
The Importance of Research on Materials
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Conventional III-Nitrides
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• Direct-gap semiconductors covering wide range 0.7-6.2 eV

IR-Blue-UV optical emitters/detectors

• Strong chemical bonding - high stability/resistance 
high temperature/power electronics

Miguel A. Sanchez, EMRS 2007



Luminous efficacy of light sources

M.G.Craford, OIDA Annual Forum, Washington, Dec.2006.



State-of-Art: High-Power LEDs (1 W)

M.G.Craford, OIDA Annual Forum, Washington, Dec.2006.



GaN substrate technology

CS August 2007, p.23



Vertical cavity surface emitter 
(VCSEL)



Vertical cavity surface emitter
(VCSEL)

Improve reflectivity of III-Nitrid Bragg 
reflector

Compare strained AlN/GaN DBR with 
lattice-matched (Al,In)N/GaN DBR 

Reduce series resistance of doped 
Bragg reflector 

Design and realize p-type carrier 
injection scheme via tunneling junction

III-Nitride based microcavities to study the formation of exciton polaritons for 
Bose Einstein condensation



Reflectance of AlN/GaN DBR 



GaN electron devices

Heterostructure FETs (HFETs, HEMTs) 
- High breakdown electric field 
- High electron density 
- High saturation drift velocity 

High power output,  high frequency
and high temperature operation

Earlier problems: 
= Collapse of drain current 
= Large gate leakage current

Compare (Al,Ga)N/GaN with (Al,In)N/GaN

Operation of high-power HFETs in 2 GHz band is satisfactory 
Concerns: Reliability, production yield, cost, Issues of substrate material: SiC, Si, AlN 

Needs for high frequency operation: High power output, high efficiency, high degree of linearity,
low power consumption



In 2006:

∼ 1.800 publications with
GaN as keyword in title

∼ 200 publications with
InN as keyword in title

Number of publications per year

Miguel A. Sanchez, EMRS 2007
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To do list for InN films 

Improve structural properties of InN films by optimizing growth
conditions and proper selection of substrate

Understand and control the intrinsic electron accumulation on polar 
InN surfaces

Grow InN films on nonpolar surfaces



InN nanorods (I)

PL Spectra of InN grown with 
and without buffer layer
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InN nanorods (II)

● SEM and TEM photographs of InN nanorods
● SAD pattern reveal epitaxial alignment

1µm1µm

Miguel A. Sanchez, EMRS 2007



InN nanorods (III)

E.Calleja et al. to be published.

Higher conductivity for the InN nanocolumns than for GaN. Related with the tendency
of InN to have a very high n-type residual concentration (1018 cm-3-1020cm-3)



Nonpolar GaN

CS June 2007



Origin and consequences of electrical 
polarization



Band diagrams of GaN/(Al,Ga)N 
multiple quantum wells



Substrate with small mismatch (γ-LiAlO2) 
for M-plane GaN



Non-polar GaN

M-plane GaN films grown on γ-LiAlO2

→ no internal electrostatic fields in QWs
→ highly anisotropic strain
→ enhanced optical anisotropy (refractive index,

polarization)

Here:

• linear dichroism
• polarization filtering

demonstration of polarization-sensitive photodetectors
two-color Bragg reflector (DBR) based on linear birefringence
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M-plane GaN photodetectors
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• Photocurrent measurements for semitransparent Schottky diodes,
maximum responsivity R=60 mA/W

• Maximum contrast in responsivity >7 at 363 nm

• R=R||cos2Φ+R^sin2Φ
H.T Grahn et al



Linear birefringence: two-color M-plane DBR
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• 20-period GaN/AlN Bragg reflector on ~300 nm GaN buffer layer on LiAlO2

• maximum reflectivity 80–90% limited by interface roughness
• stopband shifts by about 70 meV due to linear birefringence
• maximum contrast between parallel and perpendicular polarization at 3.05 eV

2 µm

D.M.Schaadt, APL 90(2007)231117



High frequency SAW devices

λ

SAW velocity
(m/s)

Electromechanical
coupling coefficient

(%)

AlN GaN GaAs          LiNbO3

5790  3690  2870         3490-3890

0.25 0.13 0.064 4.8

λ

~
SAW f = v/λ

For high frequency (f),

small wavelength (λ)
or  large velocity (v)



AlN/SiC acoustic heterostructures



Superhigh frequency operation



Transmission characteristics
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AlN/GaN/g-LiAlO2 for MEMS/NEMS

// [1120]
−

// [0001] AlN
(45 nm)

Width (mm)     Length (mm)
Cantilevers            0.2                      4
Beams                    0.2                      6

GaN
(120 nm)

} M-plane

γ-LiAlO2(100)

Advantages of AlN
stiffness
durability

Mismatch         ∆a/a       ∆c/c
(%)       (%)

AlN/GaN            2.4         3.9
GaN/γ-LiAlO2 -1.7        -0.3
AlN/γ-LiAlO2 0.7         3.6



Strain relaxation at AlN-GaN interface

Strain estimated from self-rolling

d(AlN)   d(GaN)   radius   ∆a/a   radius   ∆c/c
(nm)      (nm)       (mm)    (%)     (mm)    (%)

45           120          11        1.0        … << 1
70           110          14        0.7        39       0.3
350          515         276       0.2        … …

[1120]
− [0001]

Relaxation for thick AlN layersWidth                  1 mm
AlN thickness    45 nm
GaN thickness  120 nm

Radius of loop   11 mm
Almost relaxed along the c 

axis
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Bandgap of dilute Nitrides



(Ga,ln)(N,P,As) alloys lattice-matched to 
GaAs, GaP or Si (Dilute Nitrides)

Infrared light emitter

Multijunction solar cells

Monolithic integration of Ga(N,P,As)/GaP heterostructure lasers 
with Si-CMOS circuits („Silicon Photonics")

Problem areas for growth of these metastable alloys

Large differences in atomic radii and electronegativities of constituent elements

Large differences in bond strengths of constituent binaries 
Tendency of alloy clustering enhanced

Sound models about surface kinetics and growth mechanisms do not exist
Empirical optimization of growth conditions

Low substrate temperature for 2D growth 
2D growth mode stabilized by surfactants?

Post-growth annealing required to improve internal quantum efficiency
Point defects, antisite defects, ion damage ? 
Deep electron and/or hole traps ?



Major building blocks for Si photonics



On-chip optical interconnects



TEM images



(Ga,In)(N,P,As) alloy

W.Stolz, www.NAsP.de



Proof of concept

W.Stolz, www.NAsP.de



Estimated vs experimental bandgap
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Band anticrossing (BAC) model
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Ga(N,P,As) SQW laser

W.Stolz, www.NAsP.de
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Rare-earth (RE) doping of GaN

Sharp RE intra-f-shell optical transitions allow light emission in the visible 
to infrared spectral range

Eu-doped GaN → 623 nm emission
Er-doped GaN → 1.55 µm emission

Isovalent RE3+ ions on Ga lattice sites form electrically inert centers 
(no deep gap states)

_____________________________________________________________________
Ref: P. N. Favennec et al., Electron Lett. 25 (1989) 718

Y. Q. Wang and A. J. Steckl, Appl. Phys. Lett. 82 (2003) 402
J. S. Filhol et al., Appl. Phys. Lett. 84 (2004) 2841

_____________________________________________________________________

Magnetic coupling of partially filled 4f-orbitals of RE3+ ions possible 
→ weaker than d-orbitals in transition metals

Gd has both partially filled 4f and 5d orbitals 
→ new coupling mechanism?

_____________________________________________________________________

Ref: M. Hashimoto et al., Jpn. J. Appl. Phys. 42 (2003) L1112
N. Teraguchi et al., Solid State Commun. 122 (2002) 651

___________________________________________________________



Ferromagnetic nitrides 

The mean-field model of free holes mediating ferromagnetism via
RKKY interaction have identified wide-gap semiconductors as ideal
candidates to generate ferromagnetic semiconductors with high Curie
temperature by doping with magnetic transition metal (TM) ions.

Numerous attempts with Mn, Cr, and Fe doping of GaN have 
yielded inconclusive results.

Doping of GaN with rare earth elements (RE), like Eu, Er, Gd, is well
established. Isoelectronic RE species are incorporated on Ga lattice sites.



Gd concentration vs Gd/Ga flux ratio
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Magnetic hysteresis ([Gd] = 6 x 1016 cm–3)
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• Magnetization saturates at high fields  ⇒ Ferromagnetism
• Superposition of two loops with different Hc and Mr at 2 K ?

→ above 10 K phase with larger Hc and Mr disappears



Saturation magnetization vs [Gd]
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Inset: Magnetic moment per Gd atom



Empirical model for origins of
colossal moment

Gd atoms polarize the matrix

pe = pGd + pm ν No/NGd; ν = 1-exp(-v NGd)

pe decreases as NGd is increased → experimentally observed

Overlap of spheres → ferromagnetic coupling

Tc increases with NGd → experimentally observed



Magnetization curves of Gd-doped GaN 
measured in two perpendicular directions

6 x 1016 cm-3

Saturation magnetization is smaller along hard axis



Magnetic moment of Gd in implanted GaN

Saturation magnetization shown in insets



FC and ZFC magnetization in Gd-
implanted GaN

A-1   2 x 1016 cm-3

A-3   1 x 1020 cm-3



Magnetic hysteresis of Gd-implanted GaN

S.Dhar et al., APL 91(2007)072514



Results from Gd-doped GaN 

Single-phase Gd-doped GaN layers show ferromagnetic behavior with in-
plane easy axis and high Tc

Colossal magnetic moment per Gd atom 

Coexistence of two ferromagnetic phases with different order temperatures 

Measured saturation magnetization depends on orientation of the magnetic 
field 

Structural defects play important role for magnitude of colossal magnetic 
moment per Gd atom 

Empirical model based on polarization of entire GaN matrix by Gd dopants
(an/or defects) can explain the observed colossal magnetic moment 



Role of defects in creating ferromagnetism
in semiconductors (polaron model)

J.M.D. Coey et al., Nature Mater. 4(2005)173



III-Nitride nanostructures 

Large number and wide variety of nano-objects consisting of III-Nitrides, including

quantum wires 
nanowires 
nanocolumns 
nanorodes 
quantum dots 
nanodots 
etc 

have been fabricated by different growth techniques.

Challenges are to have control over

size (geometrical dimensions)
uniformity 
placements 
interconnects (for electrnic access)



Concluding remarks

Physics Today, August 2007, p.26
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