

MINISTRY OF SCIENCE AND EDUCATION

NATIONAL TECHNICAL UNIVERSITY

“KHARKIV POLYTECHNIC INSTITUTE”

DEPARTMENT OF SOFTWARE ENGINEERING AND MANAGEMENT

INFORMATION TECHNOLOGIES

METHODICAL RECOMMENDATION TO

“BASICS OF SOFTWARE ENGINEERING

LABORATORY PRACTICE

PART 1”

For students of specialties

121 “Software Engineering”,

122 “Computer Science and Intellectual Systems”

Kharkiv

NTU “KhPI”

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic National Technical University "Kharkiv Polytechnic Institute"...

https://core.ac.uk/display/286951288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Methodical recommendation to “Basics of software engineering. Laboratory

practice. Part 1” for students of Technical science / authors Melnyk K.V., Borisova

N.V., Lutenko I.V., Ershova S.I., Smolin P.A., Grinchenko M.A. – Kharkiv : NTU

“KhPI”. – 22 p.

Authors Melnyk K.V.,

 Borisova N.V.,

 Lutenko I.V.,

 Ershova S.I.,

 Smolin P.A.,

 Grinchenko M.A.

Reviewer Shmatko A.V.

Department of Software Engineering and Management Information

Technologies

CONTENT

Introduction ... 3

Individual task ... 5

Additional information about calculating the formulae 6

Lab № 1 Modelling of Domain ... 9

Lab № 2 Coding of Domain .. 16

Appendix A Requirements for report ... 20

Reference list ... 22

3

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

INTRODUCTION

Software engineering is an engineering discipline that is concerned with all

aspects of software production [1].

Software engineering can be divided into sub-disciplines [2]. Some of

 them are:

 Software engineering management: The application of management

activities – planning, coordinating, measuring, monitoring, controlling,

and reporting – to ensure that the development and maintenance of

software is systematic, disciplined, and quantified.

 Requirements engineering: The elicitation, analysis, specification, and

validation of requirements for software.

 Software design: The process of defining the architecture, components,

interfaces, and other characteristics of a system or component.

 Software construction: The detailed creation of working, meaningful

software through a combination of programming, verification, unit

testing, integration testing, and debugging.

 Software testing: An empirical, technical investigation conducted to

provide stakeholders with information about the quality of the product or

service under test.

 Software maintenance: The totality of activities required to provide cost-

effective support to software.

 Software quality.

The outcome of software engineering is an efficient and reliable software

product. Software product is a computer programs with all associated

documentation and configuration data that is required to make these programs

operate correctly [1]. Essential attributes of good software product: maintainability,

dependability and security, efficiency, acceptability.

4

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

A software process is a sequence of activities that leads to the production of

a software product. There are four fundamental activities that are common to all

software processes. These activities are:

1. Software specification, where customers and engineers define the

software that is to be produced and the constraints on its operation.

2. Software development, where the software is designed and programmed.

3. Software validation, where the software is checked to ensure that it is

what the customer requires.

4. Software evolution, where the software is modified to reflect changing

customer and market requirements.

The methodical recommendation is about modelling (or designing) and

creating a software that will help to calculate some system of expressions with

unknown variables. The values of variables can be obtained from different sources:

from file or from keyboard.

5

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

INDIVIDUAL TASK

Choose your individual task from table 1.1 corresponding to number of

group’s list.

Table 1.1 – Individual task for lab

6

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

ADDITIONAL INFORMATION ABOUT CALCULATING THE

FORMULAE

Summation or sigma notation (denoted with an capital Greek

sigma symbol ∑) is a convenient and simple form of shorthand used to give a

concise expression for a sum of the values of a variable.

Let 1 2, , , nx x x denote a set of n numbers, where 1x is the first number in

the set, ix represents the i th number in the set. Then a sum of the set is:

1 2
1

n

i n
i

x x x x


   

where i represents the index of summation;

1i  is starting point of the index or lower limit of summation;

n is stopping point of the index or upper limit of summation (the index i is

incremented by 1 for each successive term, stopping when i n).

Examples:

3

1

4
2 2 2 2

2

1 2 3 6

(1) (2 1) (3 1) (4 1) 14

i

i

i

i





   

       





There is concise expression for a multiplication of the values of a variable.

The product operator in mathematics is indicated with capital pi notation  .

It is used in the same way as the Sigma symbol described above, except that

succeeding numbers are multiplied instead of added:

7

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

1 2
1

n

i n
i

x x x x


    ,

where i represents the index of multiplication;

1i  is starting point of the index or lower limit of multiplication;

n is stopping point of the index or upper limit of multiplication (the index i

is incremented by 1 for each successive term, stopping when i n).

Examples:

3

1

4

0

1 2 3 6

1 1 1 1 1
() (0) (1) (2) (3) 3.28

2 2 2 2 2

i

i

i

i





   

          





There are many complex formulae with double summation, double

multiplication and mixed variant.

1 2
1 1 1 1 1

1 2
1 1 1 1 1

1 2
1 1 1 1 1

1 2
1 1 1 11

n n n n n

ij j j nj
i j j j j

n n n n n

ij j j nj
i j j j j

n n n nn

ij j j nj
i j j j j

n n n n n

ij j j nj
j j j ji

x x x x

x x x x

x x x x

x x x x

    

    

    

   

   

   

   

   

   

   

   

   

Example of double summation:

3 4 4 4 4

1 2 2 2 2

() (1) (2) (3) 45
i j j j j

i j j j j
    

          

8

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

Example of double multiplication:

3 4 4 4 4

1 2 2 2 2

() (1) (2) (3) 15120000
i j j j j

i j j j j
    

          

Example of mixed variant:

4 4 4 43

1 2 2 2 2

3 4 4 4 4

2 2 2 21

() (1) (2) (3) 390

() (1) (2) (3) 3240

i j j j j

j j j ji

i j j j j

i j j j j

    

   

       

       

   

   

9

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

LAB № 1

MODELLING OF DOMAIN

Goal: Learning Use Case and Activity Diagrams by using Visual paradigm

Tasks:

1. Get the task and analyze the computational algorithms.

2. Develop the Activity diagram.

3. Develop the Use Case diagram.

4. Prepare the report of the work

Progress of the lab.

1. Get the task and analyze the computational algorithms.

According to the task in Table 1 student should analyze computational

algorithms.

For example, we obtained the following task:

The application has to resolve the following system of formulae:

2

2

2 1

11

, 4

(), 4

n

i

n n

ji

i x

y
i

x x x
j



 




 


 
    






The application should also provide the data input from keyboard and file

and output to screen and file.

As we see in expressions, we have unknown variables x and n . To calculate

the formulae student should input the values of x and n first. If we input 4x   ,

the application should calculate result of first expression, otherwise second. There

is one constraint in the second expression for stopping point of the index i : upper

10

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

limit of multiplication should be bigger than starting value of i . Therefore, we

obtain next one constraint: 2 1 3n n    .

So, input data for resolving system of expressions are x and 3n  .

2. Develop the Activity diagram.

The free specialized software Visual Paradigm Community Edition [3] is

recommended to draw the Activity diagram (Figure 1.1 - 1.2).

Figure 1.1 – Visual Paradigm main menu

Figure 1.2 – Page with different versions of Visual Paradigm

11

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

Start Visual Paradigm. Create new project using menu: “File → New

Project”. Define the name of project. Then create activity diagram and set the name

using menu: “File → New Diagram → New Activity Diagram”; or click the

“Activity Diagram” menu in the Diagram Navigator and then select the “New

Activity Diagram”.

Activity diagram is used to describe dynamical properties of the system.

For example, it is possible to use it to describe different algorithms that are

necessary to implement in the system. The following nodes and edges are typically

drawn on UML activity diagrams (Figure 1.3): activity, partition, action, object,

control, activity edge.

Figure 1.3 – Basic Activity Diagram elements

In our case the computational algorithm should look like shown on

Figure 1.4.

There is possibility of changing font value in an activity diagram: right click

an element or a diagram, then in “Styles and Formatting” menu student should

choose “Formats” menu.

User can set the diagram transparency the same way: “Styles and Formatting

→ Transparent”.

12

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

Figure 1.4 –Activity Diagram for chosen task

13

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

3. Develop the Use Case diagram.

Create Use Case diagram and set the name using: “File → New Diagram →

New Use Case Diagram” menu; or click the “Use Case Diagram” menu in the

Diagram Navigator and then select the “New Use Case Diagram”.

Use case diagrams are used to describe a set of actions (use cases) that

some system should or can perform in collaboration with one or more external

users of the system (actors). The Use Case diagram reflects functional

requirements of software. All main elements of Use Case diagram are described in

the table 1.2.

Table 1.2 – Main elements of Use Case Diagram

Use cases describe functionality

provided by systems, and determine the

requirements the systems pose on their

environment.

An actor is a person, organization, or

external system that plays a role in one

or more interactions with your system.

System boundary boxes (optional)
indicates the scope of system.

An association between an actor and a

use case indicates that the actor and the

use case somehow interact or

communicate with each other. An actor

could be associated to one or several use

cases.

Extend

Extending use case is optional,

supplementary.

14

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

End of the Table 1.2

Include

Included use case required, not optional.

Generalization

Specialized use case is required, not

optional, if base use case is abstract.

The free specialized software Visual Paradigm Community Edition is

recommended to draw the Use Case diagram. The Use Case diagram for the given

task is shown on Figure 1.5.

Figure 1.5 – Use Case Diagram for chosen task

15

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

There are two main use cases in the diagram:

 Input data: this functionality let user type necessary data from

keyboard or read input data from outer file. The child use cases are

optional, so in the diagram we should use arrow “extend”.

 Calculate result: here the application should save results in outer file

always, so we should use arrow “input” for this functionality.

4. Prepare the report of the work

Requirements for the report are in Appendix A.

16

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

LAB № 2

CODING OF DOMAIN

Goal: Learning basic principles of C++

Tasks:

1. Develop the code for the task from previous lab.

2. Prepare the report of the work

Progress of the lab.

1. Develop the code for the task from previous lab.

According to the task from the previous lab you should develop

computational algorithm in Visual Studio.

For example, you obtained the following task:

The application has to calculate the values by the following formula for the

range with a predefined step:


















7x,7x

7x,)ix(
y

2n

2i

2

 (2.1)

Solution. First, to calculate the first formula you should input the values of x

and n . The following constraint: 2 2 4n n    , so value of n should be greater

than 4:

The following are some examples:

15787xy8x;5n

25)36()26()ix()ix(y6x;5n 22
3

2i

2
25

2i

2



 






17

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

Create a new Visual Studio C++ Project. On the menu bar, choose

File→New→Project (Figure 2.1.).

Figure 2.1 – Process of creating a blank project

In the Visual C++ category, choose the Win32 Console Application

template, and then name the project (Figure 2.2).

Figure 2.2 – Process of creating a blank project

18

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

When the Win32 Application Wizard appears, choose the Finish button.

Implement the task from the previous lab.

Additional information about C++ you may find in [4, 5].

The program for calculation of the function y is given on Figure 2.3.

Samples calculated by the program can be found on Figure 2.4.

Figure 2.3 – Program for chosen task

Figure 2.4 – Result of execution the program

19

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

The next step is to modify the program. It should has the following

possibilities:

 you should input predefined range)b,a(and step;

 program should calculate function y for each value x from range)b,a(

(Figure 2.5);

 the results of each step should be displayed on the screen.

x1=a b

step

x2

step

x3

x1=a
x2=a+step
x3=a+2step

x

y

y1

y2

y3 ...

xk

yk

xk=a+(k-1)step
...

y1
y2

y3

yk

Figure 2.5 – Graphical representation of calculation

2. Prepare the report of the work

Requirements for the report are in Appendix A.

20

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

APPENDIX A

REQUIREMENTS FOR REPORT

Requirements for the report.

1. The report shall contain a cover page. Example for the cover page is shown

on figure A.1.

2. The report shall contain the results of implementation of all the tasks of the

lab in accordance with the individual task.

3. A structure of report is shown below:

 Theme;

 Goal;

 Tasks;

 Progress of work;

 Conclusions (Example of Conclusions: during execution of this

laboratory training we got skills and knowledge about … We

described…)

4. The report shall be drawn up according to the department standards.

Template can be found by the following path:

\\SELENA\Method\Paper work\STVUZ.dot

21

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

Figure A.1 – Cover page of repotr

22

Authors: Melnyk K.V., Borisova N.V., Lutenko I.V., Ershova S.I., Smolin P.A.,

Grinchenko M.A.

Department of SEMIT, NTU «KhPI»

Kharkiv, 2019

REFERENCE LIST

1. Sommerville I. Software engineering / I. Sommerville // Boston: Pearson,

2011. ISBN 0-13-705346-0.

2. IEEE Computer Society. Software Engineering Body of Knowledge

(SWEBOK Version 3) [Electronic resource] / Mode of access:

www.swebok.org – 12.11.2018.

3. Visual Paradigm Community Edition [Electronic resource] / Mode of access:

https://www.visual-paradigm.com/ – 12.11.2018.

4. Richard L. Halterman. Fundamentals of Programming C++ / Richard L.

Halterman // Publisher: Southern Adventist University, 2018. – 742 p.

5. Jon Kalb. Title C++ Today: The Beast Is Back / Jon Kalb, Gasper Azman //

ISBN-13: 978-1491931660. – Publisher: O'Reilly Media, 2015. – 74 p.

http://www.swebok.org/
https://www.visual-paradigm.com/

