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General Introduction 

 

1.1 What is nanoparticle? 

 

   Nanoparticles are generally defined as particles with a diameter of 1-100 nm [1-3]. Ultrafine 

particles with a diameter of 1-10 nm has received attention in the state-of-the-art technology. As 

shown in Fig. 1.1, the size of a nanoparticle are smaller than a virus but larger than a DNA. 

Considering the atomic radius, the number of atoms constituting a nanoparticle is very small. 

Hence the properties of nanoparticles are different from those of their bulk materials [4,5]. The 

surface area to volume ratio of particles, or the ratio of the number of surface atoms to the total 

number of atoms in a particle, increases if the particle size becomes smaller, which causes high 

reactivity (or high catalytic activity) of nanoparticles. In addition, the electronic energy levels 

become discrete in nanoparticles due to the small number of atoms, which is known as quantum 

confinement or quantum size effect, leading to unique electronic and optical properties observed 

in metal or semiconductor nanoparticles. Magnetic properties of nanoparticles are known to 

change by their size such as superparamagnetism and ferromagnetism. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Size of nanoparticles as compared to a cell, virus, DNA, and atom. 
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1.2 Ferrite nanoparticle 

 

   Ferrite means the oxides containing ferric ion Fe3+, but ferrite is generally known as the 

magnetic oxides with a spinel structure [6]. Its chemical formula is represented as MO·Fe2O3, 

where M is metal such as Mn, Fe, Co, Ni, Cu, Zn, Mg, etc., or their mixture. In the spinel structure, 

there are two crystallographic sites for M; the one is tetrahedrally coordinated with oxygen (A-

site) and the other is octahedrally coordinated with oxygen (B-site). The unit lattice consists of 

eight A-sites and sixteen B-sites. When 8 A-sites are occupied by M2+ and 16 B-sites are occupied 

by Fe3+, the compound is called a normal spinel type and described as (M2+)A[Fe3+Fe3+]BO4. In the 

case that the A-sites are occupied by Fe3+ and the B-sites are occupied by M2+ and Fe3+, the 

compound is called an inverse spinel type and described as (Fe3+)A[M2+Fe3+]BO4
 [6,7]. 

 

 

 1.2.1 Magnetic property 

 

   The mechanism for appearance of magnetism in spinel ferrite nanoparticles is related to 

residual electrons having a spin magnetic moment in 3d orbital (unpaired electrons) in transition 

metal of Sc – Cu. The strength of magnetism, as proposed by Néel, is basically determined by 

two events as follows [6,7]. 

 

(i) The occupation of the tetrahedral A- and octahedral B-sites by transition metal cations (M2+ 

and Fe3+). 

(ii) The orientation of the magnetic moment of cations in A- and B-sites involved with 

interactions between magnetic cations in those sites, namely, A–B, A–A, and B–B 

interactions. 

 

The strength of magnetism (the amount of magnetic moment per unit cell whose lattice 

constant is approximately 8.4 Å) can be estimated using a spin magnetic moment of an electron 

as 1 MB of Bohr magneton, in consideration of antiparallel orientation between the magnetic 

moments of cations in the A-sites and those of cations in the B-sites. For example, the values of 

Fe3O4, MnFe2O4, and NiFe2O4 are calculated to be 32 MB, 40 MB, and 16 MB, respectively, under 
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a condition of inverse spinel structure. These values are approximately consistent with their 

experimental values (32.8 MB, 36.4 MB, and 18.4 MB for Fe3O4, MnFe2O4, and NiFe2O4, 

respectively) [8]. It should be noted that, for CoFe2O4, the experimental value of 31.5 MB [8] is 

exceptionally higher than the value of 24 MB estimated for inverse spinel from Hund’s rule. This 

is derived from the residual orbital magnetic moment of Co2+ ion involved with its electronic 

configuration of d7, which also causes high magnetic anisotropy in CoFe2O4 [9]. For MgFe2O4, 

the value depends on the distribution of Mg2+ ions between A- and B-sites. When all of Mg2+ ions 

occupy the B-site with half of Fe3+ ions to be (Fe3+)A[Mg2+Fe3+]BO4, the magnetization of MgFe2O4 

is calculated to be 0 MB. With an increase in the ratio of Mg2+ occupying A-site, here denoted as 

δ, to a certain extent in the formula of (Mg2+
δFe3+

1-δ)A[Mg2+
1-δFe3+

1+δ]BO4, the magnetization also 

increases. At higher δ, the magnetization passes through a maximum value and decreases to zero. 

This is because the A–B interaction becomes weaker with a decrease in the number of magnetic 

Fe3+ ions being substituted by nonmagnetic Mg2+ ions in A-site, which causes antiparallel 

orientation of adjacent magnetic moments in B-sites by the B–B interaction [6]. 

 

The greatest characteristic of magnetic nanoparticles is the dependence of their magnetic 

properties on their diameter [7,10]. Fig. 1.2 shows the relationship between the coercivity and the 

diameter of nanoparticles. Small regions of uniform magnetization in magnetic materials are 

called magnetic domains. The magnetic-domain structure changes with the change of particle 

diameter. There are two states of magnetic domain structure; single- and multi-domain. Because 

magnetic domains have a critical or minimum size, the particles with a diameter smaller than that 

critical size consist of a single magnetic domain. The magnetization process of single-domain 

particles is the magnetization rotation type. The particles with rather large size have a multi-

domain structure, in which magnetic domains are separated by domain walls. The magnetization 

process of multidomain particles is the domain wall motion type. Hence, magnetization reversal 

by domain wall motion does not occur in a particle with single-domain structure. Although the 

domain wall is easily moved by the applied magnetic field, stronger magnetic field is required to 

occur the magnetization rotation. Therefore, single-domain particles have a high coercivity. In the 

diameter range of single domain, the decrease in coercivity is observed as the particle size 

becomes smaller. This is because the influence of thermal disturbance is enhanced relatively. Then, 

the coercivity becomes zero, in which the orientation of magnetic moment is random. This state 
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is called superparamagnetic. 

 

   Fig. 1.2 also showed the example of the biomedical application of Fe3O4 and -Fe2O3 

nanoparticles. For magnetic resonance imaging (MRI) and drug delivery system (DDS), 

superparamagnetic nanoparticles (with a diameter of <20 nm for Fe3O4 and -Fe2O3) are required 

or better because they are intravenously injected into human body. If ferri- or ferromagnetic 

nanoparticles are intravenously injected, there is a risk of forming a blood clot derived from their 

magnetic aggregation. Hence, many researches of superparamagnetic Fe3O4 and -Fe2O3 

nanoparticles are reported for biomedical application. A word of "SPIONs" as an abbreviation of 

superparamagnetic iron oxide nanoparticles has been widely used in recent years. As a 

consequence, superparamagnetic -Fe2O3 nanoparticles has been clinically used as a MRI contrast 

agent: Feridex® and Resovist®. For hyperthermia, both superparamagnetic and ferromagnetic 

nanoparticles are suitable because magnetic nanoparticles are used as heat generators. Which 

magnetic property is more suitable for application to hyperthermia depends on the condition of 

applied AC magnetic field (the strength of magnetic field and the frequency). On the other hand, 

for cell separation, ferromagnetic nanoparticles are required because its objective is to separate 

cells using magnetic force from the mixture of cells and other materials. 
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Fig. 1.2 The relationship between the coercivity (magnetic property) and the diameter of 

nanoparticles, with corresponding examples in biomedical application of Fe3O4 and -Fe2O3 

nanoparticles. 
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1.2.2 Synthetic method 

 

   The synthesis method of nanoparticles can be divided into two types of technique roughly. 

One is the top-down method, and the other is the bottom-up method. In the top-down method, 

nanoparticles are synthesized by breaking large-sized particles but there is a lower limit of the 

particle size synthesized, while effective in mass production. On the other hand, in the bottom-up 

method, nanoparticles are formed from the nucleation and the nucleus growth. This method can 

produce nanoparticles with a diameter range from a few nm to several tens of nm. Additionally, 

it has an advantage of controlling the size and shape, hence the bottom-up method is preferable 

for the synthesis of nanoparticles generally. Here, two types of popular solution phase synthesis 

for ferrite nanoparticles are introduced below.  

 

Co-precipitation method 

 

   In co-precipitation method, an aqueous solution containing a precipitation reagent is added to 

an aqueous solution of the mixture of metal (II) and (III) salts, then nanoparticles are obtained as 

precipitates. The formation of ferrite nanoparticles is progressed by the following reaction 

generally. 

 

M2+ + 2Fe3+ + 8OH− → MFe2O4 + 4H2O.                                     (1.1) 

 

 

 

 

 

 

 

 

Fig. 1.3 Schematic diagram of co-precipitation method. 
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In this method, the size, shape, and composition of products are dependent on the concentration 

ratio of metal salts prepared first. The advantages of this method are following; (i) simple 

synthetic procedure and (ii) it can be synthesized in the atmosphere, while there is a disadvantage 

that the shape is difficult to control. For example, Fe3O4 nanoparticles were synthesized by the 

addition of an aqueous solution containing ammonia as a base into an aqueous solution of the 

mixture of FeCl2 and FeCl3 [11]. 

 

 

Thermal decomposition 

 

   In thermal decomposition, the organometallic salt is decomposed in the presence of a 

surfactant at a high temperature. The surfactant prevents the aggregation of metals. The organic 

solvent with a high boiling point is used because the decomposition occurs at very high 

temperature. The advantage of this synthetic method is to control the shape of particles easily 

with a uniform particle size, while there is a disadvantage of complex synthetic systems in an 

inert gas atmosphere with a high temperature reaction. For example, highly monodisperse Fe3O4 

nanoparticles were obtained by the thermal decomposition of iron (III) acetylacetonate in phenyl 

ether solvent containing alcohol, oleic acid, and oleylamine at 265°C [12]. 

 

 

 

 

 

 

 

 

 

Fig. 1.4 Schematic diagram of thermal decomposition. 

 

 

   Considering the administration of nanoparticles synthesized into human body, those which 
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synthesized by co-precipitation method is more suitable for biomedical application because of its 

hydrophilic property and effective mass production. There is no concern of involving organic 

solvents. 
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1.2.3 Application to hyperthermia 

 

   Hyperthermia (thermotherapy), in which cancer cells are treated with heat of approximately 

43°C [13-15], has recently received attentions as a fourth line of cancer therapy following surgical 

resection, chemotherapy, and radiation therapy. There are three very important advantages for 

hyperthermia: (1) it can be effectively applied to all types of cancer cells, (2) it is non-invasive, 

and (3) it has very few side effects. For example, the Thermotron RF-8 system (Yamamoto Vinita 

Co., Ltd., Osaka, Japan) has been clinically applied to kill cancer cells using heat derived from 8-

MHz radio frequency (RF) irradiation [16,17]. However, achieving cancer cell-specific death is 

difficult in RF-induced hyperthermia because normal tissue is heated along with the cancerous 

tissue. 

 

Recent investigations have focused on the biomedical applications of magnetic nanoparticles 

such as in drug delivery systems, magnetic resonance imaging, and magnetic hyperthermia [18-

35]. In hyperthermia using magnetic nanoparticles and lower frequency (a few hundred kHz) 

magnetic field, just particles generate heat derived from their magnetic property. Hence, if the 

magnetic nanoparticles were to specifically accumulate within a tumor, cancer cells could be 

exclusively heated under an alternating magnetic field; this process is referred to as magnetic 

hyperthermia [18-20,24-28]. Iron oxides such as Fe3O4 or -Fe2O3 nanoparticles are generally 

used as heat generators as they have the advantages of high biocompatibility and relatively large 

magnetization. 

 

Heating mechanism 

 

   The heating mechanism of magnetic nanoparticles under AC magnetic field is classified two 

types. First, superparamagnetic nanoparticles are well known to produce heat that is dependent 

on the amount of magnetic relaxation, consistent with the Néel and Brown relaxation theory, 

under an AC magnetic field [36-39], as shown in Fig. 1.5. 
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Fig. 1.5 Theoretical estimation of heating rates (total heat dissipated through Néel as well as 

Brownian relaxations) as a function of particle diameter. Surfactant layer thickness = 3.2 nm, 

anisotropy constant = 30 kJ m-3, temperature = 300 K, viscosity = 0.00089 kg m-1 s-1, applied AC 

magnetic field = 40 Oe and frequency = 600 kHz. Reprinted with permission from [39]. Copyright 

@ 2009 Elsevier B. V. 

 

 

In contrast, when the ferromagnetic particles are placed under AC magnetic field, heat is 

generated by hysteresis loss [37,38]. For ferromagnetic nanoparticles, the amount of heat 

(hysteresis loss) is dependent on the hysteresis area in M-H loop of particles, as following a 

formula (1.2) [40]. 

 

   Area = 𝑓 ∫𝑀𝑑𝐻                                                        (1.2) 

 

Where f is frequency, M is magnetization, H is magnetic field applied. 

 

   In the latest researches, S. Ota et al. mentioned that the frequency showing highest heating 

efficacy of Fe3O4 nanoparticles was different for each concentration of particles, which suggested 

the involvement of dipole-dipole interaction in heat generation of nanoparticles [41]. 
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Biocompatibility 

 

   Considering to the application of ferrite nanoparticles to hyperthermia (into human body) 

biocompatibility of particles is one of very significant factors. Hence, there are many reports and 

discussion. Of which, L. Moller et al. have carried out in vitro investigation of the cytotoxicity of 

several kinds of oxides nanoparticles in human lung adenocarcinoma epithelial A549 cells [42]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6 Cytotoxicity in cultured A549 cells after exposure to 20 μg/cm2 (40 μg/mL) and 40 

μg/cm2 (80 μg/mL) nanoparticles for 18 h, measured as percent nonviable cells by trypan blue 

staining. The asterisks (*, **, ***) indicate significantly higher levels compared to controls and 

correspond to p < 0.05, 0.01, 0.001, respectively. Reprinted with permission from [42]. Copyright 

2008 American Chemical Society. 

 

 

As shown in Fig.1.6, CuO and ZnO showed high level of cytotoxicity for A549 cells although, 

iron oxide nanoparticles showed much lower cytotoxicity, especially for Fe3O4 nanoparticles. 

Furthermore, the authors have also investigated the degree of DNA damage induced by the 

addition of nanoparticles, as evaluated by comet assay. As a result, TiO2 showed the high level of 



 

12 

 

Chapter 1 

DNA damage but no cytotoxicity. On the other hand, Fe3O4 did not showed not only cytotoxicity 

but also induction of DNA damage in their condition, which is suggestive of high biocompatibility 

of Fe3O4 nanoparticles [42]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7 Hematology and blood chemistry of mice following injection of iron oxide nanoparticles, 

prepared by thermal decomposition with sizes of ~5,~15, or ~30 nm and coated with PEG-

phospholipid, or commercially obtained Feridex (as indicated). Red blood cell number, white 

blood cell number, percentage of neutrophils among white blood cells, hemoglobin concentration, 

hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean 

corpuscular hemoglobin concentration (MCHC) of mice 1, 14, and 30 days after intravenous 

injection with iron oxide nanoparticles (5 mgFe/kg). Statistical analyses were performed with 

Student's t test (*p < 0.05 for the difference between iron oxide nanoparticles and PBS, two-tailed, 

unpaired, n = 4-6, error bars = standard deviation). Reprinted with permission from [43]. 

Copyright 2012 American Chemical Society. 
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   L. Gu et al. has in vivo evaluated the toxicity of iron oxide nanoparticles in blood and organs 

using mice [43]. As shown in Fig. 1.7, iron oxide nanoparticles did not show both toxicity for 

blood cells and damage for blood condition of mice. For organs, iron oxide nanoparticles induced 

no/slight damage in liver and spleen. Therefore, the safety of iron oxide nanoparticles was 

demonstrated in vivo. 

 

In vivo investigation of magnetic hyperthermia 

 

   Here, an instance of in vivo investigation of magnetic hyperthermia is introduced as shown in 

Fig. 1.8. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.8 Anti-cancer immune response induced by hyperthermia using magnetite nanoparticles. 

Rats with tumors on each side of the body were prepared. Particles were injected into the left 

tumor only and the rats were irradiated with an alternating magnetic field. The temperature of the 

left tumor, containing particles (closed circles), increased specifically, whereas the temperature 

of the right tumor (open circles) and rectum (open triangles) remained below 37°C (right panel). 

The tumor-specific hyperthermia treatment induced an anti-tumor immune response and both 

tumors disappeared on the 28th day after hyperthermia treatment. (I) Control rat without 

alternating-magnetic-field irradiation; (II) rat with alternating-magnetic-field irradiation. Open 

triangle in (I) and (II), the side without particles; closed triangle in (I) and (II), the side with 

particles. Adapted with permission from [44]. Copyright @ 2011 John Wiley & Sons, Inc. 
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T. Kobayashi reported that the tumor volume in mice was reduced with showing very high 

reduction rate when the tumor with Fe3O4 nanoparticles modified with cationic liposome were 

exposed to AC magnetic field [44]. Furthermore, the other side of tumor without Fe3O4 

nanoparticles which was not observed temperature increase, has reduced because of activation of 

immune cells after the treatment of hyperthermia (remote effect). Therefore, ferrite nanoparticles 

show promise for magnetic hyperthermia [44]. 
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1.2.4 Previous studies 

 

   T. Osaka and his group have been investigated the synthesis of Fe3O4 nanoparticles and their 

in vitro evaluation for magnetic hyperthermia previously. 

 

   First, they demonstrated the synthesis of Fe3O4 nanoparticles with the size tuned in the range 

of approximately 10 to 40 nm in mean diameter by chemical reaction in an aqueous solution 

containing iron(II) and iron(III) salts at various ratios with 1,6-hexanediamine as a base as shown 

Fig. 1.9 [45].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.9 Dependence of mean diameter of Fe3O4 nanoparticles on the molar percentage of ferrous 

ions in the total amount of iron ions. Reprinted with permission from [45]. Copyright @ 2007 

Elsevier B. V. 

 

 

The size of Fe3O4 nanoparticles was controlled by the preparation molar ratio of Fe2+ to Fe3+. 

When the ratio of Fe2+ to Fe3+ was 1:2, 10-nm Fe3O4 nanoparticles were obtained via the famous 
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reaction (1.3). On the other hand, 40-nm Fe3O4 nanoparticles were obtained at the ratio of 1:0. In 

the mechanism of forming 40-nm Fe3O4 nanoparticles, three different reactions are suggested to 

be progressed as shown (1.4)-(1.6) [45-47]. Here organic amines are considered to serve not only 

as a base but also as a protective reagent. Magnetic properties of Fe3O4 nanoparticles can be 

controlled by the particle diameter [45]. 

 

Fe2+ + 2Fe3+ + 8OH− → Fe3O4 + 4H2O.                                      (1.3) 

Fe2+ + 2OH− → Fe(OH)2.                                                 (1.4) 

   3Fe(OH)2 + 1/2O2 → Fe(OH)2 + 2FeOOH + H2O.                              (1.5) 

   Fe(OH)2 + 2FeOOH → Fe3O4 + 2H2O.                                      (1.6) 

 

Second, they developed the synthetic method of Fe3O4 nanoparticles with positive charge 

using spermine, or N,N'-bis(3-aminopropyl)butane-1,4-diamine, as a base and a protective reagent 

instead of 1,6-hexanediamine [48]. Then, the percentage of breast cancer cells containing 

nanoparticles was compared for Fe3O4 nanoparticles synthesized with spermine or 1,6-

hexanediamine. As a result, higher percentage was observed for Fe3O4 nanoparticles with 

spermine (positive charge) than those with 1,6-hexanediamine (negative charge) as shown in Fig. 

1.10.  

 

 

 

 

 

 

 

 

 

Fig. 1.10 Confocal microscopic images of human breast cancer MCF-7 cells after the incubation 

with two types of magnetite nanoparticles synthesized with spermine (left) and 1,6-

hexanediamine (right). The indicated percentages mean the percentage of cells containing 

nanoparticles. Reprinted with permission from [48]. Copyright @ 2009 Elsevier B. V. 

Spermine 81% 1,6-hexanediamine 23%
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The mechanism of cellular uptake of nanoparticles is generally known to be endocytosis, whose 

process is classified with three steps: (i) accumulation of nanoparticles onto cell surface, (ii) 

invagination cell membrane with nanoparticles, and (iii) enclosing nanoparticles inside cells 

(forming endosome). Since cell surface is negatively charged, the adsorption of positively charged 

nanoparticles onto cell surface is easier than negatively charged nanoparticles in the step (i), 

which induced higher percentage of cells containing nanoparticles and larger uptake amount of 

nanoparticles per a cell [48]. 

 

   Third, considering to biomedical application, Fe3O4 nanoparticles were evaluated for their 

safety by normal cells (mouse embryonic stem: mES cells) from the viewpoint of viability and 

damage of cell function [49]. As shown in Fig. 1.11, the viability of mES cells was approximately 

100% at the dose range of 0 – 1000 g/mL, and the ratio of undifferentiated cells was not altered 

when culturing with Fe3O4 nanoparticles. Therefore, the high safety of Fe3O4 nanoparticles was 

demonstrated using normal cells. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.11 Dose dependent of viability of mES cells.Fe3O4 nanoparticles were added to mES (0, 

125, 250, 500, 750, 1000 g/mL). mES cells were incubated for 24 h and stained by propidium 

iodide, and then viability was determined by flow cytometry (left) and the ratio of undifferentiated 

cells. mES and mES with added Fe3O4 nanoparticles were stained (right). Reprinted with 

permission from [49]. Copyright @ 2012 Elsevier B. V. 
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Fig. 1.12 Living rate of MCF-7 without (-) and with (+) magnetic irradiation at the dose of 700 

g. Reprinted with permission from [50]. Copyright @ 2012 Elsevier B. V. 

 

With human breast cancer MCH-7 cells, they compared the effect of 10-nm 

(superparamagnetic) and 40-nm (ferromagnetic) Fe3O4 nanoparticles on induction of cell death 

under AC magnetic field. Consequently, ferromagnetic Fe3O4 nanoparticles showed higher cell 

mortality than superparamagnetic nanoparticles, as shown in Fig. 1.12 [50]. 
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1.3 My approach of nanoparticles design for magnetic hyperthermia 

 

   There has already been a beneficent clinical report of implant magnetic hyperthermia with 

FePt needles for the treatment of tongue cancer in 1996 [51]. Hence, magnetic hyperthermia is 

expected to become a useful cancer therapy, but there is no beneficent clinical report for the 

treatment of cancer located in human body. For the treatment of tumor with a diameter of 5 mm, 

at least 650 g/cm3 of magnetic nanoparticles is estimated to be needed. However, accumulation 

of nanoparticles into tumors at the concentration of >650 g/cm3 is difficult. Furthermore, 

superparamagnetic nanoparticles such as commercial iron-oxide nanoparticles of Feridex® and 

Resovist® being clinically used as MRI contrast agents are suitable for the administration into 

human body (intravenous injection) although, they has been reported to show too low heating 

efficacy to induce cell death effectively [39,50,52]. Also, they are poorly taken up by cells [53]. 

In this situation, accumulation of nanoparticles to tumors can be achieved by a direct injection 

of nanoparticles into tumors on/under the human skin, and into tumors situated deep in the body 

using a catheter. Moreover, nanoparticles can be obtained the selectivity of cancer cells by 

modification with a cancer-selective material. However, there is room for improvements in the 

design of nanoparticles for enhancing the therapeutic effect. In particular, the control of magnetic 

properties of nanoparticles appropriate to the applied condition of AC magnetic field for an 

increase in the heating efficacy of nanoparticles is a key issue for practical use of magnetic 

hyperthermia. 

   In this background, employing ferromagnetic nanoparticles as a heat generator of magnetic 

hyperthermia is considered in my approach, to overcome the issue. There is little concern of 

forming a blood clot by directly injecting nanoparticles into tumors using a catheter. 

   In this thesis, taking advantages of the results found by T. Osaka and his group as mentioned 

in the section 1.2.4, 10- and 40-nm Fe3O4 nanoparticles were synthesized by co-precipitation 

(hydrolysis) method with an organic amine as a base and a protective reagent. 10- and 40-nm 

Fe3O4 nanoparticles were employed to obtain superpara- and ferromagnetic nanoparticles. As an 

organic amine, spermine was employed with expectation of an enhancement in cellular uptake of 

nanoparticles by their positive charge.  

The applied condition of AC magnetic field is also important for the design for effective 

magnetic hyperthermia. In this thesis, considering to the coercivity of 40-nm Fe3O4 nanoparticles 
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which has been reported to be approximately 100-200 Oe [45,50], the strength of applied 

magnetic field on the induction-heating device was set to 536 Oe. In this case, the effective 

strength of magnetic field is assumed to be around 200-300 Oe. The applied condition of AC 

magnetic field for medical care was defined by the International Commission on Non-Ionizing 

Radiation Protection, which is < 5 × 109 A∙m-1∙s-1 of a product of magnetic field amplitude and 

frequency. Generally, higher frequency induces larger heat generation in magnetic hyperthermia. 

Considering to the effective strength of magnetic field in this thesis (200-300 Oe), the maximum 

frequency in the range of the definition is estimated to be around 300 kHz. Therefore, 325 kHz of 

frequency was employed in this thesis. 

In the design of nanoparticles for effective magnetic hyperthermia, there are two major 

significant points to achieve the objective. 

 

(i) To understand the interactions (influence) between nanoparticles and cells 

(ii) To control magnetic and surface properties of nanoparticles 

 

Based on the point (i), using synthesized 10-nm and 40-nm Fe3O4 nanoparticles (MNPs) with 

positive charge, induction of cell death by MNPs in mesothelioma cells was investigated in 

Chapter 2. Malignant mesothelioma is a tumor situated deep part of human body with little 

effective treatment. Then, taking advantages of the findings of Chapter 2, surface design of MNPs 

and their effect on melanoma tumor in mice was also investigated in Chapter 3. Melanoma was 

employed because the method of making tumor into mice has been established and magnetic 

hyperthermia can be easily applied to tumors located on/under human skin, in principle. 

Based on the point (ii), control of magnetic properties of MFe2O4 (M = Co, Mg) nanoparticles 

for increase in heating efficacy was focused in Chapter 4, as a study leading to the future 

technology. Furthermore, through the investigation of the effect of MFe2O4 nanoparticles 

synthesized on breast cancer cells, the advantages of each ferrite nanoparticles was compared and 

discussed. Breast cancer cells were also employed because magnetic hyperthermia can be easily 

applied to tumors located on/under human skin. 

As an example of applications of ferrite nanoparticles, magnetic cell separation using 40-nm 

ferromagnetic Fe3O4 nanoparticles and microalgae was discussed in Chapter 5. Microalgae were 

employed because effective cell separation is required for practical commercialization of 
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microalgal biomass production. 

   Overall, from the viewpoint of control of magnetic properties, this thesis aimed to contribute 

as a recipe to material engineering approach for the practical use of ferrite nanoparticles to 

magnetic hyperthermia. 
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Chapter 2 

 

Induction of cell death by Fe3O4 nanoparticles in mesothelioma cells 

 

2.1 Introduction 

 

   The objective and motivation of this chapter is to understand the interactions (influence) 

between nanoparticles and cells in detail, using mesothelioma cells. 

 

   With regard to a magnetic design of MNPs, 10-nm superparamagnetic and 40-nm 

ferromagnetic MNPs were employed in this study to compare magnetic properties of MNPs for 

effective induction of cell death. The 40-nm ferromagnetic MNPs were reported to have higher 

heating capacity under AC magnetic field rather than 10-nm MNPs [1]. As for surface design of 

MNPs, spermine which possess positively charged moiety was employed as a base and a 

protective reagent in the synthetic process of MNPs in co-precipitation (hydrolysis) [2], in order 

to enhance MNPs incorporation into cells [3]. 

 

   Malignant pleural or peritoneal mesothelioma is an aggressive tumor that develops after 

asbestos exposure [4-7]. The mechanism of mesothelioma development is still unknown, but it 

has been newly suggested that iron overload in the mesothelial tissue is a key in asbestos 

(chrysotile, crocidolite, and amosite)-induced mesothelial carcinogenesis [8]. There are three 

histological subtypes (epithelioid, sarcomatoid, and biphasic) in mesothelioma from the 

differences of cell morphology and surface proteins [7,9]. Around 60% of total mesothelioma 

patients are categorized as “epithelioid”, 20% are “sarcomatoid” patients, and the others are 

classified as “biphasic” [9]. In mesothelioma diagnosis, according to a report from the National 

Cancer Institute, physical exam and history, chest X-ray, CT scan, and biopsy are generally used 

[10]. 

 

   The World Health Organization (WHO) has reported that 92,253 people mesothelioma deaths 

were recorded in 83 countries for the period of 1994 to 2008 [11]. It should be emphasized here 

that mesothelioma treatment still have a major worldwide problem [5,8,9-15]. Primary treatment 
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of mesothelioma is surgical resection [5,8,9,16], radiation therapy [5,8], and chemotherapy 

[5,8,9,17]. However, survival rates are very low because mesothelioma is usually situated deep in 

the body and is resistant to chemotherapeutic agents. The median overall survival of 

mesothelioma patients with no treatment was 4.1 months (95% confidence interval, 3.4-4.8). But 

even if those were treated, the median overall survival was still low such as 15.1 (12.0-19.0) with 

both radical surgery and systemic chemotherapy, 8.6 (6.6-10.5) with radical surgery but no 

systemic chemotherapy, and 9.3 (8.4-10.2) with systemic chemotherapy but no radical surgery 

[9]. Moreover, surgical removal is invasive and chemotherapy has negative side effects. Although 

multimodal therapy combining two or more treatments, is proposed to improve the survival rate 

and quality of life [3,16-18], the most effective combination is still contested. Therefore, more 

effective treatments for mesothelioma, for prolonging survival or effecting a cure, are strongly 

required. 

 

   To overcome the issue, nanoparticle uptake and cell death induced by the addition of MNPs 

were evaluated in three histological types of human mesothelioma cells, i.e. NCI-H28 

(epithelioid), NCI-H2052 (sarcomatoid), and MSTO-211H (biphasic) cells, and the future 

application of MNPs to mesothelioma treatment is considered in this chapter. This study described 

here represents the first investigation of cellular uptake and cytotoxicity of MNPs in three 

histological cell types, in addition to their cell death induced by MNPs subjected to alternating 

magnetic field. 

 

    

 

 

 

 

 

  



 

28 

 

Chapter 2 

2.2 Experimental 

 

Cell culture 

 

   Human mesothelioma NCI-H28, NCI-H2052, and MSTO-211H cells (American Type Culture 

Collection) were maintained in RPMI-1640 medium (Sigma-Aldrich, St. Louis, MO) containing 

10% fetal bovine serum (FBS; ThermoFisher Scientific, Waltham, MA) and 1% penicillin-

streptomycin (Sigma-Aldrich). Human breast cancer MCF-7 cells were cultured in Eagle’s 

minimum essential medium (EMEM; Sigma-Aldrich) with 10% FBS, 5% L-glutamine 

(Invitrogen, Life Technologies, Grand Island, NY), 1% MEM non-essential amino acid (Gibco, 

Life Technologies), and 1% antibiotic-antimycotic (Gibco). All cells were incubated at 37°C 

under a 5% CO2 atmosphere. Cell condition of MSTO-211H was evaluated by analysis of 

incubation-time dependence of cell productivity and by fluorescence-observation of actin-

staining cells using an F-Actin Visualization Biochem Kit™ (Cytoskeleton, Inc.) according to the 

manufacturer’s protocol. 

 

Synthesis and characterization of magnetite nanoparticles (MNPs) 

 

   MNPs were synthesized by hydrolysis of an aqueous solution containing ferrous chloride 

(FeCl2·4H2O) and ferric chloride (FeCl3·6H2O), using essentially the same procedure as described 

in a literature [2], except for the use of spermine, or N,N'-bis(3-aminopropyl)butane-1,4-diamine, 

as a base instead of 1,6-hexanediamine. Iron salts and spermine were purchased from Kanto 

Chemical Co. Ltd. (Tokyo, Japan) and Sigma-Aldrich Japan, respectively. 50 mL of an aqueous 

solution containing ferrous chloride and ferric chloride at a molar ratio of 2:1 (for 10-nm MNPs) 

or 1:0 (for 40-nm MNPs), the total amount of which was 0.05 mol dm-3, was mixed with 50 mL 

of an aqueous solution containing 0.125 mol dm-3 of spermine, and the mixture was stirred at 

room temperature. After stirring for 24 h (for 10-nm MNPs) or 4 h (for 40-nm MNPs), the black 

precipitate was separated using a permanent magnet and washed several times with ultrapure 

water and ethanol. The final products were obtained, in the form of a black powder, after drying 

in a desiccator at room temperature. The shape and size of the products were observed by 

transmission electron microscopy (TEM) with a JEOL JEM-1011 microscope (Tokyo, Japan) or 
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a Hitachi H-7650 microscope (Tokyo, Japan) operated at an acceleration voltage of 100 kV. The 

mean diameter of products were calculated using a following equation after counting and 

measuring diameters (Dn) of one hundred nanoparticles in TEM images.  

 

Mean diameter =
(𝐷1+𝐷2+𝐷3+⋯+𝐷100)

100
                                         (1) 

 

The crystal structure of the products was characterized by X-ray diffraction (XRD) patterns 

recorded using a RINT ULTIMA III diffractometer (Rigaku, Tokyo, Japan) with Cu K radiation 

(1.5418 Å). The zeta potential and hydrodynamic diameter of the specimens dispersed in water at 

around pH 7 were evaluated using an Otsuka Electronics ELS-8000 light-scattering photometer 

(Osaka, Japan). 

 

Evaluation of cytotoxicity and cellular uptake 

 

   NCI-H28, NCI-H2052, MSTO-211H, and MCF-7 cells were cultured in 6-well plates at a 

density of 5 × 105 cells per 3 mL of medium in each well, and then incubated without or with 10-

nm MNPs at 200, 400, 600, and 800 g per well. After incubation for 24 h, the cells were washed 

with Dulbecco’s phosphate buffered saline (DPBS; Gibco) to remove excess MNPs. The 

morphology of MSTO-211H and MCF-7 cells was observed using a Nikon TE2000-U microscope 

(Tokyo, Japan). Cell pellets were obtained by centrifugation at 1200 rpm for 5 min, and suspended 

in 1 mL of DPBS supplemented with 6% FBS, followed by staining with 2 L of 42 μM thiazole 

orange (TO) in dimethyl sulfoxide and 1 L of 4.3 mM propidium iodide (PI) in water. TO and 

PI were purchased from BD Biosciences, Becton, Dickinson and Co. (Franklin Lakes, NJ) as part 

of the BD Cell Viability Kit. Immediately following this treatment, the cells were analyzed with 

a BD FACSCanto II flow cytometer. PI stains dead cells only, whereas TO stains both living and 

dead cells. Dead cells were recognized by their PI-positive response and cells were distinguished 

from MNPs by TO positive staining. Cellular uptake of MNPs was measured using side scatter 

(SSC) section. The ratio of cells containing MNPs to the total number of cells was determined in 

the following way. In a flow cytometer, light scattering occurs when a cell deflects incident laser 

light. The scattered light is collected as forward scatter (FSC) and SSC. The SSC depends on the 

inner complexity of the cell because SSC measures refracted and reflected light at a side angle to 
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the laser path. Therefore, high values along the SSC axis would indicate that the cells contained 

MNPs. To discuss the cellular uptake of MNPs, TEM observation of NCI-H28, NCI-H2052, and 

MSTO-211H incubated with 800 g of MNPs was performed at the Hanaichi UltraStructure 

Research Institute Co., Ltd. (Aichi, Japan) with a JEOL JEM1200EX at an acceleration voltage 

of 80 kV. To prepare specimens for TEM observation, cells were washed with 0.1 M phosphate 

buffer, fixed with 2% osmium tetroxide, dehydrated with 50–100% ethanol, embedded in 

EPON812, and finally sectioned using an ultramicrotome. The amount of MNPs incorporated into 

a NCI-H28, NCI-H2052, or MSTO-211H cell was evaluated using a literature-described 

procedure [16,19]. HCl, trichloroacetic acid solution, H2O2, and potassium thiocyanate solution 

were used to dissolve cells with MNPs, to precipitate the cellular proteins, to oxidize Fe2+ into 

Fe3+, and to form a thiocyanate-iron(III) complex; finally, the absorbance at 480 nm was measured 

using a JASCO V-550 spectrophotometer (JASCO International Co. Ltd., Tokyo, Japan). 

 

Detection of DNA fragmentation in apoptotic cells 

 

   MSTO-211H cells were cultured at a density of 5 × 105 per well in the presence of 800 g of 

10-nm MNPs as described above. After 24-h incubation, a DNA fragmentation assay was 

performed using a Quick Apoptotic DNA Ladder Detection Kit (Invitrogen) according to the 

manufacturer’s protocol. After extraction of chromosomal DNA, DNA fragmentation was 

analyzed by agarose gel electrophoresis. The DNA fragments were viewed under UV light and 

photographed. 

 

Microarray analysis 

 

   NCI-H28, NCI-H2052, and MSTO-211H cells were cultured for 24 h at the density of 5 × 105 

per well in the presence of 800 g MNPs as described above. Total RNA isolation and gene 

expression microarrays were performed at Cell Innovator Inc. The total RNA was isolated from 

cerebellums of each individual animal using TRIzol Reagent (Invitrogen) and purified using SV 

Total RNA Isolation System (Promega) according to the manufacturer’s instructions. Gene 

expression microarray was performed using Agilent SurePrint G3 Human Gene Expression 

Microarray 8 × 60K v2. The cRNA was amplified and labeled using Agilent Low Input Quick 
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Amp Labeling Kit, and hybridized to a 60K Agilent 60-mer oligomicroarray according to the 

manufacturer’s instructions. All hybridized microarray slides were scanned by an Agilent scanner. 

Relative hybridization intensities and background hybridization values were calculated using 

Agilent Feature Extraction Software (9.5.1.1). Microarray data of samples were normalized by 

quantile algorithm. 

 

Evaluation of cell death with MNPs subjected to alternating magnetic field. 

 

   MNPs with a diameter of 40 nm, such as ferromagnetic MNPs, were employed here.  

Prior to the experiments using MNPs and cells, heating capacity of MNPs was investigated. 

To evaluate the heating capacity of MNPs, a sample which contains 1.0 mg of MNPs dispersed 

in 500 μL of water or fixed in 500 μL of 1% agarose gel was subjected to AC magnetic field 

induced using a device of EASYHEAT (Alonics, Ltd., Tokyo, Japan) including a 3-turn coil with 

an outside diameter of 40 mm, at a frequency of 325 kHz with a current of 569.1 A for 20 min. 

By making use of above values for estimation of the strength of magnetic field, that is calculated 

to be 536 Oe. During exposure, the temperature of sample was recorded every a second with an 

Anritsu FL-2000 fiber thermometer (Tokyo, Japan), and cooling water was circulated in the coil 

using a DC inverter chiller RKE1500B1-V (Nagano, Japan) to prevent the influence of the heat 

from coil to the temperature of a sample. Specific adsorption rates (SARs) were determined from 

the slope between 0 and 100 s in the recorded temperature curves using parameters of specific 

heat capacity (Cpi) and mass for each substance (mi) or MNPs (mMNPs), by a following equation. 

 

SAR =
∑ 𝐶𝑝𝑖𝑚𝑖𝑖

𝑚𝑀𝑁𝑃𝑠
∙
∆𝑇

∆𝑡
                                                     (2) 

 

A magnetization curve at the magnetic field of -10000 to 10000 Oe at 300 K was measured 

using a BHV-35 vibrating sample magnetometer (VSM; Riken Denshi Co. Ltd., Tokyo, Japan). 

 

   In this section, 5 × 105 or 1 × 105 of NCI-H28 and MSTO-211H cells or NCI-H2052 cells, 

which were cultured to adhere for 24 h in advance, were incubated for further 24 h with MNPs at 

concentrations of 0, 133, 267 μg/mL, respectively. Cell numbers cultured with MNPs were 

determined considering cell condition such as viability and density of cells after 48-h cultivation. 
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   The MNPs-containing 5 × 105 cells collected by magnetic separation were dispersed in 500 

μL of medium and then subjected to 20 min of AC magnetic field (325 kHz, 500 Oe) with 

measuring the sample temperature every a second. Cell mortality immediately after exposure to 

AC magnetic field was evaluated by cell counting with trypan blue (TB; Gibco) staining. Prior to 

the exposure also, cell mortality of samples was evaluated. Live cells are TB negative, whereas 

dead cells are TB positive, hence cell mortality was calculated by a following formula. 

 

   Cell mortality (%) =
𝐶𝑜𝑢𝑛𝑡𝑠 𝑜𝑓 𝑇𝐵 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠

𝐶𝑜𝑢𝑛𝑡𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠
× 100                          (3) 

 

The percentage of non-viable cells, which was evaluated by cell counting after the 20 min of 

exposure to AC magnetic field, was compared with that evaluated after 20-min heating using a 

THERMAL ROBO TR-1A thermostatic water bath (AS ONE Corporation, Osaka, Japan). 

Temperatures in thermostatic bath were set on the average temperatures between 800 and 1200 s 

obtained from the temperature curves of samples exposed to AC magnetic field. 

Time course of cell mortality after the exposure of cells containing MNPs to AC magnetic 

field was also investigated. After exposure, the cells were incubated for further 24 h at 37°C under 

a 5% CO2 atmosphere. Same experiment was performed on the cells containing MNPs without 

exposure to AC magnetic field. Cell morphology after the 24-h incubation was observed using a 

Nikon TE2000-U microscope (Tokyo, Japan). The mode of cell death was evaluated by flow 

cytometric analysis using a PE Annexin V Apoptosis Detection Kit I (BD Pharmingen)  

according to the manufacturer’s protocol. 
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2.3 Characterization of Fe3O4 nanoparticles 

 

   Fig 2.1 shows TEM images, histograms of particle size distribution, and XRD patterns of the 

MNPs employed in this study. TEM observation showed that particle shape and size were 

consistent with a previous report [16-19]. One hundred nanoparticles were counted to determine 

their size distribution; the mean particle diameters were 10.3 ± 1.7 and 42.7 ± 8.9 nm, shown in 

Fig. 2.1B and D, respectively. The XRD patterns of the samples (Fig. 2.1E) matched the standard 

pattern of Fe3O4 (JCPDS# 19-629) and the d value of the lattice spacing of (311) was calculated 

to be 2.528 and 2.534 Å for (a) and (b), respectively, using the Bragg equation for the peak 

observed at 2θ ~ 36°. The calculated values were concordant with the standard value for Fe3O4 of 

2.532 Å (JCPDS# 19-629), not with the value for γ-Fe2O3 of 2.518 Å (JCPDS# 39-1346), similar 

to a previous report [2]. The zeta potentials of 10-nm and 40-nm MNPs, measured in water at 

around pH 7, were +10.7 and +16.8 mV, respectively, which is attributable to the cationic form of 

the amine groups in spermine adsorbed on the surface of the nanoparticles as a protecting reagent 

[3]. To consider the state dispersed in solution, the size distribution of MNPs in ultrapure water 

was evaluated by the light scattering method. The size distribution of 10-nm and 40-nm MNPs in 

ultrapure water suggests the formation of an aggregation or secondary particle with a 

hydrodynamic diameter of approximately 1 m. The interaction among the protecting agent, 

spermine in the present study, may contribute to form secondary particles in water. Additionally, 

from TG analysis, the contribution of spermine molecules to the weight of samples was evaluated 

as much as 9.6 weight percent for each specimen, which was comparable to the mass fraction (5 

wt%) calculated from the model for monolayer adsorption of spermine on 10-nm MNPs by using 

values of theoretical surface-to-volume ratio, density, and formula weight. 
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Fig. 2.1 Characterization of the MNPs employed in this study. TEM images (A,C) and size 

distribution (B,D) of “10-nm” MNPs (A,B) and “40-nm” MNPs (C,D). XRD patterns with Cu 

K radiation (E) of “10-nm” MNPs (a) and “40-nm” MNPs (b). Reprinted with Permission. 

Copyright 2015 American Chemical Society. 
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2.4 Effect of addition of nanoparticles on cellular uptake and cell death 

 

   First, the morphology of MSTO-211H and MCF-7 cells cultured without and with the addition 

of 10 nm MNPs was observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Cell morphology of MSTO-211H (A, B) and MCF-7 (C, D) cells after incubation for 24 

h without (A, C) and with (B, D) MNPs. In B and D, 200 μg of 10-nm MNPs were administered 

to 5  105 cells. Scale bar: 50 μm. Reprinted with Permission. Copyright 2015 American 

Chemical Society. 

 

 

Fig. 2.2 shows an optical microscopic image of MSTO-211H cells incubated for 24 h without 

MNPs. A mixture of spindle-like cells (mainly in Fig. 2.2A) and polygonal cells (partly in Fig. 

2.2A), which is characteristic of biphasic mesothelioma MSTO-211H cells, was observed. The 

spindle-like cells formed multilayers and were in cell-cell contact. In contrast, after 24 h of 

incubation with 200 μg of MNPs, some of the MSTO-211H cells shrunk to a needle like shape. 

MSTO-211H cells treated with MNPs were confirmed to have lower adhesive capacity than the 
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control cells (Fig. 2.2B). In contrast, no morphological differences were observed between MCF-

7 cells incubated without (Fig. 2.2C) and with 200 μg of MNPs (Fig. 2.2D). At a high dose (800 

μg) of MNPs, more MSTO-211H cells appeared shrunken than at a dose of 200 μg, although the 

large number of MNPs rendered observation difficult. It should be noted that, prior to the addition 

of MNPs, the MSTO-211H cells were in satisfactory condition for experiments, based on the 

results shown in Fig. 2.3. The number of MSTO-211H cells was kept almost constant at the 

incubation time from 0 to 24 h, then increased drastically at the incubation time between 24 and 

48 h (Fig. 2.3A). This cell-growth behavior suggests that these cells were normal and healthy and 

the experiment was carried out at the proper period in the cell cycle. As shown Fig. 2.3B, the actin 

stress fibers existed throughout the cell before the addition of MNPs, suggesting that the cell 

condition is preferable to the experiment. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Characterization of MSTO-211H cells without the addition of MNPs: the incubation time-

dependence of cell productivity (A) and the fluorescent image of rhodamine phalloidin stained 

cells (B). Scale bar 25 μm. 
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MNPs was observed, unlike other cell types in the previous studies [1,2,19], the specific cytotoxic 
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addition of 0, 200, 400, 600, and 800 μg of MNPs to mesothelioma NCI-H28, NCI-H2052, and 

MSTO-211H cells and breast cancer MCF-7 cells (5  105 cells for each treatment). Dose-

dependent cell death was observed in MSTO-211H cells; at a dose of 200 μg, 20% non-viable 

cells were observed, reaching 50% at a dose of 800 μg. In contrast, the percentage of non-viable 

MCF-7 cells remained constant (4%) at doses ranging from 0 to 800 μg. It should be noted here 

that, among the mesothelioma cells, the response of epithelioid NCI-H28 and sarcomatoid NCI-

H2052 cells differed from that of biphasic MSTO-211H cells. The percentage of non-viable NCI-

H28 cells remained almost constant, as low as 10%, at doses ranging from 0 to 800 μg, whereas 

the percentage of non-viable NCI-H2052 cells slightly but gradually increased with the dose, from 

5% at a dose of 200 μg to 15% at doses of 600 μg and 800 μg. As mentioned in detail in next 

chapter, cellular uptake of MNPs induces slight cell damage such as the change of intracellular 

ROS and cell cycle distribution, which caused a little higher cell mortality of NCI-H2052 cells 

than NCI-H28 and MCF-7 cells. The dependence of cell death on the incubation time was also 

investigated in MSTO-211H cells, at a dose of 800 μg MNPs as shown in Fig. 2.5. The percentage 

of non-viable MSTO-211H cells gradually increased with the incubation time, from 5% at 2 h to 

50% at 24 h; the percentage of non-viable control cells, without MNPs, remained below 8% with 

incubation times ranging from 2 h to 24 h.  

   Fig. 2.4B shows the ratio of the number of cells containing MNPs to the total number of cells, 

as evaluated by flow cytometry, under conditions similar to those in Fig. 2.4A. The percentage of 

cells containing MNPs was shown to increase gradually as the MNPs dose increased for both 

MSTO-211H and MCF-7 cells; it reached 70% and 90% for MSTO-211H and MCF-7 cells, 

respectively, at a dose of 800 μg of MNPs. The percentage of NCI-H28 and NCI-H2052 cells 

containing MNPs, in contrast, reached 80% even at a dose as low as 200 μg. 

   As a check of the interaction between MNPs and normal cells, the effect of addition of MNPs 

on human umbilical vein endothelial cells (HUVEC) was also investigated. As a result, although 

the percentage of uptake was 80%, no more than 10% cell mortality wad observed at doses 

ranging from 0 to 800 μg. Therefore, it was suggested the possibility that MNPs are safe to normal 

cells. 
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Fig. 2.4 Dependence of the percentage of non-viable cells (A) and the percentage of cells 

containing MNPs (B) on the amount of 10-nm MNPs added to 5 × 105 NCI-H28 cells (diamonds), 

NCI-H2052 cells (squares), MSTO-211H cells (circles), and MCF-7 cells (triangles). Reprinted 

with Permission. Copyright 2015 American Chemical Society. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Dependence of the percentage of non-viable MSTO-211H cells on the incubation time at 

a dose of 800 μg of MNPs (diamonds) and without MNPs (circles) in 5 × 105 cells. 

 

P
e
rc

e
n

ta
g

e
 o

f 

n
o

n
-v

ia
b

le
 c

e
ll

s
 (

%
) 

Amount of nanoparticles 

added to 5×105 cells (µg) 
P

e
rc

e
n

ta
g

e
 o

f 
c
e
ll

s
 

c
o

n
ta

in
in

g
 n

a
n

o
p

a
rt

ic
le

s
 (

%
) 

Amount of nanoparticles 

added to 5×105 cells (µg) 

0

20

40

60

80

100

0 200 400 600 800 1000

NCI-H28

NCI-H2052

MSTO-211H

MCF-7

0

20

40

60

80

100

0 200 400 600 800 1000

NCI-H28

NCI-H2052

MSTO-211H

MCF-7

A B

P
e
rc

e
n

ta
g

e
 o

f 

n
o

n
-v

ia
b

le
 c

e
ll

s
 (

%
) 

Incubation time (h) 

0

20

40

60

80

100

0 10 20 30

MNPs added

Control



 

39 

 

Chapter 2 

To understand the cellular uptake of MNPs in more detail, the state and amount of MNPs 

incorporated in a single cell for the three types of mesothelioma cells were examined. TEM 

images (Fig. 2.6) revealed that (i) MNPs were incorporated into cells as aggregates and (ii) MNPs 

were not present in the nucleus but were present in the cytoplasmic endoplasmic reticulum in all 

three types (A: epithelioid NCI-H28, B: sarcomatoid NCI-H2052, and C: biphasic MSTO-211H 

cells). The images shown in Fig. 2.6 are representative of multiple TEM images not shown here 

for each cell types. These results are similar to previous observations for human breast cancer 

MCF-7 cells [3]. On the other hand, several differences were observed among the three 

histological types, e.g. in the size of the vesicles (endosomes) containing the MNPs and the 

density of MNPs in these vesicles. Fig. 2.7 shows the dose dependence of the uptake of MNPs by 

mesothelioma cells. In all three mesothelioma cell types, the quantity of MNPs incorporated per 

cell increased linearly with the dose of MNPs; 150 pg and 650 pg of MNPs were incorporated per 

cell at doses of 200 μg and 800 μg, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 TEM images of a NCI-H28 cell (A), a NCI-H2052 cell (B), and a MSTO-211H cell (C) 

containing MNPs. Reprinted with Permission. Copyright 2015 American Chemical Society. 

 

 

   It should be noted that the percentage of cells containing MNPs increased with the MNPs dose 

not only in MSTO-211H but also in MCF-7, NCI-H28, and NCI-H2052 cells (Fig. 2.4), and the 
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amount of MNPs incorporated per cell increased linearly with the dose for all three types of 

mesothelioma cells (Fig. 2.7). Thus, the cytotoxic effect of MNPs appears to be specific to 

biphasic mesothelioma cells. Brunner et al. investigated the in vitro cytotoxicity of oxide 

nanoparticles using MTT and Hoechst assays, and showed that MSTO-211H cells were highly 

sensitive to Fe2O3, while 3T3 cells were not greatly affected [20]. Although they speculated that 

the high sensitivity of MSTO compared to 3T3 cells could be attributed to a higher phagocytotic 

activity of MSTO cells than that of 3T3 cells, the reasons for this cell type-specific response 

remain unclear. This study is the first to find that MNPs show distinct in vitro cytotoxicity in 

MSTO-211H (biphasic) cells, among three histologic mesothelioma subtypes. From Fig. 2.4A and  

B, although the percentage of non-viable cells tended to be lower than that of MNPs-containing 

cells, both percentages gradually increased as the dose increased, suggesting a certain relationship 

between cell death and cellular uptake of MNPs.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Dependence of the amount of MNPs incorporated per cell on the amount of 10-nm MNPs 

added to 5 × 105 NCI-H28 cells (diamonds), NCI-H2052 cells (squares), and MSTO-211H cells 

(circles). Reprinted with Permission. Copyright 2015 American Chemical Society. 
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MSTO-211H cells incubated with MNPs (Lane 3), whereas control MSTO-211H cells without 

addition of MNPs did not show either laddering or smearing (Lane 2). This result provides 

evidence for the occurrence of apoptotic DNA fragmentation in MSTO-211H cells after 

incubation with MNPs. The appearance of DNA ladders is related to the endonuclease activation 

with subsequent cleavage of DNA into nucleosomal fragments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8 DNA fragmentation analyzed by 1.2% agarose gel electrophoresis: the 1-kb DNA ladder 

marker (Lane 1), control MSTO-211H cells without addition of MNPs (Lane 2), and MSTO-211H 

cells after 24 h of incubation with 10-nm MNPs (Lane 3). Reprinted with Permission. Copyright 

2015 American Chemical Society. 

 

 

   To consider why only MSTO-211H cells showed high rates of cell death, differences in gene 

expression between without and with the addition of MNPs in three types of mesothelioma cells 

were examined. As shown in Fig. 2.9, transforming growth factor-beta2 (TGF-β2) was observed 

to overexpress specifically in MSTO-211H cells; 43-fold up-regulation of TGF-β2 was observed 

in MSTO-211H cells treated with MNPs, whereas TGF-β2 expression was unaltered by addition 

of MNPs in NCI-H28 and NCI-H2052 cells. TGF-β2 is reported to have physiological activities 

including induction of apoptosis, involving generation of reactive oxygen species (ROS) [21,22]. 
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Schuster et al. explained that the apoptotic process is accompanied by two phases of generation 

of ROS: a rapid and a delayed phase after TGF- administration, in the reference [21] and Yao et 

al. demonstrated experimentally that TGF-β2-induced apoptosis in human lens epithelial cells is 

preceded by an enhancement in ROS production in the reference [22]. Therefore, the specific cell 

death to MSTO-211H is considered to associate with the ROS generation. Hence detecting ROS 

using a Total ROS Detection Kit (Enabling Discovery in Life Science®) was carried out in this 

study, but failed; valid data to discuss the difference in ROS generation among cell types have not 

been obtained yet unfortunately. It should be noted that the mode of cellular uptake and the 

intracellular location and state of incorporated MNPs, observed by TEM (Fig. 2.6), were similar 

in all three histological types. Therefore, the overexpression of TGF-β2 caused by the addition of 

MNPs is suggested to result in the induction of apoptosis specific to MSTO-211H cells. Although 

the reason for cell-type specific overexpression of TGF-β2 has not been elucidated, it is 

interesting to note that Khan et al. reported that uptake of MNPs affects the TGF-β signaling 

pathway in HeLa cells [23]. There is else a literature that iron oxide nanoparticles induce ROS 

formation, which disrupts the actin cytoskeleton and alters endothelial cell morphology and 

mechanics, as well as induction of cell death [24]. In this study also, the decrease in the amount 

of actin stress fiber and the change of their morphology were observed for MNPs-added cells (Fig. 

2.10), as compared with control cells as shown in Fig. 2.3B. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 

 

Chapter 2 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9 Expression level of TGF-β2 in all three histological types of human mesothelioma cells 

(NCI-H28, NCI-H2052, and MSTO-211H) cultured without and with 10-nm MNPs. The control 

signal intensity was set to “1.” Reprinted with Permission. Copyright 2015 American Chemical 

Society. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10 Rhodamine Phalloidin stained mesothelioma MSTO-211H cells after 24-h incubation 

with MNPs at the dose of 200 μg (A) and 800 μg (B). Scale bar 25 μm. 
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2.5 Exposure of cells containing nanoparticles to alternating magnetic field 

 

   40-nm MNPs were employed here because ferromagnetic MNPs with a diameter of 40 nm 

were shown to be much more effective for inducing cell death of MCF-7 cells, by their heat 

generation under an AC magnetic field (325 kHz, 500 Oe), than superparamagnetic MNPs with a 

diameter of 10 nm in the previous paper [1]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11 Time dependence of the temperature curve of 1 mg MNPs dispersed in 500 μL of water 

under an AC magnetic field (325 kHz, the strength was calculated to be 500 Oe) (A) and a 

magnetization curve of MNPs at the magnetic field of -10000 to 10000 Oe at 300 K (B). 

 

 

   At first, characterization of 40-nm MNPs in terms of heating capacity was investigated. Fig. 

2.11A shows the time dependence of temperature reached under AC magnetic field and the field 

dependence of magnetization at 300 K. Average temperature reached at the exposure time during 

800 – 1200 s and the SAR at the time of 100 s were calculated to be 63°C and 792 W/g for a 

liquid sample. From the magnetization curve as shown in Fig. 2.11B, 40-nm MNPs was observed 

to show ferromagnetic behavior with a magnetization at 10000 Oe of approximately 90 emu/g 

and a coercivity of 200 Oe. The temperature rise of 40-nm MNPs in solid matrix under alternating 

magnetic field was also investigated. In solid condition, physical rotation of nanoparticles is 

restricted, consequently occurs no Brownian relaxation. However, the SAR of solid sample at the 
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time of 100 s, which was calculated to be 1076 W/g, is similar to that of liquid sample. Therefore, 

it is suggested that this MNPs generate heat steadily in a solid such as intracellular environment 

because the heat is produced by hysteresis loss, not Brownian relaxation. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.12 Amount of MNPs incorporated by a NCI-H28 (blue), NCI-H2052 (green), and MSTO-

211H (red) cell at the MNPs concentrations of 133 and 267 μg/mL (A), and the percentage of 

cells containing MNPs at the concentrations of 67, 133, 200, and 267 μg/mL (B). 

 

 

   Fig. 2.12A shows uptake amount of MNPs into a cell. The dependence on MNPs concentration 

was observed in all types of mesothelioma cells, but those values were different among each types. 

At the concentration of 133 or 267 μg/mL, 500 or 900 pg of MNPs was incorporated into a NCI-

H28 and NCI-H2052 cell, whereas 200 or 400 pg was incorporated into a MSTO-211H cell, 

respectively. Referring to the previous paper [3], cellular uptake seems to occur via the adsorption 

of nanoparticles onto cells with attractive forces between positive charge of MNPs (the zeta 

potential was +16.8 mV) and negative charge of cell surface. Fig. 2.12B shows the percentage of 

cells containing MNPs analyzed with flow cytometry. Uptake percentage increased with an 

increase in MNPs concentration for MSTO-211H, it was 40% at 67 μg/mL and reached 70% at 

267 μg/mL. On the other hand, 70% of NCI-H28 and NCI-H2052 cells contained MNPs at the 

concentration of 67 μg/mL. At 267 μg/mL, uptake percentage showed 70% for NCI-H28 and 
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90% for NCI-H2052, respectively. This tendency, which is the dose dependence of uptake 

percentage, corresponded with not only the tendency of uptake amount shown in Fig. 2.12A but 

also the tendency of the percentage of cells containing 10-nm MNPs as shown in Fig. 2.4B. 

 

   Next, the cells containing MNPs were subjected to AC magnetic field whose strength of 

magnetic field was calculated to be 500 Oe at a frequency of 325 kHz for 20 min in all cell types 

of mesothelioma. The average temperature during 800 – 1200 s in the vicinity of the cells 

containing MNPs was shown in Table 2.1. Although the temperatures of cells cultured without 

MNPs maintained 30°C in whole exposure time, the dose dependence of temperature rise was 

observed in all types of mesothelioma cells containing MNPs, suggesting intracellular heating by 

40-nm MNPs. The reached temperature was different among histological types because the 

intracellular amount of MNPs was also different for each cell types as shown in Fig. 2.12A. 

 

 

Table 2.1 Average temperature between 800 and 1200 s in the vicinity of the cells containing 

MNPs under AC magnetic field (325 kHz, 500 Oe) for 20 min.  

 

 

 

 

 

 

 

   To investigate the effect of intracellular heating by MNPs on death of mesothelioma cells, the 

cell mortality induced by heat generated from MNPs was compared with that induced by 

thermostatic bath. In thermostatic water bath, cell death was induced by extracellular heating. Fig. 

2.13 shows the comparison of cell mortality induced by intracellular heating with extracellular 

heating in three types of mesothelioma cells. At the MNPs concentration of 267 μg/mL, the 

percentage of non-viable cells containing MNPs with alternating magnetic field was 

approximately 95% for NCI-H28, 100% for NCI-H2052, and 90% for MSTO-211H, respectively. 

On the other hand, at the same condition except for the use of thermostatic bath instead of 

NCI-H28 NCI-H2052 MSTO-211H

0 31±1 32±1 31±1

133 42±1 46±1 35±1

267 51±1 56±1 40±1

Dose (g/mL)
Average Temperature(ºC)
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alternating magnetic field, cell mortality was lower: approximately 40% for NCI-H28, 50% for 

NCI-H2052, and 30% for MSTO-211H. At 133 μg/mL, the mortality was lower than those for 

267 μg/mL although, higher cell mortality was also observed for intracellular heating than 

extracellular heating in all cell types. There is a literature that “intracellular” is effective because 

the cell membrane works as an excellent thermal barrier and a very poor thermal conductor [25], 

which suggested that the temperature in the cells is higher than the observed temperature 

(temperature of suspension). As mentioned in the section 2.4, cellular uptake of MNPs causes 

slight cell damage such as the change of intracellular ROS and cell cycle distribution. 

Consequently, the cells then become more sensitive to intracellular heat. It should be noted that 

intracellular heating by MNPs internalized into cells was found to induce cell death effectively in 

all cell types of mesothelioma. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.13 The percentage of non-viable NCI-H28 (A), NCI-H2052 (B), and MSTO-211H (C) at 

the MNPs concentrations of 0, 133, and 267 μg/mL. “In thermostatic bath (purple bars)” means 

without AC magnetic field, but those temperatures are set on the average temperature between 

800 and 1200 s shown in Table 2.1 using a water bath. Other bars indicate the data obtained with 

AC magnetic field (325 kHz, 500 Oe). The cell mortalities in all samples were evaluated 

immediately after heating. 
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h time interval of incubation at 37°C was investigated in all histological types of mesothelioma 

cells as shown in Fig. 2.14. Here, Fig. 2.14A, B, and C show the percentage of non-viable cells 

containing MNPs without alternating magnetic field. As observed in Fig. 2.4A, dose-dependent 

cell death was observed in MSTO-211H cells but not in NCI-H28 and NCI-H2052 cells even after 

just magnetic separation in Fig. 2.14A-C. The cell-type-specific cell death should also be related 

to the overexpression of transforming growth factor 2 induced by MNPs as shown in Fig. 2.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14 The percentage of non-viable NCI-H28 (A,D), NCI-H2052 (B,E), and MSTO-211H 

(C,F) at the MNPs concentrations of 0, 133, and 267 μg/mL without (A-C) or with (D-F) an AC 

magnetic field (325 kHz, 500 Oe). The data shown as “I0” and “I24” means the cell mortalities 

measured immediately or after 24 h of incubation at 37°C following just magnetic separation (A-

C) or exposure to alternating magnetic field (D-F). 
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Following further 24-h incubation, 1.5 – 2 times of increase in mortality was observed in NCI-

H28 and MSTO-211H, whereas the mortality of NCI-H2052 cells was increased by 3 – 5 times. 

High sensitivity of mesothelioma cells to incorporated MNPs could induce higher mortality. As 

shown in Fig. 2.4A, the percentage of non-viable cells in the presence of MNPs was compared 

for three types of mesothelioma cells and human breast cancer MCF-7 cells, resulting that the 

percentage of all types of mesothelioma cells was >2 times higher than MCF-7 cells. 

 

   When the cells after subjecting to alternating magnetic field were further incubated at 37°C 

for 24 h, the cell mortalities in all condition except for with no MNPs increased as shown in Fig. 

2.14D, E, and F, it reached approximately 100% in all three histological types of mesothelioma 

cells at the MNP concentration of 267 μg/mL. 

 

   At the time, cell morphology at the different concentrations of MNPs in three types of 

mesothelioma cells was also observed by an optical microscopy as shown in Fig. 2.15. With no 

MNPs, NCI-H28 cells were adhered with elongated spindle shape, NCI-H2052 were adhered with 

cubic-like or polygonal shape, and MSTO-211H cells were adhered with a mixture of those shapes. 

On the other hand, cells with MNPs were not adhered and its rate increased with a dose amount 

in all types of mesothelioma, which corresponded approximately to the percentages of cell death 

(Fig. 2.13D-F). At 267 μg/mL, approximately 100% of cells were floating with a small spherical 

shape. In mesothelioma therapy, it is a very significant issue that surviving cancerous cells or 

tumors resume their proliferation soon after a treatment. However, no standard treatment 

approaches have been proven to improve survival or control symptoms for a prolonged period of 

time [26]. Notably, the results from Figs. 2.14 and 2.15 demonstrated that the treatment of 

exposure of the cells containing MNPs to AC magnetic field has a potential to inhibit the 

secondary cancer-cell proliferation in all three histological subtypes of mesothelioma in vitro, 

which is suggestive of the recurrence prevention in mesothelioma treatment. 
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Fig. 2.15 Microscopic images of NCI-H28 (A,D,G), NCI-H2052 (B,E,H), and MSTO-211H 

(C,F,I) cells with the MNPs concentrations of 0 (A,B,C), 133 (D,E,F), and 267 (G,H,I) μg/mL 

incubated for 24 h under the condition of 37°C and 5% CO2 after exposure to alternating magnetic 

field (325 kHz, 500 Oe). Scale bar: 200 m. 

 

 

   To consider the influence of intracellular heating with incorporated MNPs on cell death in 

mesothelioma, the mode of cell death of NCI-H2052 with MNPs subjected to alternating magnetic 

field was discussed. Fig. 2.16 shows the cell dot plots with PE Annexin V on the x-axis and 7-

AAD on the y-axis, as evaluated by flow cytometry. In the plot, viable cells are PE Annexin V 

and 7-AAD negative (lower left quadrant, Q3), cells that are in early apoptosis are PE Annexin V 

positive and 7-AAD negative (lower right quadrant, Q4), and cells are in late apoptosis or are 

already dead are PE Annexin V and 7-AAD positive (upper right quadrant, Q2). Almost all NCI-
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H2052 cells without MNPs (Fig. 2.16A,D) located in Q3. NCI-H2052 cells with MNPs 

immediately after the magnetic field exposure located in Q3 and Q2, which is indicative of the 

induction of necrosis (Fig. 2.16B,C). In general, cell death by heating is known to be induced by 

both apoptosis and necrosis via DNA damage in a temperature-dependent manner [27,28]. 

Compared Fig. 2.16B with E, it was understood that the cell group located in Q3 in Fig. 2.16B 

right transferred to Q4, which should suggested that apoptosis was undergone in 24-h incubation 

at 37°C following exposure to alternating magnetic field, but the location of cell group in Q3 in 

control (Fig. 2.16D) was not altered after 24-h incubation. For NCI-H2052 cells at the 

concentration of 267 μg/mL, all cells were categorized already dead cells, which is equivalent to 

the percentages of cell death (Fig. 2.14D-F). 
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Fig. 2.16 Detection of apoptotic NCI-H2052 cells with MNPs and with alternating magnetic field 

(325 kHz, 500 Oe), as evaluated by flow cytometry: upper and lower dot plots shows the data 

measured immediately (A-C) or after 24 h of incubation at 37°C (D-F) following exposure to 

alternating magnetic field. The inserted table is the summary of flow cytometric results. 
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2.6 Conclusion 

 

   With an objective to understand the interactions (influence) between nanoparticles and 

mesothelioma cells, cellular uptake and cytotoxicity of MNPs in three histological types of 

mesothelioma cells (i.e. epithelioid NCI-H28, sarcomatoid NCI-H2052, and biphasic MSTO-

211H), in addition to their cell death induced by MNPs subjected to AC magnetic field were 

investigated and discussed in this chapter. 

 

   As a new finding, cell death by the addition of MNPs was observed in MSTO-211H cells 

without applying AC magnetic field. Both NCI-H28 and NCI-H2052 cells were not induced death 

by MNPs. Cellular uptake of MNPs was observed in all cell types. The ratio of the number of 

cells containing MNPs to the total number of cells was shown to depend on the dose of MNPs, 

which for MSTO-211H was lower than that for other three cell types. DNA fragmentation and 

microarray analyses suggested that MNPs induced transforming growth factor-beta2-related 

apoptosis in MSTO-211H cells.  

 

   When AC magnetic field was applied to NCI-H28, NCI-H2052, and MSTO-211H cells 

containing MNPs, temperature rose under the AC magnetic field, and high rates of cell death were 

observed in all three histological types of mesothelioma. Furthermore, cell viabilities became 

much lower (approximately 0%) by letting the cells containing MNPs incubate at 37°C for 24 h 

after exposure to alternating magnetic field in all cell types. Because higher cell mortality was 

observed when cells are heated by incorporated MNPs with an alternating magnetic field as 

compared to thermostatic-bath heating, significance of cellular uptake of MNPs to induce cell 

death efficiently in mesothelioma has been demonstrated.  

 

   The results of the in vitro experiments performed in this study demonstrated the potential of 

MNPs for future application to mesothelioma treatment via the following two approaches: (i) the 

use of the specific apoptotic effect of MNPs on MSTO-211H cells and (ii) use of heat generation 

by MNPs subjected to an AC magnetic field, which induced a high degree of cell mortality in all 

three major histologic subtypes of mesothelioma cells. The 10-nm MNPs could be applied to the 

former approach, whereas the 40-nm MNPs show particular promise for the latter. 
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Chapter 3 

 

Effect of cellular uptake of Fe3O4 nanoparticles (MNPs) on breast cancer 

cell death in vitro and surface design of MNPs for in vivo application in 

melanoma 

 

3.1 Introduction 

 

   In section 3.2, to confirm the importance of cellular uptake for effective magnetic 

hyperthermia, the influence of the location of nanoparticles (i.e., intracellular or extracellular) on 

cell condition was investigated in breast cancer cells. In section 3.3, surface design 

(functionalization) as well as control of magnetic properties of Fe3O4 nanoparticles to show 

therapeutic effect to melanoma tumors was discussed. Breast cancer and melanoma were 

employed since magnetic hyperthermia can, in principle, be easily applied to tumors located 

on/under the human skin. Melanoma was used into mice because the method of making tumor 

has been established. 

 

   In 1979, Gordon et al. demonstrated in vivo for the first time that the intracellular heating 

using submicron iron oxide particles was more effective than extracellular heating in magnetic 

hyperthermia because the cell membrane works as an excellent thermal barrier and a very poor 

thermal conductor [1]. After that, the effectiveness of intracellular heating with the use of 

magnetic nanoparticles that were internalized by cells has been further discussed in vitro [2-5]. 

Although the ref. [2] and [3] said that there was no difference in the thermal sense between two 

systems of heating methods, the intracellular heating led to enhanced reduction in cell viability 

rather than the extracellular heating in the ref. [4] and [5]. Also in the chapter 2, the intracellular 

heating by magnetite nanoparticles induced death of three histological subtypes of mesothelioma 

cells effectively. In this situation, two systems consisting of human breast cancer MCF-7 cells and 

40-nm magnetite nanoparticles (MNPs) was investigated in the section 3.2: the one is the cells 

with MNPs addition, and the other is the cells pre-cultivated for 24 h in the presence of MNPs. 

The former essentially contains extracellular MNPs, and the latter contains both intracellular and 

extracellular MNPs. A comparison of the two systems should be meaningful considering actual 
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situation. By comparing two systems, the effect of intracellular and extracellular MNPs on MCF-

7-cells condition was examined, in view of influence associated with cellular uptake of MNPs. In 

addition, the effect of the heating with MNPs exposed to alternating magnetic field on cell death 

was compared with that of the heating by thermostatic water bath. 

 

   From the results of chapter 2 and section 3.2, the significance of cellular uptake of MNPs to 

induce cell death efficiently has been demonstrated in vitro. In section 3.3, taking advantage of 

the in vitro results, in vivo application of MNPs with designed surface property and controlled 

magnetic property was investigated. This study is the collaboration research with Catholic 

University of Korea (Prof. Kun Na group). 

 

   In the control of magnetic property of MNPs, considering to using AC magnetic field with a 

frequency of 112 kHz with a strength of magnetic field of 250 Oe, superparamagnetic 10-nm 

MNPs were employed in this study. If ferromagnetic 40-nm MNPs are used as a heat generator at 

this applied condition, heat could not be generated efficiently. Because the coercivity of 40-nm 

MNPs is higher than the strength of effective magnetic field applied, their magnetization reversal 

rarely occurred. 

 

   In the surface design of MNPs, to increase of therapeutic efficacy associated with increase in 

cellular uptake, the selectivity to cancer cells were modified on the surface of MNPs. Recently, 

there are many reports of surface modification of MNPs with a cancer-selective molecule [6-18]. 

R. Rastogi et al. reported folate conjugated iron oxide nanoparticles for targeting cancer cells [8]. 

Folate receptor is known to be overexpressed on many of cancer tumor cells [6-8]. However, 

folate conjugated nanoparticles are incorporated into normal cells because normal cells also 

possess folate receptor. On the other hand, T. Chen et al. reported the aptamer conjugated Fe3O4 

nanoparticles [11], of which aptamer (single-oligonucleotide chain) can specifically bind to the 

receptor located on cancer cells [11-13]. Although specific to cancer cells, there is a concern of 

ambiguous in vivo kinetics. Based on these backgrounds, hyaluronic acid (HA) was employed in 

this study, since HA has advantages of (i) high biocompatibility [14], (ii) high hydrophility [15], 

and (iii) high cancer tumor targeting efficacy [16,17]. HA can bind specifically bind to the HA 

receptor (CD44) located on cancer cells such as melanoma. In this study, HA was acetylated in 
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order to become lower its solubility [15]. 

 

   Furthermore, to increase in therapeutic efficacy, pheophorbide-a (a photodynamic therapeutic 

agent; PheoA) was modified onto MNPs. PheoA generates reactive oxygen species when exposed 

to the light with a wavelength of 671 nm [15]. In this study, magnetic hyperthermia combined 

with photodynamic therapy discussed. Although drug delivery system is generally selected as the 

other therapy in magnetic hyperthermia combined with other therapy [8,11], this study focused 

on photodynamic therapy due to their ability of not only treatment but also imaging using 

fluorescence of PheoA.  

 

   Overall, superparamagnetic 10-nm MNPs which modified with PheoA-conjugated acetylated 

hyaluronic acid (AHP@MNPs) were designed to achieve effective treatment of cancer. 
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3.2 Influence of intracellular and extracellular nanoparticles in vitro 

 

3.2.1 Experimental 

 

Synthesis of magnetite nanoparticles 

 

MNPs with a diameter of 40 nm were synthesized from ferrous chloride (FeCl2·4H2O) and 

1,6-hexanediamine (H2N(CH2)6NH2) as reported in the paper [18]. Both chemicals were 

purchased from Kanto Chemical Co., Inc. Briefly, 100 mL of an aqueous solution containing 0.05 

mol/L of ferrous chloride was mixed with 100 mL of an aqueous solution containing 0.25 mol/L 

of 1,6-hexanediamine, and the mixture was stirred for 24 h at room temperature. Afterwards, the 

black precipitates were washed with ultrapure water and ethanol, and vacuum dried to make them 

powder before use in other experiments. 

 

MCF-7 cell cultivation 

 

MCF-7 cells were cultured in Eagle’s minimum essential medium (EMEM; Sigma-Aldrich) 

with 10% fetal bovine serum (FBS; Thermo Fisher Scientific), 5% L-glutamine (Invitrogen), 1% 

MEM non-essential amino acid (Gibco), and 1% antibiotic-antimycotic (Gibco). The cells were 

incubated at 37°C in an atmosphere with 5% CO2. 

 

Preparation of two systems consisting of cells and MNPs for comparison 

 

   Two systems consisting of MCF-7 cells and MNPs were prepared: the one is the cells with 

MNPs addition (hereinafter referred to as “simply-added” system), and the other is the cells pre-

cultivated for 24 h in the presence of MNPs (hereinafter referred to as “pre-cultivated” system). 

Regarding the “simply-added” system, a 500-µL suspension containing a mixture of cells and 

MNPs was prepared with adding 0, 125, or 250 µg of MNPs to 5 × 105 MCF-7 cells suspended 

in the medium using the 1.5-mL microtube.  

As for the “pre-cultivated” system, MCF-7 cells were seeded in a 6-well dish at a density of 

5 × 105 cells per 3 mL of medium in each well and then cultivated with MNPs at the dose of 0, 
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125, or 250 µg per well for 24 h at 37°C. After the pre-cultivation with MNPs, cells were harvested 

by a treatment with 0.25 % trypsin-EDTA. It should be noted that basically neither aspiration nor 

rinse were performed to avoid the loss of MNPs; the amount of MNPs in this “pre-cultivated” 

system should be the same as that in the “simply-added” system for comparison. After 

centrifugation, the whole of MNPs and cells collected was resuspended in 500 µL of medium 

using the 1.5-mL tube. 

 

Cell cycle analysis and detection of reactive oxygen species after cellular uptake of MNPs 

 

Cell proliferation in the “pre-cultivated” system was investigated by using FlowCellect 

Bivariate Cell Cycle Kit for DNA Replication Analysis (Millipore) and DNase I reagent (Sigma 

Aldrich) for flow cytometric analysis. Cells were labeled and stained with bromodeoxyuridine (5-

bromo-2'-deoxyuridine, BrdU) and propidium iodide (PI) according to essentially the same 

protocol as provided by manufacturer (Millipore). BrdU incorporated in newly synthesized DNA 

in cells was stained with anti-BrdU antibodies conjugated to Alexa Fluor 488 and total DNA in 

cells was stained by PI/RNase solution. Flow cytometric analysis was performed with a BD 

FACSCanto II flow cytometer. 

 

   The generation of reactive oxygen species (ROS) was detected by using CellROX Green 

Reagent (Thermo Fisher Scientific). For the evaluation of “pre-cultivated” system, 5 × 105 MCF-

7 cells were cultivated with 0, 125, or 250 µg of MNPs for 24 h at 37°C. After removing 

unincorporated MNPs, 0.5 μL of 2.5 mmol/L CellROX Green Reagent was added. Cells were 

incubated for 30 min followed by washing three times with DPBS, and then observed with an 

Olympus BX51 fluorescence microscope. N-acetyl-L-cysteine as the ROS inhibitor and 

pyocyanin as the ROS inducer were used for negative and positive controls, respectively. In 

contrast, for evaluating “simply-added” system, a 200-μL portion of the 500-µL suspension 

containing a mixture of 5 × 105 MCF-7 cells and 0, 125, or 250 µg of MNPs was dispensed to a 

cuvette with slide glass and they were centrifuged (600 rpm, 3 min) with a Thermo Scientific 

Cytospin 4 cytocentrifuge. The cells on the slide glass were treated with 0.5 μL of 2.5 mmol/L 

CellROX Green Reagent for 30 min, followed by washing three times with DPBS. The sample 

on the slide glass was observed with the fluorescence microscope. 
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Exposure cells with MNPs to an alternating magnetic field 

 

   Samples in the 1.5-mL microtubes, which were prepared as described above, were exposed to 

an alternating magnetic field (AMF) with an output power of 4.3 kW and an electric current of 

569.1 A at a frequency of 325 kHz for 20 min, using an Alonics EASYHEAT induction-heating 

device equipped with a 3-turn coil with an outer diameter of 40 mm. The strength of magnetic 

field was calculated to be 536 Oe. During the 20-min exposure to the alternating magnetic field, 

sample temperature was measured with an Anritsu FL-2000 fiber thermometer by inserting the 

head of an FS600-2M fiber probe into the sample (cell suspension) in the 1.5-mL tube. 

 

   Samples in the 1.5-mL microtubes, which were prepared as described above, were also treated 

at constant temperature for 20 min by being placed in an AS ONE Corporation THERMAL 

ROBO TR-1A water bath. 

 

   Cell mortality immediately or after 24 h of incubation at 37°C following exposure to AMF 

was evaluated by cell counting with trypan blue (TB; Gibco) staining. 
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3.2.2 Influence associated with cellular uptake of nanoparticles 

 

To consider how cellular uptake of MNPs affects cellular condition, cell cycle distribution 

was examined in the “pre-cultivated” system. As shown in Fig. 3.1, the increase and decrease in 

the percentage of cells in the G1 and S phase, respectively, was observed when incubated in the 

presence of MNPs. At higher dose of MNPs, the change in the percentage was greater. Thus this 

change in cell cycle distribution seems to be associated with cellular uptake of MNPs. The cell 

cycle arrest in the G1 phase, often accompanied by cellular uptake of nanoparticles, has been 

reported for MNPs in L929 murine fibroblast cells [19] and in A549 human lung adenocarcinoma 

cells [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Percentages of cells in G1, S, and G2/M phases for the MCF-7 cells cultivated for 24 h 

in the presence of 0, 125, and 250 µg MNPs. G1 is the phase of preparation for DNA synthesis 

(growth), S is the phase of DNA replication, G2 is the phase of preparation for mitosis (growth), 

and M is the phase of cell division. 

 

 

   Next, intracellular ROS was examined by fluorescence microscopy; the samples for 

observation were treated with the cell-permeable reagent, which is essentially non-fluorescent 
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while in a reduced state but exhibits a strong fluorogenic signal upon oxidation. Fig. 3.2 shows 

bright field (A-C) and fluorescence (D-F) microscopic images of the MCF-7 cells pre-cultivated 

for 24 h in the presence of MNPs, corresponding to the “pre-cultivated” system. From Fig. 3.2D-

F, a change (an increase) in fluorescence intensity was observed for the samples cultivated with 

MNPs, particularly at higher dose of MNPs. Similar tendency was reported for J774 murine 

macrophage [21] and for A549 cells [22] with iron oxide nanoparticles.  

The change in intracellular ROS as well as cell cycle distribution described above could be 

evidences for cell injury or damage to some degree resulting from cellular uptake of MNPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Bright field (A-C) and fluorescence (D-F) microscopic images of MCF-7 cells pre-

cultivated for 24 h in the presence of (A,D) 0, (B,E) 125, and (C,F) 250 µg of MNPs. 
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3.2.3 Cell death induced by intracellular or extracellular heating 

 

   Fig. 3.3 shows the ratios of the number of viable cells measured at 0 and 24 h after 20-min 

exposure to an alternating magnetic field to the initial number of viable cells. Here “AMF” 

represents the time immediately after the magnetic field application and “AMF+I24” indicates 

the time after 24-h incubation at 37°C subsequent to the magnetic field application. The initial 

number of viable cells, Nvc,initial, was measured just before the magnetic field application.  

For the sample in the absence of MNPs (control), of which temperature remained at 

apprximately 37°C under the alternating magnetic field, only a slight decrease and 1.4-fold 

increase in the number of viable cells were observed at “AMF” and “AMF+I24”, respectively, in 

both systems. It should be mentioned here that the difference between two systems in the absence 

of MNPs is simply the difference in the incubation period. The increments in viable cell counts at 

“AMF+I24” were slightly smaller than the results after 24-h incubation in the preceding section, 

which were contributable to a certain damage caused by the operation for magnetic field 

application.  

In contrast, for the samples in the presence of MNPs, the decrease in the number of viable 

cells was observed at “AMF” and a further decrease was observed at “AMF+I24”. With 125 µg 

of MNPs, with the temperature rise to 45°C under the alternating magnetic field, the reduction in 

the viable cell count to approximately 0.8 times of the initial count was observed at “AMF” in 

both systems. At “AMF+I24”, the ratio of Nvc/Nvc,initial decreased to 0.5 and 0.4 in “simply-added” 

and “pre-cultivated” systems, respectively. With 250 µg of MNPs, with the temperature rising to 

52°C, a decrease in the number of viable cells to 0.6 and 0.1 times of the initial number was 

observed at “AMF” and “AMF+I24”, respectively, in the “simply-added” system. More clearly 

in the “pre-cultivated” system, the ratio of Nvc/Nvc,initial was reduced to 0.1 even at “AMF” and to 

as low as 0.05 at “AMF+I24”.  

The cell death induced by MNPs subjected to the alternating magnetic field was found to 

appear earlier in “pre-cultivated” system than in “simply-added” system. Considering the results 

described in the section 3.2.2, there is a possibility that the presence of intracellular MNPs or the 

cellular uptake of MNPs causes (slight) cell damage, and then MCF-7 cells internalizing MNPs 

become sensitive to heat (temperature rise).  

Through this chapter and the section 2.5, significance of cellular uptake of MNPs to induce 
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cell death efficiently has been demonstrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Ratios of the number of viable cells measured at 0 and 24 h after 20-min exposure to an 

alternating magnetic field to the initial number of viable cells for (a) “simply-added” and (b) “pre-

cultivated” systems. “AMF” represents the time immediately after the exposure to alternating 

magnetic field and “AMF+I24” indicates the time after 24-h incubation at 37°C subsequent to the 

magnetic field application. 
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3.3 Surface design of MNPs suitable for in vivo application 

 

3.3.1 Experimental 

 

This study is the collaboration research with Catholic University of Korea (Prof. Kun Na 

group) [23]. 

 

Synthesis of AHP@MNPs 

 

   MNPs with a diameter of 10 nm were synthesized by the same method described in the chapter 

2. AHP was prepared according to a report [15]. Those MNPs an AHP were mixed and sonicated 

in water at a weight ratio of 1 to 1. The molecular weight of HA (obtained from Bioland Co., 

Cheonan, Korea) is 5.8 kDa. PheoA was purchased from Frontier Scientific (Logan, UT). 

 

Cellular uptake and cell death study in vitro 

 

   Mouse embryonic fibroblast NIH3T3 and murine melanoma K1735 cells (American Type 

Culture Collection, USA) were used. AHP@MNPs at the concentration of 3-50 µg/mL were 

added to 1 × 105 NIH3T3 and K1735 cells. After washing with PBS, cellular uptake of 

AHP@MNPs was observed by a fluorescent microscope. Nuclei of cells were stained with DAPI 

(colored blue). AHP@MNPs was colored red derived from PheoA. 

   When AHP@MNPs at MNPs concentration of 12 µg/mL were added to 2 × 104 NIH3T3 and 

K1735 cells, the samples after washing with PBS were exposed to He-Ne laser with a wavelength 

of 671 nm and AC magnetic field with a frequency of 112 kHz with a strength of magnetic field 

of 250 Oe. Cell viability was evaluated by MTT assay. 

 

In vivo study of accumulation to tumor and therapeutic effect of AHP@MNPs 

 

   For the melanoma tumor developed after the injection of K1735 cells into mice, AHP@MNPs 

at the amount of 0.01 mmol/kg of MNPs were intravenously injected into the mice. Then, the 

accumulation of AHP@MNPs to tumor was observed by a fluorescent microscope, and the 

tumors were exposed to He-Ne laser with a wavelength of 671 nm at 200 mW/cm2 for 500 s and 
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AC magnetic field with a frequency of 112 kHz with a strength of magnetic field of 250 Oe for 

30 min. Therapeutic effect was evaluated by measuring tumor size before/after the exposure. It 

should be noted here that all animal experiments were approved by the Institutional Animal Care 

and Use Committee (IACUC) of the Catholic University of Korea (Republic of Korea) in 

accordance with the “Principles of Laboratory Animal Care”, NIH publication no. 85-23, revised 

in 1985, according to K. S. Kim et al. [23]. 

 

  



 

68 

 

Chapter 3 

3.3.2 Results and discussion 

 

   The schematic diagram of this study was shown in Fig. 3.4. 

 

 

 

 

 

 

 

 

Fig. 3.4 Schematic diagram of this study. Hyaluronic acid is used as a tumor targeting molecule 

and pheophorbide-a is used as a photosensitizer. 

 

 

   First of all, it should be noted here that AHP was successfully modified on the surface of 

MNPs with attractive electrostatic interaction between positive charge of spermine and negative 

charge of hyaluronic acid with pheophorbide-a. The AHP@MNPs showed high dispersibility in 

water because of their high hydrophility derived from HA [23]. 

 

   Using NIH3T3 and K1735 cells, cellular uptake of AHP@MNPs was evaluated. NIH3T3 cells 

are normal cells, whereas K1735 cells are cancer cells. Hence, CD44 is overexpressed on K1735 

cells not on NIH3T3 cells. After the addition of AHP@MNPs to the medium containing cells, 

cellular uptake of AHP@MNPs was observed in CD44-positive K1735 cells, while CD44-

negative NIH3T3 cells did not take up AHP@MNPs, according to the fluorescent images reported 

by K. S. Kim et al. [23]. Hence, AHP@MNPs was suggested to be incorporated into cells through 

CD44 receptor-mediated endocytosis, and the ability of cancer targeting of AHP@MNPs was 

expected.  

 

   As a result, when cells incubated with AHP@MNPs were exposed to He-Ne laser with a 

wavelength of 671 nm and AC magnetic field with a frequency of 112 kHz with a strength of 
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magnetic field of 250 Oe, viability was remained >90% for NIH3T3 cells, but the viability of 

K1735 cells was decreased to 24%, according to the results from MTT assay reported by K. S. 

Kim et al. [23]. 

 

   Using melanoma-tumor bearing mice, tumor-accumulation efficacy of AHP@MNPs was 

evaluated by the fluorescent intensity of tumor derived from PheoA. After 6 h from the 

intravenous injection of AHP@MNPs, high fluorescent intensity was observed at tumor, which 

indicative of accumulation of AHP@MNPs to tumor. Furthermore, the red fruorescence (PheoA 

of AHP@MNPs) was observed just around the nucleus (colored blue) of tumor cells, which is 

suggestive of cellular uptake of AHP@MNPs. From these results (reported by K. S. Kim et al. 

[23]), high tumor accumulation and internalization efficacy of AHP@MNPs was demonstrated in 

vivo. 

 

   At the point, the tumors were exposed to He-Ne laser at 200 mW/cm2 for 500 s and AC 

magnetic field for 30 min. As a result, one third or a half of smaller tumor volume was observed 

at 14 days after magnetic hyperthermia combined with photodynamic therapy than the tumor 

volume with no NPs (just injection of PBS) or with just hyperthermia treatment after 14 days 

from the exposure treatment, according to the in vivo results reported by K. S. Kim et al. [23], 

which suggestive of the potential of practical use of magnetic hyperthermia combined with 

photodynamic therapy using AHP@MNPs. 
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3.4 Conclusion 

 

   Surface design of MNPs with considered the enhancement of cellular uptake and therapeutic 

effect with another therapy as well as controlled magnetic property showed high potential of 

practical use of MNPs in magnetic hyperthermia. 

 

   In section 3.2, the cellular uptake of MNPs was indicated to induce a slight cell damage, which 

was reflected as an increase in generation of reactive oxygen species as well as an inhibition of 

cell proliferation, and to cause a high degree of cell death at the raised temperatures. A significant 

decrease in cell viability observed in the presence of intracellular MNPs under AC magnetic field 

may be originated from the combined or synergistic effect of intracellular heating and cellular 

damage by MNPs. 

 

   In section 3.3, design of surface and magnetic property of MNPs for in vivo application was 

investigated. To obtain the targeting ability to cancer cells, hyaluronic acid was modified onto 

MNPs. Hyaluronic acid has an advantage of specific binding to hyaluronic-acid receptor (CD44) 

overexpressed on cancer cells. To increase in therapeutic effect, pheophorbide-a was modified 

onto MNPs as a photosensitizer. Because pheophorbide-a generates reactive oxugen species when 

exposed to the light, increase in therapeutic effect by magnetic hyperthermia combined with 

photodynamic therapy is expected. Considered to the applied condition of AC magnetic field, 

superparamagnetic MNPs were employed. As a result, the designed MNPs was accumulated 

specific to tumor in mice, and then tumor growth was inhibited by magnetic hyperthermia 

combined with photodynamic therapy [23]. 
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Chapter 4 

 

Synthesis of MFe2O4 nanoparticles and their effect on breast cancer cell 

death under alternating magnetic field 

 

 

4.1 Introduction 

 

   For the development of effective magnetic hyperthermia, design of magnetic nanoparticles as 

a heat generator is focused in this chapter, as a study leading to the future technology. To increase 

the therapeutic effect of magnetic hyperthermia, this chapter describes the increase in heating 

capacity of nanoparticles with controlled magnetic properties considering the occupation of the 

A- and B-sites by transition metal cations (M2+ and Fe3+) in spinel structure. Many recent 

researches reported that the substitution of Fe2+ with other metal ions (MFe2O4; M = Ni, Co, Mn) 

improves the magnetic property and heating efficacy [1-3]. Therefore in this chapter, synthesis of 

cobalt and magnesium ferrite (CoFe2O4 and MgFe2O4) nanoparticles and their effect on death in 

human breast cancer MCF-7 cells under alternating magnetic field were investigated. Breast 

cancer was used as a cancer cells because magnetic hyperthermia can, in principle, be easily 

applied to tumors located on/under the human skin. 

 

   First, CoFe2O4 was selected owing to its potential of having greater magnetic anisotropy than 

iron-oxide nanoparticles [2,4]. High coercivity is expected from their large magneto-crystalline 

anisotropy (K), which should produce sufficient heat to induce cancer cell death under alternating 

magnetic field. When single-domain state and ferromagnetic property, coercivity (Hc) is estimated 

by the Stoner-Wohlfarth model based theory [5,6]: 

 

                             𝐻𝐶 = 0.98 × 𝐾 𝑀𝑠⁄                              (1) 

 

According to ref [2], the magnetic anisotropy of bulk CoFe2O4 is one-order larger than that of 

Fe3O4, whereas the saturation magnetization (Ms) of CoFe2O4 is almost 90% of Fe3O4. From the 

equation (1) and the information mentioned above, Hc of CoFe2O4 is estimated to be 10 times 
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larger than Fe3O4. Considering the Ms value also, approximately 9 times of enhancement in 

hysteresis area for CoFe2O4, as compared to Fe3O4. Because it can be suggested that heating 

capacity including the temperature rise and the specific absorption rate (SAR) is approximately 

proportional to the hysteresis area [7], 9-times enhancement of heating capacity is expected for 

CoFe2O4 nanoparticles, as compared to Fe3O4 nanoparticles with a same diameter. CoFe2O4 

nanoparticles were reported to have a potential of larger hysteresis area among other spinel ferrite 

nanoparticles [5]. Additionally, the amount of energy converted into heat per unit time and mass 

has been reported to be greater for CoFe2O4 nanoparticles than for other spinel ferrites of the same 

size, such as iron oxide [2]. The CoFe2O4 nanoparticles also maintain excellent chemical stability 

[8]. Therefore, in this study, the synthesis of CoFe2O4 nanoparticles by applying the synthetic 

method developed for Fe3O4 nanoparticles on the basis of hydrolysis in an aqueous solution 

containing iron(II) and iron(III) salts, in which organic amine plays significant role as a base and 

also as a protective reagent, was investigated, and their effect on cell death was examined. 

 

   However, even if CoFe2O4 nanoparticles have higher heating capacity and excellent chemical 

stability, administration of CoFe2O4 nanoparticles to human body has also a risk because Co2+ 

ions eluted from CoFe2O4 nanoparticles are toxic. 

 

   Hence in the next section, as a candidate of nanoparticles with high safety and high heating 

efficacy, MgFe2O4 was selected. MgFe2O4 nanoparticles are composed of non-toxic elements, 

suggesting that they have greater biocompatibility as compared to other ferrite nanoparticles. 

Furthermore, MgFe2O4 nanoparticles have been receiving attention as a new heat source because 

of their frequency-dependence of heating efficiency. Around 300 kHz, which corresponds to the 

frequency generally used for magnetic hyperthermia, the temperature rise of MgFe2O4 powder 

was reported to be highest among other kinds of ferrite powder [9]. When estimated the heating 

capacity using the difference of ∆T reported in Ref. 9, 8-times enhancement of heating capacity 

is expected for MgFe2O4, as compared to Fe3O4. Also, the SAR of MgFe2O4 nanoparticles was 

reported to be 297 W/g under safe strength and frequency of magnetic field [10], while the value 

was 20-40 W/g for superparamagnetic Fe3O4 nanoparticles under the same magnetic-field 

condition [11]. Hence, there are many reports regarding the synthesis of MgFe2O4 nanoparticles 

as shown in Table 4.1. However, a limited number of studies of the influence of MgFe2O4 
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nanoparticles on cells have been reported; especially the cell mortality associated with cellular 

uptake of MgFe2O4 nanoparticles is yet to be clearly discussed. In this study, synthesis of 

MgFe2O4 nanoparticles and the effect of their cellular uptake on the death under alternating 

magnetic field in MCF-7 cells were investigated.  

 

 

Table 4.1 Magnetic behavior and particle size of MgFe2O4 synthesized in various methods 

Synthetic method 
Magnetization 

(emu∙g-1) 

Particle size 

(nm) 

Coercivity 

(Oe) 
Reference 

combustion 33.83 10 - 30 53 [12] 

co-precipitation 4 (at 1 kOe) - - [13] 

microemulsion 1 (at 100 Oe) 20 - [14] 

sol-gel 15.3 6 - [15] 

co-precipitation 5.8 6 - [15] 

combustion 31.56 40 182 [16] 

hydrothermal - 3 - [17] 

ultrasound assisted 

ball-milling 
54.8 20 

- 
[18] 
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4.2 CoFe2O4 nanoparticles 

 

4.2.1 Experimental 

 

Synthesis and characterization of nanoparticles 

 

A 50-mL aqueous solution containing 0.017 mol·L-1 cobalt(II) chloride (CoCl2·4H2O) and 

0.033 mol·L-1 iron(III) chloride (FeCl3·6H2O) was prepared, and a 50-mL aqueous solution 

containing 0.123 mol·L-1 spermine, or N,N'-bis(3-aminopropyl)butane-1,4-diamine (pH 12.1) was 

also prepared as a base. After the aqueous solution containing spermine was heated at 90°C, the 

cobalt(II) and iron(III) chloride aqueous solution was added slowly to the aqueous spermine 

solution, which was followed by stirring for 12 h at 90°C. Finally, a black powder was obtained 

after washing the precipitate with water and ethanol several times and drying in a desiccator at 

room temperature. Fe3O4 nanoparticles with a diameter of 10 nm were also synthesized with the 

same procedure described in chapter 2, using iron(II) chloride (FeCl2·4H2O) and iron(III) chloride 

at a molar ratio of 2:1, and spermine as a base.  

The shape and size of CoFe2O4 nanoparticles were observed by field-emission transmission 

electron microscopy (FE-TEM) with a Hitachi HF-2200 microscope (Tokyo, Japan) at 200 kV 

and their composition and elemental mapping were analyzed by energy dispersive X-ray (EDX) 

analysis in FE-TEM. The shape and size of Fe3O4 nanoparticles were observed by TEM with a 

JEOL JEM-1011 microscope (Tokyo, Japan) at 100 kV. The mean diameters of those products 

were calculated using a following equation after counting and measuring diameters (Dn) of one 

hundred nanoparticles in the TEM images. 

 

Mean diameter =
(𝐷1+𝐷2+𝐷3+⋯+𝐷100)

100
                                         (2) 

 

The crystal structure of the products was characterized by X-ray diffraction (XRD) patterns 

recorded using a SmartLab diffractometer (Rigaku, Tokyo, Japan) with Co K radiation (1.7890 

Å). The magnetic field dependence of the magnetization curves of samples was measured by an 

MPMS 3 or MPMS 7 superconducting quantum interference device (SQUID; Quantum Design, 

Ltd., San Diego, CA) at 300 K, in which the applied range was from −10 kOe to 10 kOe. The zeta 
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potential and hydrodynamic diameter of the specimens dispersed in water at around pH 7 were 

evaluated with an Otsuka Electronics ELS-8000 electrophoretic light-scattering 

spectrophotometer (Osaka, Japan). 

 

MCF-7 cell cultivation 

 

Human breast cancer MCF-7 cells were cultured in Eagle’s minimum essential medium 

(EMEM, Sigma-Aldrich, St. Louis, MO) with 10% fetal bovine serum (FBS, ThermoFisher 

Scientific, Waltham, MA), 5% L-glutamine (Invitrogen, Life Technologies, Grand Island, NY), 

1% MEM non-essential amino acid (Gibco, Life Technologies), and 1% antibiotic-antimycotic 

(Gibco) under culture conditions of 37°C and 5% CO2. 

 

Cytotoxicity and cellular uptake study 

 

   MCF-7 cells were seeded in a 6-well dish at a density of 5 × 105 cells per 3 mL of medium in 

each well. CoFe2O4 or Fe3O4 nanoparticles in amounts of 0, 200, 400, 600, or 800 μg were added 

to each well and then incubated at 37°C at 5% CO2 for 24 h. After removing excess nanoparticles 

by three washes with Dulbecco’s phosphate buffered saline (DPBS; Gibco) followed by 

centrifugation at 1200 rpm for 5 min, the cells were dispersed in 1 mL of DPBS with 6% FBS. 

We used a BD Cell Viability Kit (BD Biosciences, Becton, Dickinson and Co., Franklin Lakes, 

NJ) to discriminate live cells, dead cells, and nanoparticles: 2 L of 42 μM thiazole orange (TO) 

in dimethyl sulfoxide and 1 L of 4.3 mM propidium iodide (PI) in water were added to 1 mL of 

cells suspended in DPBS, and then analyzed with a BD FACSCanto II flow cytometer. Live cells 

are PI negative and TO positive, dead cells are both PI and TO positive, and nanoparticles are 

both PI and TO negative. 

   Cellular viability as well as cellular uptake of nanoparticles can be analyzed via flow 

cytometry because increased side scatter (SSC), which is indicative of intracellular complexity, 

can be measured when the laser light crosses the cell in the flow cytometer, as described in the 

chapter 2. Hence, the SSC intensity of a cell that has incorporated nanoparticles is greater than 

that of a cell that has not incorporated nanoparticles. In the present study, the cellular uptake of 

CoFe2O4 and Fe3O4 nanoparticles was measured based on SSC intensity. 



 

78 

 

Chapter 4 

   The amount of nanoparticles contained per cell was also evaluated for both CoFe2O4 and 

Fe3O4 nanoparticles as described in the chapter 2. Intracellular Fe was formed into a thiocyanate-

iron(III) complex by using HCl, trichloroacetic acid solution, H2O2, and potassium thiocyanate 

solution, followed by measurement of absorbance at 480 nm using a JASCO V-550 

spectrophotometer (JASCO International Co. Ltd., Tokyo, Japan). 

   To observe cellular uptake of nanoparticles with an optical microscope, prussian blue staining 

was performed using an Iron Stain Kit (Sigma-Aldrich), by which iron-containing nanoparticles 

turned blue and cells were stained red. Iron stain solution including potassium ferrocyanide 

solution and hydrochloric acid solution at a ratio of 1:1 was added to DPBS-washed cells at a 

particle dose of 200 μg in a 6-well dish. After 10 min, the residues were rinsed away with DPBS. 

Then, pararosaniline solution was added for staining cells, and after 5 min, the residues were 

rinsed away with DPBS. The cells were then observed under a Nikon TE2000-U microscope 

(Tokyo, Japan). 

 

Evaluation of the dissolution of Co2+ from CoFe2O4 nanoparticles in water 

 

CoFe2O4 nanoparticles (1 mg) were dispersed in 3 mL of water in a polypropylene tube 

(around pH 7). After a 24-h or 72-h incubation at 37°C and 5% CO2, the supernatants of both 

samples were collected by centrifugation, and the concentration of Co2+ in the sample was 

measured by a Thermo Scientific iCAP Qc inductively coupled plasma-mass spectrometer (ICP-

MS). Before measurements, a calibration curve of Co2+ concentration was made using a cobalt 

standard solution (Co in 0.1 mol/L HNO3; Kanto Chemical Co. Ltd., Tokyo, Japan). The 

concentration of Co2+ in the samples was calculated using the calibration curve. 

 

Evaluation of cell death with nanoparticles under alternating magnetic field 

 

   To test cell viability, 5 × 105 MCF-7 cells were cultured per well in the presence of CoFe2O4 

or Fe3O4 nanoparticles (0, 200, 400, 600, or 800 μg per well). After washing the cells three times 

with DPBS, the cells containing nanoparticles were collected by magnetic separation and 

suspended in 500 μL of medium. An AC magnetic field was applied for 20 min using both a 3-

turn coil with an outer diameter of 40 mm and an EASYHEAT induction-heating device (Alonics, 
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Ltd., Tokyo, Japan) operated at an output power of 4.3 kW, an electric current of 569.1 A, and a 

frequency of 325 kHz, from which the strength of the magnetic field was calculated to be 536 Oe. 

The change in temperature under the AC magnetic field was monitored with an Anritsu FL-2000 

fiber thermometer (Tokyo, Japan). Temperature curves were also obtained for 500 μL of water 

containing 1 mg of nanoparticles without cells. Cell death mediated by nanoparticles subjected to 

the AC magnetic field was analyzed by flow cytometry using PI and TO staining. 
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4.2.2 Characterization of nanoparticles 

 

   First of all, establishment of synthetic method for single-domain CoFe2O4 nanoparticles with 

high crystalline was discussed. When synthesized by directly applied the synthetic method 

developed for Fe3O4 nanoparticles as described in chapter 1.2.4 and 2.2 except for using Co2+ 

instead of Fe2+, the products did not have magnetism. This could be because Co2+ is difficult to 

occupy B-site than Fe2+ in the inverse spinel structure. Then, to active the Co2+ behavior, the 

prepared solution was heated to 90°C. As a result, single-domain CoFe2O4 nanoparticles with 

high crystalline and high magnetism were obtained. From this experience, heating was suggested 

to be useful approach to form MFe2O4 with high crystalline. 

 

Fig. 4.1A and 4.1B depict the TEM images of CoFe2O4 and Fe3O4 nanoparticles, respectively, 

and revealed that both particles were spherical or truncated cubic in shape, with a mean diameter 

of 9.4 ± 2.4 for CoFe2O4 and 11.1 ± 2.5 nm for Fe3O4. The mean diameter of CoFe2O4 

nanoparticles was calculated from randomly collected 100 particles in its TEM image. Size 

distribution of CoFe2O4 nanoparticles is shown in Fig. 4.2. For CoFe2O4 nanoparticles, the ratio 

of Co to Fe in an individual particle was analyzed by EDX. It is known that ICP shows a higher 

precision and lower detection limit than EDX. However, EDX can provide the composition with 

certain accuracy although that depends on the element to be analyzed. Indeed EDX has been 

frequently used to determine the chemical composition of materials, for example electrodeposited 

thin films containing Co and Fe such as alloy films and nanoparticles consisting of Co and Fe. 

Hence EDX have been chosen in order to discuss not the mean composition of products but the 

difference in localized areas or in particle-by-particle. The ratio of oxygen could not be precisely 

determined due to the limitations of the measurement method. The EDX results suggest that the 

atomic ratio of Co to Fe is 1 to 2, and particles composed of only cobalt or iron were not observed. 

To discuss the composition of products, the elemental mapping of CoFe2O4 nanoparticles was 

also examined as shown in Fig. 4.3. Fe and Co were found to exist uniformly along nanoparticles 

with the Co:Fe atomic ratio of 1:2. Fig. 4.3C shows XRD patterns for the products synthesized 

with cobalt(II) chloride and iron(III) chloride (a) and with iron(II) chloride and iron(III) chloride 

(b). The pattern (a) was matched with the standard pattern of CoFe2O4 (JCPDS# 22-1086) and the 

pattern (b) was matched with the standard pattern of Fe3O4 (JCPDS# 19-0629). Although both 
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patterns resembled each other, the positions of diffractions peaks were slightly but certainly 

different between the patterns (a) and (b). For example, the d values of the lattice spacing of (311) 

was calculated to be 2.526 Å for pattern (a) and 2.529 Å for pattern (b) by using the Bragg 

equation for the peak observed at 2θ ~ 41°, and the slight difference in these values was 

attributable to the difference between theoretical values of 2.531 Å for CoFe2O4 (JCPDS# 22-

1086) and 2.532 Å for Fe3O4 (JCPDS# 19-0629). The crystallite size calculated from XRD by 

applying Scherrer’s formula to the (311) diffraction peak was 8 nm (in diameter) for the both 

patterns (a) and (b), which is consistent with the TEM results. Thus, products (a) and (b) were 

identified to be CoFe2O4 and Fe3O4, respectively, with a spinel structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Characterization of CoFe2O4 and Fe3O4 nanoparticles employed in this study. TEM 

images of CoFe2O4 nanoparticles (A) and Fe3O4 nanoparticles (B), and XRD patterns with Co K 

radiation (C): CoFe2O4 (a) and Fe3O4 (b). Reprinted with permission. Copyright @ 2015 Elsevier 

B. V. 
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Fig. 4.2 Size distribution of synthesized CoFe2O4 nanoparticles. 

 

 

 

 

 

 

 

Fig. 4.3 Elemental mapping of the synthesized nanoparticles: the image of nanoparticles (a), Fe 

mapping (b), and Co mapping (c). Reprinted with permission. Copyright @ 2015 Elsevier B. V. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Size distribution of CoFe2O4 and Fe3O4 nanoparticles in water characterized by dynamic 

light scattering. 
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The results of TEM, EDX analysis, elemental mapping, and XRD measurements suggest that 

CoFe2O4 nanoparticles with a diameter of 10 nm were synthesized without composites of Co3O4, 

Fe3O4, and -Fe2O3. The formation of CoFe2O4 likely progressed by a generally known co-

precipitation reaction represented by the following equation [19]: 

 

Co2+ + 2Fe3+ + 8OH− → CoFe2O4 + 4H2O.                                     (3) 

 

   The size distribution in water was characterized by dynamic light scattering for the 

nanoparticles synthesized in this study. As shown in Fig. 4.4, both nanoparticles were stable in 

water with forming secondary particles with hydrodynamic diameters of approximately 200 nm 

or 1 m, similar to the study for Fe3O4 nanoparticles described in chapter 2. 

   Fig. 4.5 shows the magnetization curves of CoFe2O4 and Fe3O4 nanoparticles at 300 K. As 

depicted in Fig. 4.5, the magnetization value at the 10000 Oe field of both CoFe2O4 and Fe3O4 

nanoparticles was found to be 60 emu·g-1. The magnetization values observed for the synthesized 

nanoparticles with a diameter of 10 nm were slightly smaller than those of bulk materials, which 

could be due to the effect of increased thermal fluctuation near the surface of nanoparticles or that 

of the magnetically disordered surface formed because of the large surface-to-volume ratio [20]. 

As also shown in Fig. 4.5, the coercivity of CoFe2O4 was 200 Oe and that of Fe3O4 was less than 

10 Oe, suggesting that CoFe2O4 nanoparticles show a ferromagnetic type of behavior, whereas 

Fe3O4 demonstrate superparamagnetic behavior. Hence, the heat derived from CoFe2O4 is 

generated by hysteresis loss, and the heat generated by Fe3O4 is largely controlled by Néel and 

Brown relaxation under the AC magnetic field [2,21-23]. Thus, the substitution of Fe2+ with Co2+ 

is likely to result in an increase in coercivity. 

Fig. 4.6 shows the temperature curve measured for 500 L of water containing 1 mg of 

nanoparticles without cells under an AC magnetic field (569.1 A, 325 kHz) for 20 min using a 3-

turn coil with an outer diameter of 40 mm (the strength of magnetic field was theoretically 

calculated to be 536 Oe). The temperature of CoFe2O4 nanoparticles was higher than that of Fe3O4, 

whose average temperature measured between 400 and 1200 s was 56°C for CoFe2O4 and 45°C 

for Fe3O4. From the initial slope of these time-dependent temperature curves in the first 100 s, 

specific absorption rates (SARs) of 404 and 319 W·g-1 was obtained for CoFe2O4 and Fe3O4 

nanoparticles, respectively, under this condition by the following equation: 
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SAR =
𝛴𝑖 𝐶𝑝𝑖 𝑚𝑖

𝑚𝑁𝑃𝑠
∙
∆𝑇

∆𝑡
                                                       (4) 

 

where Cpi and mi are specific heat capacity and mass for each substance, and mNPs is the mass of 

nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Magnetization curves of CoFe2O4 and Fe3O4 nanoparticles. The curves were measured 

by SQUID at 300 K between −10000 and 10000 Oe of magnetic field strength. Reprinted with 

permission. Copyright @ 2015 Elsevier B. V. 
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Fig. 4.6 Time dependence of the temperature curve of 1 mg of CoFe2O4 or Fe3O4 nanoparticles in 

500 L of water under an AC magnetic field. Reprinted with permission. Copyright @ 2015 

Elsevier B. V. 
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4.2.3 Evaluation of cellular uptake and cell death 

 

   Next, the influence of nanoparticles on human breast cancer MCF-7 cells was investigated. 

Fig. 4.7 shows the percentage of cells containing nanoparticles (A) and the percentage of non-

viable cells (B). As depicted in Fig. 4.7A, the percentage of cells containing nanoparticles tended 

to increase at the higher doses of both types of particles: at 200 g, the percentage of cells 

containing nanoparticles was 50−60% and at 800 g, the percentage of cells containing 

nanoparticles was 80%. No more than 10% cell mortality was observed following 24-h incubation 

with nanoparticles at concentrations from 0 to 800 g. Neither Fe3O4 nor CoFe2O4 nanoparticles 

killed MCF-7 cells despite cellular uptake. Although the percentage of MCF-7 cell death observed 

with CoFe2O4 nanoparticles seems slightly higher than that for Fe3O4 at all doses, it should be 

noted that this tendency was observed even in the control experiment (without nanoparticles); the 

cell mortality was constant at the dose range from 0 to 800 μg for both Fe3O4 and CoFe2O4 

nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Dependence of the percentage of cells containing nanoparticles (A) and the percentage 

of non-viable cells (B) on the amount of CoFe2O4 (circles) or Fe3O4 (triangles) nanoparticles 

added to 5 × 105 MCF-7 cells. Reprinted with permission. Copyright @ 2015 Elsevier B. V. 
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   However, CoFe2O4 nanoparticles might derive cytotoxicity from Co2+ [24,25] eluted from 

CoFe2O4. For example, Catelas et al. [24] reported that Co2+ induces apoptosis via a caspase-3 

pathway. To consider the influence of dissolved Co2+, we examined Co2+ elution by ICP-MS under 

almost identical conditions as those used for the cytotoxicity test: the concentration was 1 mg of 

CoFe2O4 nanoparticles per 3 mL of H2O at 37°C. As shown in Table 4.2, few Co2+ were eluted 

into the water from CoFe2O4 nanoparticles: the concentration of Co2+ in the sample was 0.785 

μg·mL-1 (0.9% of Co was eluted) after a 24-h incubation, and 0.465 μg·mL-1 (0.6% of Co was 

eluted) after a 72-h incubation. The decrease of Co2+ concentration from 24 h to 72 h seems to be 

related to the adsorption of Co2+ to the surface of the polypropylene tube. Indeed, Kwon et al. 

[25] investigated the cytotoxicity of Co ions released from Co nanoparticles on RAW263.7 

macrophage cells in vitro, and reported that Co ions at a concentration of 0.630 μg·mL-1 show no 

cytotoxic effect, but 4.777 μg·mL-1 of Co ions was cytotoxic. Based on this information, we 

conclude that an extensive elution of Co2+ from CoFe2O4 nanoparticles was not observed in this 

case, but further surface modification of CoFe2O4 should be the key when their practical 

application to magnetic hyperthermia is considered. 

 

 

Table 4.2 Co2+ elution at the concentration of 1 mg of CoFe2O4 nanoparticles per 3 mL of H2O. 

Reprinted with permission. Copyright @ 2015 Elsevier B. V. 

 Concentration / g·mL-1 Elution percentage (%) 

Water 0.00004 0.0 

24 h 0.785 0.9 

72 h 0.465 0.6 

 

 

   Fig. 4.8 shows the dose dependence of the uptake of CoFe2O4 and Fe3O4 nanoparticles by 

MCF-7 cells. The CoFe2O4 nanoparticles were incorporated at a lower concentration than Fe3O4 

nanoparticles. Approximately 75 pg of both types of nanoparticles was incorporated into each cell 

at a dose of 200 μg per 5 × 105 cells, and 200 pg (for CoFe2O4) or 230 pg (for Fe3O4) of 

nanoparticles was incorporated per cell at the dose of 800 μg. Based on the previous finding [26], 

this slight difference in uptake could be induced less by the composition of the nanoparticles than 

by their zeta potential. The zeta potential in water at around pH 7 was +2.6 mV for CoFe2O4 
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nanoparticles and +9.3 mV for Fe3O4 nanoparticles. The positive value of the zeta potential at pH 

7 is attributable to the cationic form of amine groups in spermine adsorbed on the surface of 

nanoparticles [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Dependence of the amount of incorporated nanoparticles per cell on the amount of 

CoFe2O4 (circles) or Fe3O4 (triangles) nanoparticles added to 5 × 105 MCF-7 cells. Reprinted with 

permission. Copyright @ 2015 Elsevier B. V. 

 

 

   The uptake of nanoparticles into MCF-7 cells was observed with an optical microscope at the 

dose of 200 μg. In Fig. 4.9, MCF-7 cells were stained red and nanoparticles were stained blue by 

iron stain. Compared with the image of MCF-7 cells without the dose of nanoparticles (Fig. 4.9A), 

the incorporation of nanoparticles did not alter the apparent morphology of cells for both CoFe2O4 

(Fig. 4.9B) and Fe3O4 (Fig. 4.9C). The nanoparticles were observed within the cytoplasm but not 

in the nucleus. The ratio of cells containing nanoparticles observed in those optical microscopic 

images was comparable to that evaluated by flow cytometry (Fig. 4.7). In addition, the amount of 

incorporated nanoparticles appeared to be similar for both CoFe2O4 and Fe3O4 nanoparticles, 

which is consistent with the result shown in Fig. 4.8. Therefore, cellular uptake of nanoparticles 

was evidenced by the results shown in Figs. 4.7, 4.8, and 4.9. 
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Fig. 4.9 Optical microscopic images of MCF-7 cells without nanoparticles (A), those containing 

CoFe2O4 nanoparticles (B), and those containing Fe3O4 nanoparticles (C). In these images, cells 

were stained red whereas nanoparticles were stained blue by iron stain. Reprinted with permission. 

Copyright @ 2015 Elsevier B. V. 
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field (using a 3-turn coil with an outer diameter of 40 mm at 325 kHz and 569.1 A) for 20 min, 

of which strength was calculated to be 536 Oe. Based on the temperature curves measured for 

nanoparticles under the AC magnetic field (Fig. 4.10), the temperature of CoFe2O4 nanoparticles 

was greater than that of the Fe3O4 nanoparticles incubated at the same dose, suggesting that 

CoFe2O4 nanoparticles convert the magnetic field into heat more efficiently than did Fe3O4 

nanoparticles under this condition. Considering the magnetic properties of the nanoparticles (Fig. 

4.5) and the amount taken up by the cells (Fig. 4.8), the greater temperature reached by CoFe2O4 

nanoparticles is strongly expected to be attributable to their coercivity, even though the amount 

of CoFe2O4 nanoparticles incorporated into a cell was smaller than that of the Fe3O4 nanoparticles. 

Following exposure to the AC magnetic field, the percentage of non-viable MCF-7 cells incubated 

with every dose of nanoparticles was evaluated by flow cytometry. As shown in Fig. 4.11, 53% 

cell death could be induced using CoFe2O4 nanoparticles and the AC magnetic field. On the other 

hand, Fe3O4 nanoparticles did not significantly induce cell death as only 17% of non-viable cells 

was observed even at the 800 μg dose of nanoparticles. Based on the temperature shown in Fig. 

4.11 which is the average temperature measured between 400 and 1200 s in Fig. 4.10, the higher 
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temperature induced greater cell mortality, which was especially significant when the temperature 

reached 43°C (critical temperature for cell death). Thus, under the tested conditions, the heat 

generated by 10-nm CoFe2O4 nanoparticles under an AC magnetic field was found to be sufficient 

for human breast cancer cell death. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10 Time dependence of the temperature change in MCF-7 cells containing CoFe2O4 (a) or 

Fe3O4 (b) nanoparticles under an AC magnetic field (325 kHz, 500 Oe). Control cells were not 

treated with nanoparticles. The inserted 200, 400, 600, and 800 μg indicate the amount of 

nanoparticles added to 5 × 105 MCF-7 cells, not the amount of incorporated nanoparticles. 

Reprinted with permission. Copyright @ 2015 Elsevier B. V. 
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Fig. 4.11 Dependence of the percentage of non-viable MCF-7 cells containing CoFe2O4 (a) or 

Fe3O4 (b) nanoparticles soon after exposure to AC magnetic field (ACMF; 325 kHz, 500 Oe) for 

20 min on the amount of nanoparticles added to 5 × 105 cells. The temperatures indicated are the 

average temperatures between 400 and 1200 s in Fig. 4.10. Reprinted with permission. Copyright 

@ 2015 Elsevier B. V. 
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4.3 MgFe2O4 nanoparticles 

 

4.3.1 Experimental 

 

Synthesis and characterization of nanoparticles 

 

   MgFe2O4 nanoparticles were synthesized with two steps. In the first step, 24 mL of an aqueous 

solution containing 0.4 mmol of magnesium chloride (MgCl2∙6H2O) and 0.8 mmol of iron 

chloride (FeCl3∙6H2O) was added slowly into a 0.246 M aqueous sodium hydroxide (NaOH) 

solution (pH 12.4) as a base at room temperature, followed by stirring for 4 h and washing the 

brown precipitate with water and ethanol. In the second step, the resultant brown powder was 

annealed at 800°C for 10 min in air with the rate of temperature rise/drop of 20/6 °C∙min-1 

(MFNPs1) or 260/140 °C∙min-1 (MFNPs2) using an electronic furnance TMF-2200 (Tokyo 

Rikakikai Co. Ltd., Tokyo, Japan).  

FeCl3∙6H2O was purchased from Kanto Chemical Co. Ltd., Tokyo, Japan, MgCl2∙6H2O and 

NaOH were purchased from Wako Pure Chemical Industries, Ltd., Osaka, Japan.  

   Characterization of MgFe2O4 nanoparticles was performed with the same method and 

procedure described in the previous section 4.2.1, except for using Agilent 5100 ICP-OES 

(Agilent Technologies, Tokyo, Japan) instead of EDX for the composition analysis of MgFe2O4 

nanoparticles. The mean diameter of nanoparticles was calculated using a equation (2) after 

counting and measuring diameters (Dn) of fifty nanoparticles in the TEM images. 

 

 

In vitro evaluation using MCF-7 cells 

 

   Cell culture, cytotoxicity and cellular uptake study, and evaluation of cell death under AC 

magnetic field were performed with the same method and procedure described in the previous 

section 4.2.1, except for the dose amount. In this study, MgFe2O4 nanoparticles in amounts of 0, 

1, 5 mg were added to 5 × 105 MCF-7 cells. 
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4.3.2 Characterization of nanoparticles 

 

   First of all, establishment of synthetic method for single-domain MgFe2O4 nanoparticles with 

high crystalline and high magnetism was discussed. When synthesized by directly applied the 

synthetic method developed for Fe3O4 nanoparticles as described in chapter 1.2.4 and 2.2 except 

for using Mg2+ instead of Fe2+, the products was suggested to be a mixture of Fe(OH)3, Mg(OH)2, 

and MgFe2O4 with a very small particle size because its XRD pattern showed broad peaks. 

According to the reports of the synthesis of MgFe2O4 [12-18], high-temperature treatment is 

needed to form MgFe2O4. Hence, to react Fe(OH)3 with Mg(OH)2 (form MgFe2O4), annealing 

process was added. In the annealing process, spermine (reactive reagent) was suggested to disrupt 

the reaction of Fe(OH)3 and Mg(OH)2, NaOH was employed as a base in the co-precipitation 

method. Annealing temperature and time is also important to obtain the single-domain 

nanoparticles with high crystalline and without sintering. As a result, 800°C of annealing 

temperature and 10 min of annealing time were employed in this study. 

   

 

   Fig. 4.12 shows XRD patterns for the products after annealing (MFNPs1 and MFNPs2). The 

peaks of both particles represent spinel structure and correspond well with the standard pattern of 

MgFe2O4 (Cambridge Structural Database (CSD) 9003790). The d value of the lattice spacing of 

(311) was calculated to be 2.531 Å for both samples by using the Bragg equation for the peak 

observed at 2θ ~ 41°, which were similar to the value of commercial MgFe2O4 (2.526 Å). The 

formation of Fe3O4 or -Fe2O3 is unlikely as they transform to -Fe2O3 with a corundum structure 

at 500°C [27]. Although the presence of tiny amount of MgO was suggested for both sample as 

the MgO was reported to form with the oxidation of Mg(OH)2 at 400°C [28], the formation of 

MgO seemed smaller for MFNPs2 than for MFNPs1. The formation of MgO is unfavorable but 

it is not impossible from the aspect of ∆G [29], which suggests that its amount depends on the 

annealing time. The crystallite size calculated from XRD by applying Scherrer’s formula to the 

(311) diffraction peak was 37 or 39 nm for MFNPs1 or MFNPs2. The composition analysis was 

investigated by ICP, which indicated the Mg:Fe atomic ratio of 1:2 for both samples. 
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Fig. 4.12 XRD patterns with Co K radiation: MFNPs1, MFNPs2, and CSD# 9003790. 

 

   Fig. 4.13 shows TEM images of MFNPs1 and MFNPs2, and revealed that both particles were 

assembled with a shape of spherical or truncated cubic. Fifty nanoparticles were counted to 

determine their size distribution; the mean particle diameters were 37.0 ± 12.6 nm and 40.8 ± 12.4 

nm, shown in Fig. 4.14, respectively. These diameters corresponded to crystallite size calculated 

from XRD by a Scherrer’s formula.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13 TEM images of MFNPs1 (A,C) and MFNPs2 (B,D). Scale bar: 50 nm (A,B), 200 nm 

(C,D). 
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Fig. 4.14 Size distribution of MFNPs1 and MFNPs2. 

 

 

   The size distribution in water was characterized by dynamic light scattering for MFNPs1 and 

MFNPs2. As shown in Fig. 4.15, MFNPs1 and MFNPs2 were stable in water with forming 

secondary particles with hydrodynamic diameters of approximately 1000 nm and 100 nm, 

respectively. Because the zeta potential measured in water at pH 5.8 was -12.6 mV and -6.6 mV 

for MFNPs1 and MFNPs2, the difference of their dispersity is derived from other interaction 

forces (not electrostatic repulsive interaction). It is well known that sintering occurs when 

annealing of particles at high temperature. For MFNPs2, which is annealed with the rapid rate of 

heating/cooling, the holding time at high temperature is shorter than MFNPs1, suggesting the 

possibility of the sintering reduction. Hence, this difference of sintering degree may influence the 

dispersity of MgFe2O4 nanoparticles.  
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Fig. 4.15 Size distribution of MgFe2O4 nanoparticles in water characterized by dynamic light 

scattering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.16 Magnetization curves of MgFe2O4 nanoparticles. The curves were measured by SQUID 

at 300 K between -70 kOe and 70 kOe of magnetic field. Curves (B) are extracted from the curves 

(A) in an applied field range between -500 Oe and 500 Oe. 
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   Fig. 4.16 shows the magnetization curves of MFNPs1 and MFNPs2 at 300 K. As depicted in 

Fig. 4.16A, the magnetization values at 70 kOe of MFNPs1 and MFNPs2 were found to be 33 

and 37 emu/g respectively, which indicated that the rapid rate of heating/cooling increases the 

saturation magnetization value of MgFe2O4 nanoparticles due to two supposable reasons. One is 

the smaller formation of MgO, the other is the increase in the ratio of Mg2+ occupied in the A site 

of spinel structure induced by rapid cooling [30]. Fig. 4.16B is extracted from Fig. 4.16A in an 

applied field range between -500 Oe and 500 Oe. MFNPs1 and MFNPs2 showed a ferromagnetic 

behavior with a coercivity of 50 Oe and 60 Oe, respectively. This difference could be influenced 

by the sintering degree as mentioned above. Overall, the hysteresis area between -500 and 500 

Oe for MFNPs2 was approximately 1.5 times greater than that for MFNPs1, as calculated using 

an Image J software [31]. 

 

   Fig. 4.17 shows the temperature curve measured for 500 μL of water containing 1 mg of 

nanoparticles without cells under AC magnetic field (569.1 A, 325 kHz) for 20 min using a 3-turn 

coil with an outer diameter of 40 mm (the strength of magnetic field was theoretically calculated 

to be 536 Oe). The temperature of MFNPs2 was higher than MFNPs1, whose average temperature 

measured between 800 and 1200 s was 39°C and 45°C for MFNPs1 and MFNPs2. From the initial 

slope of these time-dependent temperature curves in the first 100 s, SARs of 208 and 310 W·g-1 

was obtained for MFNPs1 and MFNPs2, respectively. The ∆T and SAR of MFNPs2 was about 

1.5 times higher than those of MFNPs1, which corresponded the degree of hysteresis-area 

enhancement as described above. 
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Fig. 4.17 Time dependence of the temperature curve of 1 mg of MgFe2O4 nanoparticles in 500 

L of water under AC magnetic field (325 kHz, 500 Oe). 
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4.3.3 Evaluation of cellular uptake and cell death 

 

   Using MFNPs2, the influence of nanoparticles on human breast cancer MCF-7 cells. Fig. 4.18 

shows the percentage of cells containing nanoparticles (A) and the percentage of non-viable cells 

(B). As depicted in Fig. 4.18A, the percentage of cells containing nanoparticles tended to increase 

at the higher doses of both types of particles: 40% of cells incubated with 1 mg reaching 95% of 

cells incubated with 5 mg. No more than 10% cell mortality was observed following the addition 

of nanoparticles even at the concentration of 5 mg per 3 mL of medium. For Fe3O4 nanoparticles, 

murine macrophage (J774) cells were induced cell death following incubation with 500 g/mL of 

Fe3O4 nanoparticles [32]. Therefore, high biocompatibility of MgFe2O4 nanoparticles was 

suggested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.18 Dependence of the percentage of cells containing nanoparticles (A) and the percentage 

of non-viable cells (B) on the amount of MgFe2O4 nanoparticles added to 5 × 105 MCF-7 cells. 

 

 

   Fig. 4.19 shows the dose-dependence of the uptake of MgFe2O4 nanoparticles by MCF-7 cells. 

Approximately 1 ng of MFNPs2 was incorporated into a cell at a dose of 1 mg per 5 × 105 cells, 

and 3 ng of nanoparticles was incorporated per cell at the dose of 5 mg. Compared with other 
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ferrite nanoparticles, the amount of incorporated nanoparticles for MgFe2O4 seems to be larger in 

the range showing high viability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.19 Dependence of the amount of incorporated nanoparticles per cell on the amount of 

MgFe2O4 nanoparticles added to 5 × 105 MCF-7 cells. 

 

 

   To determine the potential of MgFe2O4 nanoparticles for use in magnetic hyperthermia, MCF-

7 cells with internalized nanoparticles were subjected to AC magnetic field (325 kHz, 500 Oe) 

for 20 min. As shown in Fig. 4.20, 90% of cell death could be induced using MgFe2O4 

nanoparticles with a dose of 5 mg and the AC magnetic field. On the other hand, 1 mg of MgFe2O4 

nanoparticles did not significantly induce cell death as 10% of non-viable cells were observed. 

Based temperature in shown in Fig. 4.20, which is the average temperature measured between 

800 and 1200 s in the temperature curves, the higher temperature induced greater cell mortality 

which was especially significant when the temperature reached >43°C (critical point of cell death). 

Thus, under the tested conditions, the heat generated by 40 nm MgFe2O4 nanoparticles annealed 

with the rapid rate of heating/cooling under AC magnetic field was found to be sufficient for 

cancer cell death. 
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Fig. 4.20 Dependence of the percentage of MCF-7 cells containing MgFe2O4 nanoparticles soon 

after 20-min exposure to AC magnetic field (325 kHz, 500 Oe) on the amount of nanoparticles 

added to 5 × 105 cells. The inserted temperatures are the average temperatures between 800 and 

1200 s of samples under AC magnetic field. 
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4.4 Comparison of heating capacity of MFe2O4 nanoparticles 

 

   The summary of the characteristics of MFe2O4 nanoparticles employed in this thesis is shown 

in Table 4.3. The AC magnetic field, with a strength of magneticfield of 536 Oe with a frequency 

of 325 kHz, was applied in this thesis. The concentration of nanoparticles under AC magnetic 

field was 1 mg of particles dispersed in 500 L of water. 

 

 

Table 4.3 Summary of the characteristics of MFe2O4 nanoparticles employed in this thesis. 

 

 

 

 

 

 

 

 

*Reached temperature was shown as the average temperature between 400-800 s for 10-nm Fe3O4 

and 9-nm CoFe2O4, 800-1200 s for 43 nm Fe3O4 and 39-nm MgFe2O4 of their temperature curves 

under AC magnetic field. 

 

 

   From Table 4.3, it was understood that larger hysteresis area induced higher reached 

temperature and higher SAR. Hence, although it is difficult to estimate of heating amount exactly 

because it is affected by the treated environmental conditions etc., the most important 

characteristics for effective magnetic hyperthermia is suggested to have larger magnetization and 

larger coercivity in the range of applied magnetic field. This is the reason for showing the highest 

heating efficacy of 40-nm Fe3O4 nanoparticles. However in fact, it was found by in vitro 

evaluation of the interaction of particles and cells that other factors should be also considered. For 

example, considering to cellular uptake amount and percentage of cells containing nanoparticles, 

MgFe2O4 may be more favorable as shown in section 4.3 related to their high biocompatibility. 

CoFe2O4 MgFe2O4

Size 10 nm 43 nm 9 nm 41 nm

Magnetization

(at 10 kOe)
~60 emu/g ~90 emu/g ~60 emu/g

37 emu/g

(at 70 kOe)

Coercivity < 10 Oe ~200 Oe ~200 Oe ~60 Oe

Reached

temperature
45°C 63°C 56°C 45°C

SAR (at 100 s) 319 W/g 792 W/g 404 W/g 310 W/g

Fe3O4
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On the other hand, there is a concern of toxicity in CoFe2O4 nanoparticles although showing the 

higher heating efficacy than the same diameter of Fe3O4 nanoparticles. <10-nm sized 

nanoparticles have an advantage of “stealth” effect for phagocytosis by macrophage stayed in the 

human body. 

   As mentioned above, determining the most feasible ferrite nanoparticles is difficult due to the 

involvement of many factors for effective hyperthermia. However, the control of the occupation 

of the A- and B-sites by transition metal cations (M2+ and Fe3+) in spinel structure is suggested to 

be significant as a future technology to achieve more effective magnetic hyperthermia 
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4.5 Conclusion 

 

   In this chapter, magnetic property of ferrite nanoparticles was controlled in order to increase 

their heating efficiency and induce cell death effectively under AC magnetic field.  

 

First, synthesis and in vitro evaluation of CoFe2O4 nanoparticles were described. Because they 

have larger magneto-crystalline anisotropy than Fe3O4 nanoparticles, high heating efficacy 

derived from high coercivity is expected under AC magnetic field. As a consequence, CoFe2O4 

nanoparticles synthesized exhibit greater coercivity than Fe3O4 nanoparticles with almost the 

same diameter. An enhancement of hysteresis area derived from increase in the coercivity was 

confirmed to cause a higher heating efficiency of nanoparticles under an AC magnetic field. It 

was also demonstrated that cell death attributable to heat not to cytotoxicity was observed rapidly 

following exposure to AC magnetic field in MCF-7 cells containing CoFe2O4 nanoparticles with 

a diameter of 10 nm, whereas MCF-7 cell death was not induced using 10-nm MNPs under the 

same conditions.  

 

Second, from the aspect of frequency-dependence of heating efficiency, synthesis and in vitro 

evaluation of MgFe2O4 nanoparticles were described. Around 300 kHz, which corresponds to the 

frequency generally used for magnetic hyperthermia, the temperature rise of MgFe2O4 powder 

was literature-reported to be highest among other kinds of ferrite powder. As a result, 40-nm 

MgFe2O4 nanoparticles with a ferromagnetic property were obtained. Then, MCF-7 cells 

internalized large amount of MgFe2O4 nanoparticles, and the temperature rise and 90% of cell 

mortality was observed when subjected to AC magnetic field, with high biocompatibility. 

 

These results will assist in the design of magnetic nanoparticles as heat elements for magnetic 

hyperthermia, although further investigation including surface modifications of prevent Co2+ 

elution or improvement of magnetic property of MgFe2O4 will be necessary. Furthermore, 

increase in magnetization value of ferrite nanoparticles is also considered to be an effective 

approach as a method of enhancement of hysteresis area. MnFe2O4 and Mn0.5Zn0.5Fe2O4 are 

candidate to show higher magnetization than Fe3O4 nanoparticles from the aspect of amount of 

magnetic moment. In this situation, considering to biocompatibility of nanoparticles, a study of 
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Cu0.5Zn0.5Fe2O4 nanoparticles is now in progress because their saturation magnetization value 

estimated is also expected to be higher than other ferrite nanoparticles such as Fe3O4, CoFe2O4, 

and MgFe2O4. 

 

   Controlling magnetic properties of ferrite nanoparticles appropriate to application types is 

suggested to be important because the remarkable advantage is different among the kinds of ferrite 

nanoparticles. For increase in heating capacity, the strategy of enhancement of hysteresis area of 

nanoparticles is feasible. However, there may be a concern that the death of normal cells are also 

induced even when they internalized a little amount of nanoparticles having a large hysteresis 

area such as CoFe2O4. Using nanoparticles with a moderate hysteresis area such as MgFe2O4, mild 

hyperthermia can be achieved. Taking advantage of higher coercivity of CoFe2O4 nanoparticles, 

effective cell separation is expected. On the other hand, taking advantage of larger amount of 

internalization with an excellent biocompatibility, effective biotechnology such as internalization 

of vaccine into dendritic cells enough to activate immune responses (vaccine delivery) [33] is 

expected. 

 

   Overall, although determining the most feasible ferrite nanoparticles is difficult due to the 

involvement of many factors for effective hyperthermia, control of magnetic properties by the 

control of the occupation of the A- and B-sites by transition metal cations (M2+ and Fe3+) in spinel 

structure should be significant for increase in therapeutic effect of magnetic hyperthermia. 
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Chapter 5 

 

Application of Fe3O4 nanoparticles to cell-separation technology using 

microalgae 

 

 

5.1 Introduction 

 

   As an example of applications of ferrite nanoparticles, magnetic cell separation was discussed 

in this chapter. As described in chapter 1, ferromagnetic nanoparticles are required for effective 

cell separation. Hence, 40-nm Fe3O4 nanoparticles were employed in this chapter. The 

motivations of this chapter are (i) to recover cells from the mixture magnetically (to form flocs of 

nanoparticles and cells) and (ii) to remove nanoparticles from the flocs. In this study, (i) and (ii) 

were carried out using microalgae. 

 

   Microalgae are a diverse group of unicellular, aquatic, photosynthetic organisms [1]. They 

have attracted intensive research and development for the production of high-value added 

products such as biofuels, animal feedstock, recombinant proteins, drugs and chemicals, through 

solar energy harvesting and carbon dioxide fixation [1-10]. For example of recent research, gene 

delivery into microalgae using hollow microneedle array was demonstrated [11], which will 

contribute to future strategy of algae-based industry. However, the high cost associated with the 

platforms for microalgal biomass production is a significant obstacle for practical 

commercialization [12]. Harvesting is one of the key elements of microalgal technology that has yet 

to be optimized for improved economics and efficiency [13]. Various approaches are used for 

harvesting microalgae, such as centrifugation, flocculation, filtration and flotation [14,15]. Of 

these approaches, flocculation is a unique method that can be combined easily with other 

approaches to enhance the speed and efficiency of separation [16,17]. This is especially appealing 

for microalgal harvesting, where the low cell concentration (few grams per liter) and the small 

cell size (typically in the order of a few μm) present a serious challenge for effective separation 

[18]. 
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Flocculation is generally achieved by adding flocculants (or coagulants) that disrupt the 

repulsive force between particles and allow binding to occur to form flocs [19]. For microalgal 

cells the repulsive force is electrostatic, due to the surface charge of microalgal cells that are 

typically negative at physiological conditions [16]. Recently, magnetic nanoparticles (NPs) with 

positive surface charge have attracted interest as promising flocculants that rapidly adsorb onto 

the microalgal surfaces, form flocs, and enable rapid, efficient microalgal harvesting through an 

external magnetic field [14,20]. 

 

   Important to the success of this magnetic nanoparticle technology is an effective and efficient 

method for removing the nanoparticles from the microalgae after harvesting, to prevent 

contamination of the biomass product [19,21]. However, limited studies have been reported to 

date on the approaches to remove NPs from microalgal flocs. This includes dissolution of the 

nanoparticles with acid [22], mechanical detachment by ultrasonication or stirring [23,24], and 

alteration of the electrostatic force by changing the solution pH [25]. An elegant approach was 

recently reported by Lee et al. and Ge et al. that applies differences in the surface tension of the 

NPs and microalgae cell surface to adsorb/desorb the NPs from the cell at will [26,27]. Although 

effective, these methods require complex/expensive steps and/or apply toxic chemicals that can 

increase the economic cost of the process and raise environmental concerns. 

 

   To overcome the issues, this chapter focused on a simple, one-step procedure that applies 

sedimentation-force through a high-density solution to separate NPs from microalgae after 

flocculation. The concept is demonstrated for the first time using a model system, where 

Chlamydomonas reinhardtii (C. reinhardtii) wild-type cells were flocculated with as-prepared 

Fe3O4 NPs. Also, NPs adsorption to microalgae is described. To adsorb/desorb effectively, ~40-

nm Fe3O4 NPs and spermine were employed as magnetic NPs and as a coating molecule of NPs. 

A commercially available, high-density solution (Percoll®) was applied to induce the separation 

during sedimentation. NP separation was investigated under different solution pH using either 

centrifugal or magnetic force, and the cell viability after each procedure was assessed with a 

fluorescence-based assay. 
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5.2 Experimental 

 

Synthesis of magnetite nanoparticles 

 

Fe3O4 NPs with a diameter of 40 nm were synthesized by the same method described in the 

chapter 2. Briefly, 50 mL of aqueous solution containing 0.125 M of spermine (Sigma-Aldrich 

Japan, Japan) was prepared as base and protective reagent for NP synthesis. 50 mL of 0.05 M of 

FeCl2·4H2O (Kanto Chemical Co. Ltd., Japan) aqueous solution was added to the spermine 

solution and stirred for 4 h at room temperature. The resulting black precipitate of Fe3O4 NPs was 

collected, washed with water and ethanol, and dried before use. 

 

Microalgae cultivation 

 

CC124 cells, a catalogue for the wild-type strain of C. reinhardtii microalgae, were obtained 

from the Chlamydomonas Resource Center at the University of Minnesota. All chemicals were 

used as received from Fisher Scientific, unless stated otherwise. CC124 cells were grown in 10 

mL of TAP media that was rocked in 50 mL Erlenmeyer flasks under moderate light [28]. The 

cells were collected during exponential growth phase, and when the concentration reached 5.0 × 

106 cells/mL. Cell counting was performed using a TC20 cell counter (Bio-Rad, USA). 

 

Zeta potential measurement and NP adsorption to CC124 cells 

 

   NPs or CC124 cells were dispersed in TAP media for the zeta potential measurement. 

Approximately 2 mL of the NP or CC124 suspension was assessed with electrophoretic light 

scattering, using a 90 Plus Zeta Particle Size Analyzer (Brookhaven Instruments Corporation, 

USA). Zeta potential was calculated using the properties for aqueous solution pre-recorded in the 

instrument software: i.e., 0.890 cP, 1.330, and 78.54 for the viscosity, reflective index and 

dielectric constant, respectively.  

   To adsorb the NPs to CC124 cells, 1 mg of NPs and 7.5 × 106 of CC124 cells were mixed in 5 

mL of TAP culture media and stirred at 1000 rpm for 15 min. The cells were used immediately after 

NP adsorption.  
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For all experiments, the pH of the TAP media was adjusted as needed using 0.5 M HCl or 0.5 M 

KOH. 

 

Cell sedimentation 

 

   Percoll® (GE Healthcare, USA) was diluted to 35 vol% or 50 vol% with TAP media. From 

the manufacturer’s specification, the as-received Percoll® has a density of 1.130 ± 0.005 g/mL. 

Assuming the density of TAP media to be about 1 g/mL, the final density of Percoll® after dilution 

to 35 and 50 vol% is calculated to be 1.046 and 1.065 g/mL, respectively. The viscosity of TAP 

media and the diluted Percoll® solution was measured using a Cannon-Fenske Routine 

Viscometer (Cannon instrument company, USA). 1 mL of the TAP media containing 1.5 × 106 

of CC124 cells (with or without NP adsorption) was layered carefully onto 1 mL of 35 or 50 vol% 

Percoll®. The layered solution was then either centrifuged at 1500 × g or 2000 × g for 5 min, 

or placed on a ferrite magnet for 10 min to allow sedimentation. The average magnetic field of 

the magnet was measured to be 1500 Oe using a 6010 model Gaussmeter (Bell Technologies Inc., 

USA). After sedimentation, the sample was used immediately for image analysis.  

 

Cell viability assay 

 

   Fluorescein diacetate (FDA) and propidium iodide (PI) were purchased from MP Biomedicals 

Inc. and Alfa Aesar, respectively. The dye solution, which is 1 μL of 10 mg/mL FDA in dimethyl 

sulfoxide and 10 μL of 1 mg/mL PI in water, was added into 1 mL of TAP media containing 1.5 

× 106 of CC124 cells (with or without NP adsorption), and incubated for 20 min. After incubation, 

the cells were imaged immediately with a fluorescence microscope to assess their viability. 

 

Image analysis 

 

   The samples were imaged with an epifluorescence microscope (Axio Imager M2m Motorized 

Microscope, Carl Zeiss, Germany). ImageJ software from NIH was used to analyze the obtained 

images [29]. One hundred particles (either individual cells, flocs or background contamination) 

were investigated to assess the distribution of particle size and the relative adsorption quantity, 
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𝑄rel, which we define here as: 

 

Equation 1   𝑄rel = (𝐴projected − 𝐴red) 𝐴red⁄  

 

where 𝐴projected is the projected area of an arbitrary particle, and 𝐴red is the projected area of 

red fluorescence observed within that particle. Histogram data was fitted to a Gaussian 

distribution using Origin software (OriginLab Corporation, USA). 
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5.3 Flocculation of nanoparticles and microalgae 

 

   Flocculation is induced by four major mechanisms: double-layer compression, sweep 

flocculation (or colloid entrapment), adsorption-induced charge neutralization, and adsorption-

induced interparticle bridging [30]. Double-layer compression is a function of the ionic 

concentration of the solution. Since the ionic concentrations of the solution between our samples 

are comparable, the effect of double-layer compression is expected to be minimal. Sweep 

flocculation is also not expected due to the absence of chemical precipitation, and hence the two 

adsorption-induced mechanisms are the dominant mechanisms of flocculation in this study’s 

system. 

Adsorption of NPs to CC124 cells can occur through concurrent contributions of van der 

Waals, dielectric, and electrostatic forces [31]. In particular, it has been shown that electrostatic 

force is the major force that determines the interaction between the cells and freshwater 

microalgae (e.g., CC124) and NPs [32]. Electrostatically-controlled flocculation is commonly 

accomplished by changing the zeta potential of NPs, 𝜁NP, and microalgae, 𝜁algae, with solution 

pH [20]. Flocculation of NP-adsorbed CC124 cells is expected to be the most significant when 

attractive electrostatic force is at maximum (i.e., sum of the magnitude of the zeta potential, ∑|𝜁|, 

is maximum at ζNP𝜁algae < 0), and the least effective when repulsive electrostatic force is 

maximum (i.e., maximum ∑|𝜁| at ζNP𝜁algae > 0). 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Effect of pH on zeta potential of Fe3O4 NPs and CC124 cells. Reprinted with permission. 

Copyright @ 2016 Elsevier B. V. 
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   Fig. 5.1 plots the zeta potential of NPs and CC124 cells as a function of solution pH. 𝜁NP 

was generally more positive than 𝜁algae. The positive 𝜁NP observed below the isoelectric point 

(IEP) of pH 8.8 is attributed to the protonation of amine groups from spermine molecules coating 

the NPs. The negative 𝜁NP above IEP have been attributed to the formation of FeO–O– groups 

[22,33]. pH has also been reported to effect the protonation of the functional groups on microalgal 

cell surface and thereby change 𝜁algae [22,34]. Indeed we observed change in 𝜁algae with pH 

with IEP at pH 6.3. Based on Fig. 5.1, the strongest NP-CC124 adsorption is expected to occur at 

pH 7.0, and the weakest at pH 2.4. 

 

   Optical microscope images were taken to assess the effect of electrostatic force on NP-CC124 

flocculation (Fig. 5.2). Figure 5.2a are images from CC124 cell solution containing no NPs 

(control). The top row shows auto-fluorescence (colored red) from the chlorophyll of CC124 cells. 

The chlorophyll is also observed in the transmitted light image as dark grey particles (Fig. 5.2a, 

second row). The grey particle that does not overlap with a red fluorescence (highlighted with a 

circle) is an artifact, and in the control sample, it depicts the background impurity inherent to the 

experiment. 

   Fig 5.2b and c are images of CC124 cells after stirring in NP-containing TAP media, at pH 

2.4 (weak binding) and 7.0 (strong binding), respectively. In the transmitted light images, the 

opaque NPs form sub-micron sized aggregates, and are observed as black particulates with no 

fluorescence. It is confirmed from the transmitted light images that, in contrast to Fig. 5.2a, the 

CC124 cells in Figure 2b and c are coated by black NP aggregates, and forming flocs bigger than 

the naked CC124 cells. In particular, the larger flocs at pH 7.0 showed multiple CC124 clusters 

embedded within a matrix of NPs, indicating significant interparticle-bridging between 

negatively-charged CC124 cells and positively-charged NPs. 

   To gain a quantitative measure of this observation, a histogram of the projected area of each 

particle, 𝐴projected, was prepared from the transmitted light image (Fig. 5.2, bottom row). These 

histograms delineate the effect of electrostatic force between the NPs and the CC124 cells on floc 

formation. The peak of the histogram, 𝐴peak, and the full width at half maximum of the peak 

(FWHM) were obtained by fitting the histograms to a Gaussian distribution. 

   The 𝐴peak and FWHM of the control sample (naked CC124 cells) were 127 μm2 and 78 μm2, 

respectively. When NP-CC124 flocculation was induced at pH 2.4 and pH 7.0, 𝐴peak increased to 
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Fig. 5.2 Optical micrograph images and histogram of NP-CC124 flocculation. (a) CC124 in TAP 

media without NPs (control), (b) with NPs at pH 2.4 and (c) at pH 7.0. The first, second and third 

rows are images taken at the same location showing fluorescence, transmitted light, and 

fluorescence superimposed on transmitted light, respectively. The circles in Fig. 5.2a highlight an 

example of an artifact (particle with no fluorescence). All scale bars in the figure represent 50 

μm. The histograms in the bottom row show the size distribution of the imaged particles. Solid 

lines indicate the Gaussian distribution fit for each histogram. Reprinted with permission. 

Copyright @ 2016 Elsevier B. V. 

 

 

298 and 619 μm2, respectively, as expected from the images of the flocs in Fig. 5.2b and c. A 
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significant increase in FWHM values (232 and 767 for pH 2.4 and pH 7.0, respectively) was also 

confirmed, which indicates the polydispersity of the floc size. 

   The relative quantity of NPs contained within individual flocs was assessed by calculating 

𝑄rel from fluorescence images (Equation 1). The 𝑄rel values were 0.0 ± 0.1, 0.7 ± 0.5 and 1.9 

± 0.8 for the control, pH 2.4 and pH 7.0 images, respectively. A 𝑄rel value of zero is equivalent 

to all flocs containing no NPs, as expected for the control sample. Values of 𝑄rel for pH 2.4 and 

pH 7.0 are significantly larger than that of the control, indicating significant adsorption of NPs 

onto CC124 cells. The 𝑄rel of pH 7.0 was the largest, indicating the effective increase in NP 

content within the flocs, again depicting the occurrence of adsorption-induced interparticle 

bridging mechanism under attractive electrostatic force. 
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5.4 Removing nanoparticles from microalgae 

 

Forces that act on centrifuged spherical particles are buoyancy force, FB, drag force, FD, and 

centrifugal force, FC [16,35]: 

 

Equation 2.   𝐹𝐵 = 𝑉𝑝𝜌𝑠 × 𝑅𝐶𝐹 

Equation 3.   𝐹𝐷 = 6𝜋𝑟𝜂𝑣 

Equation 4.   𝐹𝐶 = 𝑚𝑝 × 𝑅𝐶𝐹 

 

where 𝑉𝑝  is the volume of the particle, 𝜌𝑠  is the density of solution, 𝑅𝐶𝐹  is the relative 

centrifugal force, 𝑟 is the radius of the particle, 𝜂 is the viscosity of the solution, 𝑣 is the 

velocity of the particle, and 𝑚𝑝 is the mass of the particle. In this study, the NPs are aggregated 

and move faster than CC124 cells. This is attributed to the smaller size of the NP aggregates that 

result in smaller FB and smaller FD, allowing the NPs to move through the solution with less 

hindrance compared to the CC124 cells. 

 

Within a NP-CC124 flocculate, the differences in the net forces between NPs and CC124 cells 

during centrifugal sedimentation will induce a tensile force between the NPs and CC124 cells. 

We hypothesized that such tensile force can be used to separate NPs from adsorption-induced NP-

CC124 flocs, offering a simple avenue to recover NPs from the microalgal flocs. 

 

To test this hypothesis, a simple bi-layer setup was prepared as illustrated in Fig. 5.3a. TAP 

media containing green CC124 cells (with or without NPs) is layered above an aliquot of 

transparent Percoll®. Percoll® is a solution containing colloidal silica coated with 

polyvinylpyrrolidone and is commonly used for biological centrifugal separation. Here, it was 

used as a representative high-density solution where 𝜌𝑠 is ~1.046 g/mL (see section 5.2). 𝜂 was 

also higher than the TAP media (1.02 and 1.16 cP for TAP media and 35 vol% Percoll®, 

respectively). As depicted in Equation 2 and Equation 3, higher 𝜌𝑠 increases FB and higher 𝜂 

increases FD. Hence centrifugal sedimentation of particles through 35 vol% Percoll® will be more 

hindered compared to similar sedimentation through the TAP media. 
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Fig. 5.3 Effect of centrifugal sedimentation on cell sedimentation with and without NPs. The 

samples were centrifuged at 1500 × g with 35 vol% Percoll® for 5 min. (a) Illustration of the bi-

layer setup. (b) Images of the CC124 cells with no NPs (control), (c) NPs adsorbed to CC124 at 

pH 2.4, and (d) at pH 7.0. The right panels of (b), (c) and (d) are fluorescence images 

superimposed onto transmitted light images. All scale bars represent 50 μm. Reprinted with 

permission. Copyright @ 2016 Elsevier B. V. 

 

Fig. 5.3b shows the result from the control experiment, where NPs were not present. A distinct 

green band is observed at the interface between the TAP media and Percoll® (depicted by the 

dotted line), and microscopy images confirm the CC124 cells dispersed in this band. This 

indicates that the sum of FD and FB of the naked CC124 cells in the Percoll® layer are comparable 

or equal to FC, effectively hindering or preventing the CC124-cell sedimentation through the 

Percoll® layer. 

 

When CC124 cells with NPs adsorbed at pH 2.4 was centrifuged under the same condition 

(Fig. 5.3c), we found a black pellet at the bottom of the centrifugal tube, and a green band around 

the TAP/Percoll® interface. Fluorescent and transparent light imaging confirmed that the black 

pellet was NP aggregates with a few red (fluorescent) CC124 cells, and the green band consisted 
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only of naked CC124 cells. This result demonstrates that NPs can sediment through the Percoll® 

layer, despite the increased FD and FB, while the naked CC124 cells cannot. Furthermore, it 

indicates that the adsorption force was smaller than the tensile force induced between the NPs and 

the CC124 cells, resulting in the separation of NPs from the microalgal flocs. Indeed, 𝑄rel of the 

algae in the green layer was 0.0 ± 0.2, indicating that NPs were effectively removed from all the 

CC124 cells in the green layer using this sedimentation process. 

 

On the other hand, when NPs were adsorbed at pH 7.0, no green/transparent interface was 

observed, and instead a green-tinted black pellet was found at the bottom of the tube (Fig. 5.3d). 

This suggests that the adsorption force was larger than the tensile force, allowing the NPs to drag 

the CC124 cells through the dense Percoll® layer without disintegration (or desorption). 

Microscopy imaging of the pellet also supports this case, showing large aggregates with clusters 

of CC124 cells embedded within the NP matrix with a 𝑄rel of 1.5 ± 0.9. The difference in 𝑄rel 

before and after centrifugation indicates a decrease of about 20% in NP adsorption per floc. This 

may be attributed to the separation of NPs that were part of the floc but were located relatively 

far from the CC124 cells, and hence experienced less electrostatic attractive force with the cells. 

 

   The key to successful NP removal from microalgae using the sedimentation-based approach 

is to induce a sufficient difference in the net force between the NPs and the CC124 cells. One way 

to achieve this is to increase the 𝜂 and 𝜌𝑠 of the bottom (i.e., Percoll®) layer. Due to the larger 

radius of CC124 cells, the effect of increased 𝜂 and 𝜌𝑠 on FB and FD are more significant than 

the NPs (see Equation 2 and Equation 3). Therefore, the CC124 cells are subjected to a larger 

increase in resistance for moving in the direction of FC, and as a result, a larger tensile strength 

between the NPs and the CC124 cells is expected to be induced. 

 

To demonstrate this aspect, an experiment similar to the one depicted in Fig 5.3 was performed, 

but using 2 mL of Percoll® with an increased concentration of 50 vol%. The higher concentration 

results in higher 𝜌𝑠 and 𝜂 of 1.065 g/mL and 1.244 cP, respectively. RCF was also increased 

from 1500 to 2000 × g to enhance the rate of separation. As expected, the control sample without 

NPs resulted in a formation of green band around the TAP/Percoll® interface, indicating that 

CC124 cells were unable to pellet down under the applied condition (Fig. 5.4a). At pH 2.4, where 
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the electrostatic force between the NPs and CC124 cells was strongly repulsive, we saw separation 

of NPs from the microalgal floc (Fig. 5.4b), consistent with what was observed for 35 vol% 

Percoll® at 1500 × g (Fig. 5.3c). However, in this modified experiment separation was also 

confirmed from the flocculation that was strongly bound by the electrostatic attractive force at pH 

7.0 (Fig. 5.4c). This confirms that sedimentation-induced tensile force through high-density, high-

viscosity solution is an effective approach to recover the ferromagnetic NPs from microalgal flocs, 

even under the physiological condition that causes strong electrostatic attraction. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Effect of centrifugal sedimentation on NP-CC124 flocs at 2000 × g with 50 vol% 

Percoll® for 5 min. (a) Images of the CC124 cells with no NPs (control), (c) NPs adsorbed to 

CC124 at pH 2.4, and (d) at pH 7.0. Reprinted with permission. Copyright @ 2016 Elsevier B. V. 

 

 

A similar mechanism can applied for recovering NPs from microalgal flocs using magnetic-

field-based sedimentation, which is economically more desirable for large-scale production than 

centrifugation-based sedimentation [20,36]. For the magnetic-field-based sedimentation, 

Equation 4 will be substituted by the magnetic force experienced by the particles, 𝐹𝑀 [37,38]: 

 

Equation 5.   𝐹𝑀 = 4 3⁄ × 𝑉𝑀(�⃗⃗� ∙ ∇⃗⃗ )𝐵0
⃗⃗ ⃗⃗  

 

where 𝑉𝑀 is the magnetic volume of the particle, �⃗⃗�  is the magnetization of the particle per unit 
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volume, and 𝐵0
⃗⃗ ⃗⃗  is the externally-applied magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 Effect of magnetic force on separation of NPs from microalgal flocs. (a) Images of the 

CC124 cells with no NPs (control), (b) NPs adsorbed to CC124 at pH 2.4, and (c) at pH 7.0. 

Reprinted with permission. Copyright @ 2016 Elsevier B. V. 

 

 

Fig. 5.5 are images of cuvettes containing the TAP/Percoll® bi-layer and CC124 cells with 

and without NPs. The cuvette was placed on a ferrite magnet to induce magnetic sedimentation. 

The results were comparable with the centrifugal-sedimentation studies described above (Fig. 5.3). 

The control sample formed a distinctive green/transparent interface at the surface of the Percoll® 

layer, indicating little penetration of green CC124 cells into the Percoll® (Fig. 5.5a). NP-CC124 

flocs formed at pH 2.4 were disintegrated into a green layer above Percoll® and a black precipitate 

at the bottom of the vial. This confirms that magnetically-induced tensile force is also an effective 

approach to recover the ferromagnetic NPs from the microalgal flocs. However, a green 

TAP/Percoll® interface was not observed at pH 7.0, and the majority of the green cells were 

magnetically pulled down to the bottom of the vial. This may be attributed to the smaller FM 

relative to the FC applied in Fig. 5.4, and could be circumvented by using a different magnet with 



 

123 

 

Chapter 5 

higher FM, or further increasing the 𝜌𝑠 and 𝜂 of the high-density layer solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 Effect of NPs and sedimentation treatments on CC124 cell viability (pH 7.0). Reprinted 

with permission. Copyright @ 2016 Elsevier B. V. 

 

 

Finally, we investigated the effect of NP adsorption and Percoll®-layered sedimentation on 

CC124 cell viability using the well-established FDA/PI dual fluorescence assay (Fig. 5.6) [11]. 

Briefly, FDA fluoresces when exposed to viable cells, and PI fluoresces when exposed to dead 

cells. The column in Fig. 5.6 correspond to the left ordinate and indicate the percentage of cells 

that showed fluorescence from FDA and not from PI (Equation 6). 

 

Equation 6. 

Viability (%) =
Number of FDA positive and PI negative cells

Number of total cells 
× 100 

 

The points in Fig. 5.6 correspond to the right ordinate and indicates the ratio between the initial 

viability (before exposure to NPs) and the viability after the step indicated in the abscissa 

(Equation 7). 
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Equation 7.  

Relative viability (−) =
Viability after specified step

Viability before NP exposure
 

 

where the viability before NP exposure was 98%. From the figure, it is confirmed that the 

cytotoxicity of NP adsorption, centrifugal and magnetic sedimentation, and exposure to the 

Percoll® was minimal (viability > 96%) and the majority of the cells stayed viable throughout the 

whole process. 
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5.5 Conclusion 

 

   This research demonstrates that sedimentation through a higher-density, higher-viscosity 

solution than cell media enables effective removal of Fe3O4 NPs from microalgal flocs. First, the 

flocs of nanoparticles and cells were successfully formed using an attractive electrostatic 

interaction between them. The larger-sized CC124 cells experience larger drag and buoyancy 

force than the smaller-sized NPs, which induces tensile force between the NPs and CC124 cells. 

When the tensile force overcomes the attractive forces forming the floc, NPs detach and form 

pellets at the bottom of the solution, while CC124 cells float as a green band mid-way in the 

solution. Sedimentation by both centrifugal and magnetic (just at pH 2.4) forces achieved NP 

removal, and the cytotoxicity of this procedure on CC124 cells was below 4%.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 Figure conclusion in chapter 5. Reprinted with permission. Copyright @ 2016 Elsevier 

B. V. 

 

   Figure conclusion was shown in Fig. 5.7. This approach offers significant opportunity for 

purifying microalgal biomass after nanoparticle-flocculation-based harvesting, and for decreasing 

the cost of microalgal biotechnology. This may also find avenues in other applications that applies 

flocculation; such as algal biofilm formation in photobioreactors and wastewater treatment. As a 

future work, separation of NPs from microalgal flocs by magnetic force at pH 7 should be 

achieved. Of which, using a magnet with stronger magnetic properties and using NPs with a 

higher coercivity such as CoFe2O4 instead of Fe3O4 may be effective approaches.  
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Chapter 6 

 

General Conclusion 

 

 

   The motivation and results of this thesis are summarized below. The schematic illustration of 

my approach in this thesis is shown in Fig. 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1 Schematic diagram of this thesis 

 

 

   In chapter 1, the background of this thesis research was described. The objective of this thesis 

is design of ferrite nanoparticles suitable for magnetic hyperthermia. Iron oxides such as -Fe2O3 
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or Fe3O4 nanoparticles (MNPs) are used as heat generators as they have the advantages of high 

biocompatibility and relatively large magnetization but commercially-used particles does not 

generate sufficient heat for cancer cell death. To overcome the issue, taking advantages of the 

previous findings of T. Osaka and his group, this thesis focused on two important points in the 

design of ferrite nanoparticles for effective magnetic hyperthermia. One is to understand the 

interactions of nanoparticles and cells. The other is to control magnetic and surface properties of 

nanoparticles. Furthermore, as an example of applications of ferrite nanoparticles, the control of 

magnetic properties appropriate to cell separation was also discussed in this thesis.  

 

   In chapter 2, to understand the effect of nanoparticles on cells, induction of cell death by 

synthesized MNPs was investigated in mesothelioma cells. Mesothelioma was targeted since 

there is little effective treatment for mesothelioma. From this chapter, there are three novel 

findings in the interaction of MNPs and mesothelioma cells, which are that (i) the specific 

apoptotic effect of MNPs on biphasic mesothelioma MSTO-211H cells was observed without AC 

magnetic field, (ii) high degree of cell mortality in all three major histological subtypes of 

mesothelioma was induced with AC magnetic field, and (iii) cellular uptake of MNPs was 

suggested to be important to induce cell death effectively under AC magnetic field. 

 

   In the first of chapter 3, as a part of the approach of understanding the interaction in detail 

between MNPs and cells, cell damage induced by cellular uptake of MNPs was discussed in 

human breast cancer cells. In the second of chapter 3, design of surface property of MNPs 

associated with selectivity to cancer cells and combination with photodynamic therapy for in vivo 

application was discussed. Control of their magnetic property appropriate to the applied condition 

of AC magnetic field was also considered. As a result, the designed MNPs showed high potential 

of desirable approach for successful application of MNPs to magnetic hyperthermia, from in vivo 

experiments using melanoma. 

 

 

   In chapter 4, as a design of nanoparticles for effective magnetic hyperthermia, control of 

magnetic properties of MFe2O4 nanoparticles for increase in heating efficacy was focused. 

Synthesis and characterization of CoFe2O4 and MgFe2O4 nanoparticles was examined. Through 
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the comparison of heating efficacy of each ferrite nanoparticles, the significance of showing larger 

magnetization and larger coercivity in the range of applied magnetic field was suggested. 

Furthermore, the in vitro evaluation of interactions between CoFe2O4 and MgFe2O4 nanoparticles 

and breast cancer cells was discussed. Although many factors such as cellular uptake and 

biocompatibility were also involved for achieving effective magnetic hyperthermia, the control 

of the occupation of the A- and B-sites by transition metal cations (M2+ and Fe3+) in spinel 

structure should be a key for further design in future. 

 

   In chapter 5, for practical use of microalgae which produce biofuels, sedimentation-induced 

detachment of MNPs from microalgal flocs using a dense/viscous solution (Percoll®) was 

discussed. Through this study, ferromagnetic ferrite nanoparticles synthesized in this thesis was 

suggested to have high potential for applying to cell separation technology. 

 

   Through all chapters, the significance of control of magnetic and surface properties of ferrite 

nanoparticles for their successful bio-application was examined and discussed. Especially, 

controlling of magnetic properties of ferrite nanoparticles appropriate to the applied condition of 

AC magnetic field and evaluation of the effect of nanoparticles on cells were focused. As a result, 

design of ferrite nanoparticles with considering (1) showing larger magnetization and larger 

coercivity in the range of applied magnetic field, (2) combination with other effects such as 

specific-cytotoxicity and photodynamic therapy, and (3) increase in cellular uptake specific to 

cancer cells, will help to achieve effective magnetic hyperthermia in future. 

   Considering to the association of each chapters of this thesis as shown in Fig. 6.1, the study 

of their combination is very interesting. As future works, mesothelioma and melanoma therapy 

using MFe2O4 nanoparticles with larger magnetization and larger coercivity in the range of applied 

magnetic field are ones of candidates. 
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