
Automatic Clause Boundary Annotation in the Hindi Treebank

Rahul Sharma, Soma Paul, Riyaz Ahmad Bhat and Sambhav Jain
Language Technology Research Centre, IIIT-Hyderabad, India

{rahul.sharma, riyaz.bhat, sambhav.jain}@research.iiit.ac.in, soma@iiit.ac.in

Abstract

In this paper, we propose a method for au-
tomatic clause boundary annotation in the
Hindi Dependency Treebank. We show that
the clausal information implicitly encoded
in a dependency structure can be made
explicit with no or less human interven-
tion. We exercised the proposed approach
on 16,000 sentences of Hindi Dependency
Treebank. Our approach gives an accuracy
of 94.44% for clause boundary identifica-
tion evaluated over 238 clauses. The resul-
tant corpus has varied usages and can be
utilized for developing a statistical clause
boundary identifier.

1 Introduction

Clause boundary is important for various NLP
systems like machine translation, parallel corpora
alignment, parsing etc. (Leffa, 1998; Gadde et al.,
2010; Ejerhed, 1988). This information is fur-
nished by an automatic tool often called clause
boundary identifier. Both data driven (Puscasu,
2004) and rule based (Leffa, 1998) approaches
have been explored in past for building such a sys-
tem, however recent inclination has been towards
the data-driven approaches due to their robustness.
In order to built a clause boundary identifier, using
data driven approach, one needs to have a good
clause boundary annotated corpus for training. At
present, such a resource is not available in Hindi.
However, the syntactic treebank with dependency
relations annotated has been developed. We wish
to expand this manually annotated treebank with
the clause boundary annotation in this work.

Several insightful approaches, in past, have en-
riched existing resources by first utilizing the ex-
plicit information available to derive new implicit
information (Klein and Manning, 2003; Kosaraju
et al., 2012) and then explicitly annotating it back

into the original resource. Conversion of a tree-
bank from one grammatical formalism to the other
serves as a good example of how an implicit in-
formation can be mapped and extracted (Xia and
Palmer, 2001). Instead of starting from scratch,
an already existing treebank is transformed into a
new grammatical formalism. Bhatt et al. (2009)
is one such effort for Hindi. They have automati-
cally transformed dependency structures to phrase
structure utilizing Hindi Dependency Treebank
and Hindi PropBank (Palmer et al., 2009). Fol-
lowing such insights, we attempt to automatically
generate the clause marked data from existing re-
sources for Hindi. We propose that the clause in-
formation is implicitly encoded in the Hindi De-
pendency Treebank and thus, can be extracted and
explicitly specified as an additional layer of anno-
tation in the treebank. This paper presents a sys-
tematic approach towards incorporating clausal in-
formation in the Hindi Dependency Treebank uti-
lizing the information (mopho-syntactic, depen-
dency etc.) already available in the treebank.

This paper is structured as follows: In Section 2,
we discuss the related works that have been done
earlier on clause identification and classification.
In Section 3, we talk about clause and its types. In
Section 4, we discuss about Hindi-Urdu treebank.
Section 5 describes our methodology and in Sec-
tion 6 we discuss the results achieved and outline
the issues faced. In Section 7, we conclude with
some future directions.

2 Related Work

In this section, we report some of the works related
to clause boundary marking. In general, for the
task of clause boundary identification two kinds
of resources are used: (a) typed dependency struc-
tures; (b) lexical cues such as subordinate and co-
ordinate conjuncts. However, the works reported
on Indian languages have mainly used typed de-

PACLIC-27

499
Copyright 2013 by Rahul Sharma, Soma Paul, Riyaz Ahmad Bhat, and Sambhav Jain

27th Pacific Asia Conference on Language, Information, and Computation pages 499－504

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286947261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pendency structures. Ghosh et al. (2010) has de-
veloped a rule based system for identifying clause
boundary for Bangla. They have defined clause
as a composite construction of a verb along with
its dependent chunks. The rules are designed
on the basis of dependency relation in an anno-
tated corpus. They use CRF based statistical sys-
tem for labeling different clauses. Dhivya et al.
(2012) reports the task of identifying clauses in
Tamil. They first preprocess the input sentence us-
ing Maltparser which gives dependency tree as its
output. They have proposed 11 different depen-
dency tags. Using those dependency tags marked
by Maltparser, they try to find clause boundary in a
sentence. Another work on Tamil (Ram and Devi,
2008) have proposed a hybrid approach for detect-
ing clause boundaries in a sentence. They have
used CRF based system which uses different lin-
guistic cues for the task. After identification of the
clause boundaries they run error analyzer module
to find the false boundaries, which are then cor-
rected by the rule based system built using linguis-
tic cues.

Leffa (1998) has proposed a rule based system
for English. This system uses lexical cues such as
subordination conjuncts, coordination conjuncts
etc. for indentification of clause boundaries and
the type of a clause. Puscasu (2004) proposed
a multilingual method of combining language in-
dependent machine learning techniques with lan-
guage specific rules to detect clause boundaries
in unrestricted texts. The rules identify the finite
verbs and clause boundaries not included in learn-
ing process. Gadde et al. (2010) used some heuris-
tic rules for clause boundary marking in Hindi.
Their aim was to see the impact of clausal infor-
mation on parser performance.

3 Clause and its Classification

A clause is a group of words consisting of a verb
(or a verb group) and its arguments (explicit and
implicit). Depending on the type of the verb, a
clause is classified either as finite or non-finite
based on the finiteness of the head verb. For ex-
ample:

(1) raam khana
Ram food

khaakar
eat+do

ghar gayaa.
home go+past.

‘Ram went home after eating.’

In this example (1), khana khaakar is a non-
finite clause since ‘khaakar’ is a non-finite verb.
Similarly, raam ghar gayaa is a finite clause as

’gayaa’ is a finite verb. A sentence can have more
than one clauses in it. These clauses are classified
in to two types as:

1. Main clause, which is an independent clause,
is also called Superordinate clause,

2. Subordinate clause, which is dependent on
the main clause.

Clauses can also be classified based on their
function in a sentence such as complement clause,
adverbial clause, relative clause etc. (discussed
shortly). Based on the relative position of clauses
with respect to each other, clauses can either be
nested or non-nested. Nested here means one
clause is embedded in another clause, while non-
nested means they lie adjacent to each other. For
example,

(2) raam
Ram

jo khela ,
who play+past ,

ghar gayaa
home go+past

‘Ram who played , went home.’

In example (2) the two clauses are: 1) raam
ghar gayaa (a non-embedded clause) 2) jo khela
(an embedded clause), which is embedded in
raam ghar gayaa.

Below, we discuss some of the clause types
mentioned earlier.

(a) Complement Clause
These clauses are introduced by complemen-
tizer ‘ki’ (that) and generally follow the verb
of main clause (Koul, 2009).

(3) yaha
It

sach
true

hai
is

ki
that

mohan
Mohan

bimaara
sick

hai
is

‘It is true that Mohan is sick’

In example (3), ki mohan bimaar hai is a Com-
plement clause and ‘ki’ is a complementizer.

It must be noted that ‘complement clause’
may also act an argument of the main clause
verb. So, in example (3), the main clause is
yaha sach hai ki mohan bimaara hai, which
contains the complement clause ki mohan
bimaara hai, in it. This is considered to be
a special case where a clause comes as an
argument of a verb and becomes a part of the
main clause. We have handled this type of
construction separately (discussed in section
5).

PACLIC-27

499
Copyright 2013 by Rahul Sharma, Soma Paul, Riyaz Ahmad Bhat, and Sambhav Jain

27th Pacific Asia Conference on Language, Information and Computation pages 499－504

(b) Relative Clause
Finite relative clauses occur as a modifier of
verb’s argument and contain a relative pro-
noun (Koul, 2009). Such clauses can be either
nested or non-nested. For example:

(4) vaha
that

ladkaa
boy

jo
who

khel rahaa thaa
play+past+conti.

ghar
home

gayaa
go+past

‘That boy who was playing went home’

In example (4), the nested relative clause is jo
khel rahaa thaa (who was playing) with ‘jo’
as a relative marker. ‘jo’ modifies ‘vaha’, the
argument of the verb ‘gayaa’.

Consider another example:

(5) vaha
that

ladkaa
boy

ghar
home

gayaa
go+past

jo
who

khel rahaa thaa
play+past+conti.

‘That boy who was playing went home’

In example (5) relative clause jo khel rahaa
thaa is an example of an extraposed relative
clause.

(c) Coordinate Clause
It is one of the independent clauses in a sen-
tence belonging to a series of two or more in-
dependent clauses co-ordinated by a coordi-
nating conjunction (Koul, 2009). For exam-
ple:

(6) main
I

ghar
home

jaaungaa
go+fut.

aur raam
and Ram delhi

dillii
go+fut

jaayegaa

‘I will go home and Raam will go to Delhi’

mai ghar jaaungaa and raam dillii jaayegaa
are two independent clauses with the same sta-
tus in example (6). In our work, we consider
both clause as coordinate clauses, and the co-
ordinating conjunct is not taken to be part of
any of the two clauses. There is thus no hier-
archy in these clauses.

4 Hindi Dependency Treebank
In this section, we give an overview of Hindi Tree-
bank (HTB ver-0.51) a part of which was released
for Hindi Dependency Parsing shared task, MT-
PIL, COLING 2012 (Sharma et al., 2012). It is a

multi-layered dependency treebank with morpho-
logical, part-of-speech and dependency annota-
tions based on the Computational Pān. inian Gram-
matical (CPG) framework. In the dependency an-
notation, relations are mainly verb-centric. The re-
lation that holds between a verb and its arguments
is called a kar.aka relation. Besides kar.aka re-
lations, dependency relations also exist between
nouns (genitives), between nouns and their mod-
ifiers (adjectival modification, relativization), be-
tween verbs and their modifiers (adverbial modifi-
cation including subordination). CPG provides an
essentially syntactico-semantic dependency anno-
tation, incorporating kar.aka (e.g., agent, theme,
etc.), non-kar.aka (e.g. possession, purpose) and
other (part of) relations. A complete tagset of de-
pendency relations based on CPG can be found in
(Bharati et al., 2009), the ones starting with ‘k’
are largely Pān. inian kar.aka relations, and are as-
signed to the arguments of a verb. Example (7)
shows the three levels of information discussed
above encoded in the SSF format.

(7) raam ne
Ram+erg

khaanaa
food

khaayaa
ea+past

aur
and

paani
water

piyaa.
drink+past
’Raam who ate food and drank water, went
home’

Offset Token Tag Feature structure
1 ((NP <fs name=NP drel=k1:VGF>

1.1 raama NNP <fs af=’raama,n,m,sg,3,d,0,0’>
1.2 ne PSP <fs af=’ne,psp,,,,,,’>

))
1 2 ((NP <fs name=NP2 drel=k2:VGF>
2.1 khaanaa NN <fs af=’khaanaa,n,m,sg,3,d,0,0’ name=”khaanaa”>

))
3 ((VGF <¡fs name=VGF drel=ccof:CCP>

3.1 khaayaa VM <fs af=’KA,v,m,sg,any,,yA,yA’ name=”khaayaa”>
))

4 ((CCP <¡fs name=CCP>
4.1 aur CC <fs af=’Ora,avy,,,,,,’ name=”aur”>

))
5 ((NP <¡fs name=NP3 drel=k2:VGF2>

5.1 paani NN <fs af=’pAnI,n,m,sg,3,d,0,0’ name=”paani”>
))

6 ((VGF <¡fs name=VGF2 drel=ccof:CCP>
6.1 piyaa VM <fs af=’pIyA,unk,,,,,,’ name=”piyaa”>

))

Figure 1: SSF representation for example 7

In figure 1, the preterminal node is a part of
speech (POS) of a lexical item. These parts of
speech are grouped together to form chunks (eg.
NP, VGF, CCP, VGNF etc.) as a part of sentence
analysis. The dependency relations are marked at
chunk level, marked with drel in above SSF for-
mat. k1 is the agent of the action and k2 is the ob-
ject of the verb. There are two k2′s for two differ-
ent verbs, khaanaa ‘food’ is k2 for khaayaa ‘eat’
verb and paani ‘water’ is k2 for piyaa ‘drink’
verb.

PACLIC-27

501

5 Method

As we discussed earlier, we use dependency at-
tachments and dependency relations annotated in
the treebank to automatically mark the clause
boundaries. The assumption is that the left most
and the right most projections (dependents) of a
verb are the extremes of a clause it heads.

Our approach is composed of two steps which
execute sequentially to identify boundaries of a
clause. Step 1 identifies the clause boundary in
general, while Step 2 is a post-processing step
which do adjustments specifically to handle ‘ki’
(that) complement clauses.

STEP 1: In this step, we first extract all
verbs in a sentence using POS tag and chunk
information and then traverse the dependency tree
to extract their dependents recursively one by one.
For each verb in the list, we stop traversing if
either we exhaust the nodes dominated by the verb
or find another verb in its dominance. However,
when a complement clause introduced by com-
plementizer ‘ki’ is annotated as an argument of a
verb we will continue traversing till we exhaust
all the nodes dominated by the complementizer
‘ki’. This will ensure that the complement clause
be treated as part of the main clause, more like an
embedded clause. Once verb and its dependents
are obtained, we sort them by their offsets. The
lowest offset is considered as the start of a clause
and the highest offset marks its end. This way we
determine boundaries of each clause in a sentence.

Example (8) illustrates STEP 1:

(8) raam
Ram

ghar
home

gayaa
go+past

aur
and

khaanaa
food

khaayaa.
eat+past

‘Ram went home and ate food.’

aur{4}

gayaa{3}

raam{1}

k1

ghar{2}

k2

ccof

khaayaa{5}

khaana{6}

k2

ccof

Figure 2: Dependency Tree

Figure 2 shows the dependency tree of exam-
ple (8). Relations (k1, k2 etc.) are marked on
edges and Offsets of different chunks are shown in
brackets with the words. Following STEP 1, a verb

list containing two verbs–‘gayaa’ and ‘khaayaa’ is
formed. Then, after traversing the dependency tree
of example (8) for verb ‘gayaa’, a list, containing
verb ‘gayaa’ and its arguments–‘raam’ and ‘ghar’
is built. This list is, then, sorted by the offsets
of words contained in it. After sorting, the words
corresponding to the lower and higher offsets are
treated as the boundaries of the clause headed by
the verb ‘gayaa’. Similarly for ‘khaayaa’ verb,
words at offset 5 and offset 6 mark the boundaries.
Thus, the clause boundaries for example (8) will
be marked as:

(raam ghar gayaa) aur (khaanaa khaayaa.)

STEP 2: This step, as a postprocessing step,
handles the exceptional case of ‘ki’ (that) com-
plex complement clauses. As mentioned earlier,
‘ki’ complement clause may occur as an argument
of a verb and could be thus a part of its clause. Al-
though, in STEP 1 we will accurately include the
complement clause as a part of the main clause, we
don’t mark the scope of complement clause itself,
if it is complex i.e., made of more than one clause.
This step marks the scope of complex complement
clauses based on the output of STEP 1. Example
(9) explains this further.

(9) raam ne
ram+erg

kahaa
say+past

ki
that

tum
you

ghar
home

jaao
go

or
and

aaraam
rest

karloo
do

‘Ram said that you go home and take rest.’

After STEP 1, the clause boundaries for the sen-
tence (9) would be like:

(raam ne kahaa ki (tum ghar jaao) or (aaraam karloo))

In STEP 2, we iterate over the output of STEP 1
and mark the boundaries of the complement clause
starting from the word imediately following the
‘ki’ complementizer and the ending with the end
of main clause of which complement clause is a
part. The modified boundaries will be:

(raam ne kahaa ki ((tum ghar jaao) or (aaraam karloo)))

6 Results and Discussion

A testing set of 100 sentences containing 288
clauses randomly selected from a section of the
Hindi Dependency Treebank is used to evaluate
the performance of our approach. The accuracies
are calculated on the basis of the following aspects
of a clause:

PACLIC-27

502

• Start of clause
• End of clause
• Whole clause
• Finite clause
• Non-finite clause
• Embedded clause
• Non-embedded clause

Table 1 shows the accuracies of our approach for
different aspects of clause marking.

Different aspects Accuracy%
Start of clause 97.91
End of Clause 94.44
Whole clause 94.44
Finite clause 93.88
Non-Finite clause 98.30
Embedded clause 94.32
Non-Embedded clause 94.55

Table 1: Results of different aspect of clause

While evaluating our approach, we come across
some constructions which were not handled by it.
They are:

1. Topicalisation: Extraction of a constituent
from in its canonical position to clause ini-
tial position may sometimes affect the repre-
sentation of actual clause boundaries. Extrac-
tion from subordinate clause to sentence ini-
tial position provides such an example:

(10) raami

Ram
maine
I+Erg

kahaa
say+past

ki ti
that

ghar
home

gayaa.
go+past

‘I said that raam went home.’

In example (10) ‘raam’ moved from its de-
fault position ti to the sentence initial posi-
tion. The overlap in the constituents of main
and subordinate clauses in (10) makes the
representation of clause boundaries in such
sentences difficult.

2. Inconsistencies in the treebank: Since
we rely on manually annotated dependency
structures to identify the clause boundaries,
any inconsistency in the structure would af-
fect the accurate marking of such informa-
tion. We spotted some errors which were due
to the inconsistencies in the annotation in the
treebank like part of speech and attachment
errors.

7 Conclusion and future work

In this paper, we showed how implicit clausal in-
formation captured in a dependency tree can be
extracted and added back to the original resource.
We worked with the Hindi Dependency Treebank
and automatically added the clausal information
using the dependencies between constituents in
the treebank. We discussed some of the issues in
identifying clause boundaries using our approach.
In the future, we plan to use the clause bound-
ary annotated corpus furnished in this work for the
task of clause boundary identification in raw text
using machine learning.

Acknowledgments

The work reported in this paper is supported by the
NSF grant (Award Number: CNS 0751202; CFDA
Number: 47.070). 1

References
Akshar Bharati, Dipti Misra Sharma, Samar Husain,

Lakshmi Bai, Rafiya Begum, and Rajeev Sangal.
2009. Anncorra: Treebanks for indian languages
guidelines for annotating hindi treebank (version–
2.0).

Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. A multi-representational and multi-layered
treebank for hindi/urdu. In Proceedings of the Third
Linguistic Annotation Workshop, pages 186–189.
Association for Computational Linguistics.

R Dhivya, V Dhanalakshmi, M Anand Kumar, and
KP Soman. 2012. Clause boundary identifica-
tion for tamil language using dependency parsing.
In Signal Processing and Information Technology,
pages 195–197. Springer.

Eva I Ejerhed. 1988. Finding clauses in unrestricted
text by finitary and stochastic methods. In Proceed-
ings of the second conference on Applied natural
language processing, pages 219–227. Association
for Computational Linguistics.

Phani Gadde, Karan Jindal, Samar Husain, Dipti Misra
Sharma, and Rajeev Sangal. 2010. Improving data
driven dependency parsing using clausal informa-
tion. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 657–660. Association for Computational Lin-
guistics.

1Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

PACLIC-27

503

Aniruddha Ghosh, Amitava Das, and Sivaji Bandy-
opadhyay. 2010. Clause identification and classifi-
cation in bengali. In 23rd International Conference
on Computational Linguistics, page 17.

Dan Klein and Christopher D Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 423–430. Asso-
ciation for Computational Linguistics.

Prudhvi Kosaraju, Samar Husain, Bharat Ram Am-
bati, Dipti Misra Sharma, and Rajeev Sangal.
2012. Intra-chunk dependency annotation: expand-
ing hindi inter-chunk annotated treebank. In Pro-
ceedings of the Sixth Linguistic Annotation Work-
shop, pages 49–56. Association for Computational
Linguistics.

Omkar Nath Koul. 2009. Modern Hindi Grammar.
Indian Institute of Language Studies.

Vilson J Leffa. 1998. Clause processing in complex
sentences. In Proceedings of the First International
Conference on Language Resources and Evaluation,
volume 1, pages 937–943.

Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. Hindi syntax: Annotating dependency, lexi-
cal predicate-argument structure, and phrase struc-
ture. In The 7th International Conference on Natu-
ral Language Processing, pages 14–17.

Georgiana Puscasu. 2004. A multilingual method for
clause splitting. In Proceedings of the 7th Annual
Colloquium for the UK Special Interest Group for
Computational Linguistics.

R Vijay Sundar Ram and Sobha Lalitha Devi. 2008.
Clause boundary identification using conditional
random fields. In Computational Linguistics and In-
telligent Text Processing, pages 140–150. Springer.

Dipti Misra Sharma, Prashanth Mannem, Joseph van-
Genabith, Sobha Lalitha Devi, Radhika Mamidi, and
Ranjani Parthasarathi, editors. 2012. Proceedings
of the Workshop on Machine Translation and Pars-
ing in Indian Languages. The COLING 2012 Orga-
nizing Committee, Mumbai, India, December.

Fei Xia and Martha Palmer. 2001. Converting depen-
dency structures to phrase structures. In Proceed-
ings of the first international conference on Human
language technology research, pages 1–5. Associa-
tion for Computational Linguistics.

PACLIC-27

504

