
A Compact FP-tree for Fast Frequent Pattern Retrieval

Tri Thanh Nguyen
Vietnam National University, Hanoi (VNUH)

University of Engineering and Technology (UET)
ntthanh@vnu.edu.vn

Abstract

Frequent patterns are useful in many data
mining problems including query
suggestion. Frequent patterns can be
mined through frequent pattern tree (FP-
tree) data structure which is used to store
the compact (or compressed)
representation of a transaction database
(Han, et al, 2000). In this paper, we
propose an algorithm to compress
frequent pattern set into a smaller one,
and store the set in a modified version of
FP-tree (called compact FP-tree) as an
inverted indexing of patterns for later
quick retrieval (for query suggestion).
With the compact FP-tree, we can also
restore the original frequent pattern set.
Our experiment results show that our
compact FP-tree has a very good
compression ratio, especially on sparse
dataset which is the nature of query log.

1 Introduction

Frequent pattern mining is an important task
because its results can be used in a wide range of
mining tasks, such as association rule, correlation,
causality, sequential pattern, etc. as reviewed by
Han (2000). In some mining tasks (e.g.
association rule, correlation, or causality),
frequent patterns are used as intermediate data
for computing final results, so there is no need to
access these patterns again. However, in some
other tasks, such as query suggestion (or query
recommendation) (Li, 2008), when a user enter a
keyword, the search engine will recommend the
potential phrases (or patterns) the user may want
to use, in order to: (a) save time for users, (b)
make the convenience of use, and even (c) guide
the user in case he/she is not sure about what to
search for. In such tasks, we need to frequently
search for frequent patterns containing a certain
keyword (or phrase), hence, we want to have a

method that supports quick retrieval of patterns.
In information retrieval, one of the contemporary
methods for fast retrieval of documents
containing a certain word (or phrase) is inverted
indexing (Manning, et al, 2008), which manages
a mapping from a keyword to a set of documents
containing it. Thus, given a keyword, we will
quickly have the list of related documents.

We found that FP-tree can be used as an
inverted indexing which can provide us a list of
patterns containing a certain item. Thus, we
propose to modify FP-tree to store the frequent
patterns for later fast retrieval. The difference
between our FP-tree and the original one is:
• The original FP-tree stores the compact

version of a transaction database, and an
algorithm (called FP-growth) is used to find
out the frequent patterns;

• Our FP-tree stores the frequent patterns for
quick access, so each path in the tree is
already a pattern.

 Since the number of frequent patterns
generated from a transaction database can be
very large, we propose an algorithm to compress
them into a much smaller (compact) set and store
in FP-tree data structure. We also propose to
modify related algorithms to make FP-tree
compatible with frequent patterns instead of
transaction data. We call the tree of compact
pattern set compact FP-tree. With the compact
FP-tree, it is easily to restore the original
frequent pattern set. The results of the
experiments on benchmark transaction database
show that our compact FP-tree has very good
compression ratio.

Our paper is organized as follows: Section 2
introduces about FP-tree, and summarizes some
typical literature; Section 3 introduces our
compact FP-tree and the algorithms for
compressing frequent patterns as well as
restoring the original pattern set; Experiment and
evaluation is discussed in Section 4 while
conclusion and future work are provided in
Section 5.

PACLIC-27

430
Copyright 2013 by Tri Thanh Nguyen

27th Pacific Asia Conference on Language, Information, and Computation pages 430－439

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286947247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Background and related work

In this section, to make the paper self-containing,
we will introduce frequent pattern mining
problem, some detail of FP-tree, and some
typical studies.

2.1 Frequent pattern mining problem

Let I = {a1, a2, ..., am} be the set of items
(which can be the list of goods in a supermarket),
and a transaction database DB=〈 T1, T2, ..., Tn 〉,
where each Ti (1 ≤ i ≤ n) is a transaction which
contains a subset of items in I. An example of a
transaction Ti is the list of goods in a shopping
basket. Define the support count (or the
absolute support, i.e. the absolute occurrence
frequency/count) of a pattern A (A is a subset of I)
is the number of transactions in DB that contains
A. Note that, in other studies, relative support is
used (i.e. the percentage of a pattern in DB). It is
easily to convert from absolute to relative
support, and vice versa using the formula:

relative_support=absolute_support /|DB|
In this paper, the term support count is used to:

(a) refer to absolute occurrence frequency, (b)
distinguish from relative support, and (c) make it
easier to follow the examples. Pattern A is called
a frequent pattern (or frequent itemset – the term
used in some other literature) if A’ support count
is greater than or equal a predefined minimum
support count (minsupcount) ξ. The task of
finding the complete set of frequent patterns in a
DB with a minsupcount ξ is called frequent
pattern mining problem. This task is claimed to
be time-consuming, hence, there are many
algorithms having proposed to solve the task.

One of the algorithms, that has high attention
of study is frequent pattern tree (or FP-tree for
short) proposed by (Han, 2000). One of the
advantages of FP-tree over previous algorithms
is the reduction of the number of database scans.
In FP-tree construction phrase, it needs only two
scans over the database. The definition of FP-tree
data structure and its related algorithms are given
in next subsection.

2.2 FP-tree introduction

Han, et al, proposed the FP-tree data structure
that can store the complete set of frequent
patterns using only two scans over the DB. The
biggest contribution to speed up the frequent
pattern mining task is reduction of the number of
scans over the DB down to only 2, since the

speed of reading data in the secondary storage is
slow. FP-tree is a tree structure as defined below:
1. It consists of one root labeled as “null", a

set of item prefix subtrees as the children
of the root, and a frequent-item header
table.

2. Each node in the item prefix subtree
consists of 4 fields: item-name, (support)
count, parent-link, and node-link, where
item-name registers which item this node
represents, count registers the number of
transactions represented by the portion of
the path reaching this node, and node-link
links to the next node in the FP-tree
carrying the same item-name, or null if
there is none, the parent-link links to the
parent node1.

3. Each entry in the frequent-item header
table consists of three fields: (1) item-name,
(2) the (support) count2, and head of node-
link which points to the first node in the FP-
tree carrying the item-name.

An example of a FP-tree is given in Figure 1,
now we will study how to construct the FP-tree
in this figure. With the minsupcount ξ=3, based
on the DB listed in Table 1. This table shows a
simple database of transactions of a supermarket,
where the first column is the transaction
identification, each row in the second column is
the list of items that were bought by a customer.
The FP-tree construction is described briefly as
follows:

TID Items Bought (Ordered) Frequent
Items

100 f, a, c, d, g, i, m, p f, c, a, m, p
200 a, b, c, f, l, m, o f, c, a, b, m
300 b, f, h, j, o f, b
400 b, c, k, s, p c, b, p
500 a, f, c, e, l, p, m, n f, c, a, m, p
600 f, c, g, s f, c

Table 1. Transactions in DB and their frequent
items

FP-tree construction starts with the first scan
over the DB to find the list of frequent items
(i.e. frequent itemsets with the cardinality of 1
having the support no less than ξ). The result of
the scan over the DB in Table 1 is the list h of
〈(f: 5), (c: 5), (a: 3), (b: 3), (m: 3), (p: 3)〉,

1 Though this field is not clearly mentioned in Han’s paper,
it is important in forming the tree, so we list it here for the
sake of completeness.
2 This field is not clearly mentioned in Han’s paper neither,
we list it here for later use.

PACLIC-27

431

where the number after the colon “:” is the
support count of items, and the h is sorted in
support count descending order denoted as L. h
is used to build the frequent-item header table
(or header table for short), where each entry in
the table consists of the item-name and a
pointer (called head of node-links) to the first
(appeared) node having the same item-name in
the FP-tree as depicted in Figure 1. The second
scan will get the list of frequent items of each
transaction, sort it according to L, and insert it
into the FP-tree. To make it easier to observe,
this list of each transaction is showed in the
third column of Table 1. The tree construction
algorithm is listed in Algorithm 1.

Algorithm 1: FP-tree_construction
Input: A transaction database DB and a

minsupcount ξ.
Output: The frequent pattern tree F

(1) 1. Scan the DB to get the list L of frequent items,
and sort it in support descending order.

(2) Create a FP-tree F by:
(3) Create the header table, and set all the head-

of-node-links to null.
(4) Create the root node T of the tree having the

item-name of null.
(5) Set the parent-link and node-link of T to null.
(6) 2. Scan the DB again
(7) For each transaction Tran in DB do
(8) Get the list of frequent items.
(9) Sort it according to the order L.
(10) Let this list be [p|P], where p is the first item

and P is the remaining items.
(11) Call insert_tree([p|P], T).

where the insert_tree(.) procedure is defined in
Algorithm 2.

Algorithm 2: insert_tree
Input: the ordered list [p|P] of frequent items, and

a node T of a FP-tree.
Output: the updated FP-tree.

(1) if T has a child node N such that the item name of
N and p is the same then

(2) Increase the count of N by 1
(3) else
(4) Create a new node N.
(5) Set the item_name of N to p.item_name.
(6) Set the count of N to 1.
(7) Link the parent-link of N to T.
(8) Set the node-link of N to null.
(9) if the head-of-node-links of the item h in the

header table having the same name as p is
null then

(10) Set head-of-node-links of h to p;
(11) else

(12) Traverse through the head-of-node-links
of h to the end of the list, and link the
node-link of the end-node to p.

(13) if P is not empty then
(14) Let P=[p1|P1]
(15) Call insert_tree([p1|P1], N).

The key idea why the algorithm needs to sort
the items in a transaction in the order L is: the
more frequent an item is, the more common it is
in transactions, hence the transactions will share
the items as a prefix. And such transactions will
be “compressed” in the prefix, and make the tree
compact.

Han (2000) proved that FP-tree has both
compactness (i.e. it has a compact representation)
and completeness (i.e. it stores the complete
information of the database in relevant to
frequent pattern mining).

After having built the FP-tree, frequent
patterns can be extracted from the item at the
bottom of the header table (i.e. the item having
the smallest count) (Han, 2000). For example,
from the FP-tree in Fig. 1, we start with item p in
the header table, and have one frequent pattern (p:
3) and two paths: 〈(f: 5), (c: 5), (a: 3), (b: 3), (m:
2), (p: 2)〉 and 〈(c: 1), (b: 1), (p: 1)〉. The items
(called p’s prefix) that appear together with p in
the two paths are 〈(f: 2), (c: 2), (a: 2), (b: 2), (m:
2) 〉 and 〈(c: 1), (b: 1)〉, correspondingly. The
prefix set of p {〈(f: 2), (c: 2), (a: 2), (b: 2), (m:
2)〉, 〈(c: 1), (b: 1)〉} is called p’s conditional
pattern base (i.e. the sub-pattern base under the
condition of p’s existence). This set is used as a

Figure 1. FPTree corresponding to the DB in Table 1

item
head of
node-link

root

Header table

f: 5
c: 5
a: 3
b: 3
m: 3
p: 3

f:5
b:1

c:4

a:3

m:2

p:2

b:1

m:1

b:1

p:1

c:1

PACLIC-27

432

set of transactions to construct another FP-tree
called p’s conditional FP-tree with respect to
minimum support count: ξ. The only frequent
item in p’s conditional pattern base is (c: 3),
hence we can produce one frequent pattern (pc:3).
Table 2 lists the conditional pattern bases,
conditional FP-trees, and frequent patterns of
other items of the FP-tree in Fig. 1.

Ite
m

Conditional
pattern base

Cond’ FP-
tree

Frequent
pattern

p {(f:2, c:2, a:2,
m:2), (c:1, b:1)}

{(c:3)}|p {(p:3),
(pc:3)}

m {(f: 2, c:2, a:2),
(f:1, c:1, a:1,
b:1)}

{(f:3, c:3,
a:3)}|m

{(m:3),
(macf:3,
(mac:3),
(maf:3),
(ma:3),
(mcf:3),
(mc:3),
(mf:3)}

b {(f:1, c:1, a:1,
m:1), (f:1, b:1),
(c:1)}

{} {(b:3)}

a {(f:3, c:3)} {(f:3,
c:3)}|a

{(a:3),
(acf:3),
(ac:3),
(af:3)}

c {(f:4)} {(f:4)}|c {(c:5),
(cf:4)}

f {} {} {f:5}
Table 2. Frequent pattern generation

When a single path in one item’s conditional
FP-tree having the length greater than 1 as in
case of m and a (see Table 2), a set of
combinations of items (i.e. the non-empty
subsets) in the path is generated as frequent
patterns with the same support as the considered
item’s. For example, the item a has the
conditional FP-tree consisting of only one path
(fc:3), and the combinations of the items in this
path are {(fc:3), (c:3), (f:3)}. These combinations
are used as a prefix of a to produce frequent
patterns: (acf:3), (ac:3), (af:3). The algorithm to
extract frequent patterns from a FP-tree is given
in Algorithm 3.

Algorithm 3: FP_growth
Input: FP-tree constructed based on Algorithm 1,

using DB and a minsupcount ξ, and a pattern
prefix α

Output: The complete set of frequent patterns.

Procedure FP-growth (Tree, α)
(1) if Tree contains a single path P then
(2) for each combination (denoted as β) of the

nodes in the path P do
(3) Generate pattern β ∪α with support

=minimum support of nodes in β;
(4) else for each ai in the header of Tree do
(5) Generate pattern β = ai ∪α with support =

ai.support;
(6) Construct β 's conditional pattern base and then

β 's conditional FP-tree Treeβ with respect to
minsupcount ξ ;

(7) If Treeβ ≠∅ then call FP-growth (Treeβ, β)
To extract patterns from a FP-tree F, we call

FP-growth(F, null).

FP-tree data structure has attracted many
studies in both application and modification
(improvement) aspects. Li, et al (2008)
parallelized FP-tree and pattern generation to
detect relation among tags and and webpages for
query recommendation. Kumar and Rukmani,
(2010) used both FP-tree and Apriori for web
usage mining problem. Xu, et al (2011) mined
associated factors about emotional disease based
on FP-tree growing algorithm. Patro, et al, (2012)
proposed to use Huffman coding to compress FP-
tree. Yen, et al (2012) proposed Search Space
Reduced (SSR) algorithm to speed up the pattern
extraction from FP-tree. Bernecker, et al (2010)
added probability to FP-tree to mine uncertain
databases. Concretely, the authors proposed the
first probabilistic FP-Growth (ProFP-Growth)
and associated probabilistic FP-Tree (ProFP-
Tree), which we use to mine all probabilistic
frequent patterns in uncertain transaction
databases without candidate generation.
Shrivastava, et al (2010) mined multiple level
association rules based on FP-tree and co-
occurrence frequent item tree (CFI). Lin, et al
(2010) added constraints on FP-tree for multi-
constraint pattern discovery.

2.3 Inverted indexing

In document representation, a document can be
represented as a vector of which each element is
a feature (e.g. a binary value indicating whether a
word appears in the document or not). Vector
representation of document is suitable for
computation, such as classification. However, it
is not good for searching (i.e. given a keyword,
find all the documents containing it). Inverted
indexing is a data structure that stores a mapping
from content (e.g. keywords) to documents. All
the distinct keywords in the universal document

PACLIC-27

433

set are used to form a dictionary. Each keyword
in the dictionary is attached a list of document
identifiers (doc_id) called posting list. For
example, given a set of 3 documents:

{ T[0]= “What is inverted indexing?”
 T[1]= “Inverted indexing is a data structure”
 T[2]= “Inverted indexing is used in search
engine”}

The distinct keywords in the document set is
{“a”, “data”, “engine”, “in”, “indexing”,
“inverted”, “is”, “search”, “structure”, “used”,
“what”}, and the inverted indexing of the
document set is3:

“a” => {1}
“data” => {1}
“engine” => {2}
“in” => {2}
“indexing” => {0, 1, 2}
“inverted“ => {0, 1, 2}
“is” => {0, 1, 2}
“search” => {2}
“structure” => {1}
“used” => {2}
“what” => {0}

With this data structure, given a keyword we
will quickly have the list of documents
containing it. When we want to find documents
that contain some keywords all together, we
simply find out the document list of each
keyword and calculate the intersection. Inverted
indexing is usually employed in search engines
(Manning, et al, 2008).

3 Compact FP-tree

When the frequent pattern set generated from a
transaction database is large, while we need to
access the frequent patterns regularly, is it
possible to: (a) compress the set into a smaller
one, and (b) facilitate the access to frequent
patterns? In this section, we will address the two
questions through: (a) frequent pattern
compression method, and (b) compact FP-tree.

3.1 Frequent pattern set compression

Given a set of frequent patterns FP={fp1:s1,
fp2:s2, ..., fpn:sn}, where fpi is a frequent pattern

3 We ignore additional techniques while building the
dictionary as well as the inverted indexing for simplicity.
Interested readers can refer to (Manning, et al, 2008)

and si is its support. The frequent pattern set
compression is defined as:

Find another frequent pattern set FP’ such that
|FP’| < |FP|, and it is possible to restore the FP
from FP’. Formally, we need to find to
procedure compress(.) and uncompress(.) such
that: if FP’=compress(FP), then |FP’| < |FP| and
uncompress(FP’)=FP.

Our compression idea is based on the fact that
if there are two frequent patterns fpi:si and fpj:sj
(where si is the support of the pattern) such that
si=sj and ji fpfp ⊂ then we can remove the
pattern fpi.

For example, from the set of frequent patterns
generated from the item m in Table 2 {(m:3),
(a:3), (macf:3), (mac:3), (maf:3), (ma:3), (mcf:3),
(mc:3), (mf:3)}, since the pattern mc is a subset
of pattern mcf with the same support of 3, we can
remove mc from the set. Similarly, mf is a subset
of mcf, we remove mf. Repeating this process
exhaustively, the above set is reduced to the set
{(macf:3)}.

A heuristic method to reduce the search space
to find out the frequent patterns of which one can
be a subset of another is to sort the patterns
according to the support, and then the frequent
patterns. After sorting, patterns having the same
support and prefix will be grouped into a
segment. The search performed per segment will
be faster, since it has a smaller search space.

To uncompress the pattern set, we reverse the
compress process. For a pattern fpi:si whose
cardinality is greater than 1, we generate a set of
all the combinations (i.e. the non-empty subsets)
of its items: {fpi1,, fpi2, ..., fpin}, each combination
fpik is assigned the support si to form a frequent
pattern. Added the pattern fpi:si to the generated
set we produce the output set {fpi1: si,, fpi2: si, ...,
fpin: si, fpi:si }.

The above output set sometimes is not original
set due to the fact that some combination in the
original set can have a bigger support count. For
example, the uncompressed set of the pattern
(macf:3) is {(macf:3), (mac:3), (maf:3), (ma:3),
(mcf:3), (mc:3), (mf:3), (m:3), (a:3), (c:3), (f:3)}.
However, in the compressed set we have the
frequent pattern (f:5), so the pattern (f:3) is
redundant and need to remove. We call this
phenomenon redundant pattern for later
reference.

Based on the above discussion, we first
introduce the compress(.), uncompress(.)
procedures, and prove the correctness later.

PACLIC-27

434

The compress(.) procedure is defined as
Algorithm 4.

Algorithm 4: compress(.)
Input: a set of frequent patterns FP
Output: a compact set of frequent patterns

(1) while exist two patterns fpi:si and fpj:sj in FP such
that si=sj and fpi is a subset of fpj do

(2) }:{\ ii sfpFPFP =
(3) return FP

And the uncompress(.) procedure is defined as
Algorithm 5.

Algorithm 5: uncompress(.)
Input: a set of compact frequent patterns FP
Output: the original set of frequent patterns

(1) FP’={}
(2) while exist a pattern fpi:si in FP such that si >1 do
(3) Let Fi be the set of all frequent patterns that

are combinations of items in fpi with the
support si

(4) }:{\ ii sfpFPFP =
(5) }:{'' iii sfpFFPFP ∪∪=
(6) FPFPFP ∪= ''
(7) while exist two pattern fpi:si and fpj:sj in FP’ such

that si < sj and fpi = fpj do }:'\{' ii sfpFPFP =
(8) return FP’

Lemma 3.1: Given a set of frequent patterns
generated from a transaction database, after
having compressed by the above compress(.)
procedure, the uncompress(.) procedure will
produce the original frequent pattern set.

Proof: According to Apriori property
(Agrawal, et al 1993): if a pattern p is frequent,
then all of its subsets are frequent, thus, if there
is a pattern fpj:sj is compressed by compress(.),
then all the combinations of the items in fpj {fpi1:
si,, fpi2: si, ..., fpin: si,} are frequent. The only
phenomenon is the redundant pattern discussed
earlier. However, this phenomenon can be solved
by simply removing the pattern with lower
support count (in line 7 of Algorithm 5). �

Applying the compress(.) procedure to the
frequent pattern set generated from the FP-tree in
Fig. 1, we have the compressed set {(f:5), (c:5),
(cf:4), (macf:3)}. We can see that the compressed
set is much smaller than the original one. Our
compression algorithm produces the closed and
maximal item set as (Grahne and Zhu, 2003).
Grahne and Zhu proposed an algorithm based on
FP-tree called FPClose to mine closed and
maximal item set. The compressed set will be

stored in the compact FP-tree, which again helps
to reduce the storage as discussed in Section 3.2.

3.2 Compact FP-tree

From the definition of FP-tree data structure, it
has a header table containing all the frequent
items. Each item has a pointer that links all its
occurrences in the patterns of the tree. This
header table is similar to inverted indexing
mechanism discussed in Section 2.3. The only
difference is: each item in header table maintains
a list of patterns (not a list of pattern_ids as in
inverted indexing). Therefore, FP-tree data
structure has the same characteristics of inverted
indexing, i.e. it facilitates the fast retrieval of
patterns containing a certain item, and we
propose to use FP-tree to store the compressed
frequent pattern set. Since, we can not use the
original FP-tree as well as its related algorithms,
we define another version of FP-tree called
compact FP-tree (with the differences from the
original of FP-tree definition are in bold):

1. It consists of one root labeled as “null", a
set of item prefix subtrees as the children of
the root, and a frequent-item header table.

2. Each node in the item prefix subtree
consists of 4 fields: item-name, support 4 ,
parent-link, and node-link, where item-
name registers which item this node
represents, support is used to calculate the
support of the pattern containing this
item, and node-link links to the next node in
the compact FP-tree carrying the same item-
name, or null if there is none, the parent-
link links to the parent node.

3. Each entry in the frequent-item header table
consists of three fields: (1) item-name, (2)
the support, and head of node-link which
points to the first node in the compact FP-
tree carrying the item-name.

Lemma 3.2: The order of frequent items in FP-
tree storing the compressed frequent pattern set is
the same as that of the original FP-tree (i.e. the
FP-tree corresponding to the uncompressed
pattern set).

Proof: the items in header table of the FP-tree
constructed from a transaction database are
themselves frequent, hence, their order remains
the same if we copy them to another FP-tree. �

4 This can be relative or absolute support, in this paper we
use absolute support for consistency

PACLIC-27

435

The algorithm to construct a compact FP-tree
is defined as:

Algorithm 6: FP-tree_construction
Input: A compressed pattern set S.
Output: The compact FP-tree F

(1) Generate the list L of frequent items from S, and
sort L in descending order of support.

(2) Create a FP-tree F by:
(3) Create the header table based on L, and set

all the head-of-node-links to null.
(4) Create the root node T of the tree having the

item-name of null.
(5) Set the parent-link and node-link of T to null.
(6) Remove all frequent items from S.
(7) for each pattern fp:s in S do
(8) Sort the items in fp according to the order L.
(9) Let this list be [p|P], where p is the first item

and P is the remaining items.
(10) Call insert_pattern([p|P], T,s).

where insert_pattern(.) is defined as:

Algorithm 7: insert_pattern
Input: the ordered list [p|P] of frequent items, a

node T of a compact FP-tree, and the
support s.

Output: the updated compact FP-tree.
(1) if T has a child node N such that the item name of

N and p is the same then
(2) if p.support>N. support then N. support =p.

support
(3) else
(4) Create a new node N.
(5) Set the item_name of N to p.item_name.
(6) N. support =p. support
(7) Link the parent-link of N to T.
(8) Set the node-link of N to null.
(9) if the head-of-node-links of the item h in the

header table having the same name as p is
null then

(10) Set head-of-node-links of h to p;
(11) else
(12) Traverse through the head-of-node-links

of h to the end of the list, and link the
node-link of the end-node to p.

(13) if P is not empty then
(14) Let P=[p1|P1]
(15) Call insert_pattern([p1|P1], N, s)

The compressed pattern set of the FP-tree in
Fig. 1 as discussed in Section 3.1 has the
compact FP-tree as Fig. 2.

3.3 Searching in compact FP-tree

Given an item, we follow the node-link pointer
from the header table to get all the patterns

containing it. If we want to search for patterns
containing more than one item (e.g. this case is
frequently occurs in web search, where users can
search for a phrase instead of a keyword), then
we search for patterns containing the lowest
support item, then filter out the patterns
containing all the given items. For example, if
we want to search for patterns containing {a, f,
m}, we just search for patterns containing m,
then filter out the patterns containing both a and f.

However, there is a limitation of current
compact FP-tree, i.e. if we search for patterns
containing an item that is not a leaf node, then
we can not extract the whole pattern (from the
root to the leaf). For example, in the compact FP-
tree in Fig. 2, if we search the tree based on item
a, then we can only extract a pattern (acf:3), m is
absent in the pattern. Fortunately, we can
overcome this limitation by adding pointers from
a parent node to its children nodes, so we can
traverse in both directions from a leaf to the root
and vice versa.

In some situations, we want to get the patterns
with higher support first, i.e. in query suggestion,
we want to suggest users with more frequent
keywords first. To support this situation, we
simply reorder the node-link of nodes so that the
highest support pattern is pointed by the head-of-
node-link (i.e. the pointer of the header table).

3.4 Original frequent pattern set recovery

In case we want to restore the original frequent
pattern set (the uncompressed one) we can easily
do through the compact FP-tree. For each path in
the compact FP-tree, we generate the
combinations of its items with the lowest support
of the item in the combination. After generation,

f: 5
c: 5
a: 3
b: 3
m: 3
p: 3

Figure 2: A compact FP-tree

item
head of
node-link

root

Header table

f:4
c:3

c:4

a:3

m:3

p:3

PACLIC-27

436

we also face redundant pattern problem, which
can be solved by a removal step. The recovery
algorithm is described in Algorithm 8.

Algorithm Pattern_extraction
Input: a compact FP-tree Tree
Output: The complete set S of frequent patterns.
(1) S={all items in the header table}
(2) for each path in Tree do
(3) Generate the set P of all combinations with the

length>1, each of which has the support of the
lowest support item.

(4) S = S ∪ P
(5) while exist two pattern fpi:si and fpj:sj in S such

that si < sj and fpi = fpj do }:{\ ii sfpSS =

4 Experiments

We used the open source FP-growth package 5
developed by (Borgelt, 2005). The patterns
having the same support are generated in next to
each other as a group as listed in Table 2, where
the number in the parenthesis is the (relative)
support (in percent) of the pattern.

Frequent Pattern
m (60.0)
m a (60.0)
m a c (60.0)
m a c f (60.0)
m a f (60.0)
m c (60.0)
m c f (60.0)
m f (60.0)

Table 2. Frequent patterns
generated from FP-growth

By exploiting this characteristic, we simply
find the longest pattern in the group which will
be the compressed pattern of the group. Hence,
we wrote another algorithm as Algorithm 8
which has the complexity of O(N).
Algorithm 8: Pattern_compression
Input: a list P of frequent patterns
Output: The set S of compressed frequent patterns

having the length>1, and a list L of frequent
items for building header table

(1) L={} ;
(2) S={}
(3) iterate through the list P
(5) if the current pattern p has the length=1 then
(6) L=L + p

5 http://www.borgelt.net/fpgrowth.html

(7) else this is the starting of a group with the same
support, so find the longest pattern p in this
group

(9) S = S ∪ p

We used two types of transaction databases
that are published as benchmark datasets6: sparse
(i.e. T10I4D100 and T20I6D100) and dense (i.e.
mushroom and C20D10). For evaluation, we
compare the size (in term of the total of nodes) of
the compact FP-tree and its original FP-tree
called compression ratio (in %) as follows:

%100*

∑
∑

−

−
=

treeFPoriginalinnodes
treeFPcompactinnodes

ratio

The smaller the ratio is, the better compression
is.

With sparse databases, we had to use very
small relative minimum support thresholds
ranging from 0.1% to 1%. The compression ratio
of sparse databases is given in Fig. 3 where we
can see that the compact FP-tree is drastically
reduced. With the relative support of 0.1%, the
size of compact FP-tree is reduced to 8% and 2%
on T20I6D100 and T10I4D100, correspondingly.
With the relative support of 1%, the compression
ratio is extremely good: 0.05% on both
transaction databases.

Figure 3: The compression ratio on sparse databases

With dense databases, we used big relative
minimum support thresholds ranging from 10%
to 40%. The results of the experiments are given
in Fig. 4. Compact FP-tree does not have much

6

http://keia.i3s.unice.fr/?Jeux_de_Données___Benc
hmark_Datasets

PACLIC-27

437

power with dense databases, since the
compression ratio is not good.

Figure 4: The compression ratio on dense databases

From experimental results, we can see that, on
sparse databases, the compact FP-tree has very
good compression ratio, whereas, it does not
expose its power in dense databases. There are
many domains, where the data is sparse, such as
text document collections of which the number
of dimension is so big that the data is very sparse.
Another example of domain is query logs, where
the queries are diverse, especially on multi-
language search engines (e.g. Google). Thus, the
application of compact FP-tree is very promising.

5 Conclusion and future direction

In this paper, we proposed to compress the
frequent pattern set mined from a transaction
database to a compact set. The compact set is
useful in application where the longest pattern is
usually used, such as query suggestion (i.e. we
prefer to suggest the longest frequent pattern
containing a certain word/phrase to users). The
practical compression algorithm is very effective
with the low complexity of O(N). In order to
speed up the retrieval of frequent patterns, we
proposed to modify the FP-tree into compact FP-
tree which stores the compressed pattern set as
an inverted indexing data structure.

Our experimental results on benchmark
databases show that the proposed method is very
useful in sparse databases.

In the future direction, we will study the
method to construct the compact FP-tree directly
form its FP-tree.

References
A. P. Xu, et al, 2011. Mining Associated Factors

about Emotional Disease Bases on FP-Tree
Growing Algorithm, International Journal of
Engineering and Manufacturing, vol. 4, pp. 25-31.

B. S. Kumar and K. V. Rukmani, 2010.
Implementation of Web Usage Mining Using
APRIORI and FP-Growth Algorithms, Int. J. of
Advanced Networking and Applications, Vol 01,
Issue: 06, pp 400-404.

C. Borgelt, 2005. An Implementation of the FP-
growth Algorithm. Workshop Open Source Data
Mining Software (OSDM'05, Chicago, IL), pp. 1-5,
ACM Press.

C. D. Manning, et al, 2008. Introduction to
Information Retrieval, Cambridge University Press.

G. Grahne and J. Zhu, 2003. Efficiently Using Prefix-
trees in Mining Frequent Itemsets, Proceedings of
the ICDM 2003 Workshop on Frequent Itemset
Mining Implementations, vol. 17, no. 10, pp. 1347-
1362.

H. Li, et al, 2008. PFP: Parallel FP-Growth for
Query Recommendation, Proceedings of the 2008
ACM conference on Recommender systems, pp
107-114.

J. Han, et al, 2000. Mining Frequent Patterns without
Candidate Generation, Proc. Conf. on the
Management of Data (SIGMOD’00, Dallas, TX.

M. Singh, et al, 2010. FP-Tree Improve Efficiency &
Increase Scalability by Applying Parallel Projected,
Binary Journal of Data Mining & Networking, Vol
1, No 1. pp 14-16.

R. Agrawal, et al, 1993. Mining association rules
between sets of items in large databases,
Proceedings of the 1993 ACM SIGMOD
international conference on Management of data pp.
207-216.

S. J. Yen, et al, 2009. The Studies of Mining Frequent
Patterns Based on Frequent Pattern Tree, Lecture
Notes in Computer Science Volume 5476, pp. 232-
241.

S. J. Yen, et al, 2012. A Search Space Reduced
Algorithm for Mining Frequent Patterns, Journal
Of Information Science And Engineering, Vol 28,
pp 177-191.

S. N. Patro, et al, 2012. Construction of FP Tree using
Huffman Coding, International Journal of
Computer Science Issues, Vol 9, Issue 3, pp 446-
469.

T. Bernecker, et al, 2010. Probabilistic Frequent
Pattern Growth for Itemset Mining in Uncertain
Databases, Cornell University Technical Report.

PACLIC-27

438

V. K. Shrivastava, et al, 2010. FP-tree and COFI
Based Approach for Mining of Multiple Level
Association Rules in Large Databases,
International Journal of Computer Science and
Information Security, Vol. 7 No. 2, pp. 273-279.

W. Y. Lin, et al, 2010. MCFPTree: An FP-tree-based
algorithm for multi-constraint patterns discovery,
Int. J. of Business Intelligence and Data Mining,
Vol. 5, No 3, pp. 231 – 246.

PACLIC-27

439

