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Abstract

Control charts have traditionally been used in industrial statistics but are con-
stantly seeing new areas of application, especially in the age of Industry 4.0. This
paper introduces a new method, which is suitable for applications in the health
care sector, especially for monitoring the health characteristic of a patient. We
adopt a Markov chain-based approach and develop a method in which not only
the shift size (ie, the degradation of the patient's health) can be random, but
the effect of the repair (ie, treatment) and time between samplings (ie, visits)
too. This means that we do not use many often-present assumptions that are
usually not applicable for medical treatments. The average cost of the protocol,
which is determined by the time between samplings and the control limit, can
be estimated using the stationary distribution of the Markov chain.

Furthermore, we incorporate the standard deviation of the cost into the
optimisation procedure, which is often very important from a process control
viewpoint. The sensitivity of the optimal parameters and the resulting average
cost and cost standard deviation on different parameter values is investigated.
We demonstrate the usefulness of the approach for real-life data of patients
treated in Hungary, namely the monitoring of cholesterol level of patients with
cardiovascular event risk. The results showed that the optimal parameters from
our approach can be somewhat different from the original medical parameters.
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1 INTRODUCTION

Statistical process control, and with it control charts enjoy a wide range of use today, and have seen great developments,
extensions, and generalisations since the original design of Shewhart.1 This proliferation of methods and uses can at part
be attributed to the fact that information is becoming available in ever increasing quantities and in more areas.

Even though control charts have originally been designed with statistical criteria in mind, the development of
cost-efficient control charts also began early. Duncan in his influential work from 1956 developed the basis for a cycle
based cost-effective control chart framework which is still very popular today and is implemented in statistical software
packages such as in R.2-4 Cost-efficient solutions are often the focus in industrial and other settings besides statistical
optimality.
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Statistical process control, including control charts, can be found in very different environments in recent literature.
For example, in mechanical engineering, eg, Zhou et al,5 where the authors develop a T2 bootstrap control chart, based
on recurrence plots. Another example is the work of Sales et al6 in the field of chemical engineering where they used
multivariate tools for monitoring soybean oil transesterification. It is not a surprise that the health care sector has seen an
increased use of control chart too. Uses within this sector range from quality assurance to administrative data analysis,
patient-level monitoring, and many more.7,8 In one example, control charts were used as part of system engineering
methods applied to health care delivery.9 Other examples include quality monitoring in thyroid surgery,10 monitoring
quality of hospital care with administrative data,11 and chronic respiratory patient control.12

Cost-efficient control charts have not been widely used in health care settings, but there are some examples which
deal with cost monitoring and management. In one work, X̄ and R charts were used to assess the effect of a physi-
cian educational program on the hospital resource consumption.13 Another article is about a hospital which used
control charts for monitoring day shift, night shift, and daily total staffing expense variance, among other variables.14

Stewart and Greisler documented a case study about primary care practice performance, where control charts were
used to monitor costs associated with provider productivity and practice efficiency. Further costs monitored were net
patient revenue per relative value unit, and provider and nonprovider cost as a percent of net revenue.15 Even though
these studies used control charts for cost monitoring or optimisation purposes, they did not deal with the same prob-
lems as this paper, as our method focuses on cost-optimisation by finding the optimal parameters of the control
chart setup.

The aim of this study is to present a cost-efficient control chart framework which was specifically designed with use on
health care data in mind. Specifically, we would like to use control charts for the purposes of analysing and controlling a
health care characteristic of a patient over time, such as the blood glucose level. Traditionally, minimal monitoring and
process cost is achieved by finding the optimal parameters, namely the sample size, time between samplings, and critical
values.1 If one desires to find the optimal parameters for a cost-optimal control chart for a health care process, then the
proper modelling of the process is critical, since if the model deviates greatly from reality, then the resulting parameters
and costs may not be appropriate. Of course, this presents several problems as certain typical assumptions in control chart
theory will not hold for these kind of processes. For example, the assumption of fixed and known shift size is problematic
because health care processes can be drifting in nature and can produce different shift sizes. Another assumption is the
perfect repair, which in this case means that the patient can always be fully healed, which is often impossible. Lastly,
the time between shifts is usually set to be constant, but in a health care setting with human error and noncompliance
involved, this also needs to be modified. Furthermore, since these processes can have undesirable erratic behaviour, the
cost standard deviation also needs to be taken into account besides the expected cost.

The control chart design which is presented here for dealing with these problems is the Markov chain-based framework.
This framework was developed by Zempléni et al in 2004 and was successfully applied on data collected from a Por-
tuguese pulp plant.16 Their article provided suitable basis for generalisations. Cost-efficient Markov chain-based control
charts build upon Duncan's cycle based model, as these also partition the time into different segments for cost calcula-
tion purposes. The previous paper from16 has already introduced the random shift size element. In this paper, we expand
upon that idea and develop further generalisations to create cost-efficient Markov chain-based control charts for health
care data.

The article is organised in the following way: Section 2 starts with basic definitions and notions needed to understand the
more complicated generalisations. Subsection 2.2 discusses the mathematics behind the aforementioned new approaches
in the Markov chain-based framework. Subsection 2.3 deals with the problems introduced by discretisation-which is
needed for the construction of the transition matrix-and also explains the calculation of the stationary distribution, and
defines the cost function. Analysis of results and examples will be provided with the help of program implementations
written in R. Section 3 shows an example of use for the new control chart methods in health care settings. This example
involves the monitoring of low-density lipoprotein levels of patients at risk of cardiovascular events. Section 4 concludes
the theoretical and applied results.

2 METHODS

The methods and R implementation in this paper largely depend on the works of Zempléni et al. The first part of this
section gives a brief introduction to the methods used in their paper.16
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2.1 The Markov-chain-based framework
Consider a process which is monitored by a control chart. We will show methods for processes which can only shift to
one (positive) direction, monitored by a simple X-chart, with sample size n = 1. This aims to model the monitoring of
a characteristic where the shift to only one direction is possible, and the monitoring is focused at one patient at a time.
Several assumptions are made for the base model. The process distribution is normal with known parameters 𝜇0 and 𝜎.
We will denote its cumulative distribution function by 𝜙. The shift intensity 1∕s is constant and known, and the shift size
𝛿* is fixed. It is also assumed that the process does not repair itself, but when repair is carried out by intervention, it is
perfect. The repair is treated as an instantaneous event. All costs related to repairing should be included in the repair cost,
for example, if a major repair entails higher cost, then this should also be reflected in the calculation. The time between
shifts is assumed to be exponentially distributed. The above assumptions ensure that the probabilities of future transitions
are only dependent on the current state. This is the so-called Markov property, and the model under consideration is called
a Markov chain. The states of this Markov chain are defined at the sampling times and the type of the state depends on
the measured value and the actual (unobservable) background process, namely whether there was a shift from the target
value in the parameter. This way, four basic state types are defined as follows:

• No shift - no alarm: in-control (INC)
• Shift - no alarm: out-of-control (OOC)
• No shift - alarm: false alarm (FA)
• Shift - alarm: true alarm (TA)

A graphical representation of this process can be seen in Figure 1. The transition matrix of this Markov chain can be
seen below.

Here, F() is the cumulative distribution function of the exponential distribution with expectation 1∕s, where s is the
expected number of shifts in a unit time interval. h is the time between consecutive observations, and 𝜙 is the cumulative
distribution function of the process. k is the control limit, and 𝛿* is the size of the shift. After calculating the stationary
distribution of this Markov chain, one can define a cost function for the average total cost as follows:

E(C) =
cs + p3c𝑓 + p4cr

h
+ p2co + p4coB, (2)

where pi is the probability of state i, in the stationary distribution. cs, cf, co, and cr are the cost of sampling, false alarm,
out-of-control operation, and repair, respectively. B is the fraction of time between consecutive observations where the

FIGURE 1 Definition of states
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shift occurred and remained undetected3 as follows:

B = hsehs − ehs + 1
hs(ehs − 1)

. (3)

An economically optimal chart, based on the time between samplings and the control limit can be constructed by
minimising the cost function.

2.2 Generalisation
The previous simple framework can be used for more general designs. Zempléni et al16 used this method to set up eco-
nomically optimal control charts where shifts are assumed to have a random size and only the distribution of the shift
size is known. This means that the shift size is no longer assumed to be fixed and known, which is important in mod-
elling various processes not just in health care, but in industrial or engineering settings too. This requires expanding the
two shifted states to account for different shift sizes. Let 𝜏 i denote the random shift times on the real line and let 𝜌i be the
shift size at time 𝜏 i. Let the probability mass function of the number of shifts after time t from the start be denoted by 𝜈t.
𝜈t is a discrete distribution with support over N0. Assume that 𝜌i follows a continuous distribution, which has a cumu-
lative distribution function with support over (0,∞), and that the shifts are independent from each other and from 𝜏 i. If
the previous conditions are met, the resulting random process has monotone increasing trajectories between samplings,
which are step functions. The cumulative distribution function of the process values for a given time t from the start can
be written the following way:

Zt(x) =
⎧⎪⎨⎪⎩

0 if x < 0,

𝜈t(0) +
∞∑

k=1
𝜈t(k)Ψk(x) if x ≥ 0, (4)

where 𝛹k() is the cumulative distribution function of the sum of k independent, identically distributed 𝜌i shift sizes. The
x = 0 case means there is no shift. The probability of zero shift size is just the probability of no shift occurring, which is
𝜈t(0).

Assume that the shift times form a homogeneous Poisson process, and the shift size is exponentially distributed and
independent of previous events. The choice of exponential distribution was motivated by the tractability of its convolution
powers as a gamma distribution. The cumulative distribution function of the shift size in Equation (4) is then

Qt(x) =
⎧⎪⎨⎪⎩

0 if x < 0,

nt(0) +
∞∑

k=1
nt(k)Yk(x) if x ≥ 0, (5)

where nt is the probability mass function of the Poisson distribution, with parameter ts which is the expected number of
shifts per unit time multiplied by the time elapsed that represents the number of shifts in the time interval (0; t). Yk is the
shift size cumulative distribution function, for k shift events and is a special case of the gamma distribution, the Erlang
distribution E(k, 1

𝛿
), which is the sum of k independent exponential variates each with mean 𝛿.

The framework can be generalised even further by not assuming perfect repair after a true alarm signal. This means that
the treatment will not have perfect results on the health of the patient. In industrial or engineering settings, the machines
cannot be fully repaired to their original condition. In this case, the imperfectly repaired states act as out-of-control states.
It is assumed that the repair cannot worsen the state of the process, but an imperfectly repaired process will still cost the
same as an equally shifted out-of-control process, thus repaired and out-of-control states do not need distinction during the
cost calculation. Different approaches can be considered for modelling the repair size distribution. The one applied here
uses a random variable to determine the distance from the target value after repair. A natural choice for the distribution
of this random variable is the beta distribution since it has support over [0, 1]-the portion of the distance compared with
the current one after repair. Also, the flexible shape of its density function can model many different repair processes.
Because of these considerations, we will assume that the proportion of the remaining distance from 𝜇0 after repair, R,
which is a Beta(𝛼, 𝛽) random variable, with known parameters.

Yet, another generalisation is the random sampling time. In certain environments, the occurrence of the sampling at
the prescribed time is not always guaranteed. For example, in health care, the patient or employee compliance can have
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significant effect on the monitoring, thus it is important to take this into account during the modelling too. Here, it is
modelled in a way that the sampling is not guaranteed to take place-eg, the patient may not show up for control visit.
This means that the sampling can only occur according to the sampling intervals, for example, at every nth days, but is
not a guaranteed event. One can use different approaches when modelling the sampling probability, here we consider
two cases. The first one assumes that too frequent samplings will decrease compliance. This assumption is intended to
simulate the situation in which too frequent samplings may cause increased difficulty for the staff or the patient-leading
to decreased compliance. The probability of a successful sampling as a function of the prescribed time between samplings
is modelled using a logistic function as follows:

T∗
h = 1

1 + e−q(h−z)
, (6)

where q > 0 is the steepness of the curve, z ∈ R is the value of the sigmoid's midpoint, and h is the time between samplings.
In the other approach, it is assumed that too frequent samplings will decrease compliance and increased distance from

the target value will increase compliance. This assumption means that a heavily deteriorated process or health state
will ensure a higher compliance. The probability of a successful sampling as a function of the prescribed time between
samplings and the distance from the target value is modelled using a modified beta distribution function as follows:

T∗
h(w) = P

(
Wh <

w + 𝜁∗

V + 2𝜁∗

)
, (7)

where Wh is a beta-distributed Beta(a∕h,b) random variable, w is the distance from the target value, h is the time between
samplings, and V is the maximum distance from 𝜇0 taking into account the distance where we expect maximal possible
compliance. The shifts in the values of w and V are needed to acquire probabilities strictly between 0 and 1, since deter-
ministic behaviour is undesirable even in extreme cases. These shifts are parameterised by the 𝜁 * > 0 value, which should
typically be a small number. It is important to note that these are just two ways of modelling the sampling probability.
Other approaches and distributions may be more appropriate depending on the process of interest.

The shift size distribution, the repair size distribution, and the sampling probability, together with the control chart let
us model and monitor the behaviour of the process. The resulting process is monotone increasing between samplings and
has a downward "jump" at alarm states-as the repair is assumed to be instantaneous. Usually a wide range of different cost
types are associated with the processes and their monitoring, these include the costs associated with operation outside
the target value. Since the operator of the control chart only receives information about the process at the time of the
sampling, the proper estimation of the process behaviour between samplings is critical. Previously, at the perfect repair
and nonstackable, fixed shift size model, this task was reduced to estimating the time of shift in case of a true alarm or
out-of-control state, since otherwise the process stayed at the previous value between samplings. The estimation of the
process behaviour with random shift sizes and random repair is more difficult.

The expected out-of-control operation cost can be written as the expectation of a function of the distance from the
target value. At Equation (4), the shift size distribution was defined for a given time t, but this time, we are interested in
calculating the expected cost for a whole interval. We propose the following calculation method for the above problem:

Proposition 1. Let Hj be a random process whose trajectories are monotone increasing step functions defined by 𝜏 i shift
times and 𝜌i shift sizes as in Equation (4), with starting value j ≥ 0.

The expected value of a function of Hj over an 𝜖 long interval can be written as follows:

E𝜖(𝑓 (H𝑗)) =
∫ t0+𝜖

t0
∫ ∞
𝑓 ( 𝑗) 1 − Zt−t0 (𝑓

−1(x) − 𝑗)dxdt

𝜖
+ 𝑓 ( 𝑗), (8)

where Zt() is the shift size cumulative distribution function given at Equation (4), f() is an invertible, strictly monotonically
increasing function over R+, and t0 is the start point of the time interval.

Proof. Let us observe that E( 𝑓 (Ht−t0 )|Ht0 = 𝑗) = ∫ ∞
𝑓 ( 𝑗) 1 − P( 𝑓 (Ht−t0 ) < x|Ht0 = 𝑗)dx + 𝑓 ( 𝑗) = ∫ ∞

𝑓 ( 𝑗) 1 − Zt−t0(𝑓
−1(x) −

𝑗)dx + 𝑓 ( 𝑗) by the monotonicity of f, and since we know that if X is a nonnegative random variable, then E(X) =
∫ ∞

0 (1−F(x))dx, where F() is the cumulative distribution function of X. Furthermore, observe that this expected value



1384 DOBI AND ZEMPLÉNI

is a continuous function of t. We are looking for the expectation of ∫ ∞
𝑓 ( 𝑗) 1−Zt−t0(𝑓

−1(x)−𝑗)dx+𝑓 ( 𝑗) over t ∈ [t0, t0+𝜖],
which can be considered as a uniform variable. This expectation is given by Equation (8).

For practical purposes, we can apply the previous general proposition to our model of Poisson-gamma mixture shift size
distribution, thus we assume that the shift size distribution is of the form of Equation (5). The connection between the
distance from the target value and the resulting cost is often assumed not to be linear: often a Taguchi-type loss function is
used-the loss is assumed to be proportional to the squared distance, see Deming.17 Applying this to the above proposition
means f(x) = x2. Since we are interested in the behaviour of the process between samplings, t0 = 0 and 𝜖 = h, thus

Eh(H2
𝑗 ) =

∫ h
0

[
e−ts𝑗2 +

(∑∞

k=1
(ts)ke−ts

k!
· ∫ ∞

0 (x + 𝑗)2 (1∕𝛿)kxk−1e−x∕𝛿

(k−1)!
dx

)]
dt

h

=
∫ h

0 e−ts𝑗2 +
∑∞

k=1
(ts)ke−ts

k!

(
k𝛿2 + (k𝛿 + 𝑗)2) dt

h
=

∫ h
0 2𝛿2ts + (𝛿ts + 𝑗)2dt

h

= hs𝛿
(
𝛿 + hs𝛿

3
+ 𝑗

)
+ 𝑗2,

(9)

where first we have used the law of total expectation-the condition being the number of shifts within the interval. If there
is no shift, then the distance is not increased between samplings, this case is included by the e−tsj2 term before the inner
integral. Note that the inner integral is just E(X + j)2 for a gamma-namely an Erlang(k, 1

𝛿
)-distributed random variable.

When calculating the sum, we used the known formulas for E(N2), E(N) and the Poisson distribution itself-where N is a
Poisson(ts) distributed random variable.

2.3 Implementation
2.3.1 Discretisation
For cost calculation purposes, we would like to find a discrete stationary distribution which approximates the distribution
of the monitored characteristic at the time of samplings. This requires the discretisation of the above-defined functions,
which in turn allows us to construct a discrete time Markov chain with discrete state space.

A vector of probabilities is needed to represent the shift size probability mass function qt() during a sampling interval
as follows:

qt(i) =
⎧⎪⎨⎪⎩

nt(0) if i = 0,
∞∑

k=1
nt(k) (Yk(iΔ) − Yk((i − 1)Δ)) if i ∈ N+,

(10)

where Δ stands for the length of an interval, one unit after discretisation. For i = 0, the function is just the probability of
no shift occurring.

The discretised version of the repair size distribution can be written the following way:

R(l,m) = P
(

m
l + 1∕2

≤ R <
m + 1

l + 1∕2

)
, (11)

where l is the number of discretised distances closer to 𝜇0 than the current one including 𝜇0. m is the index for the repair
size segment we are interested in, with m = 0 denoting the best possible repair (m ≤ l). The repair is assumed to move
the expected value towards the target value by a random distance, calculated using the remaining proportion R. Even
though discretisation is required for practical use of the framework, in reality, the repair size distribution is continuous.
To reflect this continuity in the background, the probability of perfect repair is set to be 0 when the repair is random. l is
set to be 0 when there is no repair, which means that R(0,m) ≡ 1, as m = 0 in this case. The 1∕2 terms in Equation 11
are necessary for correcting the overestimation of the distances from the target value, introduced by the discretisation. In
reality, the distance can fall anywhere within the discretised interval. Without correction, the maximum of the possible
values would be taken into account, which is an overestimation of the actual shift size. After correction, the midpoint of
the interval is used, which can still be biased, but in practical use with fine discretisation, this effect is negligible.

When the sampling probability depends on the time between samplings only, the model is unchanged, since both the
time between samplings and the sampling probability can be continuous. However, when the probability also depends
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on the shift size, discretisation is required here as well,

Th(v) = P
(

Wh <
v + 𝜁

Vd + 𝜁
− 1

2(Vd + 𝜁 )

)
, (12)

where v is the state distance from the target value in discretised units, 𝜁 is a small, positive number, and Vd is the number of
considered intervals-discretised shift sizes. The 1

2(Vd+𝜁 )
term is necessary for correcting the overestimation of the distances

from the target value. The first denominator contains simply Vd + 𝜁 instead of Vd + 2𝜁 , because v + 𝜁 is already strictly
smaller than Vd+𝜁 , since the smallest discretised state is 0 and thus the greatest is Vd−1. This ensures that the probability
can never reach 1. Example curves for the successful sampling probability can be seen in Figure 2. It shows that longer
time between samplings and greater distances from the target value increase the probability of successful sampling.

2.3.2 Transition matrix and stationary distribution
The transition probabilities can be written using the 𝜙() process distribution, qt() shift size distribution, R() repair size
distribution, and Th() sampling probability. For the ease of notation, let us define the S() and S′() functions, the former
for target states without alarm, and the latter for target states with alarm as follows:

S(g, v, l) =
[
Th(v)𝜙(k − Δ′(v)) + (1 − Th(v))

] ∑
m∈N0,m≤l,m≤v

qh(g − m)R(l,m), (13)

S′(g, v, l) = Th(v)
[
1 − 𝜙

(
k − Δ′(v)

)] ∑
m∈N0,m≤l,m≤v

qh(g − m)R(l,m), (14)

where Δ′(v) is a function defined as

Δ′(v) =
{ 0 if v = 0,

vΔ − Δ
2

if v = 1, … ,Vd − 1. (15)

k − vΔ is the critical value minus the size of the shift in consideration. The −Δ
2

term is added, because without it, the
shift size would be overestimated. The total number of discretised distances is Vd, thus the number of nonzero distances
is Vd − 1. g is the total shift size possible in discretised units when moving to a given state, v is the distance, measured
as the number of discretised units from the target value, l is the index of the actual partition, and m is the index for the
repair size segment we are interested in with m = 0 meaning perfect repair. Note, that as before, l is set to be 0 when there

FIGURE 2 Sampling probabilities for q = 8, z = 0.5 on the left, and for 𝛼 = 1, 𝛽 = 3, Vd = 100, 𝜁 = 1 on the right
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is no repair, meaning R(0,m) ≡ 1. S() and S′() are functions which combine the three distributions into the probability
we are interested in. The possible values of m are restricted this way, because the parameter of the qh() function must be
nonnegative. A more intuitive explanation is that we assumed positive shifts and a negative g−m would imply a negative
shift. It can be seen that the probability of a state without an alarm-the S′() function-is increased with the probability of
unsuccessful sampling-the 1 − Th(v) term. Of course, it is still possible to not receive an alarm even though the sampling
successfully occurred.

Using the S() and S′() functions, one can construct the transition matrix as follows:

The size of the matrix is 2Vd × 2Vd since every shift size has two states: one with and one without alarm. The first Vd
columns are states without alarm, the second Vd are states with alarm. One can observe that once the process leaves the
healthy state, it will never return. This is due to the nature of the imperfect repair we have discussed.

The transition matrix above defines a Markov chain with a discrete, finite state space with one transient, inessen-
tial class (in-control and false alarm states) and one positive recurrent class (out-of-control and true alarm states). The
starting distribution is assumed to be a deterministic distribution concentrated on the in-control state, which is to say
that the process is assumed to always start from the target value. In finite Markov chains, the process leaves the start-
ing transient class with probability one. The problem of finding the stationary distribution of the Markov chain is thus
reduced to finding a stationary distribution within the recurrent classes of the chain. Since there is a single positive
recurrent class which is also aperiodic, we can apply the Perron-Frobenius theorem to find the stationary distribution18

as follows:

Theorem 1. Let A be an n × n, irreducible matrix with non-negative elements, x ∈ Rn and

𝜆0 = 𝜆0(A) = sup{𝜆 ∶ ∃x > 0 ∶ Ax ≥ 𝜆x}.

Then the following statements hold:

• 𝜆0 is an eigenvalue of A with algebraic multiplicity of one, and its corresponding eigenvector x0 has strictly positive
elements.

• The absolute value of all other eigenvalues is less than or equals 𝜆0.
• If A is also aperiodic, then the absolute value of all other eigenvalues is less than 𝜆0.

One can apply this theorem to find the stationary distribution of Π. If we consider Π without the inessential class-let
us denote it with Π′-then 𝜆0(Π′) = 𝜆0(Π′T) = 1. Moreover, the stationary distribution-which is the left eigenvector of Π′,
normalised to sum to one-is unique and exists with strictly positive elements. Finding the stationary distribution is then
reduced to solving the following equation: Π′Tf0 = f0, where f0 is the left eigenvector of Π′. This amounts to solving 2Vd−2
equations-the number of states minus the in-control and false alarm states-for the same number of variables, so the task
is easily accomplishable. The stationary distribution is then

P = 𝑓0∑2Vd−2
i=1 𝑓0i

. (17)

2.3.3 Cost function
Using the stationary distribution, the expected cost can be calculated as follows:
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E(C) = cs
1
h
(T′ · P) +

∑Vd−1
i=1

(
crb + crsΔ′2(i)

)
Pri

h
+ co(A2 · P). (18)

This cost function incorporates similar terms as Equation 2. The first term deals with the sampling cost: T′ =
{Th(1),Th(2), … ,Th(Vd − 1),Th(1),Th(2), … ,Th(Vd − 1)} is the vector of successful sampling probabilities repeated in a
way to fit the length and order of the stationary distribution. This first term uses the expected time between samplings,
1
h
(T′ · P), instead of simply h, which is the minimal possible time between samplings. The second term deals with the

repair costs and true alarm probabilities. Pri is the true alarm probability for shift size i. The repair cost is partitioned into
a base and shift-proportionate part: crb and crs. The true alarm probability is used, since it is assumed that repair occurs
only if there is an alarm. The last term is the average cost due to operation while the process is shifted. The connection
between the distance from the target value and the resulting cost is assumed to be proportional to the squared distance.
This is modelled using the A2 vector, which contains the weighted averages of the expected squared distances from the
target value between samplings as follows:

A2
i =

i∑
𝑗=1

Eh

(
H2

Δ′( 𝑗)

)
Mi𝑗 , (19)

where Eh

(
H2

Δ′( 𝑗)

)
is calculated using Equation (9). j indicates one of the possible starting distances immediately after the

sampling, and i indicates the state-shift-of the process at the current sampling. Mij is the probability that Δ′(j) will be the
starting distance after the sampling, given that the current state is i. These probabilities can be written in a matrix form
as follows:

Note that the matrix is defined in a way that the first column is indexed with 0 to exclude the in-control state from
the calculation. It can be seen, that when the process is out-of-control without alarm, the distance is not changed. The
probabilities for the alarm states are calculated using the R() repair size distribution.

So far, only the expected cost was considered during the optimisation. In certain fields of application, the reduction of
the cost standard deviation can be just as or even more important than the minimisation of the expected cost. Motivated
by this, let us consider now the weighted average of the cost expectation and the cost standard deviation as follows:

G = pE(C) + (1 − p)𝜎(C). (21)

Now G is the value to be minimised and p is the weight of the expected cost (0 ≤ p ≤ 1). The cost standard deviation
can easily be calculated by modifying the cost function formula. All of the previous models can be used without any
significant change, one simply changes the value to be minimised from E(C) to G.

2.4 Comparison of different scenarios
Implementation of the methods was done using the R programming language. Supplying all the necessary parameters,
one can calculate the G value of the process for one time unit. It is also possible to minimise the G value by finding the
optimal time between samplings and control limit. All the other parameters are assumed to be known. The optimization
step can be carried out using different tools, the results presented here were obtained with the built-in optim()R func-
tion: box-constrained optimization using PORT routines,19 namely the Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B)
algorithm. The optimisation procedure can be divided into three steps. First, the transition matrix needs to be constructed
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from the given parameters. After this, the stationary distribution of the Markov chain is computed. In the third step, the
G value is calculated using the stationary distribution and the cost function. The optimisation algorithm then checks the
resulting G value and iterates the previous steps with different time between sampling and/or control limit parameters
until it finds the optimal ones.

2.4.1 Dependence on parameters
The testing was done using a moderate overall compliance level. This is required because low compliance can result in
extreme behaviour in the optimisation such as taking the maximum or minimum allowed parameter value. An example
for this is when the sampling probability depends on both the time between samplings and the state of the process: if the
compliance level is also relatively low, then given certain parameter setups the optimal time between samplings will tend
to zero. This will essentially create a self-reporting system as the increased distance from the target value will eventually

FIGURE 3 Optimal parameters and the resulting expected cost and cost standard deviation as function of the process standard deviation
(𝜎), out-of-control cost (co), expected shift size (𝛿), and weight parameter (p) for s = 0.2, 𝛼 = 1, 𝛽 = 3, a= 0.01, b= 1, cs = 1, crb = 10, crs = 10
Top: 𝜎 = 0.1, Bottom: 𝜎 = 1
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increase the compliance and the sampling will take place. In a health care environment, this would mean that the patient
is told to come back for a control visit as soon as possible, but the patient will show up only when the symptoms are severe
enough. This kind of process behaviour is undesirable in many cases, for example, when the time between samplings
cannot be set arbitrarily.

The results obtained are shown in Figure 3. One may observe the weak dependence of the critical value on the
out-of-control cost. The time between samplings should be decreased with the increase of the out-of-control cost, and the
average cost and the cost standard deviation increase with the out-of-control cost, as expected. The effect of the expected
shift size on the critical value depends on the process standard deviation, as increased shift size results in markedly
increased critical values only in the case of 𝜎 = 1. Higher expected shift size entails less time between samplings, and
increased expected cost and cost standard deviation. If the cost standard deviation is taken into account during the opti-
misation procedure (p = 0.9), then lower critical value should be used with increased time between samplings. This is
because the increased time between sampling will lead to less frequent interventions, thus a less erratic process. Of course,
at the same time, we do not want to increase the expected cost, so the critical value is lowered. The cost standard deviation
is decreased, as expected. Note that the expected costs have barely increased compared with the p = 1 setup. This shows
that by changing the parameters appropriately, the cost standard deviation can be lowered-sometimes substantially-while
the expected cost is only mildly increased. Several scenarios entail relatively large cost standard deviations due to the
Taguchi-type loss function used during the calculations. The process standard deviation 𝜎 has noticeable effect on the
critical value only: lower critical values should be used for lower standard deviations, as expected.

2.4.2 Sensitising rules
The effect of sensitising rules1 was investigated using simulation, since the implementation of theoretical calculations
would have resulted in a hugely inflated transition matrix which poses a serious obstacle in both programming and
running times.

Optimal parameters were calculated for p = 0.9, 𝜎 = 1, s = 0.2, 𝛿 = 2, 𝛼 = 1, 𝛽 = 3, a = 0.01, b = 1, cs = 1, crb = 10,
crs = 10, and crs = 20. The resulting optimal parameters were h = 0.38 and k = 1.14. This parameter setup entailed an
expected cost of E(C) = 37.75 and cost standard deviation of 𝜎(C) = 150.33. The probability of alarm states together was∑

iPri = 0.201. Simulations were run for 50 000 sampling intervals which is equal to 19 000 unit time. Simulations from
the first 100 sampling intervals were discarded as it was regarded as a burn-in stage.

First, we present the baseline simulation results-the ones without additional rules. Overall, the simulation achieved
an acceptable level of convergence to the theoretical stationary distribution. The empirical expected cost was C = 36.51.
The proportion of alarm states was 0.192. The calculation of the empirical standard deviation was carried out by taking
into account the data of only every 30th sampling interval to deal with the autocorrelation of neighbouring values. The
empirical standard deviation using this method was s* = 199.37. It is important to note that the empirical results can be
somewhat inaccurate, depending on the particular simulation results and the parameters used. This is due to the large
variance and slow convergence of the standard deviation. Nonetheless, for this particular scenario, the theoretical and
empirical results were quite close to each other, thus we will compare the effect of sensitising rules with this baseline
simulation.

The first rule we investigated was the one which produces an alarm in case of three consecutive points outside the
2
3

k warning limit but still inside the control limit. Running the simulation with the extra rule resulted in C = 37.42,
s* = 171.57 and a ratio of all alarm states together of 0.194, all of these values are within the hypothesised confidence
interval. We can see no major difference in any of these values compared to the baseline.

The second rule was the same as the first one, except this time, two consecutive points outside the 2
3

k warning limit
were enough to produce an alarm signal. The results were C = 36.54, s* = 190.91, and 0.200 for the proportion of alarm
states. Again, no apparent differences can be seen, but it is worth noting the proportion of alarm states is somewhat higher
in this case than at the baseline or the previous rule, and this was also seen with repeated simulation.

Overall, the effect of the investigated sensitising rules seems to be minimal on the results. Further investigation is
required of the the possible effects in case of other parameter setups and rules.

3 APPLICATION

In the following paragraphs, we show a real-life health care example as the application of the previously introduced
methods. Two approaches will be presented: one with and one without taking the standard deviation into account. The



1390 DOBI AND ZEMPLÉNI

aim is to minimise the health care burden generated by patients with high cardiovascular (CV) event risk. The model is
built upon the relationship between the low-density lipoprotein (LDL) level and the risk of CV events, thus the LDL level
is the process of interest.20

Parameters were estimated from several sources.21,22 The list below gives information about the meaning of the
parameter values in the health care setting and shows the source of the parameter estimations.

It is very difficult to give a good estimate for the type and parameters of a distribution that properly models the non-
compliance, thus the results here can at best be regarded as close approximations to a real life situation. This is not a
limiting factor, as patients themselves can have vast differences in their behaviour, so evaluation of different scenarios are
often required and will also be presented here. Since high LDL levels rarely produce noticeable symptoms, the sampling
probability only depends on the time between samplings.23 Thus, the sampling probability was modelled by the logis-
tic function and not by the beta distribution. It is important to note that the proportional costs increase according to a
Taguchi-type loss function, thus huge expenses can be generated if the patient's health is highly out-of-control.

3.1 Optimisation using only the cost expectation
The optimal parameters for the case when the cost standard deviation was not taken into account were 56.57 days
and 0.143 mmol/l for the time between samplings and the critical increase in the LDL level from the guideline value,
respectively. These parameters entailed an average daily cost of €0.469 and standard deviation of €0.562. This result is
interesting, because according to the optimisation, we should use a somewhat higher critical value than the one in the
guideline-0 mmol/l critical increase would be the 3 mmol/l value in the guideline. At the same time, patients should be
monitored more often than usual as times of the LDL measurements are usually several months or years apart. However,
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FIGURE 4 Expected cost as function
of the time between samplings and the
critical value

FIGURE 5 G value as function of the
time between samplings and the critical
value

this is a strictly cost-effective viewpoint which could be overwritten by a health professional. Nonetheless, the results pro-
vide a possible new approach to the therapeutic regime for controlling LDL level. Often, it is good to look at the interaction
between the parameters and the resulting average cost, especially in situations where the optimal parameters cannot be
used because of real life reasons. The heat map of Figure 4 shows the average cost as the function of the different parame-
ter values. The dot in the lightest area of Figure 4 corresponds to the optimal cost. Any other point entails a higher average
cost. It can be seen that too low or high critical values will both increase the average daily cost. Note that the change in
time between samplings entails relatively low change in the critical LDL increase: even if the time between control visits
is changed the critical value should stay around 0.12 − 0.18 mmol/l.

3.2 Optimisation using cost expectation and cost standard deviation
In this part, the cost standard deviation is also taken into account with p = 0.9, thus the weight of the standard deviation
in the calculation of G is 0.1. The optimal parameters found by our approach were 64.76 days and 0.129 mmol/l for the
time between samplings and critical increase in the LDL level, respectively. These parameters entailed an average daily
cost of €0.477 and standard deviation of €0.418. The inclusion of the cost standard deviation into the model has somewhat
increased the time between control visits and decreased the critical value. The expected cost increased, while the cost
standard deviation was moderately decreased. Figure 5 shows the previous heat map with noncompliance included in the
model. It can be seen that the elliptical shape of the heat map has not changed: the change in the time between control
visits still does not entail great change in the critical value.
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FIGURE 6 Parameters, average total cost, and cost standard deviation as function of the out-of-control cost

3.3 Sensitivity analysis
As there were uncertainties about the estimation of several parameters, it is important to assess the effect of different
parameter setups. The results for different out-of-control costs are plotted for both approaches. The results can be seen in
Figure 6. The critical value and time between samplings decrease and the average cost and cost standard deviation increase
with higher out-of-control costs. Just as on the heat maps, one can observe here, that if the cost standard deviation is taken
into account in the optimisation, then the critical value should be lowered and the time between samplings increased.
It can be observed that a substantial decrease can be achieved in the cost standard deviation while the cost expectation
barely changes.

Uncertainty was also high around the estimation of the sampling probability. The Sigmoid's midpoint so far was z =
30 days, meaning that the probability of sampling was 0.5 at h = 30 and increased with h. Figure 7 contains results
for different z values. As the probability of successful sampling decreases-the value of z is increased-the critical value
decreases and the time between samplings increases. This can be explained by the increased uncertainty of the sampling:
More time between samplings entails higher patient compliance, and when the visit occurs a low critical value is used
to ensure treatment. The cost expectation and standard deviation increases with lower sampling probabilities. There are
only minor differences between the stationary distributions, nonetheless it can be seen that lower sampling probability
is associated with higher probabilities for greater distances from the target value. The last panel shows how the sampling
probability decreases with increasing z values for a fixed h.

4 CONCLUSIONS

Cost-optimal control charts based on predominantly Duncan's cycle model are found in a wide variety of areas.
Even though the benefit of using these charts in industrial and engineering settings is unquestionable, the numerous
assumptions needed about the processes makes the applicability of the traditional models problematic in certain envi-
ronments. Motivated by the desire to apply cost-optimal control charts on processes with erratic behaviour and imperfect
repair mechanism-such as ones found in health care-this paper presented a Markov chain-based framework for the
generalisation of these control charts, which enabled the loosening of some of the usual assumptions.

Cost-optimisation of control charts are usually carried out by finding the optimal critical value, time between samplings
and sample size. Our work concentrated on the monitoring of a single element at a time-eg, a patient-thus the methods
presented here always used a sample size of one.

Building on and expanding the work of Zempléni et al,16 we discussed three types of generalisations: the random shift
size, imperfect repair, and noncompliance. The random shift size means that only the distribution of the shift size and its
parameters are assumed to be known. This lets us monitor processes that are potentially drifting in nature. The second
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FIGURE 7 Top: parameters, average total cost, and cost standard deviation as function of the Sigmoid's midpoint (z); Bottom left: distance
distributions: lighter lines corresponds to greater z values; Bottom right: sampling probability as function of z, for h = 64.76

generalisation-the imperfect repair-assumed that the process stays out of control even after repair, but on a level closer to
the target value than before. This type of repair response is often observed in treatments in health care, but may be found
in other areas too. The third generalisation was intended to help the modelling of patient or staff noncompliance. We
implemented this concept in a way that allows sampling times to be skipped by a probability governed by a distribution
or function with known parameters.

Since the processes modelled with the above-loosened assumptions can create complicated trajectories between sam-
plings, the mathematical description of these was also necessary. We proposed an expectation calculation method of a
function of the values taken on by the process between samplings. The application of this proposition while assuming
exponentially distributed shift sizes, Poisson-distributed event numbers, and Taguchi-type loss function yielded a compact
formula for the expectation.

We implemented our theoretical results in the R programming language and investigated the effect of parameter esti-
mation uncertainty on the optimal parameters and the resulting expected cost and cost standard deviation. We also tested
the effect of involving the cost standard deviation in the optimisation procedure itself. We found that typically, the crit-
ical value increases and the time between samplings decreases with the expected shift size. Also, higher expected shift
sizes entail higher expected costs and cost standard deviations. It was seen that with the increase of the out-of-control
cost-in most cases-the critical value stagnated, the time between samplings decreased, and the expected cost and the cost
standard deviation increased. The involvement of the cost standard deviation in the optimisation procedure lowered the
standard deviation while the cost expectation barely increased. We have found no evidence that sensitising rules-such as
values outside the warning limit-would change the results substantially.
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We presented an example of real-life application involving low-density lipoprotein monitoring. The results indicated
that the cost-optimal critical value is somewhat higher and the cost-optimal time between control visits is less than the
ones usually used according to medical guidelines.

In the era of Industry 4.0, the cost-optimal control charts presented here can be applied to a wider range of processes than
the traditional ones. Nonetheless, there are still areas worth investigating. One of the features still missing is the proper
modelling of the repair procedure, since it was assumed to be an instantaneous event, which may not be appropriate in
many situations. The mathematical elaboration of a continuous model involving, eg, time series, could also be beneficial.
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