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Abstract 

Frequent patterns are useful in many data 
mining problems including query 
suggestion. Frequent patterns can be 
mined through frequent pattern tree (FP-
tree) data structure which is used to store 
the compact (or compressed) 
representation of a transaction database 
(Han, et al, 2000). In this paper, we 
propose an algorithm to compress 
frequent pattern set into a smaller one, 
and store the set in a modified version of 
FP-tree (called compact FP-tree) as an 
inverted indexing of patterns for later 
quick retrieval (for query suggestion). 
With the compact FP-tree, we can also 
restore the original frequent pattern set. 
Our experiment results show that our 
compact FP-tree has a very good 
compression ratio, especially on sparse 
dataset which is the nature of query log. 

1 Introduction 

Frequent pattern mining is an important task 
because its results can be used in a wide range of 
mining tasks, such as association rule, correlation, 
causality, sequential pattern, etc. as reviewed by 
Han (2000). In some mining tasks (e.g. 
association rule, correlation, or causality), 
frequent patterns are used as intermediate data 
for computing final results, so there is no need to 
access these patterns again. However, in some 
other tasks, such as query suggestion (or query 
recommendation) (Li, 2008), when a user enter a 
keyword, the search engine will recommend the 
potential phrases (or patterns) the user may want 
to use, in order to: (a) save time for users, (b) 
make the convenience of use, and even (c) guide 
the user in case he/she is not sure about what to 
search for. In such tasks, we need to frequently 
search for frequent patterns containing a certain 
keyword (or phrase), hence, we want to have a 

method that supports quick retrieval of patterns. 
In information retrieval, one of the contemporary 
methods for fast retrieval of documents 
containing a certain word (or phrase) is inverted 
indexing (Manning, et al, 2008), which manages 
a mapping from a keyword to a set of documents 
containing it. Thus, given a keyword, we will 
quickly have the list of related documents. 

We found that FP-tree can be used as an 
inverted indexing which can provide us a list of 
patterns containing a certain item. Thus, we 
propose to modify FP-tree to store the frequent 
patterns for later fast retrieval. The difference 
between our FP-tree and the original one is:  
• The original FP-tree stores the compact

version of a transaction database, and an 
algorithm (called FP-growth) is used to find 
out the frequent patterns;  

• Our FP-tree stores the frequent patterns for
quick access, so each path in the tree is 
already a pattern. 

 Since the number of frequent patterns 
generated from a transaction database can be 
very large, we propose an algorithm to compress 
them into a much smaller (compact) set and store 
in FP-tree data structure. We also propose to 
modify related algorithms to make FP-tree 
compatible with frequent patterns instead of 
transaction data.  We call the tree of compact 
pattern set compact FP-tree. With the compact 
FP-tree, it is easily to restore the original 
frequent pattern set. The results of the 
experiments on benchmark transaction database 
show that our compact FP-tree has very good 
compression ratio. 

Our paper is organized as follows: Section 2 
introduces about FP-tree, and summarizes some 
typical literature; Section 3 introduces our 
compact FP-tree and the algorithms for 
compressing frequent patterns as well as 
restoring the original pattern set; Experiment and 
evaluation is discussed in Section 4 while 
conclusion and future work are provided in 
Section 5. 
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2 Background and related work 

In this section, to make the paper self-containing, 
we will introduce frequent pattern mining 
problem, some detail of FP-tree, and some 
typical studies. 

2.1 Frequent pattern mining problem 

Let I = {a1, a2, ..., am} be the set of items 
(which can be the list of goods in a supermarket), 
and a transaction database DB=〈 T1, T2, ..., Tn 〉, 
where each Ti (1 ≤ i ≤ n) is a transaction which 
contains a subset of items in I. An example of a 
transaction Ti is the list of goods in a shopping 
basket. Define the support count (or the 
absolute support, i.e. the absolute occurrence 
frequency/count) of a pattern A (A is a subset of I) 
is the number of transactions in DB that contains 
A. Note that, in other studies, relative support is 
used (i.e. the percentage of a pattern in DB). It is 
easily to convert from absolute to relative 
support, and vice versa using the formula:  

relative_support=absolute_support /|DB| 
In this paper, the term support count is used to: 

(a) refer to absolute occurrence frequency, (b) 
distinguish from relative support, and (c) make it 
easier to follow the examples. Pattern A is called 
a frequent pattern (or frequent itemset – the term 
used in some other literature) if A’ support count 
is greater than or equal a predefined minimum 
support count (minsupcount) ξ. The task of 
finding the complete set of frequent patterns in a 
DB with a minsupcount ξ is called frequent 
pattern mining problem. This task is claimed to 
be time-consuming, hence, there are many 
algorithms having proposed to solve the task. 

One of the algorithms, that has high attention 
of study is frequent pattern tree (or FP-tree for 
short) proposed by (Han, 2000). One of the 
advantages of FP-tree over previous algorithms 
is the reduction of the number of database scans. 
In FP-tree construction phrase, it needs only two 
scans over the database. The definition of FP-tree 
data structure and its related algorithms are given 
in next subsection. 

2.2 FP-tree introduction 

Han, et al, proposed the FP-tree data structure 
that can store the complete set of frequent 
patterns using only two scans over the DB. The 
biggest contribution to speed up the frequent 
pattern mining task is reduction of the number of 
scans over the DB down to only 2, since the 

speed of reading data in the secondary storage is 
slow. FP-tree is a tree structure as defined below: 
1. It consists of one root labeled as “null", a

set of item prefix subtrees as the children
of the root, and a frequent-item header
table.

2. Each node in the item prefix subtree
consists of 4 fields: item-name, (support)
count, parent-link, and node-link, where
item-name registers which item this node
represents, count registers the number of
transactions represented by the portion of
the path reaching this node, and node-link
links to the next node in the FP-tree
carrying the same item-name, or null if
there is none, the parent-link links to the
parent node1.

3. Each entry in the frequent-item header
table consists of three fields: (1) item-name,
(2) the (support) count2, and head of node-
link which points to the first node in the FP-
tree carrying the item-name.

An example of a FP-tree is given in Figure 1, 
now we will study how to construct the FP-tree 
in this figure. With the minsupcount ξ=3, based 
on the DB listed in Table 1. This table shows a 
simple database of transactions of a supermarket, 
where the first column is the transaction 
identification, each row in the second column is 
the list of items that were bought by a customer. 
The FP-tree construction is described briefly as 
follows: 

TID Items Bought (Ordered) Frequent 
Items 

100 f, a, c, d, g, i, m, p f, c, a, m, p 
200 a, b, c, f, l, m, o f, c, a, b, m 
300 b, f, h, j, o f, b 
400 b, c, k, s, p c, b, p 
500 a, f, c, e, l, p, m, n f, c, a, m, p 
600 f, c, g, s f, c 

Table 1. Transactions in DB and their frequent 
items 

FP-tree construction starts with the first scan 
over the DB to find the list of frequent items 
(i.e. frequent itemsets with the cardinality of 1 
having the support no less than ξ). The result of 
the scan over the DB in Table 1 is the list h of 
〈(f: 5), (c: 5), (a: 3), (b: 3), (m: 3), (p: 3)〉, 

1 Though this field is not clearly mentioned in Han’s paper, 
it is important in forming the tree, so we list it here for the 
sake of completeness. 
2 This field is not clearly mentioned in Han’s paper neither, 
we list it here for later use. 
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where the number after the colon “:” is the 
support count of items, and the h is sorted in 
support count descending order denoted as L. h 
is used to build the frequent-item header table 
(or header table for short), where each entry in 
the table consists of the item-name and a 
pointer (called head of node-links) to the first 
(appeared) node having the same item-name in 
the FP-tree as depicted in Figure 1. The second 
scan will get the list of frequent items of each 
transaction, sort it according to L, and insert it 
into the FP-tree. To make it easier to observe, 
this list of each transaction is showed in the 
third column of Table 1. The tree construction 
algorithm is listed in Algorithm 1. 

Algorithm 1: FP-tree_construction 
Input: A transaction database DB and a 

minsupcount ξ. 
Output: The frequent pattern tree F 

(1) 1. Scan the DB to get the list L of frequent items, 
and sort it in support descending order. 

(2)    Create a FP-tree F  by: 
(3)   Create the header table, and set all the head-

of-node-links to null.  
(4)        Create the root node T of the tree having the 

item-name of null. 
(5)        Set the parent-link and node-link of T to null.  
(6) 2. Scan the DB again  
(7)   For each transaction Tran in DB do  
(8)      Get the list of frequent items.  
(9)      Sort it according to the order L.  
(10)    Let this list be [p|P], where p is the first item 

and P is the remaining items. 
(11)    Call insert_tree([p|P], T).  

where the insert_tree(.) procedure is defined in 
Algorithm 2. 

Algorithm 2: insert_tree 
Input: the ordered list [p|P] of frequent items, and 

a node T of a FP-tree. 
Output: the updated FP-tree. 

(1) if T has a child node N such that the item name of 
N and p is the same then 

(2) Increase the count of N by 1 
(3) else 
(4) Create a new node N. 
(5) Set the item_name of N to p.item_name. 
(6) Set the count of N to 1. 
(7) Link the parent-link of N to T. 
(8) Set the node-link of N to null. 
(9) if the head-of-node-links of the item h in the 

header table having the same name as p is 
null    then 

(10)        Set head-of-node-links of h to p; 
(11) else   

(12) Traverse through the head-of-node-links 
of h to the end of the list, and link the 
node-link of the end-node to p. 

(13) if P is not empty then  
(14) Let P=[p1|P1] 
(15) Call insert_tree([p1|P1], N). 

The key idea why the algorithm needs to sort 
the items in a transaction in the order L is: the 
more frequent an item is, the more common it is 
in transactions, hence the transactions will share 
the items as a prefix. And such transactions will 
be “compressed” in the prefix, and make the tree 
compact. 

Han (2000) proved that FP-tree has both 
compactness (i.e. it has a compact representation) 
and completeness (i.e. it stores the complete 
information of the database in relevant to 
frequent pattern mining). 

After having built the FP-tree, frequent 
patterns can be extracted from the item at the 
bottom of the header table (i.e. the item having 
the smallest count) (Han, 2000).  For example, 
from the FP-tree in Fig. 1, we start with item p in 
the header table, and have one frequent pattern (p: 
3) and two paths: 〈(f: 5), (c: 5), (a: 3), (b: 3), (m:
2), (p: 2)〉 and 〈(c: 1), (b: 1), (p: 1)〉. The items 
(called p’s prefix) that appear together with p in 
the two paths are 〈(f: 2), (c: 2), (a: 2), (b: 2), (m: 
2) 〉 and 〈(c: 1), (b: 1)〉, correspondingly. The
prefix set of p {〈(f: 2), (c: 2), (a: 2), (b: 2), (m: 
2)〉, 〈(c: 1), (b: 1)〉} is called p’s conditional 
pattern base (i.e. the sub-pattern base under the 
condition of p’s existence). This set is used as a 

Figure 1. FPTree corresponding to the DB in Table 1 
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set of transactions to construct another FP-tree 
called p’s conditional FP-tree with respect to 
minimum support count: ξ. The only frequent 
item in p’s conditional pattern base is (c: 3), 
hence we can produce one frequent pattern (pc:3). 
Table 2 lists the conditional pattern bases, 
conditional FP-trees, and frequent patterns of 
other items of the FP-tree in Fig. 1. 

Ite
m 

Conditional 
pattern base 

Cond’ FP-
tree 

Frequent 
pattern 

p {(f:2, c:2, a:2, 
m:2),  (c:1, b:1)} 

{(c:3)}|p {(p:3), 
(pc:3)} 

m {(f: 2, c:2,  a:2), 
(f:1, c:1,  a:1, 
b:1)} 

{(f:3, c:3, 
a:3)}|m 

{(m:3), 
(macf:3, 
(mac:3), 
(maf:3), 
(ma:3), 
(mcf:3), 
(mc:3), 
(mf:3)} 

b {(f:1, c:1,  a:1, 
m:1), (f:1, b:1),  
(c:1)} 

{} {(b:3)} 

a {(f:3, c:3)} {(f:3, 
c:3)}|a 

{(a:3), 
(acf:3), 
(ac:3), 
(af:3)} 

c {(f:4)} {(f:4)}|c {(c:5), 
(cf:4)} 

f {} {} {f:5} 
Table 2. Frequent pattern generation 

When a single path in one item’s conditional 
FP-tree having the length greater than 1 as in 
case of m and a (see Table 2), a set of 
combinations of items (i.e. the non-empty 
subsets) in the path is generated as frequent 
patterns with the same support as the considered 
item’s. For example, the item a has the 
conditional FP-tree consisting of only one path 
(fc:3), and the combinations of the items in this 
path are {(fc:3), (c:3), (f:3)}. These combinations 
are used as a prefix of a to produce frequent 
patterns: (acf:3), (ac:3), (af:3). The algorithm to 
extract frequent patterns from a FP-tree is given 
in Algorithm 3. 

Algorithm 3: FP_growth 
Input: FP-tree constructed based on Algorithm 1, 

using DB and a minsupcount ξ, and a pattern 
prefix α 

Output: The complete set of frequent patterns. 

Procedure FP-growth (Tree, α) 
(1) if Tree contains a single path P then 
(2)   for each combination (denoted as β) of the 

nodes in the path P do 
(3)      Generate pattern β ∪α with support 

=minimum support of nodes in β; 
(4) else for each ai in the header of Tree do  
(5)    Generate pattern β = ai ∪α  with support = 

ai.support; 
(6)    Construct β 's conditional pattern base and then 

β 's conditional FP-tree Treeβ  with respect to 
minsupcount ξ ; 

(7) If Treeβ ≠∅ then call FP-growth (Treeβ, β ) 
To extract patterns from a FP-tree F, we call 

FP-growth(F, null). 

FP-tree data structure has attracted many 
studies in both application and modification 
(improvement) aspects. Li, et al (2008) 
parallelized FP-tree and pattern generation to 
detect relation among tags and and webpages for 
query recommendation. Kumar and Rukmani, 
(2010) used both FP-tree and Apriori for web 
usage mining problem. Xu, et al (2011) mined 
associated factors about emotional disease based 
on FP-tree growing algorithm. Patro, et al, (2012) 
proposed to use Huffman coding to compress FP-
tree. Yen, et al (2012) proposed Search Space 
Reduced (SSR) algorithm to speed up the pattern 
extraction from FP-tree. Bernecker, et al (2010) 
added probability to FP-tree to mine uncertain 
databases. Concretely, the authors proposed the 
first probabilistic FP-Growth (ProFP-Growth) 
and associated probabilistic FP-Tree (ProFP-
Tree), which we use to mine all probabilistic 
frequent patterns in uncertain transaction 
databases without candidate generation. 
Shrivastava, et al (2010) mined multiple level 
association rules based on FP-tree and co-
occurrence frequent item tree (CFI). Lin, et al 
(2010) added constraints on FP-tree for multi-
constraint pattern discovery. 

2.3 Inverted indexing 

In document representation, a document can be 
represented as a vector of which each element is 
a feature (e.g. a binary value indicating whether a 
word appears in the document or not). Vector 
representation of document is suitable for 
computation, such as classification. However, it 
is not good for searching (i.e. given a keyword, 
find all the documents containing it). Inverted 
indexing is a data structure that stores a mapping 
from content (e.g. keywords) to documents. All 
the distinct keywords in the universal document 
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set are used to form a dictionary. Each keyword 
in the dictionary is attached a list of document 
identifiers (doc_id) called posting list. For 
example, given a set of 3 documents: 

{  T[0]= “What is inverted indexing?” 
   T[1]= “Inverted indexing is a data structure” 
   T[2]= “Inverted indexing is used in search 
engine”} 

The distinct keywords in the document set is 
{“a”, “data”, “engine”, “in”, “indexing”, 
“inverted”, “is”, “search”, “structure”, “used”, 
“what”}, and the inverted indexing of the 
document set is3: 

“a” => {1} 
“data” => {1} 
“engine” => {2} 
“in” => {2} 
“indexing” => {0, 1, 2} 
“inverted“ => {0, 1, 2} 
“is” => {0, 1, 2} 
“search” => {2} 
“structure” => {1} 
“used” => {2} 
“what” => {0} 

With this data structure, given a keyword we 
will quickly have the list of documents 
containing it. When we want to find documents 
that contain some keywords all together, we 
simply find out the document list of each 
keyword and calculate the intersection. Inverted 
indexing is usually employed in search engines 
(Manning, et al, 2008). 

3 Compact FP-tree 

When the frequent pattern set generated from a 
transaction database is large, while we need to 
access the frequent patterns regularly, is it 
possible to: (a) compress the set into a smaller 
one, and (b) facilitate the access to frequent 
patterns? In this section, we will address the two 
questions through: (a) frequent pattern 
compression method, and (b) compact FP-tree. 

3.1 Frequent pattern set compression 

Given a set of frequent patterns FP={fp1:s1, 
fp2:s2, ..., fpn:sn}, where fpi is a frequent pattern 

3  We ignore additional techniques while building the 
dictionary as well as the inverted indexing for simplicity. 
Interested readers can refer to (Manning, et al, 2008) 

and si is its support. The frequent pattern set 
compression is defined as: 

Find another frequent pattern set FP’ such that 
|FP’| < |FP|, and it is possible to restore the FP 
from FP’. Formally, we need to find to 
procedure compress(.) and uncompress(.) such 
that: if FP’=compress(FP), then |FP’| < |FP| and  
uncompress(FP’)=FP.  

Our compression idea is based on the fact that 
if there are two frequent patterns fpi:si and fpj:sj 
(where si is the support of the pattern) such that 
si=sj and ji fpfp ⊂ then we can remove the 
pattern fpi. 

For example, from the set of frequent patterns 
generated from the item m in Table 2 {(m:3), 
(a:3), (macf:3), (mac:3), (maf:3), (ma:3), (mcf:3), 
(mc:3), (mf:3)}, since the pattern mc is a subset 
of pattern mcf with the same support of 3, we can 
remove mc from the set. Similarly, mf is a subset 
of mcf, we remove mf. Repeating this process 
exhaustively, the above set is reduced to the set 
{(macf:3)}. 

A heuristic method to reduce the search space 
to find out the frequent patterns of which one can 
be a subset of another is to sort the patterns 
according to the support, and then the frequent 
patterns.  After sorting, patterns having the same 
support and prefix will be grouped into a 
segment. The search performed per segment will 
be faster, since it has a smaller search space.  

To uncompress the pattern set, we reverse the 
compress process. For a pattern fpi:si whose 
cardinality is greater than 1, we generate a set of 
all the combinations (i.e. the non-empty subsets) 
of its items: {fpi1,, fpi2, ..., fpin}, each combination 
fpik is assigned the support si to form a frequent 
pattern. Added the pattern fpi:si  to the generated 
set we produce the output set {fpi1: si,, fpi2: si, ..., 
fpin: si, fpi:si }. 

The above output set sometimes is not original 
set due to the fact that some combination in the 
original set can have a bigger support count. For 
example, the uncompressed set of the pattern 
(macf:3) is {(macf:3), (mac:3), (maf:3), (ma:3), 
(mcf:3), (mc:3), (mf:3), (m:3), (a:3), (c:3), (f:3)}. 
However, in the compressed set we have the 
frequent pattern (f:5), so the pattern (f:3) is 
redundant and need to remove. We call this 
phenomenon redundant pattern for later 
reference. 

Based on the above discussion, we first 
introduce the compress(.), uncompress(.) 
procedures, and prove the correctness later. 
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The compress(.) procedure is defined as 
Algorithm 4. 

Algorithm 4: compress(.) 
Input: a set of frequent patterns FP 
Output: a compact set of frequent patterns 

(1) while exist two patterns fpi:si and fpj:sj in FP such 
that si=sj and fpi is a subset of fpj do 

(2) }:{\ ii sfpFPFP =  
(3) return FP 

And the uncompress(.) procedure is defined as 
Algorithm 5. 

Algorithm 5: uncompress(.) 
Input: a set of compact frequent patterns FP 
Output: the original set of frequent patterns 

(1) FP’={} 
(2) while exist a pattern fpi:si in FP such that si >1 do 
(3) Let Fi be the set of all frequent patterns that 

are combinations of items in fpi  with the 
support si 

(4)  }:{\ ii sfpFPFP =  
(5)  }:{'' iii sfpFFPFP ∪∪=  
(6) FPFPFP ∪= ''  
(7) while exist two pattern fpi:si and fpj:sj in FP’ such 

that si < sj and fpi = fpj do }:'\{' ii sfpFPFP =  
(8) return FP’ 

Lemma 3.1: Given a set of frequent patterns 
generated from a transaction database, after 
having compressed by the above compress(.) 
procedure, the uncompress(.) procedure will 
produce the original frequent pattern set. 

Proof:  According to Apriori property 
(Agrawal, et al 1993): if a pattern p is frequent, 
then all of its subsets are frequent, thus, if there 
is a pattern fpj:sj is compressed by compress(.), 
then all the combinations of the items in fpj {fpi1: 
si,, fpi2: si, ..., fpin: si,} are frequent. The only 
phenomenon is the redundant pattern discussed 
earlier. However, this phenomenon can be solved 
by simply removing the pattern with lower 
support count (in line 7 of Algorithm 5).  � 

Applying the compress(.) procedure to the 
frequent pattern set generated from the FP-tree in 
Fig. 1, we have the compressed set {(f:5), (c:5), 
(cf:4), (macf:3)}. We can see that the compressed 
set is much smaller than the original one. Our 
compression algorithm produces the closed and 
maximal item set as (Grahne and Zhu, 2003). 
Grahne and Zhu proposed an algorithm based on 
FP-tree called FPClose to mine closed and 
maximal item set. The compressed set will be 

stored in the compact FP-tree, which again helps 
to reduce the storage as discussed in Section 3.2. 

3.2 Compact FP-tree 

From the definition of FP-tree data structure, it 
has a header table containing all the frequent 
items. Each item has a pointer that links all its 
occurrences in the patterns of the tree. This 
header table is similar to inverted indexing 
mechanism discussed in Section 2.3. The only 
difference is: each item in header table maintains 
a list of patterns (not a list of pattern_ids as in 
inverted indexing).  Therefore, FP-tree data 
structure has the same characteristics of inverted 
indexing, i.e. it facilitates the fast retrieval of 
patterns containing a certain item, and we 
propose to use FP-tree to store the compressed 
frequent pattern set. Since, we can not use the 
original FP-tree as well as its related algorithms, 
we define another version of FP-tree called 
compact FP-tree (with the differences from the 
original of FP-tree definition are in bold): 

1. It consists of one root labeled as “null", a
set of item prefix subtrees as the children of
the root, and a frequent-item header table.

2. Each node in the item prefix subtree
consists of 4 fields: item-name, support 4 ,
parent-link, and node-link, where item-
name registers which item this node
represents, support is used to calculate the
support of the pattern containing this
item, and node-link links to the next node in
the compact FP-tree carrying the same item-
name, or null if there is none, the parent-
link links to the parent node.

3. Each entry in the frequent-item header table
consists of three fields: (1) item-name, (2)
the support, and head of node-link which
points to the first node in the compact FP-
tree carrying the item-name.

Lemma 3.2: The order of frequent items in FP-
tree storing the compressed frequent pattern set is 
the same as that of the original FP-tree (i.e. the 
FP-tree corresponding to the uncompressed 
pattern set).  

Proof: the items in header table of the FP-tree 
constructed from a transaction database are 
themselves frequent, hence, their order remains 
the same if we copy them to another FP-tree.    � 

4 This can be relative or absolute support, in this paper we 
use absolute support for consistency 
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The algorithm to construct a compact FP-tree 
is defined as: 

Algorithm 6: FP-tree_construction 
Input: A compressed pattern set S. 
Output: The compact FP-tree F 

(1)  Generate the list L of frequent items from S, and 
sort L in descending order of support. 

(2)   Create a FP-tree F  by: 
(3)   Create the header table based on L, and set 

all the head-of-node-links to null.  
(4)        Create the root node T of the tree having the 

item-name of null. 
(5)        Set the parent-link and node-link of T to null.  
(6)   Remove all frequent items from S. 
(7)   for each pattern fp:s in S do  
(8)      Sort the items in fp according to the order L.  
(9)    Let this list be [p|P], where p is the first item 

and P is the remaining items.  
(10)    Call insert_pattern([p|P], T,s). 

where insert_pattern(.) is defined as: 

Algorithm 7: insert_pattern 
Input: the ordered list [p|P] of frequent items, a 

node T of a compact FP-tree, and the 
support s. 

Output: the updated compact FP-tree. 
(1) if T has a child node N such that the item name of 

N and p is the same then  
(2) if p.support>N. support then N. support =p. 

support 
(3) else 
(4) Create a new node N. 
(5) Set the item_name of N to p.item_name. 
(6) N. support =p. support 
(7) Link the parent-link of N to T. 
(8) Set the node-link of N to null. 
(9) if the head-of-node-links of the item h in the 

header table having the same name as p is 
null    then 

(10)        Set head-of-node-links of h to p; 
(11) else   
(12) Traverse through the head-of-node-links 

of h to the end of the list, and link the 
node-link of the end-node to p. 

(13) if P is not empty then  
(14) Let P=[p1|P1] 
(15) Call insert_pattern([p1|P1], N, s) 

The compressed pattern set of the FP-tree in 
Fig. 1 as discussed in Section 3.1 has the 
compact FP-tree as Fig. 2.  

3.3 Searching in compact FP-tree 

Given an item, we follow the node-link pointer 
from the header table to get all the patterns 

containing it. If we want to search for patterns 
containing more than one item (e.g. this case is 
frequently occurs in web search, where users can 
search for a phrase instead of a keyword), then 
we search for patterns containing the lowest 
support item, then filter out the patterns 
containing all the given items. For example, if 
we want to search for patterns containing {a, f, 
m}, we just search for patterns containing m, 
then filter out the patterns containing both a and f. 

However, there is a limitation of current 
compact FP-tree, i.e. if we search for patterns 
containing an item that is not a leaf node, then 
we can not extract the whole pattern (from the 
root to the leaf). For example, in the compact FP-
tree in Fig. 2, if we search the tree based on item 
a, then we can only extract a pattern (acf:3), m is 
absent in the pattern. Fortunately, we can 
overcome this limitation by adding pointers from 
a parent node to its children nodes, so we can 
traverse in both directions from a leaf to the root 
and vice versa. 

In some situations, we want to get the patterns 
with higher support first, i.e. in query suggestion, 
we want to suggest users with more frequent 
keywords first. To support this situation, we 
simply reorder the node-link of nodes so that the 
highest support pattern is pointed by the head-of-
node-link (i.e. the pointer of the header table). 

3.4 Original frequent pattern set recovery 

In case we want to restore the original frequent 
pattern set (the uncompressed one) we can easily 
do through the compact FP-tree. For each path in 
the compact FP-tree, we generate the 
combinations of its items with the lowest support 
of the item in the combination. After generation, 

f: 5 
c: 5 
a: 3 
b: 3 
m: 3 
p: 3 

Figure 2: A compact FP-tree 

item 
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node-link 

root 

Header table 

f:4 
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p:3 
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we also face redundant pattern problem, which 
can be solved by a removal step. The recovery 
algorithm is described in Algorithm 8. 

Algorithm  Pattern_extraction 
Input: a compact FP-tree Tree 
Output: The complete set S of frequent patterns. 
(1) S={all items in the header table}  
(2) for each path in Tree do  
(3)      Generate the set P of all combinations with the 

length>1, each of which has the support of the 
lowest support item. 

(4)       S = S ∪ P 
(5) while exist two pattern fpi:si and fpj:sj in S such 

that si < sj and fpi = fpj do }:{\ ii sfpSS =  

4 Experiments 

We used the open source FP-growth package 5 
developed by (Borgelt, 2005). The patterns 
having the same support are generated in next to 
each other as a group as listed in Table 2, where 
the number in the parenthesis is the (relative) 
support (in percent) of the pattern. 

Frequent Pattern 
m  (60.0) 
m a  (60.0) 
m a c  (60.0) 
m a c f  (60.0) 
m a f  (60.0) 
m c  (60.0) 
m c f  (60.0) 
m f  (60.0) 

Table 2. Frequent patterns 
generated from FP-growth 

By exploiting this characteristic, we simply 
find the longest pattern in the group which will 
be the compressed pattern of the group. Hence, 
we wrote another algorithm as Algorithm 8 
which has the complexity of O(N). 
Algorithm 8:  Pattern_compression 
Input: a list P of frequent patterns 
Output: The set S of compressed frequent patterns 

having the length>1, and a list L of frequent 
items for building header table  

(1) L={} ;  
(2) S={}  
(3) iterate through the list P  
(5)      if the current  pattern p has the length=1 then 
(6)  L=L + p 

5 http://www.borgelt.net/fpgrowth.html 

(7)  else this is the starting of a group with the same 
support, so find the longest pattern p in this 
group  

(9)      S = S ∪ p 

We used two types of transaction databases 
that are published as benchmark datasets6: sparse 
(i.e. T10I4D100 and T20I6D100) and dense (i.e. 
mushroom and C20D10). For evaluation, we 
compare the size (in term of the total of nodes) of 
the compact FP-tree and its original FP-tree 
called compression ratio (in %) as follows: 

%100*
___
___

∑
∑

−

−
=

treeFPoriginalinnodes
treeFPcompactinnodes

ratio

The smaller the ratio is, the better compression 
is. 

With sparse databases, we had to use very 
small relative minimum support thresholds 
ranging from 0.1% to 1%. The compression ratio 
of sparse databases is given in Fig. 3 where we 
can see that the compact FP-tree is drastically 
reduced. With the relative support of 0.1%, the 
size of compact FP-tree is reduced to 8% and 2% 
on T20I6D100 and T10I4D100, correspondingly. 
With the relative support of 1%, the compression 
ratio is extremely good: 0.05% on both 
transaction databases. 

Figure 3: The compression ratio on sparse databases 

With dense databases, we used big relative 
minimum support thresholds ranging from 10% 
to 40%. The results of the experiments are given 
in Fig. 4. Compact FP-tree does not have much 

6

http://keia.i3s.unice.fr/?Jeux_de_Données___Benc
hmark_Datasets 
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power with dense databases, since the 
compression ratio is not good. 

 
Figure 4: The compression ratio on dense databases 

From experimental results, we can see that, on 
sparse databases, the compact FP-tree has very 
good compression ratio, whereas, it does not 
expose its power in dense databases. There are 
many domains, where the data is sparse, such as 
text document collections of which the number 
of dimension is so big that the data is very sparse. 
Another example of domain is query logs, where 
the queries are diverse, especially on multi-
language search engines (e.g. Google).  Thus, the 
application of compact FP-tree is very promising. 

5 Conclusion and future direction 

In this paper, we proposed to compress the 
frequent pattern set mined from a transaction 
database to a compact set. The compact set is 
useful in application where the longest pattern is 
usually used, such as query suggestion (i.e. we 
prefer to suggest the longest frequent pattern 
containing a certain word/phrase to users). The 
practical compression algorithm is very effective 
with the low complexity of O(N). In order to 
speed up the retrieval of frequent patterns, we 
proposed to modify the FP-tree into compact FP-
tree which stores the compressed pattern set as 
an inverted indexing data structure. 

Our experimental results on benchmark 
databases show that the proposed method is very 
useful in sparse databases. 

In the future direction, we will study the 
method to construct the compact FP-tree directly 
form its FP-tree. 
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