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Abstract

For textual entailment recognition systems, it
is often important to correctly handle Gen-
eralized quantifiers (GQ). In this paper, we
explore ways of encoding GQs in a recent
framework of Dependency-based Composi-
tional Semantics, especially aiming to cor-
rectly handle linguistic knowledge like hy-
ponymy when GQs are involved. We use both
the selection operator mechanism and a new
relation extension to implement some major
properties of GQs, reducing 69% errors of a
previous system, and a further error analy-
sis suggests extensions towards more power-
ful logical systems.

1 Introduction

Dependency-based Compositional Semantics (DCS)
provides a formal yet intuitive way to model nat-
ural language semantics. It was initially proposed
in Liang et al. (2011) as a relational database query-
ing protocol, and later used for logical inference
in Tian et al. (2014a). Although the DCS inference
framework provided decent support for both quanti-
fiers all (universal quantifier) and no (negated exis-
tential quantifier), attention is required for an RTE
system to cope with generalized quantifiers (GQ),
including “at most n”, “at least n”, “most”, etc.,
which can affect the direction or even the existence
of an entailment relation, as demonstrated in Exam-
ples 1 to 3.

⇤This work was conducted during an internship at the Na-
tional Institute of Informatics, Japan.

Example 1. P ) H but H ; P , where
P At most 5 students like noodles.
H At most 5 Japanese students like udon noodles.

Example 2. P ) H but H ; P , where
P At least 5 Japanese students like udon noodles.
H At least 5 students like noodles.

Example 3. P ; H and H ; P , where
P Most Japanese students like udon noodles.
H Most students like noodles.

In this paper, we explore ways of encoding GQs
in a recent framework of Dependency-based Com-
positional Semantics (DCS) (Liang et al., 2013; Tian
et al., 2014a), especially aiming to correctly handle
linguistic knowledge like hyponymy when GQs are
involved. We use selection operators, an extension
mechanism described in Tian et al. (2014a), to im-
plement a sub-type of GQs (Section 3.1). To deal
with downward monotonicity of the predicate ar-
gument, we also propose a simple extension called
“relation” to the framework (Section 3.2). This ap-
proach does not encode the exact semantics of ev-
ery specific GQ, but instead captures some major
properties that are both easily implementable with
the current technology and useful in many cases.

As in Tian et al. (2014a), we empirically tested the
extended system on the “Generalized Quantifiers”
section of the FraCaS corpus (The Fracas Consor-
tium et al., 1996), and reduced 69% of the previous
errors. A further error analysis reveals some limita-
tions of the current approach, suggesting extensions
towards more powerful logical systems. We hope
this research could make linguistic knowledge like
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hyponymy a more effective resource for textual en-
tailment tasks, and also shed some light on the han-
dling of more complicated natural language infer-
ence phenomena. The extended system is publicly
released at https://github.com/tomtung/
tifmo.

2 Background

2.1 Properties of Generalized Quantifiers

In this paper, “generalized quantifiers” refers
to quantity-denoting determiners such as “few”,
“most”, “at least 5”, etc. They can bind with a
property-denoting common noun phrase (e.g. “stu-
dents”) to form a quantified noun phrase (e.g. “few
students”), which can then bind with a predicate
(e.g. “like noodles”) to form a sentence (e.g. “few
students like noodles”). We regard the meanings
of both the common noun phrase and the predi-
cate as their denotations, i.e. let W be the uni-
verse containing all entities (a.k.a. the “world” set),
then the meaning of “students” is regarded as a set
student ✓ W containing all entities being students,
and the meaning of “(someone) likes noodles” is re-
garded as a subset of W which contains all entities
who like noodles. Thus, if we denote the power set
of W as 2W , then a GQ can be seen as a binary rela-
tion over 2W , or in other words, a function F from
(A,B) 2 2W ⇥ 2W to F (A)(B) 2 2 = {0, 1}, in
which the sets A and B are called noun argument
and predicate argument, respectively.

Usually, the relation imposed by a GQ is based
on the notion |·| of set cardinalities; for example,
AtMost[30%](A)(B) represents the relation that
|A \B|/|A|  30%. However, in practice it often
requires a large amount of effort to introduce cardi-
nalities into logical inference. Hence, in this paper
we make a compromise by encoding properties of
GQs that are most relevant to semantic relations like
hyponymy and are useful for solving RTE problems.
We mainly focus on three major properties, namely
interaction with universal and existential quantifica-
tions, conservativity, and monotonicity.

Given a GQ, say F , one most basic semantic
property is its interaction with universal and ex-
istential quantifications—whether F (A)(B) is en-
tailed by the noun argument being a subset of the
predicate argument (for short, “entailed by 8”), i.e.

A ✓ B ) F (A)(B), or whether it entails the
two arguments having a non-empty intersection (for
short, “entails 9”), i.e. F (A)(B) ) A \ B 6= ;.
There are three cases:

A ✓ B ) F (A)(B) ) A \B 6= ;

as “most” in Example 4,

A ✓ B 6) F (A)(B) ) A \B 6= ;

as “a lot of” in Example 5, and

A ✓ B 6) F (A)(B) 6) A \B 6= ;

as “at most 5” in Example 6.1

Example 4. A ) B ) C, where
A All students like noodles.
B Most students like noodles.
C There are students who like noodles.
Example 5. A 6) B ) C, where
A All students like noodles.
B A lot of students like noodles.
C There are students who like noodles.
Example 6. A 6) B 6) C, where
A All students like noodles.
B At most 5 students like noodles.
C There are students who like noodles.

The conservativity property of GQs results from
the “domain restraining” role of the noun argument,
which effectively eliminates objects that do not have
the noun property, so that we only need to consider
which of the rest has the predicate property. For ex-
ample:
Example 7. Few apples are toxic. () Few apples
are toxic apples.

The intuition here is that to know whether few ap-
ples are toxic, it is sufficient to know which apples
are toxic; those non-apple toxicants are irrelevant.
We formally define the conservativity property as
follows.
Definition 1 (Conservativity). A GQ F is conserva-
tive if for any A,B ✓ W ,

F (A)(B) () F (A)(A \B).

1We have made a convenient and practical assumption here:
for an English GQ denoted as F (·)(·), F (A)(B) presupposes
A 6= ;. Therefore we ignore the cases when A ✓ B )
F (A)(B) 6) A \ B 6= ;, because A 6= ; ^ A ✓ B )
A \B 6= ;.
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Mary! Teddy bear!
John! kitsune udon!
Mike! spaghetti!
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···!
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···!
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···!
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Figure 1: A DCS tree of the sentence “all students like
udon noodles”, with a given database.

Another important property that textual entail-
ment could rely on is monotonicity.
Definition 2 (Monotonicity). A GQ F is upward-
entailing (resp. downward-entailing) in the noun ar-
gument if, for any A,B ✓ W and A0 ✓ A (resp.
A0 ◆ A),

F (A0)(B) ) F (A)(B).

F being upward/downward-entailing in the predi-
cate argument can be defined in a similar manner.

For example, the GQ “at most 5” is downward-
entailing in each argument as shown in Example 1;
and the GQ “at least 5” is upward-entailing as
shown in Example 2.

In Section 3, we will explore ways of encoding
the properties discussed in this section in the DCS
inference framework.

2.2 Dependency-based Compositional

Semantics

DCS (Liang et al., 2013) was originally proposed
as a natural language interface for querying con-
crete relational databases. The meanings of a nat-
ural language sentence in DCS are represented by
a DCS tree, which is designed to be both semanti-
cally precise for execution on a database, and struc-
turally straightforward for easy alignment to a syn-
tactic dependency tree. For example, Figure 1 shows
the DCS tree for the sentence “all students like udon
noodles”, with the corresponding tables in a given
relational database.

When executed on databases, a DCS tree calcu-
lates denotations in a bottom-up manner. For ex-
ample, the DCS tree in Figure 1 first takes the ta-
ble student, and stores it at place “1”; then it

like

SBJ

ARG ✓

OBJ

ARG
student noodle

ARG

ARG
udon

Figure 2: Adapted DCS tree for logical inference

calculates the intersection of entries in table udon
and noodle to get the denotation of “udon noo-
dles”, and stores the result at place “2”. The ex-
ecute marker “X12” on the root edge imposes the
wide reading of the quantifier “all”, and guides a
calculation that first joins the result stored at place
“2” with the second column of like table, pro-
ducing the denotation of “like udon noodles”; then
projects this denotation into the first column to get
the denotation of “subjects who like udon noodles”;
and finally checks if this is a superset of the deno-
tation of “students” stored in place “1”. The nar-
row reading of “all” (i.e. “there is a specific udon
noodle liked by all students”) can be produced by
replacing the execute marker X12 with X21, which
will first assembles each entry x in the second col-
umn of the like table such that all students like
x, then intersects the result with the denotation of
“udon noodles”, and finally checks if the intersec-
tion is an empty set. For the precise calculation of a
DCS tree and details of this “mark-execute” mecha-
nism, please consult Liang et al. (2013).

In Tian et al. (2014a), the DCS framework was
adapted to deal with open-domain textual inference.
The idea is to use relational algebra operators (Codd,
1970) to formalize the calculation process used in
DCS trees, so we can perform logical inference on
this abstract level, without given a closed-domain re-
lational database. For example, Figure 2 shows an
adapted DCS tree representing the same sentence,
“all students like udon noodles”; and it guides a cal-
culation of the meaning parallel to the original DCS.
Concretely, the abstract denotation of “udon noo-
dles” is formulated as the following:

D1 = noodle \ udon,

where noodle and udon are no longer given tables
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in a relational database but abstract sets (treated as
symbols) representing denotations of the words, and
“\” is a relational algebra operator representing “in-
tersection”.

Similarly, the abstract denotation of “like udon
noodles” is formulated by:

D2 = like \ (WSBJ ⇥ (D1)OBJ),

where W is the “world set” as mentioned in Sec-
tion 2.1, and “⇥” denotes the Cartesian product.
Subscripts SBJ and OBJ are used to denote different
dimensions.

Finally, the abstract denotation of “subjects who
like udon noodles” is:

D3 = ⇡SBJ (D2) ,

where ⇡ is the projection operator. Here we use ⇡r
to denote a projection into dimension r, whereas ⇡r

denotes a projection to all dimensions other than r.
The adapted DCS tree in Figure 2 uses syntac-

tic/semantic labels (SBJ, OBJ, etc.) instead of num-
bers in the original DCS tree to denote different di-
mensions (i.e. different columns in the tables of the
relational database), because they provide database-
independent explanations for these dimensions. In
addition, the involved “mark-execute” mechanism
for representing quantifier “all” (as illustrated by
the Q, E and X12 markers in Figure 1) is simplified
to a quantification marker “✓” on the student-like

edge (Figure 2), and explained as the division oper-
ator q✓ in relational algebra2:

qr✓(R,C) = {x| ; 6= R \ ({x}⇥Wr) ✓ {x}⇥ Cr}

Therefore, the abstract denotations

D4 = qSBJ✓
�
⇡OBJ (D2) , student

�

= qSBJ✓ (D3, student)

and
D5 = ⇡OBJ

�
qSBJ✓ (D2, student)

�
,

correspond to the final results calculated by the orig-
inal DCS tree according to the wide reading and nar-
row reading of “all”, respectively. For logical infer-
ence, instead of the database-dependent evaluations

2When R and C have the same dimension, qr✓(R,C) is ei-
ther the 0-dimension point set {⇤} (if R ✓ C) or (otherwise)
;.

of such denotations, we mainly consider their satisfi-
ability, i.e. whether D4 (or D5) 6= ;. Here, by defini-
tion of the division operator, D4 6= ; , student ✓
D3 and D5 6= ; , qSBJ✓ (D2, student) 6= ; ,
9x; studentSBJ ⇥ {x}OBJ ✓ D2.

As we can see from the previous description,
many intermediate or related denotations are pro-
duced during the processing of DCS trees. In Tian
et al. (2014a), a special kind of auxiliary denota-
tions is considered, which integrates the context in-
formation of an entire DCS tree, and is naturally
linked to a single pairing of a syntactic/semantic la-
bel and a node in the DCS tree. Such a pair is called
a germ, denoted by (like,SBJ)T , (like,OBJ)T ,
(noodle,ARG)T , etc., where the subscript T is used
to denote the whole DCS tree and emphasize the
context awareness of the germ object. Abstract
denotations linked to germs are closely related to
the concept of feasible values defined in Liang et
al. (2013). For example, if we consider the DCS
tree T in Figure 2 and assume the wide reading of
“all”, then the denotations linked to (like,OBJ)T
and (noodle,ARG)T both equal to ⇡OBJ (D2) =
⇡OBJ (like) \ D1, “udon noodles that are liked by
somebody”; the denotation linked to (like,SBJ)T
is D3, “subjects who like udon noodles”; and the
denotation linked to (student,ARG)T is student.
The final result D4 can then be seen as been calcu-
lated from the abstract denotations linked to germs
(like,SBJ)T and (student,ARG)T . Abstract de-
notations linked to germs are useful for encoding
GQs in the DCS framework, as we describe in Sec-
tion 3.2.

Another useful mechanism for implementing GQs
is the selection operator sf introduced in Tian et al.
(2014a), which are marked on a DCS tree node and
wrap an abstract denotation D to form a new ab-
stract denotation sf (D) during the calculation pro-
cess. Selection operators were introduced as an ex-
tension mechanism to represent the generalized se-
lection operation in relational algebra, which selects
a subset of specific properties from a given set; the
axioms characterizing such properties can be user-
defined. For example, in Tian et al. (2014a), se-
lection operators are used to implement superlatives
such as “highest”, so that shighest(mountain) de-
notes the set of the highest mountains. Effectively, a
selection operator sf is a user-defined map from any
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abstract denotation D to a new denotation sf (D).
In Section 3.1 we will use this mechanism to encode
GQs.

2.3 Related Work

GQs have been a topic of interest in study of logic
since ancient time: Aristotle’s syllogism could be
seen as concerning the meanings and properties of
four basic quantifiers, namely “all”, “no”, “some”,
and “not all”. Gottlob Frege (Zalta, 2014), one of
the founders of modern logic, in 1870s introduced 8
and 9, and formulated the notion of a quantifier as a
second order relation. The idea of generalized quan-
tifiers was introduced by Mostowski (1957) and gen-
eralized in Lindström (1966), forming the standard
definition we use nowadays. Later, Barwise and
Cooper (1981), following Montague (1973), showed
the importance of GQs in the formal analysis of lin-
guistic phenomena. By and large, these works cover
the logical and linguistic background involved in
this paper.

Although it has been recognized that it is impor-
tant to encode GQs for solving textual entailment
problems, this remains a big challenge. MacCart-
ney et al. (2006), for example, tried to capture the
use of GQs in feature vectors, but the capabilities of
which are greatly limited without an inference en-
gine. Even for systems that are backed by inference
engines like in this paper, the focus still needs to be
put on practical NLP rather than logic, linguistics,
or semantic theory, and model complexity may need
to be purposely traded for computation efficiency.
For example, Lewis and Steedman (2013) used first-
order logic for semantic representation, which is the-
oretically very expressive, but still unable to define
GQs without some extensions (Barwise and Cooper,
1981) that are nontrivial especially for practical in-
ference.

Some works made the compromise similar to
ours: only encode the important properties of GQs
rather than their perfect semantics. A notable re-
cent work that focused on monotonicity is MacCart-
ney and Manning (2008), in which the notion of
monotonicity was generalized to support recursive
determination of entailments of a compound expres-
sion from its constituents. To a large extent, this
approach handled the interaction between multiple
GQs in a single sentence. However, inference was

based on a chain of shallow syntactic edit operations
linking premise to hypothesis, which not only failed
to include various inference patterns, but also was
unreliable when there are multiple sentences in the
premise, or when the premise is relatively long. The
DCS inference framework, on the other hand, grace-
fully handles such cases in a uniform way, thanks to
the more sophisticated inference engine. An empiri-
cal comparison is shown in Section 4.

The logical inference engine described in Tian et
al. (2014a) treats abstract denotations as terms and
represent meanings by atomic sentences, which is
shown to be very efficient compared to first order
logic provers (Tian et al., 2014b). The idea be-
hind this is actually very similar to description logics
(DL) (Baader et al., 2003); indeed, the DLR gener-
alization of DLs towards n-ary relations (Calvanese
et al., 1998) was proposed to deal with inference
problems on database schemata expressed in rela-
tional models, which shares the same setting with
the logical system proposed in Tian et al. (2014a).
The DLR system includes intersections, Cartesian
products of 1-dimensional sets and projections into
1-dimensional sets, as well as constructors not pre-
sented in Tian et al. (2014a)’s system such as com-
plement, union, and qualified number restrictions.
DLR is also shown to be reducible to the tradi-
tional DL (with binary relations) ALCQI, for which
many complete DL inference engines are available3.
In comparison, Tian et al. (2014a)’s inference en-
gine is not complete and lacks a thorough explo-
ration from the theoretical side, e.g. on the decid-
ability and complexity of the logical system, but
it has a working natural language interface inher-
ited from the DCS framework, and supports spe-
cific constructors tailored for textual inference, e.g.
the division operator, which seems not easily en-
coded in DLR. Description logics have been ap-
plied to natural language processing since the early
days, but were used mostly for semantic interpre-
tation (Brachman, 1985; Sowa, 1991; Knight and
Luk, 1994), in which knowledge on syntactic, se-
mantic, and pragmatic elements of natural language
are encoded in DL to drive the process of converting
utterances into deep and context-dependent logical

3http://www.cs.man.ac.uk/˜sattler/
reasoners.html
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like

SBJ

ARG ✓

OBJ

ARG
sAtLeast[5](student) noodle

ARG

ARG
udon

Figure 3: Encoding “at least 5” as selection

forms. Tian et al. (2014a)’s work on the other hand
directly uses a DL-like logical system to represent
semantics and perform textual inference, benefiting
from the efficiency of DL logical inference. We ex-
plore ways of extending Tian et al. (2014a)’s system
to deal with more advanced linguistic phenomena
in this work, while trying to preserve its algebraic
fashion to ensure efficiency, because we believe it
is important to investigate to what extent the “natu-
ral” textual inference requires from a logical system.
Some limitations of Tian et al. (2014a)’s framework
has actually been revealed; for which we will discuss
in Section 4.

3 Encoding Generalized Quantifiers

3.1 Encoding as Selections

Selections are used to encode GQs in the form of

F (A)(B) ⌘ sF (A) ✓ B,

where sF is the specific selection operator defined
for the GQ F—that is, a selection operator sF is
always used together with a quantification marker
“✓”, as exemplified in Figure 3. Note that sF (A)
can be defined as any set related to A, not necessar-
ily being its subset.

The basic requirement for encoding a GQ F in
this way is that F should be upward-entailing in its
predicate argument, because the form sF (A) ✓ B
implies such monotonicity. Entailment from univer-
sal quantification (Example 4)

A ✓ B ) sF (A) ✓ B

and conservativity

sF (A) ✓ (A \B) , sF (A) ✓ B

both hold if we add axiom:

sF (A) ✓ A

On the other hand, entailment to existential quantifi-
cation (Example 5)

sF (A) ✓ B ) A \B 6= ;

can be implied from the custom axiom:

sF (A) \A 6= ;

The monotonicity in the noun argument can be
implemented as well. If F is upward-entailing in
the noun argument, we should add the axiom

A0 ◆ A ) sF (A
0) ✓ sF (A).

Note that the direction of ✓ is reversed because
sF (A) serves as the subset in the form F (A)(B) ⌘
sF (A) ✓ B. Similarly, downward-entailment in the
noun argument can be achieved by the axiom

A0 ✓ A ) sF (A
0) ✓ sF (A).

A proof tree for Example 2 is shown in Figure 4,
where D3 is the denotation for “subjects who like
udon noodles”, as defined in Section 2.2, and sim-
ilarly D0

3 = ⇡SBJ (like \ (WSBJ ⇥ noodleOBJ)) for
“subjects who like noodles”.

3.2 Encoding as Relations

As mentioned in Section 2.1, a GQ can be seen a
binary relation over 2W . From this point of view,
we introduce a new extension called relation as a
new type of statement into the framework. A rela-
tion rf can be used to represent an arbitrary relation
between two abstract denotations. A relation marker
can be marked on a DCS tree edge to denote some
relation between the child germ and the parent germ
(Figure 5). In our implementation, the core infer-
ence engine keeps track of which term pairs are la-
beled with which relations: not only can it answer
whether two terms have been claimed to have a cer-
tain relation, but also can it look up all terms that
have a certain relation with a certain term. Similar
to selections, we can also specify different sets of
axioms for different relations—an axiom could be
about either what a relation statement entails or what
it is entailed by.
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Algebraic Property
student ◆ Japanese \ student

Upward-entailment for sAtLeast[5]

A0 ◆ A ) sAtLeast[5](A
0) ✓ sAtLeast[5](A)

sAtLeast[5](student) ✓ sAtLeast[5](student \ Japanese)
Premise

sAtLeast[5](student \ Japanese) ✓ D3

sAtLeast[5](student) ✓ D3

Algebraic Property
D3 ✓ D0

3

sAtLeast[5](student) ✓ D0
3

Figure 4: An example of proof with generalized quantifiers encoded as selections.

like

student noodle

udon

SBJ

ARG

OBJ

ARG

ARG

ARG

𝑟

𝒯

𝒯

Figure 5: Encoding “at most 5” as relation

Intuitively, a GQ F can be represented by a rela-
tion rF :

F (A)(B) ⌘ rF (A,B)

To enable the entailment from universal or to ex-
istential quantification, we simply add the axiom
A ✓ B ) rF (A,B) or rF (A,B) ) A \ B 6= ;,
respectively.

The axioms for monotonicity are also very intu-
itive. For GQs that are downward-entailing in both
arguments (e.g. “at most 5” in Example 1), we put

rf (A,B) ^A ◆ A0 ^B ◆ B0 ) rf (A
0, B0).

Other kinds of monotonicity can be achieved in a
similar way.

As for conservativity, we can simply implement

rF (A,B) ) rF (A,A \B),

but the reverse

rF (A,A \B) ) rF (A,B)

is a little tricky. This is because Tian et al. (2014a)’s
inference engine is based on forward-chaining: it al-
ways tries to deduce all possible implications from
given premises. This strategy is employed not
only because of its efficiency, but also because it
opens the possibility of adapting DCS for entail-
ment generation (Androutsopoulos and Malakasio-
tis, 2010), in which case without any given hypothe-
ses the system needs to actively explore what the

premises entail. For example, from “few dinosaurs
are pterosaurs”, with the knowledge of GQ conser-
vativity the system should figure out “few dinosaurs
can fly” without being explicitly instructed to prove
so. However, to implement rF (A,A \ B) )
rF (A,B), the forward-chaining strategy would re-
quire the engine to find all Bs that satisfy X = A\B
whenever a relation rF (A,X) is claimed, in order to
claim the relation rF (A,B). Though it is quite easy
to check if X = A \B for a given triple (X,A,B),
issues arise when B is not given and we need to find
all possibilities. It is generally impractical to enu-
merate all possible forms that a set X can be written
as intersections; the number of possibilities easily
explodes even for small-size problems4. Hence, we
implement the rule rF (A,A \ B) ) rF (A,B) as
the following: if rF (A,X), and if X ✓ A, then
we take every B ◆ X and check if X = A \ B.
The necessary conditions X ✓ A and B ◆ X limit
the search space at first. We would like to empha-
size this detailed implementation issue here because
formal semantics researchers are often not aware of
such difficulties.

A shortcoming of the relation implementation is
that, when processing DCS trees with relations, our
extended system simply discards the edges marked
as relations, then calculate the abstract denotations
of germs in the resulting DCS forest, and finally
use the denotations of corresponding germs as ar-
guments of the relations to form statements. For
example, in Figure 5, we calculate the denota-
tions of germs (student,ARG)T2 and (like,SBJ)T1 ,
which are student and D3 (as defined in Sec-
tion 2.2), respectively; then we form the statement
rAtMost[5](student, D3) as the meaning of this sen-
tence. This procedure implies that, relations in
DCS trees are always explained as having the widest

4For example, X = X \ C for every C ◆ X; even we
only consider minimal intersections such that X = A \ B but
X 6= A and X 6= B, the possibilities could be exponential, e.g.
consider X = (A \B) \ C = A \ (B \ C).
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scope and hence we cannot deal with multiple re-
lations in a single sentence. It causes errors when
there are multiple GQs encoded as relations appear
in the same sentence; we analyze this case in detail
in Section 4.

4 Evaluation and Analysis

The FraCaS corpus (The Fracas Consortium et al.,
1996)5 was built in the mid 1990s by the FraCaS
Consortium, which contains a set of hand-crafted
entailment problems covering a wide range of se-
mantic phenomena, organized in nine sections. The
first section is titled “Generalized Quantifiers”, and
can serve as a good empirical test suite for RTE sys-
tems that handle general properties of GQs. This
section contains 74 problems6; 44 of them have one
premise sentence while the other 30 have multiple
premises. The involved GQs and their properties
are listed in Table 1.7 Our implementation extends
the TIFMO system publicly released with Tian et
al. (2014a)8. Since we mainly focus on the perfor-
mance of the DCS framework as formal semantics,
on-the-fly knowledge and WordNet are not used.
Major GQ properties can be implemented as com-
posable and reusable units9, so that each GQ can be
created by simply composing the units that corre-
sponds to the properties it has. This makes imple-
menting new GQs very easy.

TIFMO uses the Stanford Parser10 to obtain Stan-
ford dependencies (de Marneffe et al., 2006) and
POS tags, which are used to construct DCS trees
based on a set of pre-defined rules. We extend
those rules in order to recognize GQs in this step,
and encode them under one of four settings, namely
“Baseline”, “Selection”, “Relation”, and “Selec-

5We used the version converted to XML format by MacCart-
ney and Manning (2007).

66 problems that do not have a defined solution are excluded.
7FraCaS dubiously interpreted “many” as denoting “a large

proportion” rather than “a large absolute number”, whereas
“few” as denoting “a small absolute number” rather than “a
small proportion”. We also treat “a lot of” as a synonym of
“many”.

8http://kmcs.nii.ac.jp/tifmo/
9We implement GQ properties as stackable traits in

Scala (Odersky et al., 2011), each consists of no more than a
few dozen lines of code.

10http://nlp.stanford.edu/software/
lex-parser.shtml

GQ Entailed by 8 Entails 9 Monotonicity

Noun Arg. Predicate Arg.

many 3 3 7 "
a lot of 3 3 7 "

few 7 3 # #
a few 3 3 " "
most 3 3 7 "

at most n 7 7 # #
at least n 7 3 " "

Table 1: Properties of GQs appear in FraCaS corpus,
including the interaction with universal and existential
quantifications, and the monotonicity in noun and predi-
cate arguments, where “"”, “#”, and “7” denote upward-
entailing, downward-entailing, and non-monotone, re-
spectively.

System Accuracy

Single Multi Overall

NatLog MacCartney07 84.1% N/AMacCartney08 97.7%

CCG-Dist Parser Syntax 70.5% 50.0% 62.2%
Gold Syntax 88.6% 80.0% 85.1%

TIFMO

Baseline 79.5% 86.7% 82.4%
Selection 90.9% 93.3% 91.9%
Relation 88.6% 93.3% 90.5%

Selection+Relation 93.2% 96.7% 94.6%

Table 2: Accuracies achieved on the first section of Fra-
CaS corpus using different systems.

tion+Relation”. GQs are simply dropped in the
“Baseline” setting. The “Selection” and “Relation”
settings use the same DCS trees as in “Baseline”,
except for selection or relation markers on DCS
trees to represent GQs. The “Selection” approach
implements all GQs as selections (even for those
are downward-entailing in the predicate argument),
whereas “Relation” approach implements all GQs as
relations. In the “Selection+Relation” setting, we
use relations only for the GQs that are downward-
entailing in the predicate argument (i.e. “few” and
“at most n”), and implement the rest of the GQs as
selections. We evaluate the system under each set-
ting; the test results are shown in Table 2.

We compare our results with two previous tex-
tual inference systems, CCG-Dist (Lewis and Steed-
man, 2013) and NatLog (MacCartney and Manning,
2007; MacCartney and Manning, 2008), also shown
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in Table 2. CCG-Dist uses rule-based conversion
from CCG parses to first order logic formulas, and
results are given using both parser syntax and gold
syntax. The resulting accuracies are not very high,
even for gold syntax, showing that implementing
GQs is not an easily accomplishable task although
first order logic is theoretically very expressive. Nat-
Log is a system based on natural logic, which has
almost perfect performance on single premise prob-
lems but faces difficulties dealing with premises of
multiple sentences. In contrast, our extension of the
TIFMO system achieves the best overall accuracy.

In each setting of our extension, almost all of the
errors are related to the handling of GQs. The “Se-
lection” approach cannot encode downward entail-
ment in the predicate argument, as shown in Exam-
ple 8; whereas the “Relation” approach fails to han-
dle multiple GQs in a single sentence, as shown in
Example 9.

Example 8. P1 ^ P2 ^ P3 ) H , where
P1 Few committee members are from southern Eu-
rope.
P2 All committee members are people.
P3 All people who are from Portugal are from
southern Europe.
H There are few committee members from Portu-
gal.

Example 9. P 6) H , where
P At most ten commissioners spend a lot of time at
home.
H At most ten commissioners spend time at home.

In Example 9, when both “at most ten” and “a
lot of” are encoded as relations, both of them take
the widest scope and the meaning of P is calculated
as the conjunction of Pa “at most ten commission-
ers spend (something) at home”, and Pb “(some-
body) spend a lot of time at home”. Then, Pa im-
plies H since “at most ten” is downward-entailing
in the predicate argument; the system produces a
wrong answer. On the other hand, in the “Selec-
tion+Relation” setting, “a lot of” is encoded as
selection and accompanied with the quantification
marker “✓”, which can take a narrow scope and is
explained as a division operator. Hence the calcu-
lated meaning of P becomes

rAtMost[10](comm’r, qOBJ✓ (D, sALotOf(time)))

where D is the abstract denotation for “spend at
home”

D = spend \ (WSBJ ⇥WOBJ ⇥ homeMOD)

which is correct and solves this case. However, in
general we need to further extend the notion of “re-
lation” to handle different scopes, or at least we need
something similar to the division operator but can be
used to implement downward entailment in the pred-
icate argument.

If we recall the definition of division operator q✓,
it is natural to consider a similar operator as

qr◆(R,C) = {x | R \ ({x}⇥Wr) ◆ {x}⇥ Cr} .

Fortunately, q◆ can be defined algebraically as

qr◆(R,C) = ⇡r(R) \ ⇡r(R̄ \ (W r ⇥ Cr)),

where W r denotes the Cartesian product of W s
on all dimensions other than r. This is imple-
mentable if we introduce complement X̄ into Tian
et al. (2014a)’s logical system. Operator “q◆” can
be combined with selection operators to encode GQs
that are downward-entailing in predicate argument,
e.g. “at most ten”. We may also be tempted
to introduce free variables or higher order opera-
tors, especially when we begin to consider donkey
anaphora (Heim, 1982) and other advanced infer-
ence phenomena. Such decisions should be made
with caution because unguarded free variables easily
lead to undecidability, as suggested by the research
on description logics. However, further exploration
on this topic should be a future direction but out of
the scope of this work.

5 Conclusion

Encoding the semantics of a generalized quantifier
is often crucial to correctly capturing the seman-
tics of a sentence and making the right textual en-
tailment. We have shown in this paper that major
properties of GQs can be implemented in the DCS
inference framework to correctly handle semantic
relations like hyponymy. This tested and demon-
strated the capabilities and potentials of the DCS
framework, and suggested extensions towards more
powerful logical systems for handling more sophis-
ticated linguistic phenomena.
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