
PACLIC 28

!551

Automatic Detection of Comma Splices

John Lee, Chak Yan Yeung
Halliday Centre for Intelligent Applications

of Language Studies
Department of Linguistics and Translation

City University of Hong Kong
jsylee@cityu.edu.hk

chak.yeung@my.cityu.edu.hk

Martin Chodorow
Department of Psychology

Hunter College
City University of New York

martin.chodorow

@hunter.cuny.edu

Abstract
In English text, independent clauses should be
demarcated with full-stops (periods), or linked
together with conjunctions. Non-native speak-
ers are often prone to linking them improp-
erly with commas instead of conjunctions,
producing comma splices. This paper de-
scribes a method to detect comma splices us-
ing Conditional Random Fields (CRF), with
features derived from parse tree patterns. In
experiments, our model achieved an average
of 0.91 precision and 0.28 recall in detect-
ing comma splices, significantly outperform-
ing both a baseline model using only local fea-
tures and a widely used commercial grammar
checker.

1 Introduction

English text consists of a sequence of clauses linked
and separated by punctuation and conjunctions. To
separate two independent clauses, one uses a full-
stop (period); to link together two related clauses,
one typically uses a semicolon or a comma with
an appropriate conjunction, which can be either co-
ordinate (“and”, “but”, “or”) or subordinate (“be-
cause”, “so”). For example, to link the two related
clauses “it was raining” and “we stayed home”, one
may use a comma and the conjunction “so”, yielding
the complex sentence “It was raining, so we stayed
home”. When a comma is used instead of a full-
stop, or when it is used without a conjunction (e.g.,
“It was raining, we stayed home”), the result is a
comma splice1.

1Note that a list of noun phrases with a missing conjunction
(e.g., “I like apples, oranges.”) is not a comma splice.

Our use of the term comma splice also includes
improper linking of verb phrases. This occurs when
a comma is used without a conjunction (e.g., “We
stayed home, watched TV.”); without a relative pro-
noun (e.g., “The boy chased after the rat, fled into
the sewer”); or with the wrong verb form (e.g., “Wa-
terborne pathogens are the pathogenic microorgan-
isms, includes bacteria”). Comma splices are not
only considered poor writing style, but they also
compromise the readability of a text.

Although native speakers have been found to
commit a substantial number of common splice er-
rors (Connors and Lunsford, 1988; Lunsford and
Lunsford, 2008), non-native speakers appear to be
especially prone to producing them, possibly due to
interference from syntactic differences in L1 (Tseng
and Liou, 2006; Bennui, 2008; Rahimi, 2009). This
may be especially true for L1s where comma splices
are frequently found and are not considered mis-
takes, such as in Chinese (Lin, 2002). Comma
splices are one of the errors addressed in the 2014
CoNLL Shared Task on Grammatical Error Cor-
rection (Ng et al., 2014). They are annotated in
many learner corpora, including the NUS Corpus of
Learner English (Dahlmeier et al., 2013) and the EF-
Cambridge Open Language Database (Geertzen et
al., 2013).

This paper addresses the task of detecting comma
splices. We report human agreement in detecting
these errors and propose a CRF model to automat-
ically detect them. Our best model, which uses fea-
tures derived from parse trees produced by the Stan-
ford parser (Klein and Manning, 2003), significantly
outperforms both a baseline that does not consider

Copyright 2014 by John Lee, Chak Yan Yeung, and Martin Chodorow
28th Pacific Asia Conference on Language, Information and Computation pages 551–560

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286947313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PACLIC 28

!552

syntactic information and a widely used commercial
grammar checker.

Recently, there has been much effort in devel-
oping writing assistance systems that can automat-
ically correct errors in text written by non-native
speakers. Such systems focus mostly on word or
phrase-level errors, such as the misuse of articles
(Han et al., 2006), prepositions (Tetreault et al.,
2010) and verbs (Tajiri et al., 2012). Although these
errors do involve long-distance grammatical con-
structions, this paper is the first report of a research
effort to address the improper linking of clauses, a
sentence-level error.

Our ultimate goal, after detecting a comma splice,
is to automatically correct it. We will, however,
not treat the correction task here because it con-
cerns a host of other issues, such as automatic anal-
ysis of style, to choose between splitting the comma
splice into two sentences (“It was raining. We stayed
home.”) and conjoining them (“It was raining, so we
stayed home”), as well as inference of discourse re-
lations (Marcu and Echihabi, 2002), to choose an
appropriate conjunction (e.g., use of “so” rather than
“because” in the above example).

The rest of the paper is organized as follows. Af-
ter reviewing previous research in related areas (sec-
tion 2), we describe our approach for comma splice
detection (section 3). We then describe our datasets,
report on human agreement and experimental results
(section 4), followed by our conclusions (section 5).

2 Previous work

A comma splice may be the result of a misuse of
punctuation (comma instead of full-stop), a misuse
of verb form (finite instead of participle), or a miss-
ing conjunction. Hence, our work can draw on pre-
vious research on detecting and correcting punctua-
tion, verb and conjunction errors.

Automatic punctuation restoration had originally
been applied on output of automatic speech recog-
nition systems (Stolcke and Shriberg, 1996; Huang
and Zweig, 2002), but has more recently been ex-
panded to written text (Gravano et al., 2009; Bald-
win and Joseph, 2009). These techniques can be
used to detect fused sentences, which result “when
a writer puts no mark of punctuation and no coor-
dinating conjunction between independent clauses”

(Hacker and Sommers, 2011), a phenomenon also
common to ESL writers but distinct from comma
splices.

A more related task is the correction of comma
usage, an error type that ranks first in ESL writ-
ing (Donahue, 2001). The task of inserting miss-
ing commas and deleting unnecessary ones has been
approached as a sequence labelling problem (Israel
et al., 2012), where each space between words was
considered by a CRF model to determine whether
a comma should be present. Features such as POS,
bi-grams, and distances to the nearest conjunctions
were effective and these will form the basis of our
baseline model. The comma errors addressed in Is-
rael et al. (2012), however, are distinct from ours.
Instead of adding in missing commas or deleting un-
necessary ones, our focus is on the improper linking
of clauses that manifests as wrongly used commas,
which cannot be fixed by simply removing them.

Work by Lee and Seneff (2008) on correcting the
misuse of verb forms is relevant to detecting comma
splice errors that involve participles. They found
that verb form errors result in predictable irregular-
ities in parse trees which can be used as cues for
error detection. We follow their approach of using
parse tree patterns, but will incorporate these pat-
terns in a machine learning framework rather than a
rule-based system.

We are not aware of any previous work on detect-
ing or restoring missing conjunctions, but this task
is implicitly or explicitly performed by four exist-
ing systems that give feedback about comma splices.
The Criterion Online Writing Service (Burstein et
al., 2004) identifies errors, including comma splices,
in student essays and suggests possible corrections.
Grammarly2 scans a paragraph of text and suggests
“punctuation between clauses” when comma splices
are detected. WhiteSmoke3 underlines the problem-
atic comma and suggests that it should be replaced
with either a full-stop or a semi-colon. The gram-
mar checker embedded in Microsoft Word, perhaps
the most widely used system, also gives feedback
about comma splices. To the best of our knowledge,
the first three do not explicitly consider parse tree
patterns; we will evaluate our approach against the

2www.grammarly.com
3www.whitesmoke.com

PACLIC 28

!553

fourth.
In addition to these four, a number of writing as-

sistance systems have also been built for the two
Helping Our Own shared tasks (Dale and Kilgar-
riff, 2011; Dale et al., 2012) and two CoNLL shared
tasks (Ng et al., 2013; Ng et al., 2014). Run-on
sentences and comma splices were among the 28 er-
ror types introduced in the CoNLL-2014 shared task
(Ng et al., 2014). Among teams that tackled indi-
vidual error types, none addressd run-on sentences
and comma splices. Among teams that attempted to
correct all error types, many obtained good results
for word- and phrase-level errors, but none achieved
any recall for run-on errors and comma splices.

3 Approach

We cast comma splice detection as a sequence la-
beling task, using a linear-chain CRF as our model.
Each comma in a sentence is to be tagged as
T[rue] (it is a comma splice) or F[alse] (it is
not). Consider the sentence “Then, he chased after
the rat, fled into the sewer, and died.” It should be la-
beled as FTF, since only the second comma consti-
tutes a comma splice (the relative pronoun “which”
should follow the comma). In our datasets, consec-
utive comma splices are relatively uncommon; this
preference can be captured by transition features in
the linear-chain CRF.

Table 1 shows our list of features. The baseline
features replicate those in (Israel et al., 2012); there
are then four “clause features” indicating linguistics
characteristics of the neighboring clauses4, but with-
out considering syntactic parse trees; finally, there
are five features derived from parse tree patterns.

3.1 Baseline features

Our baseline features include the first word in the
clause preceding the comma and the two words to
the left and right of the comma, together with their
POS and a combined feature with both the word and
its POS. We also include the word and POS bigrams
of the tokens to the left and right of the comma. In
addition, there are four distance features: the num-
ber of tokens in the clauses preceding and following
the comma, and the distances from the comma to the

4We use the term ‘clause’ here to refer to all words between
the comma and the nearest comma to its left or right.

nearest conjunction to its left and right. All of these
can be obtained without syntactic parsing.

3.2 Clause features

We identified four additional features that help pre-
vent the system from flagging the commas around
non-restrictive clauses as comma splices (e.g., “The
powder diffractometer, Siemens D500, was used in
this experiment.”; and “The insurance industry, how-
ever, is now suffering.”), thereby reducing the num-
ber of false positives. These features include the
number of nouns/pronouns in the clauses preceding
and following the comma, and two binary features
that indicate whether the clauses contain any verbs.
We selected these features because the addition of
non-restrictive clauses in the middle of the sentences
often results in segments of words without verbs or
nouns.

3.3 Parse features

When a sentence contains two or more improperly
joined clauses, its parse tree will be “disturbed”
because the missing linkage prevents the parser
from properly processing the clauses after the first
comma. We identified several parse patterns that are
characteristic of comma splices, as shown in Table
2.

A comma splice may consist of two improp-
erly joined clauses (e.g., “It was raining, we stayed
home”), which tend to produce a parse tree with
an S, followed by the comma, an NP and a VP to
its right (Pattern S+NP+VP)5. Three or more im-
properly joined clauses (e.g., “The pink shirt is $20,
black skirt is $18, dark pant is $15.”) tend to re-
sult in a parse tree with multiple S siblings (Pat-
tern S+S). A comma splice may also involve im-
properly joined VPs (e.g., “It can help salesperson to
promote up-sales and cross sales, provide better ser-
vices.”), which tend to produce a parse tree with two
VP siblings immediately below another VP (Pattern
VP+VP). In addition, two binary features for partial
pattern matches are included: whether there is an S
in the clause to the left of the comma, and whether

5This pattern also appears when the first half of the sentence
is a participial phrase that modifies the rest of the sentence. The
pattern is therefore ignored if the sentence begins with either a
present participle or a past participle.

PACLIC 28

!554

there is an NP followed by a VP in the clause to the
right.

Accurate extraction of parse features depends on
the quality of the parse trees, but non-native errors
in the sentence often cause the parser to produce un-
expected tree patterns (Foster et al., 2008), hence
causing noise in the parse tree features. In gen-
eral, parsers perform better on shorter sentences. To
reduce this kind of interference, therefore, we re-
move those parts of the sentence that cannot contain
comma splices.

Unlike the task of sentence compression for sum-
marization (Knight and Marcu, 2000; Filippova and
Strube, 2008), we do not need to preserve impor-
tant words or the meaning of the original sentence.
Rather, we aim to preserve the phrases in the sen-
tence that can potentially result in comma splices
and strip away the rest so that the parser has the best
chance to produce the expected parse patterns.

Specifically, using the parse tree of the original
sentence, we remove (1) introductory phrases at the
beginning of a sentence, which include transition
phrases such as “for example”, as well as preposi-
tional phrases and adverbials6; (2) clauses that are
properly connected to the rest of the sentence by a
coordinate conjunction; (3) subordinate clauses that
are properly connected to the rest of a sentence by
subordinate conjunctions or relative pronouns; and
(4) dialogue tags such as “he claimed” or “he ar-
gued”7. The simplified sentence is then re-parsed
before feature extraction.

4 Experiments

We first describe our datasets (sections 4.1 and
4.2) and report on the human agreement on comma
splices (section 4.3), and then we discuss our exper-
imental results (section 4.4).

4.1 Training Set
We automatically produced training data from the
Penn Treebank (Marcus et al., 1993). While in-
domain training data is likely to yield better perfor-
mance, we chose to use only general-domain train-
ing data in our experiments so as to provide a re-

6The list of phrases are taken from
http://www.msu.edu/user/jdowell/135/transw.html

7We used a list of 292 verbs that are the hyponyms of the
words “express” and “convey” in WordNet 3.0 (Miller, 1995).

Feature Example
Baseline features
Left words raining, was
Left POS VBG, VBD
Left combo raining VBG,

was VBD
Right words we, stayed
Right POS PRP, VBD
Right combo we PRP,

stayed VBD
First word in left clause it
First POS in left clause PRP
First combo in left clause it PRP
Left word bigram was raining
Right word bigram we stayed
Left POS bigram VBD VBG
Right POS bigram PRP VBD
tokens in left clause 3
tokens in right clause 3
Distance to nearest left
conjunction

-

Distance to nearest right
conjunction

-

Clause features
nouns/pronouns in left
clause

1

nouns/pronouns in right
clause

2

has verb in left clause yes
has verb in right clause yes
Parse features
Pattern S+S no
Pattern S+NP+VP yes
Pattern VP+VP no
S in left clause yes
NP and VP in right clause yes

Table 1: List of features. Example values for each fea-
ture are drawn from the comma of the sentence “It was
raining, we stayed home”.

alistic estimate of system performance on arbitrary
learner text.

Similar to (Foster and Andersen, 2009), we arti-
ficially introduced comma splices into the text by
removing conjunctions and relative pronouns to the
right of commas. To ensure that the generated sen-

PACLIC 28

!555

Feature Pattern Example
Pattern S+NP+VP S

S , NP VP

S[It was raining], NP[we] VP[stayed home.]

Pattern S+S S

S , S

S[The pink shirt is $20], S[black skirt is $18], S[dark
pant is $15].

Pattern VP+VP VP

VP , VP

It can help salesperson VP[to VP[promote up-sales
and cross sales] , VP[provide better services]].

Table 2: Parse tree patterns distinctive of comma splices, illustrated with examples.

tence is a comma splice, we need to ensure that the
removed conjunction or relative pronoun was serv-
ing as the link between two clauses or verb phrases.
For this purpose, we manually identified several
parse patterns. In the parse tree, a conjunction and
the elements that it joins together are always on the
same level — the level of coordination (Bies et al.,
1995). We looked to the right of the conjunctions in
the trees and only removed those that were followed
by either an “S” or a “VP”. Relative clauses are ad-
joined to the head noun phrase, and both the rela-
tive pronoun and the clause are put inside the SBAR
level. We removed only those relative pronouns that
were followed by either an “S” or a “VP” and with
an “SBAR” parent, which in turn had an “NP” par-
ent. For example, the “and” was removed in the sen-
tence “Mr. Katzenstein would have learned some-
thing, and it’s possible Mr. Morita would have too.”,
and the relative pronoun “which” was removed in
the sentence “Cray Research is transferring about
$53 million in assets, primarily those related to the
Cray-3 development, which has been a drain on
Cray Research ’s earnings.”.

Another way to create a comma splice is to fuse
two sentences together and replace the full-stop of
the first sentence with a comma. However, comma
splices introduced with this method do not reflect
well the actual mistakes that English learners make,
especially in terms of lexical features. For exam-
ple, we observed that it is more common for comma
splices to occur before pronouns than before proper
nouns in the students’ writing, but it would not be

the case for the sentences created with this method.
Therefore, we did not include comma splices intro-
duced by fusing sentences together.

Out of 13159 instances of commas, this method
yielded 2775 comma splices.

4.2 Test Sets

Although run-on sentences and comma splices were
among the 28 error types introduced in the CoNLL-
2014 shared task (Ng et al., 2014), the test set used
in the task only contained about 26 such errors, and
is therefore too small for our purpose. We evalu-
ated our system on two test sets8: the learner cor-
pus at City University of Hong Kong (Lee and Web-
ster, 2012) (henceforth, the “CityU Set”) and the EF-
Cambridge Open Language Database (Geertzen et
al., 2013) (henceforth, the “Cambridge Set”).

CityU Set. The learner corpus at City Univer-
sity of Hong Kong consists of academic writing by
university students, most of whom are native speak-
ers of Chinese. Three of the error categories in this
corpus are concerned with comma splices — “new
sentence”, “conjunction missing” and “missing rela-
tive pronoun”. We randomly selected 550 sentences
that are marked with one of these three categories:
215 with “new sentences”, 215 with “conjunction
missing”, and 120 with “missing relative pronoun”.
Not every sentence marked with these categories is

8In another potential source of data, the NUCLE corpus
(Dahlmeier et al., 2013), the annotation for comma splices is
non-exhaustive, and would require additional human annotation
to measure precision.

PACLIC 28

!556

a comma splice since the error tags cover other er-
ror types as well, e.g., fused sentences, missing con-
junctions for NPs, missing complementizer “that”,
etc. Human annotation (section 4.3) is therefore nec-
essary to tell these apart. We also randomly selected
300 sentences from the corpus that are not marked
with any of the three categories, with the sole con-
straint that their average length be similar to those
of the marked sentences. Among the 1247 commas
in these sentences, 235 were marked by at least one
of the annotators as comma splices. Among sen-
tences with comma splices, most contain only one;
only about 10% contain two or more.

Cambridge Set. The Cambridge Set consists of
writing submitted by language learners to an on-
line school of EF Education First. The database
has been partially error-annotated and the error cat-
egory “New sentence” covers most comma splices.
We used the writing by Chinese students, totaling
1.3 million words. Unfortunately, the annotation for
run-on errors is not exhaustive, so human annotation
was needed.

We selected a subset of 400 sentences marked
with the “New sentence” error in the corpus and 400
unmarked sentences for annotation. This subset con-
tains 2206 commas, of which 951 were marked as
comma splices by one of the human annotators.

4.3 Human agreement

We asked two annotators, one a native speaker of
English and the other a near-native speaker, to iden-
tify comma splices in 850 sentences drawn from the
CityU Set. We first measured the agreement be-
tween the annotators on whether a sentence con-
tained a comma splice, without regard to the lo-
cation. The kappa was 0.90. Next, we investi-
gated how often the annotators agreed on the loca-
tion of the comma splice. Using one annotator as
the gold standard, the precision is 91% and the recall
is 92%. Most disagreements involve two consec-
utive commas enclosing a subordinate phrase, e.g.,
the phrase headed by “because” in the sentence “The
most time consuming part is to purchase compo-
nents, because most of the components were not
sold in Hong Kong, it was need to purchase them
in Mainland China”. One annotator, attaching the
“because” phrase to the preceding clause, identified
the first comma as a comma splice; the other anno-

tator, attaching the “because” phrase to the follow-
ing clause, identified the second comma as a comma
splice.

On the Cambridge Set, we measured the agree-
ment between the annotator and original annotations
in the corpus. Using the original annotations as the
gold standard, the recall of the annotator is 0.91.
Most disagreements involve the treatment of infor-
mal language. For example, the annotator consid-
ered it acceptable to use a comma in the sentence
“I can cook dinner for you, please buy something
for me.” while the original annotation changed the
comma to a full-stop.

4.4 Baselines

We evaluated two baseline systems in our experi-
ments. First, we trained a CRF model on the Penn
Treebank (section 4.1) with the baseline features.
We computed a second baseline using the grammar
checker in Microsoft Word 2013. We configured Mi-
crosoft Word’s grammar checker to capture all error
types and inspected each comma that the checker
marked as a mistake, then compared the commas it
flagged with our results. Two of Word’s error types
are relevant to our experiment: “Comma splice” and
“Comma use”. In the first case, the grammar checker
would flag the comma as “Comma splice” and sug-
gest that it be replaced with a semi-colon. In the
second case, the grammar check would highlight the
clauses before and after the comma, and suggest that
an “and” should be added after it.

4.5 Results

We used CRF++ (Kudo, 2005) in our experiments.
In our CRF model with the full feature set (Ta-
ble 1), the parse features were extracted both from
the sentences and from the output of the Stanford
parser (Klein and Manning, 2003). Following (Israel
et al., 2012), we used a filter that required the classi-
fier to be at least 90% confident in a positive decision
before flagging the comma as a comma splice. We
adopted the evaluation metric used in the CoNLL-
2014 shared task, F0.5, which emphasize precision
twice as much as recall because it is important to
minimize false alarms for language learners9.

9F0.5 is calculated by F0.5 = (1 + 0.52) x R x P / (R + 0.52 x
P) for recall R and precision P.

PACLIC 28

!557

Figure 1: The precisions and recalls of the baseline, clause, and full system on the CityU Set when the probability
threshold was decreased from 0.9 to 0.1 with a 0.05 interval.

Figure 2: The precisions and recalls of the baseline, clause, and full system on the Cambridge Set when the probability
threshold was decreased from 0.9 to 0.1 with a 0.05 interval.

On cross-validation of the training set, our base-
line system achieved 0.82 precision, 0.29 recall and
an F-measure of 0.60. The inclusion of clause fea-
tures yielded 0.78 precision, 0.30 recall and an F-
measure of 0.59 while the full system yielded 0.87
precision, 0.45 recall and an F-measure of 0.73.

The results for the test sets are shown in Table
3. On the CityU Set, our baseline system achieved
0.75 precision, 0.17 recall and an F0.5 of 0.45; it per-
formed better on the Cambridge Set, at 0.88 preci-
sion, 0.08 recall and an F0.5 of 0.30. The Microsoft
Word grammar checker achieved similar results as
the baseline system on the CityU set, but outper-
formed it on the Cambridge Set, at 0.90 precision,

0.13 recall and F0.5 of 0.41.

The clause features improved upon the baseline
system in recall on both sets, at 0.20 for the CityU
Set and 0.11 for the Cambridge Set. In terms of
precision, they improved performance on the CityU
set (0.77), but were unhelpful for the Cambridge set
(0.85).

The full system improved upon the two baselines
and the clause system in both precision and recall,
performing at 0.91 precision, 0.34 recall and an F0.5
of 0.69 for the CityU set; and slightly lower, at 0.91
precision, 0.22 recall and an F0.5 of 0.55, for the
Cambridge set. All these improvements are statis-

PACLIC 28

!558

tically significant10.
On both test sets, many of the errors were due

to sentences with non-standard vocabulary and real-
word spelling errors. such as misspelling “maybe”
as “may be”, or “besides” as “beside”. Both phe-
nomena can yield an unexpected parse tree, causing
a missed parse pattern.

For the CityU set, performance was hurt by the
structurally more complicated sentences. The sys-
tem failed to flag comma splices that involve three
or more clauses, i.e., “S1, S2, S3”, where both “S1,
S2” and “S2, S3” would form perfectly correct sen-
tences (e.g., “The most time consuming part is to
purchase components, because most of the compo-
nents were not sold in Hong Kong, it was need to
purchase them in Mainland China”).

Performance on the Cambridge Set was helped by
shorter and structurally simpler sentences, which re-
sulted in more accurate parsing, but was hurt by the
presence of many consecutive comma splices (e.g.,
“He is student, he is always wearing school uni-
form, my name is Songlin.”) and unconventional use
of conjunctions such as beginning a sentence with
“but”, which are rare in the training data. The Cam-
bridge Set also contained plenty of informal sen-
tences, for which the rules concerning the use of
commas are less rigid. For example, while the sys-
tem marked the sentence “Hi granny, my name is
Winky.” as a comma splice, the annotators did not
because using a comma in this situation is com-
monly acceptable.

! Corpus CityU Set Cambridge Set
System P/R/F0.5 P/R/F0.5
Full 0.91/0.34/0.69 0.91/0.22/0.55
Clause 0.77/0.20/0.49 0.85/0.11/0.37
Baseline 0.75/0.17/0.45 0.88/0.08/0.30
MS Word 0.74/0.15/0.41 0.90/0.13/0.41

Table 3: Precision, recall and F-measure for comma
splice detection. “Baseline” refers to the CRF model
trained only on the baseline features (Table 1). “Clause”
refers to the CRF model that uses both baseline features
and clause features. “Full” uses the full feature set. “MS
Word” refers to the grammar checker embedded in Mi-
crosoft Word 2013.

10At p <= 0.05 by McNemar’s test.

4.6 Precision-Recall Trade-off

The precision-recall balance can be adjusted based
on the probability threshold above which a comma is
flagged as a comma splice. Figures 1 and 2 show the
degree to which precision can be traded off for recall
by using different thresholds. For example, when a
threshold of 0.65 was used, the precision of the full
system on the CityU set dropped to 0.79 while recall
rose to above 0.5.

On both test sets, the precision and recall of the
full system are consistently higher than the base-
line and clause systems. The drop in precision for
the CityU set is steeper than that of the Cambridge
set. This may be because the sentences in the CityU
set are generally more complicated than those in the
Cambridge set. In order for the system to perform
with a high precision, a greater degree of recall has
to be sacrificed.

5 Conclusion

We have introduced a new task — detection of
comma splices, a common mistake made by non-
native speakers in English writing — and have
shown a high level of agreement among human an-
notators.

We have also applied a CRF model to comma
splice detection. Our best system uses parse tree-
based features and achieved an average of 0.91 pre-
cision and 0.28 recall. It significantly outperformed
a baseline system that does not consider syntactic
features, and a widely used commercial grammar
checker.

In future work, we aim to further raise detec-
tion accuracy by improving parser robustness, and
to tackle the task of suggesting repairs for comma
splices.

Acknowledgments

The work described in this paper was supported by
a Strategic Research Grant (Project No. 7008166)
from City University of Hong Kong.

References

Timothy Baldwin and Manuel Paul Anil Kumar Joseph.
2009. Restoring Punctuation and Casing in English

PACLIC 28

!559

Text. Proc. Australasian Conference on Artificial In-
telligence.

Pairote Bennui. 2008. A study of L1 interference in the
writing of Thai EFL students. Malaysian Journal of
ELT Research 4:72–102.

Ann Bies, Mark Ferguson, Karen Katz, and Robert Mac-
Intyre. 1995. Bracketing guidelines for Treebank II
style Penn Treebank project. Technical Report, Uni-
versity of Pennsylvania.

Jill Burstein, Martin Chodorow, and Claudia Leacock.
2004. Automated Essay Evaluation: the Criterion On-
line Writing Service. AI Magazine.

Robert Connors and Andrea Lunsford. 1988. Frequency
of Formal Errors in Current College Writing, or Ma
and Pa Kettle do Research. College Composition and
Communication 39(4).

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a Large Annotated Corpus of Learner
English: The NUS Corpus of Learner English. Proc.
8th Workshop on Innovative Use of NLP for Building
Educational Applications.

Robert Dale and Adam Kilgarriff. 2011. Helping Our
Own: The HOO 2011 pilot shared task. Proc. 13th Eu-
ropean Workshop on Natural Language Generation,
p.242–249.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A report on the preposition and de-
terminer error correction shared task. Proc. 7th Work-
shop on the Innovative Use of NLP for Building Edu-
cational Applications, pages 54–62.

Steven Donahue. 2001. Formal errors: Mainstream and
ESL students. Presented at the 2001 Conference of
Two-Year College Association (TYCA).

Katja Filippova and Michael Strube. 2008. Dependency
tree based sentence compression. Proc. Fifth Interna-
tional Natural Language Generation Conference pp.
25–32.

Jennifer Foster, Joachim Wagner, and Josef van Genabith.
2008. Adapting a WSJ-trained parser to grammati-
cally noisy text. Proc. ACL.

Jennifer Foster and Oistein E. Andersen. 2009. Gen-
ERRate: generating errors for use in grammatical error
detection. Proc. Fourth Workshop on Innovative Use
of NLP for Building Educational Applications.

Jeroen Geertzen, Theodora Alexopoulou, and Anna Ko-
rhonen. 2013. Automatic linguistic annotation of
large scale L2 databases: The EF-Cambridge Open
Language Database (EFCAMDAT). Proc. 31st Sec-
ond Language Research Forum (SLRF).

Agustin Gravano, Martin Jansche, and Martin Bachiani.
2009. Restoring Punctuation and Capitalization in
Transcribed Speech. Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP).

D. Hacker and N. Sommers. 2011. Rules for writers.
Macmillan.

Na-Rae Han, Martin Chodorow, and Claudia Leacock.
2006. Detecting Errors in English Article Usage by
Non-Native Speakers. Natural Language Engineer-
ing, 12(2).

Jing Huang and Geoffrey Zweig. 2002. Maximum en-
tropy model for punctuation annotation from speech.
Proc. ICSLP p. 917–920.

Dan Klein and Christopher D. Manning. 2003. Accurate
Unlexicalized Parsing. Proc. ACL.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization-step one: Sentence compression.
Proc. National Conference on Artificial Intelligence
pp. 703–710.

Ross Israel, Joel Tetreault and Martin Chodorow. 2012.
Correcting Comma Errors in Learner Essays, and
Restoring Commas in Newswire Text. Proc. NAACL.

Taku Kudo. 2005. CRF++: Yet another CRF toolkit.
Obtained from http://crfpp.sourceforge.net.

John Lee and Stephanie Seneff. 2008. Correcting Misuse
of Verb Forms. Proc. ACL.

John Lee and Jonathan Webster. 2012. A Corpus of
Textual Revisions in Second Language Writing. Proc.
ACL.

F. Y. Lin. 2002. Preferred structures in Chinese-English
translation. Master’s thesis, National Changhua Uni-
versity of Education, Taiwan.

Andrea A. Lunsford and Karen J. Lunsford. 2008.
Mistakes are a Fact of Life: A National Compara-
tive Study. College Composition and Communication
59(4):781–806.

Daniel Marcu and Abdessamad Echihabi. 2002. An Un-
supervised Approach to Recognizing Discourse Rela-
tions. Proc. ACL.

George A. Miller. 1995. WordNet: A Lexical Database
for English. Communications of the ACM 38(11):39–
41.

Mitchell Marcus, Mary Ann Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus of
English: the Penn Treebank. Computational Linguis-
tics 19(2).

Hwee Tou Ng, Siew Mei Wu, Wu, Y., Hadiwinoto, C.,
and Tetreault, J. 2013. The CoNLL-2013 shared
task on grammatical error correction. Proc. CoNLL:
Shared Task.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 Shared Task on
Grammatical Error Correction. Proc. CoNLL: Shared
Task.

Mohammad Rahimi. 2009. The role of teacher’s cor-
rective feedback in improving Iranian EFL learners’

PACLIC 28

!560

writing accuracy over time: is learner’s mother tongue
relevant? Reading and Writing, 22(2):219–243.

Andreas Stolcke and Elizabeth Shriberg. 1996. Au-
tomatic linguistic segmentation of conversational
speech. Proc. Fourth International Conference on
Spoken Language Processing (ICSLP).

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
ESL learners using global context. Proc. ACL.

Joel Tetreault, Jennifer Foster, and Martin Chodorow.
2010. Using Parse Features for Preposition Selection
and Error Detection. Proc. ACL.

Yen-Chu Tseng and Hsien-Chin Liou. 2006. The ef-
fects of online conjunction materials on college EFL
students’ writing. System, 34(2):270–283.

