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Highlights

 Catechins in green tea are associated with slowing the proliferation of 

prostate cancer cells

 Epigallocatechin gallate, is the most bioactive catechin in green tea

 Epigallocatechin gallate’s activity may result from influence over the 

PI3K/Akt/mTOR pathway

 Many prostate cancer tumours show a dysregulation of the PI3K/Akt/mTOR 

pathway

 Combating PI3K/Akt/mTOR hyperactivation may be a strategy to reduce 

prostate cancer aggression



1

1 From Tea to Treatment; Epigallocatechin Gallate and its Potential Involvement 

2 in Minimizing the Metabolic Changes in Cancer.

3

4 Amanda L. Tauber1,2, Stephanie S. Schweiker1,3, and Stephan M. Levonis1,4.

5

6 1Faculty of Health Sciences and Medicine, Bond University, Gold Coast, 4226, 

7 Australia. 

8 2 atauber@bond.edu.au 

9 3 sschweiker@bond.edu.au

10 4 slevonis@bond.edu.au  

11

12 Author Information 

13 Corresponding Author 

14 Email: slevonis@bond.edu.au

15 ph. +61 7 5595 4417 

16

mailto:atauber@bond.edu.au
mailto:sschweiker@bond.edu.au
mailto:slevonis@bond.edu.au
mailto:slevonis@bond.edu.au


2

17 List of Abbreviations

18

19 ADT; androgen deprivation therapy

20 Akt; protein kinase B

21 ATP; adenosine triphosphate

22 C; (+)-catechin

23 CDK; cyclin-dependent kinase

24 CG; (-)-catechin gallate

25 CLL; chronic lymphatic leukemia 

26 CRPCa; castration-resistant prostate cancer

27 CRTC2; CREB regulated transcription coactivator 2

28 EC; (-)-epicatechin

29 ECG; (-)-epicatechin gallate

30 EGC; (-)-epigallocatechin

31 EGCG; (-)-epigallocatechin gallate

32 GC; (+)-gallocatechin

33 GCG; (-)-gallocatechin gallate

34 Ki; inhibition constant

35 mTOR; mammalian target of rapamycin

36 NF- KB; nuclear factor kappa-light-chain-enhancer of activated B cells

37 nM; nanomolar

38 p85/p110kin; phosphatidylinositol-4,5-bisphosphate 3-kinase

39 PCa; prostate cancer

40 PI3K; phosphatidylinositol 3-kinase

41 Rb; retinoblastoma protein
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42 ROS; reactive oxygen species 

43 RTK; receptor tyrosine kinase

44 S6K1; ribosomal protein S6 kinase beta-1

45 TCM; traditional Chinese medicine
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46 Abstract 

47

48 As the most abundant bioactive polyphenol in green tea, epigallocatechin gallate 

49 (EGCG) is a promising natural product that should be utilized in the discovery and 

50 development of potential drug leads. Due to its association with chemoprevention, 

51 EGCG may find a role in the development of therapeutics for prostate cancer. 

52 Natural products have long been employed as a scaffold for drug design, as their 

53 already noted bioactivity can help accelerate the development of novel treatments. 

54 Green tea and the EGCG contained within have become associated with 

55 chemoprevention, and both in vitro and in vivo studies have correlated EGCG to 

56 inhibiting cell growth and increasing the metabolic stress of cancer cells, possibly 

57 giving merit to its long utilized therapeutic use in traditional therapies. There is 

58 accumulating evidence to suggest that EGCG’s role as an inhibitor of the 

59 PI3K/Akt/mTOR signaling cascade, acting upon major axis points within cancer 

60 survival pathways. The purpose of this review is to examine the research conducted 

61 on tea along with EGCG in the areas of the treatment of and/or prevention of cancer. 

62 This review discusses Camellia sinensis, as well as the bioactive phytochemical 

63 compounds contained within. Clinical uses of tea are explored, and possible 

64 pathways for activity are discussed before examining the evidence for EGCG’s 

65 potential for acting on these processes. EGCG is identified as being a possible lead 

66 phytochemical for future drug design investigations.    

67

68 EGCG; Cancer; PI3K/Akt/mTOR; Prostate Cancer; Natural Products 
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69 1.0 Introduction

70

71 There are multiple strategies when it comes to drug design, including de novo 

72 design, structure-based, target-based screening, pharmacophore searching; 

73 however, one of the longest standing approaches is the study of natural products. 

74 Isolation of bioactive components within natural products can lead to a stand-alone 

75 treatment or present a structural basis for a more efficient novel drug design. Green 

76 tea is one such natural product and has been traditionally administered for 

77 therapeutic use. Large cohort studies have hinted at a positive correlation between 

78 green tea consumption and cancer chemoprevention in men diagnosed with prostate 

79 cancer  [1-6].  It has been discovered that one of green tea’s most prominent 

80 bioactive component, the flavanol (-)-epigallocatechin gallate (EGCG), is likely the 

81 source of this activity [3, 7-12]. EGCG has been noted to influence key enzymes in 

82 the PI3K/Akt/mTOR pathway, which is commonly dysregulated in the development of 

83 prostate cancer, and could potentially act in a similar form to the synthetic inhibitors 

84 being developed against this pathway [13]. Despite its potential, work still needs to 

85 be done to identify whether green tea or EGCG can be recommended as a 

86 chemopreventative.[13]. Much of the large cohort evidence struggles to differentiate 

87 between the effect of consuming green tea and lifestyle choices [14]. Thus although 

88 there are multiple claims and evidence to suggest the benefit of EGCG for cancer 

89 therapy, more research is needed in both the therapeutic mechanisms of actions and 

90 the clinical benefit. By reviewing literature in these areas, the relevance of this 

91 natural product may be brought to light.  

92

93
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94 2.0 Approach

95

96 This study utilized a series of medical databases, inclusive of PubMed, EMBASE, 

97 MedLine, and SciFinder for articles published in the past 20 years to obtain a viable 

98 and comprehensive depiction of our current understanding of EGCG and its potential 

99 involvement in minimizing the deregulated of biochemical pathways observed in 

100 cancers. Search strategies began with using keywords such as “epigallocatechin 

101 gallate” AND “prostate cancer”, or more generally “green tea” AND “metastasis”. As 

102 data were collected and the interacting pathways better comprehended, the search 

103 requests expanded to more expansively investigate the involved PI3K/Akt/mTOR 

104 pathway, history, and previous association of green tea as a chemopreventive 

105 medicine, and studies investigating the modern approach to targeting the metabolic 

106 pathways of cancer. 

107

108

109 3. Green Tea. Source and Bioactivity. 

110

111 3.1 Botanical Source
112

113 EGCG is most abundantly found in green tea; however, it is also present in black 

114 and oolong teas, along with trace amounts found in miscellaneous fruit and 

115 vegetables [15]. All three of the major tea varieties including black, oolong, and 

116 green, are sourced from the Camellia sinensis plant, which grows globally in warm 

117 and humid climates [16]. China, Indonesia, Sri Lanka, and southern India have a 

118 year-round harvesting and growing season, whereas areas such as northern-eastern 
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119 India and northern China have a shorter season due to the greater seasonal 

120 variations [17]. The Camellia Sinensis is harvested by hand, with the “flush,” 

121 consisting of the top leaves connected to the bud and part of the stem making up the 

122 basis of tea [18]. It is during the processing of this flush where the black, green, and 

123 oolong tea varieties differ (Figure 1). For green tea, the flushes are withered and 

124 rolled, then either steamed or pan-roasted to inactivate the polyphenol oxidases 

125 within the plant [19]. From here, green tea is relatively stable during storage until 

126 seeping. This varies from the processing of black and oolong tea, as they lack the 

127 primary steaming step performed in green tea, and consequentially have a lower 

128 proportion of bioactive components in the final product [20-22]. 

129

130 3.2 Active Components in Green Tea
131

132 Amongst the wide variety of bioactive components in green tea, the polyphenols are 

133 the most abundant (Figure 2). Compromising around 40% of green tea’s dry mass, 

134 these compounds are colorless and water-soluble, contributing to the bitterness of 

135 the final product [20, 23]. Other compounds including the stimulatory 

136 methylxanthines, caffeine, theobromine, and theophylline are also present in tea, 

137 along with L-theanine, tannins, gallic acid, oxalic acid, pectin, fluoride, minerals and 

138 vitamins such as B1, B2, C, and E which can be found at varying concentrations, the 

139 most predominant category are the flavonoids [24, 25]. Characterized by their 2-

140 phenylbenzopyran ring, variations in the C-ring saturation and oxidation status of 

141 flavonoids divide the classifications up into eight different groups, in which the flavan-

142 3-ols are the most abundant (Figure 3).

143
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144 Compared to the darker black and oolong teas which have most of their flavanols 

145 converted into their theaflavins and thearubigins counterparts during oxidation, green 

146 tea maintains a far higher proportion of the more bioactive flavanols (Table 1) [10, 

147 26]. Such flavonoids include quercetin, kaempferol, and myricetin and the flavones 

148 apigenin and luteolin, with the largest class being the catechins [27]. By mass, 

149 epigallocatechin gallate (EGCG) is the most predominant (7–74 mg/g), followed by 

150 epicatechin gallate (ECG) (1–41 mg/g), epigallocatechin (EGC) (0–36.5 mg/g), 

151 epicatechin (EC) (0.1–9.5 mg/g) and catechin (C) (0–5.8 mg/g) [28-30] (Figure 4). 

152 However, depending on the variety, brand and location of harvest, these 

153 concentrations may vary [31]. 

154

155 3.3 Bioactive Role
156

157 Catechins are hydroxy and gallate substitutions of the flavan-3-ol structure, each 

158 with relative bioactive effects [32]. Chemotherapeutically, the gallocylated catechins, 

159 GC, EGC, GCG, and EGCG are noted to possess the most chemotherapeutically 

160 active role [33-37]. The combined use of green tea catechins has been associated 

161 with antioxidant activity, chemoprevention, anti-viral, anti-inflammatory and anti-

162 diabetic activity [38-41]. However, with the trihydroxyl groups at carbons 3’, 4’, and 5’ 

163 on the B-ring, and a gallate moiety esterified at carbon 3’ on the C-ring, EGCG 

164 presents with the greatest anti-proliferative and pro-apoptotic activity against cancer 

165 cells compared to the other catechins [3, 7-12]. 

166

167 Studies show extracting EGCG from tea is most effective at 80oC using a 50% v/v 

168 ethanol solution as this prevented epimerization of the catechin, however, if using 
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169 fresh leaves, then the extraction should use 75% v/v ethanol to compensate for the 

170 higher moisture content [42]. A later 2014 study investigating various extraction 

171 solvents, including ethanol, methanol, and water at different time intervals, 

172 concluded that a 40-minute extraction with ethanol maintained the greatest 

173 proportion of the catechins [43]. 

174

175 3.4 Clinical Uses
176

177 Records of the production and attributed health benefits of tea have dated back to 

178 the Cha Jing (Tea Bible) by the Lu Yu of the Tang Dynasty, often with a focus 

179 towards its anti-inflammatory action [44]. Such traditional Chinese medicines are still 

180 appreciated due to their theoretical approach and long-documented history [45]. 

181 Nowadays, many commercially available drugs derive inspiration from natural 

182 products, such as the chemotherapeutics topotecan and docetaxel which are 

183 synthetic alterations of the natural products camptothecin (Camptothec acuminate) 

184 and paclitaxel (Taxus brevifolia), along with Vincristine (Catharanthus roseus) which 

185 is a natural product (often synthetically generated) from the Madagascar periwinkle 

186 (Figure 5) [46]. EGCG’s association with chemoprevention has prompted investment 

187 towards furthering its potential clinical application with two studies initiated in March 

188 2018 to investigate its effect at minimizing the chemotherapeutic damage done in 

189 patients undergoing lung or breast cancer treatments [47, 48]. 

190

191

192

193
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194  4. Prostate Cancer & Current Treatments

195

196 From 2015, 3300 deaths per year were attributed to prostate cancer, making it one 

197 of the leading causes of cancer-related mortality, accounting for 16% of Australia’s 

198 male cancer expenditure [49, 50]. With the major risk factor being age, patients are 

199 left with few options to decrease their susceptibility towards the disease. 

200 Consequently, greater reliance is placed upon detection and treatment [51]. If 

201 surgery or radiotherapy fails to remove the cancer growth, androgen deprivation 

202 therapy (ADT), primarily bicalutamide (trade name Casodex), serves as the first-line 

203 chemotherapeutic [49]. However, this treatment is only palliative, acting to suppress 

204 the androgen driven growth in the early stages. Within 14-30 months, ADTs typically 

205 become redundant as the cells mutate into an androgen-independent state known as 

206 castration-resistant prostate cancer (CRPCa) [49].  Whether or not CRPCa is initially 

207 metastatic, 60% of men develop the metastatic disease within five years, with most 

208 developing it within three [52].

209

210 From here, docetaxel (tradename ‘Taxotere’) is the preferred chemotherapeutic, and 

211 it is associated with extremely high rates of chemoresistance and only extends the 

212 nine months' lifespan by an average three months [49, 53-55]. Since 2010, 

213 alternative treatments including immunology, cabazitaxel, enzalutamide, and 

214 abiraterone acetate have been trailed, extending the life expectancy by up to 5 

215 months [23, 56]. However, these have been associated with a poorer quality of life 

216 than docetaxel. Some of the more common drug-based treatment options in 

217 Australia are tabulated below (Table 3).

218
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219 4.1 Green tea and Prostate Cancer 
220

221 The need for intervention, which can reduce the incidence of metastasis of Prostate 

222 Cancer (PCa) without severely hindering the quality of life, is going to be crucial to 

223 address this global health issue. In both Japanese and Chinese populations, there is 

224 a lower incidence of many cancers, including PCa, primarily attributed to their diet of 

225 soy, low fat, and high fiber as means of chemoprevention. Furthermore, their high 

226 intake of green tea has a strong positive correlation to chemoprevention [1-6]. Daily 

227 consumption of 10 or more cups a day is seen to increase the age of onset and 

228 decrease metastasis of a variety of cancers, including PCa [57-59]. Although not 

229 PCa, studies using squamous cell carcinomas cells show that the therapeutic index 

230 of 10 M can be reached with regular consumption of green tea [60]. Using a 

231 preparation known as polyphenol E, it was found that the maximum tolerable dose of 

232 green tea was 4.2 g/m2 (equivalent to 20-30 cups of green tea) when tested on 

233 metachronous colorectal cells [61, 62]. 

234

235 The primary side effects, including polydipsia and urinary frequency, were suspected 

236 to be due to the caffeine content [57, 63-65]. However, with or without caffeine 

237 present, there was no significant difference in green tea’s ability to inhibit 

238 angiogenesis in vivo [66]. Studies observing green tea’s influence over PCa cell 

239 survival show a decrease in proliferation of androgen insensitive cells due to the 

240 bioactive components in green tea [6].

241

242

243
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244 4.2 Bioavailability 
245

246 The primary concern regarding the use of EGCG and other green tea preparations 

247 clinically was their low bioavailability [67]. The non-gallated green tea catechins 

248 undergo glucuronidation and sulfation in vivo, preventing their chemopreventive 

249 activity [68]. This observed in patients following a 6-week trial of oral green tea 

250 consumption, where 50% of EGCG in the prostate tissue appeared in its methylated 

251 form, consequentially decreasing the chemopreventive activity in the cells [69]. 

252 However, this may be combatted by the combined use of EGCG and quercetin 

253 (another polyphenol found in tea) [70]. Quercetin was seen to inhibit the catechol-O-

254 methyltransferase and the multidrug-resistant proteins responsible for the 

255 methylation of EGCG and to improve EGCG’s chemopreventive activity [70]. 

256

257 5.0 PI3K/AKT/MTOR PATHWAY IN CANCER

258

259 To better understand EGCG’s potential clinical benefit, it is fitting to examine the 

260 likely intracellular signaling pathways affected by EGCG. It is unclear whether 

261 EGCG’s activity is pro or antioxidant [36, 71, 72], much of EGCG’s chemotherapeutic 

262 action is attributed to its influence over the PI3K/Akt/mTOR pathway. Defined by the 

263 key proteins; phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and 

264 mammalian target of rapamycin (mTOR), this pathway is a key regulator of 

265 metabolism, cell cycle, and preventing apoptosis; thus its hyperactivation is greatly 

266 involved in promoting the hallmarks of cancer [37, 73]. Many various carcinomas and 

267 prostate cancers observe the dysregulation of the PI3K/Akt/mTOR pathway, and this 

268 mutation is often a characteristic of chemoresistant cancer types [74].
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269

270 This pathway is typically activated in response to the binding of hormonal or 

271 mitogenic ligands to a receptor tyrosine kinase, phosphorylating the intracellular 

272 subunit and activating the p85 and p110 kinase receptor units of the PI3K 

273 heterodimer [75]. Activation induces the addition of ATP to PIP2 in the cell 

274 membrane, forming the PIP3 signaling molecule, which in turn activates the PH 

275 subunit of Akt, recruiting the protein to the cell membrane (Figure 6). This is followed 

276 by the phosphorylation of phosphoinositide-dependent protein kinase-1 at the T308 

277 residue, activating the complex [76]. Akt goes onto activate a number of intracellular 

278 signaling processes, each holding influencing cell survival, proliferation, and growth, 

279 primarily mediated through the two mTOR multiprotein complexes mTORC1 and 

280 mTORC2 [77, 78].

281

282 5.1 Pro survival and acceleration of growth
283

284 Pro-survival and growth signaling are vital to cancer progression. With control over 

285 the cell cycle and suppression of apoptosis, overactivation of the PI3K/Akt/mTOR 

286 pathway can promote cancer cell survival [79]. The activated Akt phosphorylates and 

287 inactivates glycogen synthase kinase-3 beta, preventing the activation of tumor 

288 suppressor p53 and degradation of cyclin D [80]. Akt also induces the degradation of 

289 p53 by inhibiting the transduction of nuclear-localized E3 ubiquitin ligase [81]. Now 

290 remaining active in the nucleus, CD1 binds and activates the cyclin-dependent 

291 kinase (CDK) proteins [82]. CDK4 and CDK6 inhibit the tumor suppressor 

292 retinoblastoma protein (Rb), preventing the inhibitor of transcription factors G2F and 

293 enabling the progression from G1 to S-phase [82]. This amplified through mTORC1’s 
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294 activation of ribosomal protein S6 kinase beta-1, F-box only protein 4, and inhibition 

295 of N-eukaryotic initiator factor, thus enhancing the stability of genes involved in S-

296 phase entry [83]. Akt further ensures the activity of CDKs by inhibiting p21Cip1/Waf and 

297 p27Kip1 [84, 85]. Direct phosphorylation of p21 also inhibits proliferating cell nuclear 

298 antigen, a suppressor of DNA replication [86]. Thus, in a multifactorial mechanism, 

299 the activation of the Akt pathway promotes and protects the progression through the 

300 cell cycle. Studies have observed that the cell cycle can be arrested at the G1 phase 

301 through the inhibition of PI3K [87]. 

302

303 Another vital aspect of cell survival is the prevention of apoptosis. Through the 

304 breakdown of forkhead box O3 (FOXO3), Akt prevents the activation of p27, p21 

305 p15, and p19, along with other proapoptotic genes such as BH3-only protein, Fas 

306 ligand and the p53 upregulated modulator of apoptosis [88]. Studies of primary 

307 chronic lymphatic leukemia B cells show that the constitutively active Akt increases 

308 expression and stability of the induced myeloid leukemia cell differentiation protein 

309 Mcl-1, the X-linked inhibitor of apoptosis protein and antiapoptotic B-cell lymphoma-

310 extra large proteins, thus contributing to the inhibition of apoptosis & extending the 

311 longevity of diseased cells [78]. Furthermore, the cytochrome C induced apoptotic 

312 signaling pathway is inhibited by Akt at caspase 9, thereby promoting cell survival 

313 during cellular stress typical of the cancer environment. 

314

315

316

317

318



15

319 5.2 Glycolysis
320

321 Another key hallmark of cancer is the switch towards anaerobic metabolism, 

322 described as the Warburg Effect [89].  This avoids the reliance on oxygen for energy 

323 production and is often correlated with tumor aggressiveness as it equips the cells 

324 with a rapid source of energy and intermediates for growth [90-93]. Targeting 

325 enzymes that promote the Warburg effect, such as the PI3K/Akt/mTOR pathway, act 

326 as a promising strategy to target the metabolic adaptations of cancer cells [94-97]. 

327

328 By phosphorylating the AS160 substrate on the glucose transporter type 4 receptor, 

329 AKT prompts its translocation to the cell surface and increases the cell’s intake of 

330 glucose [98]. Downstream from the mTOR axis, there is the activation of other 

331 metabolism modulations that act to promote energy production and consumption 

332 within the cell [99]. PI3K phosphorylation and inhibition of FOXO1 and (downstream) 

333 CREB regulated transcription coactivator 2 inhibiting the fasting regulation of 

334 gluconeogenesis [100]. Storage of this excess glycogen is promoted through the 

335 inhibition of the glycogen synthase GSK3, which indirectly lowers the levels of c-

336 Myc (noted in leukemic blast cells) [101]. Overall this prevents the inhibition of the 

337 hypoxic induced gene, promoting the Warburg Effect [102].

338

339 6.0 Targeting PI3K/Akt/mTOR

340
341 A genetic study of 218 prostate cancer tumors showed that 42% of primary growths 

342 and 100% of metastasizes displayed a genomic dysregulation of the PI3K/Akt/mTOR 

343 pathway [13], thus targeting key axis points within this pathway might be vital in 
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344 reducing the aggressiveness CRPCa. A meta-analysis in 2018 suggested that 

345 PI3K/Akt/mTOR pathway inhibitors can significantly improve the survival of patients 

346 with advanced solid tumors [74]. With a range of synthetic inhibitors being proposed, 

347 including dual mTORC1/2, dual PI3K/mTOR, Pan-PI3K, isoform-specific PI3K, and 

348 second-generation Akt inhibitors (Table 4), the therapeutic demand for a range of 

349 PI3K/Akt/mTOR inhibitors is evident.  

350

351 6.1 Evidence for EGCGs role
352

353 EGCG itself acts as a competitive inhibitor (Ki 380 nM) of the common class 1 

354 isomers of PI3K (PI3K, PI3K, PI3K, and PI3K), preventing the initial 

355 phosphorylation of Akt [103-108].  The binding mode of EGCG is noted to be similar 

356 to the PI3K inhibitor LY294002 [37]. It should be noted that within the LNCaP and 

357 PC-3 PCa cell lines, EGCG had no significant effect on the phosphorylation of PI3K 

358 at the Ser437 residue. The lack of the phosphatase and tensin homolog allele was 

359 suspected to cause the non-response [37]. EGCG also inhibits mTOR (Ki of 320 ± 

360 24 nM [37], aligning itself in a similar category to the synthetic dual PI3K/Akt/mTOR 

361 inhibitors. These non-selective inhibitors display more promising effects as both pre-

362 clinically and clinically, they are better equipped at overcoming the compensatory 

363 feedback mechanisms [37, 103-105].

364

365 Including its activity against the central PI3K/Akt/mTOR axis points, EGCG also 

366 interferes with the signaling cascade downstream from mTOR to reactivate the 

367 apoptotic signaling. Similar to other chemopreventive natural products such as 

368 curcumin, caffeinic acid, and capsaicin, EGCG is inhibitory against the transcription 
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369 factor; nuclear factor kappa-light-chain-enhancer of activated B cells (NF- KB) [109]. 

370 NF- KB is redox-responsive, and is highly implicated with the cancer cell proliferation 

371 and survival [110-112]. Although not specifically in PCa, when the squamous cell 

372 carcinomas cell line, A431 was treated with doses of 30-80 M of EGCG, the EGCG 

373 was seen to suppress the activation of NF- KB, to which there is substantial evidence 

374 of crosstalk between the two pathways  [113] [114]. Depleting the levels of NF- KB in 

375 both the nucleus and cytoplasm, cancer cells were no longer protected against 

376 apoptosis, resulting in cell death [115]. Comparing the responsive dose of EGCG 

377 required to inhibit NF- KB displayed an evident selectivity towards the cancerous 

378 A431 cell line over the non-cancerous normal human epidermal keratinocytes [109]. 

379 Furthermore, with the correlation between NF- KB expression and PCa resistance 

380 against Docetaxel, the inhibition of NF- KB (via BAY11-7082 inhibitor), appeared to 

381 reverse this resistance, and maybe the key to improving the efficacy of PCa drugs 

382 [116].

383

384 As a catechin, EGCG has a single-electron reduction potential enabling it to act as a 

385 scavenger for reactive oxygen species (ROS), and its pro-oxidant nature strongly 

386 contributes to pro-apoptotic activity. EGCG is susceptible to oxidation by H2O2 [36, 

387 117, 118]. The then oxidized EGCG forms a cytotoxic o-quinone, which later reacts 

388 with glutathione to form various ROS [118, 119]. These ROS are suspected to 

389 downregulate Bcl-2 and Mcl-1 [36, 120]. When EGCG is administered in combination 

390 with arsenic trioxide (Trisenox®), a natural product based chemotherapeutic used in 

391 acute promyelocytic leukemia, the production of ROS was greater than seen with 

392 either used alone [36]. EGCG also displays some selectivity to cancerous cells, with 

393 apoptosis induced in the cancerous A431 cell line, but not normal epidermal 
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394 keratinocyte counterparts [109]. Thus, the combined increase in ROS and depletion 

395 of NF-kB, EGCG is seen to counteract the prosurvival signaling enacted by 

396 PI3K/Akt/mTOR hyperactivation. 

397

398 7.0 Discussion and Conclusion

399

400 There a deficit in our collective knowledge in the area of EGCG’s role in the 

401 occurrence and treatment of cancer, as well as that of tea products in this same 

402 area, and this is indicative of the future work that might be done to address this. Due 

403 to EGCG being considered a pan assay interference compound, it can be assumed 

404 that other pathways are affected beyond PI3K/Akt/mTOR since its structural 

405 properties are conducive to broad interactions [121, 122]. Thus, there is a concern 

406 with its use to guide synthetic drug design. EGCG also has poor stability, it rapidly 

407 oxidizes in solution, and is rapidly metabolized in vivo [123-125]. Even so, the 

408 evidence provided in laboratory and clinical studies gives encouraging support for 

409 the further investigation of this phytochemical and its botanical source. Further study 

410 may take the form of clinical trials to assess the use of EGCG or tea products as 

411 adjunct natural therapies alongside traditional chemotherapy, or another promising 

412 area of work may be computational analysis for guided drug design, with EGCG as a 

413 lead compound.  Although there is the potential for nonspecific interactions of such 

414 compounds when examined via in vitro assay, in vivo evidence encourages research 

415 to continue in this area.                

416

417 Overcoming the metabolic adaptations of metastatic prostate cancer continues to be 

418 a major hurdle in producing effective treatments without severely hindering the 
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419 patient's quality of life. Due to the multifactorial nature of many cancers, in particular, 

420 CRPCa, single-target drugs are often redundant due to crosstalk within the 

421 prosurvival cascades, such as the PI3K/Akt/mTOR pathway. However, natural 

422 product EGCG may hold the solution. Acknowledged for its tolerability and 

423 chemotherapeutic activity against a variety of cancers, EGCG acts upon a range of 

424 targets within the PI3K/Akt/mTOR cascade to promote the selective apoptosis of 

425 cancer cells. With a growing risk of many late-stage cancers, investigating tolerable 

426 options such as EGCG may be essential for cancer treatment going forward. 

427 Whether effective on its own or to be utilized as adjuvant therapy, EGCG shows 

428 potential as a chemopreventative or sensitizer and may have the potential to lead 

429 further synthetic drug design. 

430
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836 10.0 Figures

837
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Drying

Green Tea
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Black TeaOolong Tea

Bruising

Short Fermentation

Panfrying and Drying

Tea Leaf

838 Figure 1: Generalized processing protocol for Green, Oolong and Black Tea. Primary 

839 differences in the catechin content of each tea variety result from the variation in 

840 treatment during the processing of the Camellia sinensis flush.

841

842
843

844
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845

846 Figure 2: Key bioactive components of green tea, broadly categorized into flavonoids, 

847 methylxanthines, vitamins and other.

848

Components of Green Tea
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849

850 Figure 3: Names and structures of the 2-phenylbenzopyrans (flavonoids), in which 

851 flavan-3-ol is the most predominant 

852
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853

854 Figure 4: Structures, names, and abbreviations of the major flavonols found in green 

855 tea 
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856

857 Figure 5: Structures of semi-synthetic and natural products used in chemotherapy



42

858

859 Figure 6: Activation of PI3K and Akt mediated through (a) mitogenic activation at the 

860 receptor tyrosine kinase (RTK) resulting in the (2) phosphorylation and binding of the 

861 PI3K intracellular unit (3) conversion of PIP2 to PIP3 and activation of the Ph subunit 

862 on Akt inducing the translocation to the cell membrane (4) phosphorylation and 

863 activation of Akt. Abbreviations: receptor tyrosine kinase (RTK), Phosphatidylinositol-

864 4,5-bisphosphate 3-kinase (p85/p110kin), Phosphatidylinositol 4,5-bisphosphate (PIP), 

865 Pyruvate Dehydrogenase Kinase (PDK) and Integrin-linked kinase (ILK).
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867  11.0 Tables 

868
Table 1: Proportion of Catechins present in Tea
Fermentation % Flavanols
Non-Fermented (Green) 8.0–14.4 

Partially Fermented (Oolong) 4.14–4.92 

Fermented (Black) 0.24–0.51
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Table 2: EGCG’s association as a chemopreventive with a range of cancers.
Cancer Effect of EGCG  Source

Cellular apoptosis [109]Prostate
 Reduced risk [36] 

Lymphoma 
(mouse)

Cellular apoptosis [109]

Keratinocytes Cellular apoptosis [109]

Reduced Risk [36]Bladder 
Carcinoma
 

Chemoprevention [4, 5] 

Prevent reoccurrence [33]

Fewer side effects [126]

Chemoprevention
[57, 62, 

127, 128]

Colon

Cellular apoptosis [10]

Chemoprevention [57]

Inhibit tumour development (mouse/rat) [57] 

Controversial association with efficacy [4]

Apoptosis via triggering H2O2 production (H661) [118]

Lung

Inhibit proliferation [37]

Chemoprevention [129]
Breast

Inhibit proliferation [37]

Elevate ROS production during apoptosis [36]
Lymphatic

Cellular apoptosis (mouse LY5178) [109]

Reduced adenocarcinoma incidence (Polyphenol E*) [57]

Reduced adenocarcinoma multiplicity (Polyphenol E*) [57]

Increase phosphorylation of cJun [130, 131] 

Increase phosphorylation of Erk1/2 [131]

Increase PCNA [131]

G0/G1 halt in A431 (not non-cancerous NHEK) [11]

Constitutively expression of NF-kB [109]

Epidermal

Apoptotic cell death [109]

(Inflammation) Protect against collagen-induced arthritis (GTP**) [109] 

Esophageal Chemopreventive [4, 57] 

Stomach Chemopreventive [4, 57]

Intestine Chemopreventive [4, 57]

*polyphenol E is a concentrated catechin preparation; ** GTP refers to a combination of green tea 

proteins;

869
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Table 3: Eligibility criteria and common side effects for current PCa treatments.

Drug Brand Name 
(Manufacturer) Adverse Reactions Eligibility

Goserelin
Zoladex 
(AstraZeneca 
Pharmaceuticals)

Hot flushes
Tumor flare
Hyperglycaemia
Hyperlipidemia
Hypercholesterolemia
Reduced libido

locally advanced or metastatic 
hormone-sensitive prostate 
cancer

Triptorelin
Decapeptyl 
(Ferring 
Pharmaceuticals)

Hot flushes
Tumor flare
Hyperglycaemia
Hyperlipidemia
Hypercholesterolaemia
Reduced libido
Depression

locally advanced or metastatic 
hormone-sensitive prostate 
cancer

G
nR

H
 A

go
ni

st
 / 

A
nt

ag
on

is
t

Degarelix Firmagon (Ferring 
Pharmaceuticals)

Hot flushes
Arthralgia
Fatigue
Constipation
Reduced libido
Gynaecomastia
Fatigue
Constipation

Locally advanced or metastatic 
prostate cancer

Bicalutamide
Casodex 
(AstraZeneca 
Pharmaceuticals)

Nausea
Drowsiness
Constipation
Dizziness
Hot flushes
Abdominal pain
Fluid retention
Hepatotoxicity
Anorexia

locally advanced or metastatic 
CRPCa in combination with LHRH 
agonist

A
nd

ro
ge

n 
R

ec
ep

to
r I

nh
ib

ito
rs

Cyproterone 
Acetate

Sandoz (Sandoz 
Pty Ltd)

Hot flushes
Fatigue
Depression
Swelling
Bone weakening
Weight fluctuations
Dry skin 

Locally advanced inoperable 
prostate cancer in combination 
with radiation therapy Locally 
advanced or metastatic castrate-
resistant prostate cancer in 
combination with LHRH agonist 
Short term prevention of tumor 
flare associated with the initiation 
of an LHRH agonist

Abiraterone Zytiga (Janssen 
Biotech)

Hypertension
Fluid retention
Hypokalaemia
Vomiting and 
Diarrhoea

Post-docetaxel CRPCa. 
secondary hormonal therapeutic. 
Must be in combination with 
prednisone or prednisolone, and 
no other chemotherapy

Enzulatimide Xtandi (Astellas 
Pharma US)

Hypertension
Anxiety
Fatigue
Seizures

Post-docetaxel CRPCa. Available 
for clinical trials secondary 
hormonal therapeutic. Cannot use 
with abiraterone.
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Flutamide Eulexin 
(Schering-Plough)

Hot Flashes
Urine Discolouration
Loss of sexual interest
Diarrhea
Nausea
Vomiting
Enlargement of male 
breasts
Skin sensitivity
Impotence
Rectal bleeding

Locally advanced or metastatic 
castrate resistant prostate cancer. 
Used in combination with LHRH 
agonist throughout treatment. 

Short term prevention of tumour 
flare

Radium-223 Xofigo (Bayer)

Nausea
Vomiting 
Diarrhea
Swelling

Asymptomatic bone metastasis. 
Bone metastasis

Sipuleucel-T 
Provenge 
(Dendreon 
Pharmaceuticals)

Fatigue
Fever
Chills

Asymptomatic or minimally 
metastatic CRPCa

Docetaxel Taxotere (Phyton 
Biotech)

Nausea
Vomiting
Neutropenia
Thrombocytopenia
Oral Mucositis
Diarrhea
Skin rash
Peripheral neuropathy
Palmar-plantar
Erythrodysaethesia
Arthralgia
Ocular changes
Fatigue
Fluid retention

Diagnosed CRPCa (standard 
treatment)

Mitoxantrone Novantrone 
(Pfizer)

Nausea
Hair loss
Mouth ulcers
Neutropenia
Thrombocytopenia
Oral Mucositis
Anorexia
Arthralgia
Fatigue

Diagnosed CRPCa

O
th

er
s

Cabazitaxel Jevtana (Sanofi-
Aventis)

Severe neutropenia
Thrombocytopenia
Anorexia
Diarrhea
Constipation
Skin Rash
Arthralgia
Fatigue
Peripheral neuropathy
Peripheral neuropathy

Post-docetaxel CRPCa. Must be 
in combination with prednisone or 
prednisolone
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Nausea and vomiting
Diarrhea

870 Note that this table is not fully comprehensive and the most current Australian data can be found at the EviQ 

871 [132-140]

872
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Table 4: PI3K/Akt/mTOR pathway inhibitors
Target Name Tradename
Dual PI3K/ 

mTOR
LY3023414  

LY294002

PX 866 SonolisibPan-class I Inhibitors

BKM 120 Buparlisib

GSK 2636771

PI3K

p110 Isoform-specific 

PI3K Inhibitors AZD 8186 

GSK2141795 Uprosertib

GDC-0068 IpatasertibAKT Akt 

AZD5363  

AZD 8055mTORC1 & 

mTORC2 Dual 

Inhibitor
INK 128mTORC

MTORC1 Everolimus  
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Components of Green Tea

Flavonoids

Flavanols

Catechins

Epicatechin

Others

Epigallocatechin
Epicatechin Gallate

Epigallocatechin Gallate

Catechin
Gallocatechin
Catechin Gallate
Gallocatechin Gallate

Teaflavins

L-theanine
Tannins
Gallic Acid
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Vitamins

Vitamin C
Vitamin B2

Folic Acid
Beta-Carotene

Vitamin E
Quercetin
Myceritin
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Table 1: Proportion of Catechins present in Tea
Fermentation % Flavanols
Non-Fermented (Green) 8.0–14.4 

Partially Fermented (Oolong) 4.14–4.92 

Fermented (Black) 0.24–0.51



Table 2: EGCG’s association as a chemopreventive with a range of cancers.
Cancer Effect of EGCG  Source

Cellular apoptosis [109]Prostate
 Reduced risk [36] 

Lymphoma 
(mouse)

Cellular apoptosis [109]

Keratinocytes Cellular apoptosis [109]

Reduced Risk [36]Bladder 
Carcinoma
 

Chemoprevention [4, 5] 

Prevent reoccurrence [33]

Fewer side effects [126]

Chemoprevention
[57, 62, 

127, 128]

Colon

Cellular apoptosis [10]

Chemoprevention [57]

Inhibit tumour development (mouse/rat) [57] 

Controversial association with efficacy [4]

Apoptosis via triggering H2O2 production (H661) [118]

Lung

Inhibit proliferation [37]

Chemoprevention [129]
Breast

Inhibit proliferation [37]

Elevate ROS production during apoptosis [36]
Lymphatic

Cellular apoptosis (mouse LY5178) [109]

Reduced adenocarcinoma incidence (Polyphenol E*) [57]

Reduced adenocarcinoma multiplicity (Polyphenol E*) [57]

Increase phosphorylation of cJun [130, 131] 

Increase phosphorylation of Erk1/2 [131]

Increase PCNA [131]

G0/G1 halt in A431 (not non-cancerous NHEK) [11]

Constitutively expression of NF-kB [109]

Epidermal

Apoptotic cell death [109]

(Inflammation) Protect against collagen-induced arthritis (GTP**) [109] 

Esophageal Chemopreventive [4, 57] 

Stomach Chemopreventive [4, 57]

Intestine Chemopreventive [4, 57]

*polyphenol E is a concentrated catechin preparation; ** GTP refers to a combination of green tea 

proteins;



Table 3: Eligibility criteria and common side effects for current PCa treatments.

Drug Brand Name 
(Manufacturer) Adverse Reactions Eligibility

Goserelin
Zoladex 
(AstraZeneca 
Pharmaceuticals)

Hot flushes
Tumor flare
Hyperglycaemia
Hyperlipidemia
Hypercholesterolemia
Reduced libido

locally advanced or metastatic 
hormone-sensitive prostate 
cancer

Triptorelin
Decapeptyl 
(Ferring 
Pharmaceuticals)

Hot flushes
Tumor flare
Hyperglycaemia
Hyperlipidemia
Hypercholesterolaemia
Reduced libido
Depression

locally advanced or metastatic 
hormone-sensitive prostate 
cancer
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Degarelix Firmagon (Ferring 
Pharmaceuticals)

Hot flushes
Arthralgia
Fatigue
Constipation
Reduced libido
Gynaecomastia
Fatigue
Constipation

Locally advanced or metastatic 
prostate cancer

Bicalutamide
Casodex 
(AstraZeneca 
Pharmaceuticals)

Nausea
Drowsiness
Constipation
Dizziness
Hot flushes
Abdominal pain
Fluid retention
Hepatotoxicity
Anorexia

locally advanced or metastatic 
CRPCa in combination with LHRH 
agonist

A
nd

ro
ge

n 
R

ec
ep

to
r I

nh
ib

ito
rs

Cyproterone 
Acetate

Sandoz (Sandoz 
Pty Ltd)

Hot flushes
Fatigue
Depression
Swelling
Bone weakening
Weight fluctuations
Dry skin 

Locally advanced inoperable 
prostate cancer in combination 
with radiation therapy Locally 
advanced or metastatic castrate-
resistant prostate cancer in 
combination with LHRH agonist 
Short term prevention of tumor 
flare associated with the initiation 
of an LHRH agonist

Abiraterone Zytiga (Janssen 
Biotech)

Hypertension
Fluid retention
Hypokalaemia
Vomiting and 
Diarrhoea

Post-docetaxel CRPCa. 
secondary hormonal therapeutic. 
Must be in combination with 
prednisone or prednisolone, and 
no other chemotherapy

Enzulatimide Xtandi (Astellas 
Pharma US)

Hypertension
Anxiety
Fatigue
Seizures

Post-docetaxel CRPCa. Available 
for clinical trials secondary 
hormonal therapeutic. Cannot use 
with abiraterone.



Flutamide Eulexin 
(Schering-Plough)

Hot Flashes
Urine Discolouration
Loss of sexual interest
Diarrhea
Nausea
Vomiting
Enlargement of male 
breasts
Skin sensitivity
Impotence
Rectal bleeding

Locally advanced or metastatic 
castrate resistant prostate cancer. 
Used in combination with LHRH 
agonist throughout treatment. 

Short term prevention of tumour 
flare

Radium-223 Xofigo (Bayer)

Nausea
Vomiting 
Diarrhea
Swelling

Asymptomatic bone metastasis. 
Bone metastasis

Sipuleucel-T 
Provenge 
(Dendreon 
Pharmaceuticals)

Fatigue
Fever
Chills

Asymptomatic or minimally 
metastatic CRPCa

Docetaxel Taxotere (Phyton 
Biotech)

Nausea
Vomiting
Neutropenia
Thrombocytopenia
Oral Mucositis
Diarrhea
Skin rash
Peripheral neuropathy
Palmar-plantar
Erythrodysaethesia
Arthralgia
Ocular changes
Fatigue
Fluid retention

Diagnosed CRPCa (standard 
treatment)

Mitoxantrone Novantrone 
(Pfizer)

Nausea
Hair loss
Mouth ulcers
Neutropenia
Thrombocytopenia
Oral Mucositis
Anorexia
Arthralgia
Fatigue

Diagnosed CRPCa

O
th

er
s

Cabazitaxel Jevtana (Sanofi-
Aventis)

Severe neutropenia
Thrombocytopenia
Anorexia
Diarrhea
Constipation
Skin Rash
Arthralgia
Fatigue
Peripheral neuropathy
Peripheral neuropathy
Nausea and vomiting

Post-docetaxel CRPCa. Must be 
in combination with prednisone or 
prednisolone



Diarrhea
Note that this table is not fully comprehensive and the most current Australian data can be found at the EviQ 

[132-140]





Table 4: PI3K/Akt/mTOR pathway inhibitors
Target Name Tradename
Dual PI3K/ 

mTOR
LY3023414  

LY294002

PX 866 SonolisibPan-class I Inhibitors

BKM 120 Buparlisib

GSK 2636771

PI3K

p110 Isoform-specific 

PI3K Inhibitors AZD 8186 

GSK2141795 Uprosertib

GDC-0068 IpatasertibAKT Akt 

AZD5363  

AZD 8055mTORC1 & 

mTORC2 Dual 

Inhibitor
INK 128mTORC

MTORC1 Everolimus  
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