L−1

j=1 ζjL =
−1, we get

L−1∑
t=1

Ct = − (L− 1)L

2
. (3.9)

By substituting x+ (t− 1)L for x in (3.8) and (3.9), we obtain

L−1∑
j=0

ζjL(x+ j) +

L−1∑
t=2

x+ (t− 1)L+

L−t∑
j=1

ζj+t−1
L (x+ (t− 1)L+ j) (3.10)

+
L−1∑

j=L−t+1

ζj+t
L (x+ (t− 1)L+ j)

 = − (L− 1)L

2
.

Thus, the case of k = 1 is true.
By the induction hypothesis, we may assume that

M ′−1∑
j=0

ϵ(j)(x+ j)k−1 = P ′, (3.11)
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where M ′ is an integer, P ′ is a non-zero integer and ϵ : {0, . . . ,M ′ − 1} → U .
By integrating both sides of (3.11) in x and substituting x+ tM ′ for x in (3.11),
we obtain

1

k
{
M ′−1∑
j=0

ϵ(j)(x+ tM ′ + j)k} = P ′(x+ tM ′) + C0, (3.12)

where C0 is an integration constant and 0 ≤ t ≤ L− 1.
From

∑L−1
j=0 ζjL = 0, we get that for any integer 1 ≤ t ≤ L− 1 and for any C

L−1∑
j=0

ζjLk{P
′(x+ jM) + C} = D1, (3.13)

k(P ′x+ C) +

L−t∑
j=1

ζj+t−1
L k {P ′(x+ jM ′) + C}+

L−1∑
j=L−t+1

ζj+t
L k {P ′(x+ jM ′) + C} = Dt,

where D1 and Dt (2 ≤ t ≤ L− 1) are complex numbers.

By (3.13) and
∑L−1

j=1 ζjL = −1, we get

L−1∑
t=1

Dt = −kP ′M ′ (L− 1)L

2
. (3.14)

By (3.13) and (3.14), we obtain

L−1∑
j=0

ζjLk{P
′(x+ jM) + C}+

L−1∑
t=2

kP ′(x+ (t− 1)LM ′) +
L−t∑
j=1

ζj+t−1
L kP ′(x+ (t− 1)LM ′ + jM ′)

(3.15)

+
L−1∑

j=L−t+1

ζj+t
L kP ′(x+ (t− 1)LM ′ + jM ′)

 = −kP ′M ′ (L− 1)L

2
.

From (3.13)-(3.15), the proof of the first statement is completed.
Finally we prove the second statement of this lemma. By the first statement,

for any integer k > 0 there exist an integer M , a map ϵ : {0, . . . ,M − 1} → U
and a non-zero integer P such that for every x

M−1∑
j=0

ϵ(j)(x+ j)k = P. (3.16)

By
∑L−1

j=1 ζjL = −1 and substituting x+ (t− 1)M for x in (3.16), we have

L−1∑
t=1

ζtL

M−1∑
j=0

ϵ(j){x+ (t− 1)M + j}k = −P. (3.17)
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Put N = mM if m ≥ 0 and N = −mM if m < 0. By substituting x+ sM for
x in (3.16) if m ≥ 0 and in (3.17) if m < 0, where 0 ≤ s ≤ |m| − 1 and adding
the results, there exists a map ϵm{0, . . . ,M − 1} → U such that

N−1∑
j=0

ϵm(j)(x+ j)k = mP. (3.18)

This proves the second statement of Lemma 5.

Remark 2 Letting k tend to infinity, we can define the sequence (ϵ(j))
∞
j=1. The

sequence (ϵ(j))
∞
j=1 can be regarded as the (L,L(L− 1), µ)-TM sequence where

some µ.

3.3 The case that L is an odd composite number

In this section we deal with the case where L is an odd composite number.
Now we prove Theorem 10. By the second statement of Lemma 5, we only have
to prove that, for each l with 0 ≤ l ≤ P −1, there exist an integer N and a map
ϵ : {1, . . . , N} → U such that

l ≡
N∑
j=1

ϵ(j)jk (mod P ). (3.19)

First we prove that for any positive integer c and each prime factor q of L, there
exist a multiple Nc,q of P and a map ϵ : {1, . . . , N} → U such that

q ≡
Nc,q∑
j=1

ϵ(j)(Pc+ j)
k

(mod P ). (3.20)

Set ζq := exp 2π
√
−1

q . (Note ζtq ∈ U for any integer t.) From
∑q−1

j=0 ζ
j
q = 0, we

have

q−1∑
t=0

(
(tP + Pc+ 1)

k
+

P∑
j=2

ζtq(tP + Pc+ j)
k

)
= q +

q−1∑
t=0

ζtqatP (3.21)

where at’s are integers. We put A := max{at|0 ≤ t ≤ q − 1}. By Lemma 5 we
have that, for any t with 0 ≤ t ≤ q − 1 there exist a multiple Mt of M and a
map ϵt : {1, . . . ,Mt} → U such that

Mt−1∑
j=0

ϵt(j)(x+ j)k = (A− at)P. (3.22)
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From (3.21) and (3.22), substituting Pc+ qP + 1 +
∑t−1

s=0 Ms for x, we have

B :=

q−1∑
t=0

(tP + Pc+ 1)
k
+

q−1∑
t=0

P∑
j=2

ζtq(tP + Pc+ j)
k

(3.23)

+

q−1∑
t=0

ζtq

Mt−1∑
j=0

ϵt(j)(Pc+ qP + 1 +

t−1∑
s=0

Ms + j)k ≡ q (mod P ).

Put

K :=

∑q−1
s=0 Ms

M
.

Hence K is an integer. By (3.16) and (3.23), we have

B +

(P−1)K−1∑
t=0

M−1∑
j=0

ϵ(j){Pc+ qP + (K + t)M + 1 + j}k ≡ q (mod P ).

(3.24)

Moreover, we have,

qP + {K + (P − 1)K − 1}M + 1 +M − 1 = P (KM + q). (3.25)

Therefore we have completed the proof of (3.20) with Nc,q = P (KM + q).
Since L is a not prime power, L has two distinct prime factors r and u. Let

x and y be any integers. We choose an integer I such that x + IP > 0 and
y + IP > 0. By using x+ IP times (3.20) for r (Note Nc,r is a multiple of P ),
there exist a multiple N ′ of P , and a map ϵ : {1, . . . , N ′} → U such that

rx ≡ r(x+ IP ) ≡
N ′∑
j=1

ϵ(j)jk (mod P ). (3.26)

Combining (3.26) with using y + IP times (3.20) for u (Note N ′ and Nc,u are
multiples of P ), there exist an integer N ′′ and a map ϵ : {1, . . . , N ′′} → U such
that

rx+ uy ≡ r(x+ IP ) + u(y + IP ) ≡
N ′′∑
j=1

ϵ(j)jk (mod P ). (3.27)

Since r and u are coprime, for any integer 0 ≤ l ≤ P − 1 there exist integers x
and y such that

rx+ uy = l. (3.28)

The proof of Theorem 10 is completed by combining (3.19) with (3.27) and
(3.28).
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3.4 The case that L is an odd prime power pm

and k is a multiple of p− 1

In this section we deal with the case where L is an odd prime power pm and k
is a multiple of p−1. Choose M , ϵ, P as in Lemma 5. By the second statement
of Lemma 5, it suffices to prove that, for all integers x and l with 0 ≤ l ≤ p− 1,
there exist an integer N and a map ϵ : {1, . . . , N} → U such that

px+ l ≡
N∑
j=1

ϵ(j)jk (mod P ). (3.29)

By Fermat’s little theorem and p− 1 | k, we have

l∑
j=1

jk = l + psl (3.30)

for some integers sl. Let x be an integer. By (3.26) , there exist a multiple N ′

of P and a map ϵ : {1, . . . , N ′} → U such that

p(x− sl) ≡
N ′∑
j=1

ϵ(j)(P + j)
k

(mod P ). (3.31)

Set ζp := exp 2π
√
−1

p . (Note ζtp ∈ U for any integer t.) From
∑p−1

j=0 ζ
j
p = 0, (122)

and P | N ′, we have

l∑
j=1

jk +
P∑

j=l+1

jk +

p−1∑
t=0

ζtp

l∑
j=1

{N ′ + (t+ 1)P + j}k (3.32)

+

p−1∑
t=1

ζtp

P∑
j=l+1

(N ′ + tP + j)
k
= psl + l +

p−1∑
t=0

ζtpbtP

where bt’s are integers. We put C := max{bt|0 ≤ t ≤ p− 1}. By Lemma 5, we
have that, for any t with 0 ≤ t ≤ p − 1, there exist an integer Mt and a map
ϵt : {1, . . . ,Mt} → U such that

Mt−1∑
j=0

ϵt(j)(x+ j)k = (C − bt)P. (3.33)
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From (3.30)-(3.32) and (3.33), substituting N ′ + pP + l + 1 +
∑t−1

s=0 Ms for x,
we have

l∑
j=1

jk +

P∑
j=l+1

jk +

N ′∑
j=1

ϵ(j)(P + j)
k

(3.34)

+

p−1∑
t=0

ζtp

l∑
j=1

{N ′ + (t+ 1)P + j}k +

p−1∑
t=1

ζtp

P∑
j=l+1

(N ′ + tP + j)
k

+

p−1∑
t=0

ζtp

Mt−1∑
j=0

ϵt(j)(N
′ + pP + l + 1 +

t−1∑
s=0

Ms + j)k ≡ px+ l (mod P ).

The proof of Theorem 11 is completed by combining (3.29) with (3.34) .

3.5 The case that L is an odd prime power pm

and k is not a multiple of p− 1

In this section we deal with the case where L is an odd prime power pm and
k is not a multiple of p− 1.

Lemma 6 Let p be an odd prime number, m be a positive integer and k be a
positive integer with p − 1 ∤ k. Let U be the set of pm-th roots of unity. Put

Sk(M) :=
∑M

j=1 j
k. Assume an integer n is represented by

n =
N∑
j=1

ϵ(j)jk, (3.35)

where N is an integer and ϵ : {1, . . . , N} → U .
Then

Sk(N) ≡ n (mod p). (3.36)

Proof. Set ζpm := exp 2π
√
−1

pm . We assume that
∑pm−1

j=0 ajζ
j
pm = 0, where

the aj ’s are integers. Since p is a prime number,
∑p−1

j=0 x
jpm−1

is the minimal

polynomial of ζpm . Therefore there exists a polynomial
∑pm−1−1

j=0 cjx
j with

rational coefficients cj such that

pm−1∑
j=0

ajx
j = (

p−1∑
j=0

xjpm−1

)(

pm−1−1∑
j=0

cjx
j). (3.37)

By the uniqueness of p-adic expansion and (3.37), we have

at = at+pm−1 (3.38)
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for every t with 0 ≤ t ≤ pm − 1− pm−1. By (3.35), we have

∑
1≤j≤N, ϵ(j)=1

jk − n+

p−1∑
l=1

∑
1≤j≤N, ϵ(j)=ζlpm−1

pm

ζlp
m−1

jk (3.39)

+

pm−1−1∑
t=1

p−1∑
l=0

∑
1≤j≤N, ϵ(j)=ζt+lpm−1

pm

ζt+lpm−1

pm jk = 0.

By (3.38) and (3.39), we get∑
1≤j≤N, ϵ(j)=ζt+lpm−1

pm

jk =
∑

1≤j≤N, ϵ(j)=ζt
pm

jk (3.40)

for every t and l with 1 ≤ t ≤ pm−1 and 1 ≤ l ≤ p− 1.
Moreover, by (3.38) and (3.39), we get∑

1≤j≤N, ϵ(j)=ζlpm−1

pm

jk =
∑

1≤j≤N, ϵ(j)=1

jk − n (3.41)

for every l with 1 ≤ l ≤ p − 1. We put Qt :=
∑

1≤j≤N, ϵ(j)=ζt
pm

jk where

1 ≤ t ≤ pm−1− 1 and Q0 :=
∑

1≤j≤N, ϵ(j)=1 j
k −n. By the definition of Sk(N),

(3.39)-(3.41) we have

Sk(N) =
∑

1≤j≤N, ϵ(j)=1

jk +

p−1∑
l=1

∑
1≤j≤N, ϵ(j)=ζlpm−1

pm

jk (3.42)

+

pm−1−1∑
t=1

p−1∑
l=0

∑
1≤j≤N, ϵ(j)=ζt+lpm−1

pm

jk

=
∑

1≤j≤N, ϵ(j)=1

jk + (p− 1)Q0 +

pm−1−1∑
t=1

pQt.

From the definition of Q0 and (3.42), we get

Sk(N)− n =

pm−1−1∑
t=0

pQt. (3.43)

The proof of Lemma 6 is completed.

Now we prove Theorem 12 by combining Lemma 6 with the the argument of
the case 1 of Theorem 1.2’s proof in [ChC1].
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By p− 1 ∤ k, we have

p∑
j=1

(cp+ j)k ≡ 0 (mod p) (3.44)

for any integer c. By (3.44), we have

#{0 ≤ l ≤ p− 1 | Sk(N) ≡ l (mod p)} ≤ p− 1. (3.45)

Hence, by (3.45) and Lemma 6, there is at least one residue class modulo p of
numbers n which cannot be represented as (3.5) for any positive integer N and
any map ϵ : {1, . . . , N} → U . This proves Theorem 12.
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